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Abstract
Fine-tuning LLMs on tabular classification tasks
can lead to the phenomenon of fine-tuning mul-
tiplicity where equally well-performing models
make conflicting predictions on the same input.
Fine-tuning multiplicity can arise due to varia-
tions in the training process, e.g., seed, weight
initialization, minor changes to training data, etc.,
raising concerns about the reliability of Tabular
LLMs in high-stakes applications such as finance,
hiring, education, healthcare. Our work formal-
izes this unique challenge of fine-tuning multiplic-
ity in Tabular LLMs and proposes a novel measure
to quantify the consistency of individual predic-
tions without expensive model retraining. Our
measure quantifies a prediction’s consistency by
analyzing (sampling) the model’s local behavior
around that input in the embedding space. In-
terestingly, we show that sampling in the local
neighborhood can be leveraged to provide proba-
bilistic guarantees on prediction consistency un-
der a broad class of fine-tuned models, i.e., inputs
with sufficiently high local stability (as defined
by our measure) also remain consistent across
several fine-tuned models with high probability.
We perform experiments on multiple real-world
datasets to show that our local stability measure
preemptively captures consistency under actual
multiplicity across several fine-tuned models, out-
performing competing measures.

1. Introduction
Large language models (LLMs) are generating significant
interest in high-stakes applications, e.g., finance, healthcare,
etc., particularly in few-shot classification scenarios. Since
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many of these sectors rely on tabular data, Tabular LLMs
(TabLLMs) is emerging as a research priority (van Breugel
& van der Schaar, 2024). Recent studies have shown that
TabLLMs perform commendably in scenarios with limited
training data due to their transfer learning abilities (Hegsel-
mann et al., 2023; Dinh et al., 2022; Yin et al., 2020; Yan
et al., 2024; Wang et al., 2023). However, these models are
often fine-tuned from large pre-trained models with millions
or billions of parameters on small, proprietary datasets (Hu
et al., 2021; Liu et al., 2022). This paucity of training data
and large parameter space introduces arbitrariness and incon-
sistency across fine-tuned model variants, raising concerns
about their trustworthy adoption in high-stakes applications.

One imminent challenge for TabLLMs is fine-tuning multi-
plicity where multiple well-performing models fine-tuned
from the same pre-trained LLM under slightly varying con-
ditions (e.g., different seed, hyperparameters, or minor
changes in training data) produce conflicting predictions
for the same inputs. This concept is closely related to pre-
dictive multiplicity, often referred to as the Rashomon effect
in the context of decision trees and neural networks (Marx
et al., 2020; Breiman, 2003; Hsu & Calmon, 2022). While
multiplicity has also been observed in LLMs for text classi-
fication (Gomez et al., 2024), we are particularly interested
in fine-tuning multiplicity in TabLLMs (essentially minor
model variations) due to their relevance in high-stakes clas-
sification tasks. E.g., in areas like finance (Yin et al., 2023)
and healthcare (Wang et al., 2024b; Chen et al., 2023b; Kim
et al., 2024), arbitrary and conflicting predictions on the
same input under minor model variations can lead to confu-
sion, reputational risk, and distrust among stakeholders.

Aside from the inherent need for predictions to be consistent
to minor model variations (due to seed or hyperparameters),
TabLLMs deployed by institutions may also need to be up-
dated for various reasons, e.g., to retrain on a few additional
data points (Wu et al., 2024), or even remove few data points
for privacy. Regulatory frameworks like the GDPR (Voigt,
2017) introduce the right to be forgotten which allows un-
learning an individual’s data upon request, potentially lead-
ing to model updates. These model updates could, in turn,
impact previously issued predictions. Fine-tuning multi-
plicity also paves the way for fairwashing and explanation
bias (Black et al., 2022; Sokol et al., 2023; Rudin et al.,
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2024), making quantifying consistency under fine-tuning
multiplicity an important and practically relevant problem.

