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ABSTRACT

Online video content is richly multimodal: a single video might blend vision,
speech, ambient audio, and on-screen text. Conventional retrieval systems typ-
ically treat these modalities as independent retrieval sources, which can lead to
noisy and subpar results. In this work, we explore multimodal video content re-
trieval, where relevance can be scored from a single modality or jointly across
multiple modalities. Consequently, an effective retriever must dynamically de-
termine which modality (or set of modalities) best address a given query. We
introduce CLAMR, a multimodal, late-interaction retriever that jointly indexes
four modalities: video frames, transcribed speech, on-screen text, and metadata.
CLAMR jointly encodes all modalities within a unified multimodal backbone for
improved contextualization and is trained to enhance dynamic modality selection
via two key innovations. First, to overcome the lack of suitable training data, we
introduce MULTIVENT 2.0++, a large-scale synthetic dataset built on MULTI-
VENT 2.0 (a collection of event-centric videos in various languages paired with
English queries) with modality-targeted queries to teach modality selection. Next,
we propose a modality-aware contrastive loss that trains the model on both a stan-
dard contrastive objective and an objective for learning correct modality usage. On
the test sets of MULTIVENT 2.0++ and MSRVTT, we observe that conventional
aggregation strategies, such as averaging similarities for baseline retrievers, often
degrade performance by introducing noise from irrelevant modalities. In contrast,
CLAMR consistently outperforms existing retrievers: on MULTIVENT 2.0++,
CLAMR improves nDCG@10 by 25.6 points over the best-performing single-
modality retriever and by 35.4 points over the best-performing multi-modality
retriever. We illustrate the downstream utility of CLAMR with experiments on
long-video QA, where it improves performance by 3.50% over LanguageBind on
Video-MME and 1.42% over dense frame sampling on LongVideoBench.1

1 INTRODUCTION

Online platforms host a massive stream of video content that is natively multimodal, intertwining
visual scenes, spoken dialogue, ambient sound, on-screen text, and free-form descriptions (Samuel
et al., 2025). Modern search engines and retrieval-augmented generation (RAG) systems must there-
fore decide, for every user query, which of these heterogeneous sources actually contains useful data
and how to exploit it (Cho et al., 2024). However, effectively searching this rich content requires
combining signals from diverse sources in ways that prior work has not fully addressed. Existing
approaches often focus on a single modality (e.g., video) or convert content to text via captioning
or OCR (Memon et al., 2020; Smith, 2007), which risks missing key information encoded in the
original modality (Cho et al., 2024; Faysse et al., 2025). Furthermore, multimodal search engines
that do treat different modalities as separate sources often rely on simple heuristics for merging
scores, such as maximum or reciprocal-rank fusion (RRF) (Cormack et al., 2009), as illustrated in
Figure 1. These methods implicitly assume that multiple modalities will agree on relevance but risk
drowning out valuable evidence from one modality with noise from another. In fact, as we show in
Table 1, simple combination methods like averaging often lead to worse performance than using the
best single modality, primarily due to limited cross-modal understanding.

1Code and data are in the supplementary materials.
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Figure 1: Illustration of the multimodal video content retrieval task. A query derived from a video’s
audio is presented. Conventional retrieval systems (top) encode each modality independently and
then aggregate their similarity scores, a process easily contaminated by noise from irrelevant modal-
ities. By contrast, CLAMR (bottom) jointly encodes all modalities (a) and, via a late-interaction
mechanism (b), computes fine-grained, token-level similarities that dynamically focus on the most
relevant modalities (audio and video) for the query.

To close this gap, we introduce CLAMR, a contextualized, late-interaction retriever that jointly en-
codes video frames, speech transcripts, on-screen text, and other metadata. Originally studied in
text retrieval, late-interaction (LI) models first independently encode queries and documents, then
compute lightweight but fine-grained token-level similarities to facilitate precise relevance judg-
ments (Khattab & Zaharia, 2020; Santhanam et al., 2022). This contrasts with standard bi-encoder
retrievers that compute only a single cosine similarity between pooled query and document em-
beddings (Fig. 1, top). While promising, late interaction has primarily been studied in text-based
contexts, with its multimodal application largely restricted to single modalities like images (Faysse
et al., 2025) or video frames (Reddy et al., 2025). Meanwhile, applying late interaction to retrieving
multimodal video content has remained unexplored. Inspired by recent vision-language models that
jointly process cross-modal inputs (Chen et al., 2023b;c; Sun et al., 2024), we propose to address this
gap by using a single vision-language backbone to encourage better contextualization. As shown in
Fig. 1 (bottom), by encoding all sources together rather than in isolation, CLAMR learns directly
from contrastive signals which modality to trust for each query, eliminating the need for fragile com-
bination techniques or routers (Yeo et al., 2025) that require extra computation. To teach CLAMR
to retrieve the correct content and focus on the correct modality, we propose a modality-aware con-
trastive loss (Sec. 3.3). Our loss explicitly encourages CLAMR to assign the highest similarity score
to modalities containing query-relevant information. For example, for a query derived from speech,
the model should learn to match evidence from the audio signal over other modalities (Fig. 2).

Finally, to effectively train a late-interaction retriever that can dynamically select among modalities,
we introduce MULTIVENT 2.0++ (Sec. 4), a large-scale synthetic dataset built upon MULTIVENT
2.0 (Kriz et al., 2025). While MULTIVENT 2.0 provides a massive set of multimodal data, it lacks
sufficient modality-specific queries for training. MULTIVENT 2.0++ addresses this by synthesizing
371k queries specifically targeting different modalities for the unannotated videos.

On MULTIVENT 2.0++ and the popular text-video retrieval benchmark MSR-VTT (Xu et al.,
2016), CLAMR substantially outperforms all unimodal and multimodal baselines. For example,
on MULTIVENT 2.0++, CLAMR surpasses the strongest unimodal and multimodal baselines
by 25.7% nDCG@10. Our ablation studies highlight the critical roles of contextualization and
modality-aware contrastive training. We also demonstrate the downstream benefits of CLAMR on
long-video question answering, where CLAMR retrieves relevant segments given a query. With a
fixed frame budget, CLAMR provides improvements over LanguageBind on both VideoMME (Fu
et al., 2024) and LongVideoBench (Wu et al., 2024) by retrieving more relevant video segments.
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2 RELATED WORK

Multimodal Retrievers. Multimodal retrievers aim to align and retrieve information across dif-
ferent modalities such as text, image, audio, and video. A key development is large-scale vision-
language pretraining with contrastive learning, as exemplified by dual-encoder models like CLIP
(Radford et al., 2021) and ALIGN (Jia et al., 2021). These models learn joint embedding spaces
for images and text, inspiring extensions to additional modalities. For instance, ImageBind (Gird-
har et al., 2023) extends contrastive alignment to audio and other inputs, while LanguageBind (Zhu
et al., 2024) uses language to bind video and diverse modalities. Recent retrievers also incorporate
signals such as OCR-extracted text (Zhang et al., 2024), speech transcripts (ASR), and video frame
features (Reddy et al., 2025). However, dynamically selecting the most relevant modality for each
query remains a challenge, as most systems fuse modalities in a fixed way. Emerging benchmarks
like MULTIVENT (Kriz et al., 2025) emphasize this challenge by providing queries that require
retrieval from whichever modality contains the answer, underscoring the need for adaptive retriev-
ers. Our work addresses this gap by training a single retriever to dynamically identify and focus
on the most relevant modality per query. Recent system for multimodal document retrieval (Zhan
et al., 2025) often fuses (concatenates) modalities into a unified single embedding for retrieval. Our
approach is fundamentally different: we employ a late-interaction framework that preserves fine-
grained, token-level representations across all modalities. This architecture allows our model to
dynamically select the most relevant modality for any given query, a capability we foster through a
novel, modality-aware training objective and our co-designed MULTIVENT 2.0++ dataset.

Late Interaction. Unlike standard dual encoders that match queries and documents via coarse-
grained similarity (Karpukhin et al., 2020; Reimers & Gurevych, 2019), or cross-encoders that
compute full query-document interactions at a high computational cost (Wang et al., 2020), late-
interaction methods offer a middle ground. They enable fine-grained token-level matching while re-
taining much of the efficiency of dual encoders. ColBERT (Khattab & Zaharia, 2020) introduced this
paradigm for text, and ColBERTv2 (Santhanam et al., 2022) improved its effectiveness. Originally
developed for monolingual text, late interaction has been extended to new languages and modali-
ties. For instance, JaColBERTv2.5 (Clavié, 2024) explored multilingual retrievers, while ColPali
(Faysse et al., 2025) applied a ColBERT-style model to document images. These approaches allow
token-level comparisons across modalities, e.g., matching a query word to a specific image region.
Notably, video retrieval methods like CLIP4Clip (Luo et al., 2021) still rely on pooled global embed-
dings, whereas late-interaction models preserve multiple embeddings per item for detailed matching.
Our approach differs by introducing modality-wise late interaction that computes token-level scores
separately across modalities and trains the model to select the most relevant one dynamically.

3 CLAMR

We propose CLAMR (Contextualized Late-interaction for Multimodal content Retrieval), a novel
retrieval framework capable of attending to different views of multimodal content (e.g., frames,
speech, metadata). Unlike previous methods that encode each modality separately, CLAMR fo-
cuses on contextualization by encoding all modalities together and employs late interaction for fine-
grained retrieval. Below, we detail the task setup, architecture, and training objective.

3.1 TASK SETUP

Given a query q, the retriever must identify the most relevant document d. Each document d =
{v, a, o,m, . . . } may contain multiple modalities, such as video v, audio a, on-screen text o, and
metadata m. An example is depicted in Fig. 2. The core challenge is to locate the relevant document,
as the evidence might be found within a single modality or distributed across several.

3.2 CONTEXTUALIZED MULTIMODAL ENCODER

We primarily employ a vision-language model (VLM), which is essential for leveraging detailed
token- and patch-level interactions because it jointly encodes all modalities. As illustrated in Fig. 2,
all input modalities are first concatenated into a single sequence, with visual inputs preceding textual
inputs. The VLM then processes this combined sequence to generate contextualized hidden states

3
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Figure 2: CLAMR with modality-wise late interaction for multimodal contrastive learning. A text
query and a multimodal video document (comprising visual, audio, OCR, and metadata signals) are
encoded by the model. Token-level late interaction yields a similarity score for each modality; the
highest of these scores becomes the query-document similarity. Similarities for the positive pair and
in-batch negatives are then fed to a contrastive loss.

for all tokens and patches. Finally, these hidden states are passed through a projection layer to
produce the final representation for each token. See Sec. 5 for more details.

Omni-Models. Since ASR transcripts are converted to text for VLMs, we also explore integrating
CLAMR with omni-models that can process audio directly. Unlike VLMs, omni-models such as
Qwen-Omni (Xu et al., 2025) can process raw audio. The setup generally follows that of the VLM,
with the exception of using raw audio instead of ASR transcripts.

3.3 CONTEXTUALIZED LATE-INTERACTION.

All hidden states are projected into a shared embedding space. A query yields Eq ∈RNq×D, where
Nq is the number of query tokens. Each document is represented by concatenating the embeddings
of all its modalities, yielding a single representation Ed ∈ RNd×D, where Nd =

∑
m∈M Nd,m

is the total number of tokens across all modalities. Late interaction (LI) (Khattab & Zaharia, 2020;
Santhanam et al., 2022; Faysse et al., 2025) compares token-level embeddings: for each query token,
its maximum cosine similarity to any document token is computed, and these maximum similarities
are then summed over all query tokens. At inference time, we use this contextualized scoring to
allow each query token to match the most similar document token from any modality:

LIcontext(q, d) =

Nq∑
i=1

Nd
max
j=1

〈
E(i)

q ,E
(j)
d

〉
. (1)

3.4 TRAINING OBJECTIVE: MULTIMODAL CONTRASTIVE LEARNING.

Our goal is to train the model to not only retrieve the correct document but also dynamically select
the optimal modality. Let {(qk, dk)}bk=1 be a batch with one query per document. We use the
standard InfoNCE loss (van den Oord et al., 2019) to train the model to retrieve the correct document
from a batch of negatives. As illustrated in Figure 2, the loss is formulated as follows:

LInfoNCE = −1

b

b∑
k=1

log
exp

(
sk,k/τ

)∑b
j=1 exp

(
sk,j/τ

) , (2)

where τ is temperature, and si,j is the similarity score between query qi and document dj .
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Query (base):
Soil health mineral 

extraction video

Video Title:
The Science of Soil Health: 

Nature's Way …

ASR:
In our series on the science 

of soil health…

OCR:
Origins of root-mediated pH 

char soil…

Metadata:
Just when you thought soil 

microbes …

Query (speech):
CO2 role in soil mineral 

weathering

Query (OCR):
PH changes in soil 
biogeochemistry

Query(description):
Soil microbes providing 
carbon dioxide to plants

Multimodal Video Content

Prompt a LLM to generate one 
modality‑specific query for each modality

Figure 3: Illustration of deriving modality-specific queries from multimodal video content. An
LLM uses the title, ASR, OCR, and metadata separately to generate queries that can be answered
primarily by the designated modality.