Existing approaches to measure multiplicity in machine
learning often involve retraining and ensembling multiple
models (Marx et al., 2020). However, such approaches can
be computationally expensive for LLMs due to large param-
eter sizes. This raises a key question: Can we preemptively
quantify the consistency of individual predictions under
fine-tuning multiplicity without actual retraining and ensem-
bling? To address this question, we propose a novel measure,
termed local stability, which leverages the model’s local be-
havior around each input data point in the embedding space
to estimate the prediction’s susceptibility to multiplicity.
Our contributions are summarized as follows:

• Study the intriguing nature of fine-tuning multiplicity in
TabLLMs. We first demonstrate that prediction inconsis-
tency exists when we actually fine-tune several models from
the same pre-trained model, as observed through existing
multiplicity measures such as Arbitrariness, Discrepancy,
Pairwise Disagreement, as well as two of our proposed
multiplicity measures, Prediction Variance, and Range (de-
fined in Section 2). We also visualize the decision boundary
for several TabLLMs fine-tuned for a simple classification
task and unravel an interesting “noise” pattern: unlike neu-
ral network classifiers which typically have locally-smooth
decision boundaries, Tabular LLMs show abrupt and im-
pulsive variations (see Fig. 2). Thus, a model having high
confidence in a prediction alone does not guarantee its con-
sistency under fine-tuning multiplicity.

• A measure to quantify prediction consistency under fine-
tuning multiplicity. We introduce a novel measure, termed
local stability (see Definition 5), to quantify the consistency
of model predictions under fine-tuning multiplicity without
retraining several models. Given an input x and a model’s
prediction probability for a class c, i.e., fc(x) ∈ [0, 1], our
measure is Sk,σ(x, fc) =

1
k

∑
xi∈Nx,k

(fc(xi) − |fc(x) −
fc(xi)|), where Nx,k is a set of k points sampled indepen-
dently from a distribution over a hypersphere of radius σ
centered at x. This measure uses the input’s local neighbor-
hood (in the embedding space) to inform the local stability,
capturing both the mean model confidence in the neighbor-
hood and the variability in confidence in that region.

• Probabilistic guarantees on consistency over a broad
class of fine-tuned models. We provide a theoretical guar-
antee (see Theorem 1) that predictions with sufficiently high
local stability (as defined by our measure) will remain con-
sistent with high probability over a broad range of equally-
well-performing fine-tuned models. To derive this guarantee,
we make some mild assumptions on the behavior of this fine-
tuned model class (see Assumption 1). Our proof leverages
Hoeffding’s Inequality (see Lemma 2).

• Experimental results. We show that our Local Stabil-

ity measure (computed preemptively without retraining or
ensembling) is quite well-aligned with the consistency of
data points under actual fine-tuned multiplicity for several
datasets, namely, the German Credit, Bank, Heart,
Car, Diabetes, and Adult datasets (Kahn; Hofmann,
1994; Becker & Kohavi, 1996). We employ the BIG-
SCIENCE T0 encoder-decoder model (Sanh et al., 2021)
and Google FLAN-T5 (Chung et al., 2024), fine-tuned via
the T-Few recipe (Liu et al., 2022), and LoRA (Hu et al.,
2021). For each case, we empirically evaluate the extent of
fine-tuning multiplicity, and also study how our local sta-
bility measure Sk,σ(x, f), (measured only using one model
f ) can preemptively capture consistency under fine-tuning
multiplicity better than competing measures including pre-
diction confidence alone.

Related Works: LLMs for tabular data is a growing area
of research (Yin et al., 2020; Li et al., 2020; Narayan et al.,
2022; Borisov et al., 2022; Bertsimas et al., 2022; Onishi
et al., 2023; Zhang et al., 2023; Wang et al., 2023; Sui et al.,
2024; Yan et al., 2024; Yang et al., 2024). While neural net-
works and gradient-boosted trees perform well with tabular
data when ample labeled data is available, their effective-
ness drops considerably in data-scarce scenarios. In contrast,
LLMs can leverage their reasoning, in-context learning, and
pre-trained knowledge to maintain strong performance even
on tiny tabular datasets (Hegselmann et al., 2023). Dinh
et al. (2022) proposes LIFT, a method for adapting LLMs
to non-language classification and regression tasks without
changing the model architecture or loss function. Hegsel-
mann et al. (2023) studies the use of LLMs for zero-shot
and few-shot classification of tabular data and finds that
this method outperforms previous deep-learning-based ap-
proaches and is competitive with traditional baselines like
gradient-boosted trees. Wang et al. (2024b) presents Med-
iTab, a method that uses LLMs to combine different medical
datasets, significantly improving predictions for patient and
trial outcomes. Tabular LLMs have also been applied in
other high-stakes domains (Chen et al., 2023b; Kim et al.,
2024; Li et al., 2023; Yin et al., 2023). Yin et al. (2023)
presents FinPT, an LLM based approach to financial risk
prediction. We refer to Fang et al. (2024) for a more detailed
survey on LLMs for tabular data.