Modality-Wise Late-Interaction. While contextualized late interaction could be used directly
for the similarity score si,j , we find that the model struggles to learn modality usage effectively,
as it must simultaneously differentiate between examples and between modalities within the same
example. Thus, we employ a more factorized formulation during training. Here, we separately
compute the late-interaction score for each modality and select the maximum score. Since the
queries in MULTIVENT 2.0++ are designed to target a single modality, this approach guides the
model to attend to one modality at a time, allowing it to focus on differentiating between distinct
examples. The similarity is defined as:

LImw(q, d) = max
m∈M

Nq∑
i=1

Nd,m

max
j=1

〈
E(i)

q ,E
(j)
d,m

〉
. (3)

As shown in Fig. 2, after computing per-modality scores between an audio query and the document’s
modalities, the score from the audio modality is the highest; this score is used as the final similarity
for that pair. These scores for all pairs in the batch form a similarity matrix where the diagonal
represents positive pairs and off-diagonals represent negative pairs.

4 MULTIVENT 2.0++: AUGMENTING DATA FOR MULTIMODAL RETRIEVAL

To train a retriever to actively decide which modality to focus on, the training set must include
queries that are unambiguously grounded in a single modality. MULTIVENT 2.0, however, was
not designed with this goal in mind: most of its 101K videos lack any queries, and the obvious
fallback—using the video title as a query—yields short, generic prompts that neither single out a
modality nor, in many cases, even appear in English. Among the 10K videos that are annotated, only
1,504 queries are provided, a number too small to adequately train retrievers for fine-grained modal-
ity selection. To address this limitation, we introduce MULTIVENT 2.0++, augmenting training
queries for MULTIVENT 2.0 on the unannotated videos.

Synthetic Expansion of Modality-Specific Queries. Building on the design of the original
annotations—where each annotated video includes a ‘base’ query plus one specific query each for
audio, OCR, and metadata—we automatically extend this schema to 91k unannotated videos. For
each unannotated video, we first collect its modality sources: ASR transcripts, frame-level OCR text,
and video metadata (comprising title and human-written description). Subsequently, for each modal-
ity source, we construct an in-context prompt consisting of ten human-written, modality-specific
query-content pairs randomly sampled from our annotated corpus. A large language model (LLM)
is then prompted with these examples to generate a base query (loosely derived from the video title)
and one new modality-specific query for each of these sources. The LLM is instructed to phrase
these generated queries such that a correct answer can be retrieved primarily from the respective
target modality. Fig. 3 shows this generation pipeline. Our approach allows the LLM to generate
queries whose answers may occasionally be present in more than one modality—for instance, the
term pH change might appear in both OCR and ASR—thus encouraging the retriever to weigh
corroborating evidence rather than enforcing an artificially one-to-one query-modality mapping.

5
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LLM Choice for Synthetic Data Generation. Because many videos contain non-English text,
the generator must both translate and condense content. We therefore use Gemma-3-27b-it (Team
et al., 2025), whose strong multilingual abilities make it well-suited to producing English queries
from diverse source languages. Furthermore, this model has demonstrated strong performance in
various NLP tasks, making it an appropriate choice for generating high-quality queries.

Dataset Split. Our training set consists of all synthetically generated queries and their associated
document, totaling 371,644 query-document pairs. From this set, we allocate 367,644 pairs for
training and 4,000 pairs for our validation set. For testing, we utilize the public benchmark split of
MULTIVENT 2.0, which comprises 1,504 queries with available human judgments, as its private
benchmark split does not provide these. Importantly, the videos corresponding to these 1,504 MUL-
TIVENT 2.0 test queries were not used in the generation process of our synthetic data generation.

Quality Assurance. To ensure quality of the generated queries, our prompt includes in-context,
human-annotated examples. We then validated query quality using both manual and automatic meth-
ods. In a manual review of 400 random queries, two of the authors independently assessed whether
each query was relevant and logically derivable from its source modality, and provided a binary
judgment of its relevance. They confirmed a high query relevance rate of 86.41%. A larger-scale
automatic validation on 4,000 examples, where a model (Gemma-3-27b-it) was prompted to rate
query-source relevance on a 1-5 scale, yielded a similarly strong average score of 4.22 out of 5.
Both assessments confirm the high quality of our generated queries, with further details provided in
Appendix B.4.

5 EXPERIMENTAL SETUP

CLAMR Implementation Details. We use Qwen-VL-2.5-3B2 (Bai et al., 2025) as the back-
bone for CLAMR with VLM, which offers strong multimodal accuracy at a modest size. For
the Omni-model variant, we experimented with Qwen-Omni-3B3(Xu et al., 2025), which utilizes
Whisper (Radford et al., 2022b) as its underlying audio encoder. We append a 128-dimensional lin-
ear projection layer, following ColPali (Faysse et al., 2025). We train separate versions of CLAMR
on MULTIVENT 2.0++ and MSRVTT for 1 and 5 epochs, respectively. Training is performed using
a batch size of 16, distributed across 8 A100 80GB GPUs.To reduce memory usage, we employ 4-bit
quantization with QLoRA (Dettmers et al., 2023), setting the LoRA rank r = 128 and α = 128.
Our implementation is built on the transformers library (Wolf et al., 2020). Unless noted otherwise,
we keep default hyperparameters, train with the 8-bit Adam optimizer, and set the learning rate to
1 × 10−5 for all experiments. Training on MULTIVENT 2.0++ required approximately 10 hours,
while training on MSRVTT took about 4 hours. More details can be found in Appendix A.

Baselines. As single-modality baselines, we use multilingual CLIP (mCLIP)4 from Reimers &
Gurevych (2019) by processing only their corresponding modality (video, audio, OCR, or metadata).
For multi-modality baselines, we use several strong encoders: ImageBind (Girdhar et al., 2023), and
LanguageBind (Zhu et al., 2024). For the two models, we average the similarity scores obtained
from all available modalities, a method we found to yield the best performance with these models.
We also include results using a router as an aggregation method. For this approach, we utilize GPT
4.1 to predict the most relevant modality given the query and then use the similarity score from
that predicted modality as the final similarity score. Finally, as an additional strong baseline, we
fine-tune the Qwen-VL 2.5 backbone (the same used for CLAMR) with a standard contrastive loss.
This involves using the embedding of the last token as the pooled representation for a sequence, a
common practice in VLM fine-tuning (Bao et al., 2022; Ouali et al., 2025; Jiang et al., 2025).

Datasets. Our primary evaluation dataset is MULTIVENT 2.0++, where we train on our synthet-
ically generated data and evaluate on the original public evaluation from MULTIVENT 2.0. This
testing setup consists of 1,504 query-document pairs. We also include MSR-VTT (Xu et al., 2016),
a standard text-video retrieval benchmark used in several prior works (Zhu et al., 2024; Chen et al.,

2https://huggingface.co/Qwen/Qwen2.5-VL-3B-Instruct
3https://huggingface.co/Qwen/Qwen2.5-Omni-3B
4https://huggingface.co/sentence-transformers/clip-ViT-B-32-multilingual-v1
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Table 1: Retrieval results on MULTIVENT 2.0++ and MSRVTT. * indicates statistical significance
(p < 0.05) compared to other baseline methods with a paired bootstrap test.

MULTIVENT 2.0++ MSR-VTT
Method Modality R@1 R@5 R@10 nDCG@10 R@1 R@5 R@10 nDCG@10

Single-Modality

ICDAR + mCLIP OCR 2.9 10.4 14.7 8.1 - - - -
Whisper + mCLIP Audio 4.5 19.7 24.5 13.9 5.2 8.7 10.8 7.7
Description + mCLIP Metadata 7.5 24.9 29.5 18.1 - - - -
Video + mCLIP Vision 10.1 35.9 45.7 26.8 27.1 50.6 61.6 42.7
Imagebind Vision 15.4 43.0 52.1 32.8 28.9 52.8 63.3 44.9
LanguageBind Vision 14.2 39.5 47.9 30.2 40.2 64.3 74.8 56.5

Multi-Modality

mCLIP (avg.) All 7.9 31.9 39.7 23.0 19.5 38.3 47.0 32.2
mCLIP (router) All 7.0 29.0 34.8 20.5 - - - -
ImageBind (avg.) All 3.9 10.6 14.0 8.5 20.4 35.7 43.0 30.9
ImageBind (router) All 8.9 22.2 27.3 17.7 - - - -
LanguageBind (avg.) All 6.8 19.8 23.7 15.1 23.0 38.3 45.2 33.2
LanguageBind (router) All 9.8 27.3 33.2 21.0 - - - -
Qwen VL 2.5 pooled All 21.6 74.8 81.6 52.2 36.2 62.9 73.9 53.8

Ours

CLAMR (Omni) All 25.5 81.1 85.2 55.7 45.5 69.8 81.0 62.1
CLAMR (VLM) All 26.7* 85.1* 88.0* 58.5* 46.1* 71.3* 79.8* 62.4*

2023a;b). Following prior work (Luo et al., 2021; Chen et al., 2023b), we split the 10K examples of
MSRVTT into 9K and 1K, for training and evaluation, respectively.

Metrics. Following standard practice in retrieval evaluation (Liu, 2009; Thakur et al., 2021),
we evaluate the models performance using standard retrieval metrics: Recall@k and nDCG@10
(Järvelin & Kekäläinen, 2002). Recall@k measures whether a relevant item appears in the top-
k retrieved results, while normalized Discounted Cumulative Gain (nDCG) accounts for both the
relevance and rank of retrieved items, assigning higher scores when highly relevant items appear
early in the ranked list and penalizing relevant items that appear lower. We use the top-10 cutoff
(nDCG@10) to balance sensitivity and efficiency in ranking evaluation.

6 RESULTS

We present our main retrieval results, ablation studies, and a downstream application in long-video
QA. We provide further analysis in Appendix B, including experiments an alternative contrastive
loss formulations, per-modality performance breakdowns, results on additional video-text bench-
marks, an efficiency analysis, and ablations on missing modalities.

6.1 RETRIEVAL RESULTS

The results, presented in Tab. 1, demonstrate that CLAMR (VLM) consistently outperforms both
single-modality and multimodal baselines across all standard evaluation metrics. A key observation
is the challenge faced by conventional multimodal baselines when attempting to fuse information
from various modalities. For instance, models like mCLIP, ImageBind, and LanguageBind often ex-
hibit diminished performance compared to their vision-only versions when using an average merging
strategy (avg.) for all modalities. On MSR-VTT, LanguageBind (Vision; the best performing single-
modality baseline model) achieves an R@1 of 40.2%, while its multimodal average (LanguageBind
avg.) scores only 23.0%. This trend is also evident on MULTIVENT 2.0, where ImageBind (Vision)
reaches 15.4% R@1, substantially higher than the 3.9% from ImageBind (avg.). This suggests that
naive fusion methods are susceptible to noise or suboptimal integration of complementary informa-
tion from diverse modalities, thereby hindering overall retrieval accuracy. Interestingly, employing
a router strategy for these multimodal baselines on MULTIVENT 2.0++ shows a notable improve-
ment over the average merging strategy, though still falling short of vision-only performance in
some cases. For example, LanguageBind (router) shows a marked improvement with an R@1 of
9.8% compared to LanguageBind (avg.) at 6.8%, but remains lower than LanguageBind (Vision) at
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Table 2: Ablation study on MULTIVENT 2.0. B-C: impact of architectural and objective choices.
D-H: CLAMR trained and tested on a single modality.

Method Inference modality R@1 R@5 R@10 nDCG@10

(A) CLAMR All 26.66 85.11 88.03 58.47
Architecture and training objective design

(B) CLAMR without contextualization All 18.95 64.30 68.02 44.53
(C) CLAMR with LIcontext (instead of LImw) All 23.93 80.92 86.04 56.26

Single-modality

(D) CLAMR Vision Vision 16.22 57.58 65.49 40.71
(F) CLAMR Audio Audio 18.15 64.56 68.48 43.93
(G) CLAMR OCR OCR 19.68 62.10 67.95 43.19
(H) CLAMR Metadata Metadata 20.01 68.22 72.94 47.09

14.2%. This indicates that while routing can be more effective than simple averaging for multimodal
fusion, it does not consistently outperform the strongest single-modality inputs for these baselines.

In stark contrast, CLAMR demonstrates superior performance by effectively leveraging multimodal
information. The VLM variant achieves the highest scores across all reported metrics on both
datasets except for R@10 on MSR-VTT where the Omni-model variant outperforms the VLM vari-
ant. On MSR-VTT, CLAMR achieves an R@1 of 46.1%, surpassing the strongest single-modality
baseline (LanguageBind Vision) by 5.9%. The performance gains are even more pronounced on the
MULTIVENT 2.0 dataset, where the queries target different modalities. Here, CLAMR achieves
an R@1 of 26.7%, which is 11.3% higher than the best performing single-modality baseline. These
results underscore the efficacy of our proposed approach in robustly integrating multimodal sig-
nals for enhanced retrieval. The VLM demonstrates superior overall performance compared to the
Omni-model, particularly on MULTIVENT 2.0++. We hypothesize this advantage stems from the
Omni-model’s architecture: accommodating speech tokens reduces its capacity for handling ex-
tended sequence lengths, and in turn restricts batch sizes, impairing the effectiveness of contrastive
learning. Consequently, we focus primarily on the VLM for our subsequent results.

6.2 ABLATION STUDIES

To understand the contributions of different components of our proposed CLAMR architecture and
training strategy, we report ablation studies on the MULTIVENT 2.0 dataset in Table 2.

Impact of Contextualization. First, we investigate the impact of contextualization, where we
jointly encode all the modalities in a single pass to the model. By removing the contextualization
mechanism from our full model (B), where we encode each modality separately and then concatenate
all the representations back together, we observed a substantial decrease in performance across all
metrics. Specifically, R@10 by 20.01% and nDCG@10 by 13.94%, highlighting contextualization’s
critical role in effectively fusing information from multiple modalities for improved retrieval.

Impact of Late-interaction. Next, we compare our proposed training objective with the contextu-
alized late-interaction (LIcontext) (C). While the LIcontext model performs competently, our full model
(A) achieves superior results with an improvement of 1.99 in R@10 and 2.21 in nDCG@10 com-
pared to model (C). This suggests that our training objective facilitates a more effective learning
process for the model, enabling better integration and utilization of multimodal signals.

Comparing Joint and Unimodal Training. We compare the performance of models trained with
only a single modality to our full model trained with all modalities. When trained and evaluated
on their respective single modalities, these models performed considerably worse than the full mul-
timodal model. For instance, the vision-only model (D) achieves an nDCG@10 of only 40.71, a
substantial drop of 17.76 points from the full model’s score. Among these unimodal variants, meta-
data proves to be the most informative single source, while vision is the least informative. This large
performance gap demonstrates that training the model with comprehensive multimodal information
leads to the most robust and effective retrieval system.

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Table 3: Results on Video-MME and LongVideoBench with different frame retrievers.

Frame Retriever Modality # Frames LongVideoBench Video-MME
w/o subs w/ subs

No Sample - 768 55.67 53.10 62.30

Uniform Sample - 100 52.30 53.90 57.80
LanguageBind Vision 100 - 53.60 57.30
LanguageBind Vision + Audio 100 56.38 54.40 57.80
CLAMR Vision 100 - 55.60 59.40
CLAMR Vision + Audio 100 57.09 55.90 61.30

6.3 LONG VIDEO QA

Setup. To evaluate the effectiveness of CLAMR in a downstream scenario, we test on Long Video
Question Answering (QA) tasks using two benchmarks: the long-video subset (30 - 60 minutes in
length) of Video-MME (Fu et al., 2024) and the (900, 3600s] duration group from the dev set of
LongVideoBench (Wu et al., 2024). Specifically, we set up a retrieval-augmented generation (RAG)
pipeline: given a long video, the retriever first selects key frames relevant to the question, which are
subsequently provided as input to a VLM (Qwen2.5-VL-7B-Inst) answerer. We compare CLAMR
against several baselines: uniform sampling, and retrieval-based methods using LanguageBind (vi-
sion only and vision+speech modalities). LanguageBind was chosen as it is generally the second-
best method in Tab. 1 on the averaged multimodal setting when taking both datasets into account.
To isolate the contribution of retrieval quality, the answering model and input token budget are fixed
across all methods. Each method retrieves exactly 100 frames, which are passed to the same VLM
in the same format. We also include a no-sampling baseline, where we provide the whole video as
input. For this baseline, we follow the official Qwen2.5-VL setting (Bai et al., 2025), which samples
videos at 2 FPS and caps input at 768 frames per video, with the total number of video tokens not
exceeding 24,576. For Video-MME, which optionally includes subtitle input, we evaluate both with
and without subtitles. For LongVideoBench, since some queries are grounded in subtitle content,
subtitles are always provided. Performance is evaluated in terms of QA accuracy.

Results. As shown in Tab. 3, CLAMR consistently outperforms all baseline retrievers across both
datasets. On LongVideoBench, CLAMR achieves 57.09% accuracy, surpassing uniform sampling
by 4.79%. On Video-MME, CLAMR outperforms LanguageBind by 1.50% without subtitles and
3.50% with subtitles. A paired significance test on per-example QA accuracy confirms these im-
provements are statistically significant (p <0.05).

Overall, multimodal retrieval methods outperform single-modality ones, confirming that leveraging
multiple sources (e.g., vision and audio) helps retrieve more relevant content. For example, even
without subtitles, LanguageBind with both vision and audio inputs outperforms its vision-only vari-
ant. CLAMR outperforms the no-sampling baseline, which uses 768 frames. This result indicates
that full-frame inputs often include irrelevant or distracting content, which can degrade answer accu-
racy (Wang et al., 2024). By contrast, CLAMR selects a compact, query-relevant subset of frames,
promoting more focused reasoning and better QA performance.

7 CONCLUSION

We presented CLAMR, a novel contextualized late-interaction retriever for multimodal content re-
trieval that jointly encodes video frames, speech transcripts, on-screen text, and metadata within
a unified vision-language backbone. To enable the model to dynamically select the most relevant
modality for each query, we introduced MULTIVENT 2.0++, a large-scale synthetic dataset of
modality-targeted queries built upon MULTIVENT 2.0, and a modality-aware contrastive training
objective that explicitly guides the model to focus on the correct modality. Extensive experiments
on both MULTIVENT 2.0++ and MSR-VTT demonstrate that CLAMR substantially outperforms
strong single-modality and multi-modality baselines. Finally, we showed that CLAMR’s improved
retrieval translates to downstream benefits in long-video QA, where retrieval of a more focused,
relevant frame set yields higher answer accuracy than uniform sampling or naive fusion strategies.
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August 21–26, 2023, Proceedings, Part I, pp. 467–483, Berlin, Heidelberg, 2023. Springer-Verlag.
ISBN 978-3-031-41675-0. doi: 10.1007/978-3-031-41676-7 27. URL https://doi.org/
10.1007/978-3-031-41676-7_27.

Manuel Faysse, Hugues Sibille, Tony Wu, Bilel Omrani, Gautier Viaud, CELINE HUDELOT,
and Pierre Colombo. Colpali: Efficient document retrieval with vision language models. In
The Thirteenth International Conference on Learning Representations, 2025. URL https:
//openreview.net/forum?id=ogjBpZ8uSi.

Chaoyou Fu, Yuhan Dai, Yongdong Luo, Lei Li, Shuhuai Ren, Renrui Zhang, Zihan Wang, Chenyu
Zhou, Yunhang Shen, Mengdan Zhang, Peixian Chen, Yanwei Li, Shaohui Lin, Sirui Zhao, Ke Li,
Tong Xu, Xiawu Zheng, Enhong Chen, Rongrong Ji, and Xing Sun. Video-mme: The first-
ever comprehensive evaluation benchmark of multi-modal llms in video analysis, 2024. URL
https://arxiv.org/abs/2405.21075.

Rohit Girdhar, Alaaeldin El-Nouby, Zhuang Liu, Mannat Singh, Kalyan Vasudev Alwala, Armand
Joulin, and Ishan Misra. Imagebind: One embedding space to bind them all. In CVPR, 2023.
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A ADDITIONAL EXPERIMENTAL SETUP DETAILS

A.1 CLAMR IMPLEMENTATION DETAILS.
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associated documents, we follow prior work (Khattab & Zaharia, 2020; Faysse et al., 2025) and
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frames to 224× 224 pixels and use the default processor to perform any extra transformations. The
maximum token length for other textual modalities (ASR, OCR, and metadata) is set to 256. For
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MULTIVENT 2.0++, we adopt the same modality configuration as MULTIVENT 2.0, relying on
the pre-extracted features released by its authors. Concretely, each video contributes (i) up to ten
key frames detected with PYSCENEDETECT5, (ii) ASR transcripts generated by Whisper (Radford
et al., 2022a), (iii) OCR using Etter et al. (2023), and (iv) textual metadata descriptions supplied
with the dataset. For MSRVTT, we only extract ASR using Whisper V3.

Omni-Model. Processing audio consumes a significant number of tokens, which complicates
training procedures requiring large batch sizes. Therefore, we limited audio input to a maximum
of 30 seconds, corresponding to 750 tokens. For visual input, we uniformly sampled 10 frames.
The maximum token length for OCR and metadata was set to 256. This configuration resulted in an
average input length of approximately 2048 tokens per sample, enabling an effective batch size of
16 on four A100 80GB GPUs. We use the same settings for the other hyperparameters as CLAMR
with Qwen-VL-2.5.

B ADDITIONAL EXPERIMENTS

B.1 EXPLORATION OF DIFFERENT CONTRASTIVE LOSS FORMULATIONS

We investigated two alternative formulations of the contrastive objective, each designed to progres-
sively enforce the contribution of the single, most relevant modality signal.

InfoNCE with Correct-Modality Positives. To encourage the model to focus on the correct
modality, we keep the same denominator but replace each positive with the score computed only
on the correct modality m∗

k. The contrastive objective thus helps to also put the distance between
the query and the document embedding that uses the correct modality closer:

LModPos = −1

b

b∑
k=1

log
exp

(
s
m∗

k

k,k/τ
)

exp
(
s
m∗

k

k,k/τ
)
+

∑b
j=1,j ̸=k exp

(
sk,j/τ

) . (4)

InfoNCE with Modality Negatives. To comprehensively encourage the model to distinguish
modalities, we treat (i) other documents, (ii) other modalities of the same document, and (iii) every
modality of other documents as negatives. The loss becomes

LModNeg = −1

b

b∑
k=1

log
exp

(
s
m∗

k

k,k/τ
)∑b

j=1

∑
m∈M exp

(
smk,j/τ

)
+
∑b

j=1,j ̸=k exp
(
sk,j/τ

) . (5)

Together, the two objectives progressively strengthen the model’s ability to attend to the correct
modality.

Results. As detailed in Table 4, applying these additional constraints to the contrastive loss did not
improve retrieval performance compared to our main CLAMR (row a). In fact, increasing the con-
straints led to a decrease in performance. CLAMR trained with correct-modality positives (LModPos,
row d) resulted in R@10 of 86.6 and nDCG@10 of 56.8. This is a decrease of 1.4 points in R@10
and 1.7 points in nDCG@10 compared to the baseline CLAMR (row a, R@10: 88.0, nDCG@10:
58.5). Employing the more stringent modality negatives (LModNeg, row e) further reduced perfor-
mance, with R@10 dropping to 84.7 and nDCG@10 to 54.8. This represents a decrease of 3.3
points in R@10 and 3.7 points in nDCG@10 relative to the baseline (row a). These findings sug-
gest that the underlying assumption that a query is solely relevant to one specific modality might
be overly restrictive. The retriever appears to benefit from leveraging contextual signals from all
available input modalities rather than being forced to focus exclusively on a single “correct” one.

B.2 ADDITIONAL VIDEO-TO-TEXT BENCHMARKS

We further evaluate on two widely used video-text retrieval benchmarks: DiDeMo and ActivityNet.
The results, presented in Table 5, reinforce the findings from our paper. Our proposed method,

5https://www.scenedetect.com/
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Table 4: Retrieval results on MULTIVENT 2.0++ with different training setups.
Method R@1 R@5 R@10 nDCG@10

(a) CLAMR w. Qwen-2.5-VL 26.7 85.1 88.0 58.5
(b) Qwen-VL-2.5 + pooled representation 21.6 74.8 81.6 52.2
(c) CLAMR w. Qwen-Omni 25.5 81.1 85.2 55.7
(d) CLAMR w. LModPos 25.0 82.4 86.6 56.8
(e) CLAMR w. LModNeg 22.3 79.8 84.7 54.8

Table 5: Results on Didemo and ActivityNet.
Didemo ActivityNet

Method R@10 nDCG@10 R@10 nDCG@10

Single-Modality

Whisper + mCLIP 2.69 1.54 5.96 3.29
Video + mCLIP 35.56 22.23 36.26 22.24

Imagebind 29.18 18.58 44.19 27.56
LanguageBind 45.72 30.53 56.01 37.04

Multi-Modality

mCLIP (avg) 31.47 19.44 33.9 19.71
ImageBind (avg) 13.05 8.22 10.53 5.32

LanguageBind (avg) 18.33 11.83 20.22 12.12

Ours

CLaMR (VLM) 49.80 32.14 58.17 39.24

Table 6: Efficiency analysis on contextualization.
Model Latency (s/example) Max GPU Usage (MB) TFLOPS

CLAMR w/o contextualization 0.036 6288 57.77
CLAMR w contextualization 0.039 7460 62.30

CLaMR, consistently outperforms all baselines. Notably, naive fusion methods like averaging (avg)
perform poorly, confirming our hypothesis that baseline models are ”susceptible to noise” from less
relevant modalities. CLaMR’s late interaction mechanism successfully mitigates this issue.

B.3 EFFICIENCY ANALYSIS

We analyzed the overhead of our proposed contextualization. We benchmarked the runtime, GPU
memory usage, and FLOPs for CLAMR with and without contextualization on MULTIVENT
2.0++. The experiments were run on an instance with 8 NVIDIA A100 80GB GPUs and a batch
size of 4 per device (effective batch size of 32).

As shown in Table 7, while joint encoding logically increases resource usage, the impact on infer-
ence latency is modest—an increase of only 0.003 seconds per example.

As shown below, while joint encoding logically increases resource usage, the impact on inference
latency is modest—an increase of only 0.003 seconds per example. We believe this modest increase
is a highly favorable trade-off for the substantial performance gains observed. As shown in Table 1,
contextualization improves R@10 by 29.4% and nDCG@10 by 31.3%. Furthermore, it is critical
to note that this encoding cost is primarily incurred offline during document indexing. The online
retrieval latency, which depends on query encoding and similarity matching, is minimally affected,
consistent with other late-interaction frameworks like ColBERT (Khattab & Zaharia, 2020).

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Table 7: Efficiency analysis of different methods.
Model Latency (s/example)

mCLIP 0.06
ImageBind 0.56

LanguageBind 0.21
Qwen Pooled 0.30

CLAMR 0.33

Table 8: Human and automatic validation of the queries generated for MULTIVENT 2.0++.
Query Source Human Validation (Binary %) Automatic Validation (1-5 Scale)

Vision 96.88 4.59
Audio 85.00 4.18
OCR 68.75 3.57
Metadata 95.00 4.55

Average 86.41 4.22

Second, we benchmarked CLAMR’s end-to-end inference time against baselines. As there are
different models and different inferences, we set the batch size to 1 and run on the same A100. The
results in Table 7 show that CLAMR’s latency is comparable to other large-scale models. This is
particularly noteworthy given that CLAMR (3B parameters) is significantly larger than the CLIP-
based models, yet offers far superior retrieval accuracy by processing multiple modalities. We will
add this complete analysis to the manuscript to clarify the computational trade-offs.

B.4 QUALITY ASSURANCE OF MULTIVENT 2.0++ QUERIES

To ensure the quality and stylistic consistency of our synthetic queries, we employed an in-context
learning approach using human-annotated examples from the original MULTIVENT dataset as
prompts. We then validated the 372k generated queries using both manual and automatic assess-
ments on sampled subsets.

Human Validation. We conducted a manual quality assessment on a random sample of 400
queries (from 100 documents). Two authors independently judged whether each query was relevant
and logically derivable from its specified source modality. Disagreements were reconciled to reach
a consensus. As shown in Table 8, this process confirmed a high average correctness of 86.41%.
A qualitative review revealed that errors, particularly for OCR (68.75% accuracy), typically orig-
inate from noisy source data, such as nonsensical or empty transcripts from upstream OCR and
ASR models. In contrast, queries derived from human-written sources (i.e., vision and metadata)
demonstrated significantly higher quality.

Automatic Validation. To assess quality at a larger scale, we prompted Gemma-3-27b-it to rate
the query-source relevance on a 1-5 scale for our 4,000-example validation set. The results align
closely with our manual findings, yielding a high average score of 4.22 out of 5. Notably, the
performance ranking across modalities was consistent with the human validation: Vision >Metadata
>Audio >OCR.

B.5 QUERY-SPECIFIC ANALYSIS

To better understand whether CLAMR correctly identifies and retrieves from the intended modality,
we conduct a fine-grained evaluation under modality-specific settings. This section describes how
we construct and validate modality-targeted queries, and how we use them to evaluate retrieval
accuracy.

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Table 9: Modality Accuracy on modality-specific setting.
Vision Audio OCR Metadata Avg.

Router 22.4 30.9 20.0 56.9 30.9
mCLIP - max 0.0 54.3 69.1 39.2 39.5

CLAMR 58.2 80.0 84.3 86.0 76.4

Table 10: Results on CLAMR with missing modalities on MULTIVENT 2.0++.
nDCG@10 by query modality

R@1 R@5 R@10 nDCG@10 Vision OCR ASR Description

CLAMR (All Modalities) 26.66 85.11 88.03 58.47 47.37 62.60 64.21 63.32
Vision only 14.63 52.79 60.17 37.05 33.17 - - -
OCR only 19.28 65.69 70.41 44.78 - 59.13 - -
Audio only 18.68 66.56 70.94 45.47 - - 60.77 -

Metadata only 19.81 69.68 73.87 47.74 - - - 59.86
No Vision 22.87 83.58 87.17 57.25 - 62.98 63.21 63.87
No OCR 24.87 84.11 87.37 57.56 47.72 - 65.53 62.26
No Audio 23.87 80.98 84.31 55.45 46.98 62.19 - 61.71

No Metadata 24.93 82.05 85.90 56.42 46.01 64.06 64.20 -

Filtering Human-Written Queries. We begin with a small pool of human-annotated queries from
MULTIVENT 2.0 and apply an LLM-based filtering pipeline to verify their modality specificity. For
each query, we prompt the model to judge whether the answer is uniquely grounded in the annotated
target modality or also available in other modalities. A query passes this filter only if it is judged
answerable solely from the intended modality. For example, to assess video-grounded queries, we
use Qwen2.5-VL-72B-Inst to caption the visual content and check whether other textual modalities
(ASR, OCR, metadata) could also provide the answer. This filtering process yields a small but
verified set of modality-pure queries, which we use for preliminary analysis.

Generating Synthetic Modality-Specific Queries. To scale this analysis, we generate new
queries using an LLM prompted with four modality-specific documents (video, ASR, OCR, and
metadata) and instructed to produce a query answerable only by one target modality. We then reap-
ply our filtering step to verify that no other modality could answer the generated query. The surviving
examples are passed to human annotators for final verification. This expanded dataset allows us to
compute modality-specific retrieval accuracy at a larger scale.

Results and Accuracy Breakdown. We use this filtered dataset to evaluate whether a retriever
correctly attends to the intended modality when answering modality-specific queries. In Table 9,
we report modality-wise accuracy for CLAMR and a strong routing baseline. The router selects a
modality per query based on similarity to query type embeddings and executes retrieval only within
that modality, and for mCLIP we use the modality that scores the highest similarity.

CLAMR dramatically outperforms the router and mCLIP baseline across all modalities, achieving
an average accuracy of 76.4% versus 30.9%. Notably, it achieves particularly high accuracy for
OCR (84.3%) and ASR (80.0%), confirming that it learns to focus on the correct modality without
explicit routing. In contrast, the router fails to adapt to the content of the query and performs poorly
on modalities like video and OCR and mCLIP fails to make use of the video modality. These
results validate that our training objective and architecture enable effective query-specific modality
selection, without the need for fragile routing heuristics.

Furthermore, the accuracy for Video is lower than the other modalities. This is similar to the trend
of CLAMR’s query retrieval performance, as shown in Table 10, where vision only receives 47.37
nDCG@10 while the other modalities are in the 60s range. This indicates that when a query has
a clear signal in one of these textual modalities, the model is highly effective at retrieving relevant
documents. Queries categorized as ‘Base’—which may rely more on holistic video understanding
or a combination of visual information and less distinct textual cues—exhibit a comparatively lower
performance.
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Table 11: Ablation study on MULTIVENT 2.0. B-C: impact of architectural and objective choices.
D-H: CLAMR trained and tested on a single modality. I-L: same models tested with all modalities.

Method Inference modality R@1 R@5 R@10 nDCG@10

(A) CLAMR All 26.66 85.11 88.03 58.47
Architecture and training objective design

(B) CLAMR without contextualization All 18.95 64.30 68.02 44.53
(C) CLAMR with LIcontext (instead of LImw) All 23.93 80.92 86.04 56.26

Single-modality w. single-modality inference

(D) CLAMR Vision Vision 16.22 57.58 65.49 40.71
(F) CLAMR Audio Audio 18.15 64.56 68.48 43.93
(G) CLAMR OCR OCR 19.68 62.10 67.95 43.19
(H) CLAMR Metadata Metadata 20.01 68.22 72.94 47.09

Single-modality w. all-modality inference

(I) CLAMR Vision All 23.93 76.06 82.78 53.62
(J) CLAMR Audio All 23.27 81.18 85.77 55.85
(K) CLAMR OCR All 24.40 82.38 86.37 56.97
(L) CLAMR Metadata All 22.27 80.92 85.84 55.60

B.6 ABLATIONS ON MISSING MODALITY

We evaluated performance when only a single modality is present, or when one modality is removed.
The results, compared to the full model (first row), are in Table 10.These results show that while
CLaMR is most effective with full modality access, its performance degrades gracefully. Even
with one modality removed, performance remains fairly strong, highlighting the benefit of our joint
encoding approach.

To further understand this, we analyzed nDCG@10 broken down by query type. This analysis
reveals the power of contextualization: performance on queries for a specific modality is often better
when other modalities are present. For example, for OCR-targeted queries, performance is higher
when all modalities except metadata are present (64.06) than with only OCR available (59.13). This
demonstrates that the model effectively leverages context from other available sources.

B.7 ADDITIONAL ABLATIONS

We compare the performance of models trained with only a single modality to those trained with
multiple in Table 11. When restricted to their respective single modalities during inference, these
models performed considerably worse than the full multimodal model. For instance, in row (D)
CLAMR vision achieves a nDCG@10 of 40.71. Among these, the metadata modality proves to
be the most informative single source, while video is the least informative. Interestingly, when
these models are allowed to access all modalities during inference, their performance significantly
improved. For example, CLAMR vision (I) with all modalities (i.e. not restricted to video at test-
time), has its nDCG@10 from 40.71 to 53.62. This demonstrates the model’s capability to leverage
contextual information from auxiliary modalities at inference time, even if not explicitly trained
on all of them simultaneously. We attribute this to two factors. First, our fine-tuning approach with
LoRA preserves the core pre-trained VLM’s ability to jointly encode multimodal inputs. Second, the
late-interaction mechanism allows the model to dynamically select salient tokens from all available
modalities at inference time, making it robust to noisy signals from modalities it was not explicitly
fine-tuned on.

Despite these improvements, the performance of single-modality trained models still lags behind our
full CLAMR (A), which was trained with all modalities. This is true even with inference across all
modalities (I-L). For example, the best performing model in this category, CLAMR OCR with all-
modality inference (K), achieves an R@1 of 24.40, which is 2.26 points lower than the full model’s
R@1 of 26.66. This indicates that while leveraging all modalities at inference is beneficial, train-
ing the model with comprehensive multimodal information leads to the most robust and effective
retrieval system. The most significant performance decrease occurs when training exclusively on
video, highlighting the crucial role of other modalities in multimodal video content retrieval. Train-

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Prompt Type Prompt
Filtering You are a helpful retriever. Given a query

and a document, you need to determine if the
document is relevant to the query. You only
need to answer with ’yes’ or ’no’.
Query: {query}
Document: {doc}
Answer:

Generating Given four documents, generate a short query
(less than 10 words) that is only related to
the document {target id}. The other three
documents should not be related to the query.
Document 1: {doc video}
Document 2: {doc speech}
Document 3: {doc ocr}
Document 4: {doc description}
Query:

Figure 4: Prompts used for filtering relevant modality and generating synthetic modality-specific
queries.

System Prompt: You are an assistant that creates search
queries that would help users find videos.
Create a concise and specific query. Do not
output any extra information.

User Message: ## Examples

{ICL examples}

## Your Task

{Video data for this query type}
**Query:**

Video Examples: **Video Title:** {Title}
**Query:** {Query}

ASR Examples: **Video Speech:** {Speech}
**Query:** {Query}

OCR Examples: **Video OCR:** {OCR}
**Query:** {Query}

Description Examples: **Video Description:** {Description}
**Query:** {Query}

Figure 5: Prompt structure for synthetic query generation for MULTIVENT 2.0++. The prompt
begins with a system instruction, followed by a user message that incorporates in-context learning
(ICL) examples and video data corresponding to one of the four specified modality types (Video
Title, ASR, OCR, or Description).

ing solely on visual information evidently leads the model to under-utilize these other important
modalities.
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Prompt You are an expert query classifier. Given
a user query, determine which modality
is most relevant for answering it. The
possible modalities are: video, speech, ocr,
description. Respond with only the predicted
modality name.
Here are some examples:
{ICL Examples}
Now, classify the following query:
Query: {Query}
Modality:

Figure 6: Prompt for router with GPT-4.1.

C PROMPTS

The prompts employed for generating synthetic training data for MULTIVENT 2.0++ are detailed
in Figure 5. We also provide the prompt used for the router in Figure 6.

C.1 SAFEGUARDS FOR MULTIVENT 2.0++

The videos utilized are from the MULTIVENT 2.0 dataset. We rely on the safeguarding mea-
sures implemented by the original authors for this content and do not redistribute the videos. For
our synthetically generated queries, which were created using Gemma-3, our safeguarding strategy
included: (1) Prompt Engineering: Prompts were designed to elicit factual, descriptive, and task-
relevant queries suitable for video retrieval, thereby avoiding the generation of inappropriate outputs.
(2) Limited Scope: The queries are specific to an academic video retrieval task, a characteristic that
inherently curtails their potential for broader misuse.

D LIMITATIONS AND BROADER IMPACT STATEMENT

This research introduces CLAMR, a multimodal retrieval model designed to dynamically leverage
multiple content modalities (video frames, audio transcripts, OCR text, and metadata) to improve
retrieval accuracy significantly. Given the broad applicability of such multimodal retrieval technolo-
gies, it has the potential for both positive and negative applications. In our work, we have taken in
the design of the prompts to mitigate risk; however, like other retrieval methods, it could be applied
in negative ways. In summary, we do not believe that our method has more potential for misuse or
negative impact than any other retrieval method, and that its improvements offer subtantial opportu-
nities for positive use.

Our study addresses multimodal video retrieval, training the retriever with a contrastive objective
that benefits from large batch sizes. GPU-memory limits confined us to a batch size of 16, and, in
the Omni model, required shortening the context window for non-text modalities. We expect that
techniques such as quantization, memory-efficient optimizers, and improved long-context handling
will soon enable both larger models and substantially larger batches. Likewise, ongoing advances in
late-interaction architectures and retrieval-system engineering should further boost accuracy while
reducing latency.

E USE OF LLMS

We used LLMs for grammar correction and polishing our writing.
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