Breiman (2003) introduced the idea that models can differ
significantly while achieving similar average performance,
known as the Rashomon effect. Marx et al. (2020) high-
lighted the prevalence of arbitrary decisions in simple classi-
fication problems, calling this predictive multiplicity. Creel
& Hellman (2022) discuss the harms of predictive mul-
tiplicity and arbitrary decisions. Methods such as Tree-
Farms (Xin et al., 2022), CorelsEnum (Mata et al., 2022),
and RashomonGB (Hsu et al.) provide tools to enumer-
ate models in the Rashomon set for different hypothesis
spaces. Efforts to leverage model multiplicity beneficially
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IncomeGainEducation Age 

<50K2174Bachelor39
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<50K012th64
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Pretrained 
model

LLM

Tunable 
parameters Yes >50K
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Backpropagation to update tunable parameters

Fine-tune LLM using 
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(a) Finetuning LLMs for Tabular Data

(b) Finetuning Multiplicity in Tabular LLMs
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𝒀𝒆𝒔
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(c) Our Proposed Consistency Measure

Input Pretrained
model

We sample 𝑘 points in a 
bounded neighborhood 
of a given input in the 

embedding space.  

Tunable 
parametersSeed = 2

Consistency measured 
using predictions from 

perturbated points𝑥

Seed = 8

Embedding Layer

…

Models fine-tuned from the same pre-trained LLM under slightly varying 
conditions (e.g. random seeds), exhibit comparable performance yet 
generate conflicting predictions for the same inputs.

Predicted probabilities Test Input

Figure 1. (a) illustrates the process of fine-tuning LLMs for Tabular data using few labeled examples (Hegselmann et al., 2023; Dinh et al.,
2022). (b) demonstrates the concept of finetuning multiplicity. Models fine-tuned from the same pre-trained LLM under slightly varying
conditions, such as different random seeds, can exhibit comparable performance metrics but may yield conflicting predictions for the
same input. (c) introduces our proposed local stability measure designed to quantify the consistency of individual predictions without
requiring the retraining of multiple models. By sampling points in a bounded neighborhood around a given input in the embedding space,
the consistency measure Sk,σ(x, f) informs a prediction’s susceptibility to multiplicity.

while addressing its implications have been explored by
(Black et al., 2022; Fisher et al., 2019; Xin et al., 2022;
Coston et al., 2021). Model multiplicity in fairness and ex-
plainability are examined by Sokol et al. (2022); Hamman
et al. (2023; 2024); Black et al. (2021); Dutta et al. (2022);
Pawelczyk et al. (2020). Watson-Daniels et al. (2023); Hsu
& Calmon (2022) offered a framework for measuring pre-
dictive multiplicity in machine learning models, however,
this involves retraining several models, with the exception
of (Hsu et al., 2024) who propose a drop-out based approach
to explore the Rashomon set for neural networks. Model
multiplicity under fine-tuning has not been extensively stud-
ied in TabLLMs. The closest work is Gomez et al. (2024),
which empirically investigates prediction arbitrariness for
text classification (online content moderation). In this work,
we isolate and examine a specific form of multiplicity in
TabLLMs that focuses on minor model variations due to
fine-tuning from the same pre-trained LLM (see Section 2).
We leverage the embedding space of LLMs to preemptively
quantify consistency under fine-tuning multiplicity without
expensive retraining (see Section 3). There are also other
alternate directions in robustness literature that have focused
on aspects other than multiplicity such as out-of-distribution
generalization, adversarial examples, and uncertainty esti-
mation (Djolonga et al., 2020; Han et al., 2023).

Preliminaries: We consider a classification task for a tab-
ular dataset D = {(xi, yi)}ni=1, where each xi is a d-

dimensional feature vector (rows of a tabular input), and
each label yi is binary, yi ∈ {0, 1}. We focus on n-shot
classification where a pre-trained model is fine-tuned on a
limited number of training examples n.

Serialization of Tabular Data for LLMs: To apply LLMs
to tabular data, it is crucial to transform the data into a
natural text format. This process, known as serialization,
involves converting the table rows into a text string that
includes both the column names and their corresponding
values (Yin et al., 2020; Jaitly et al., 2023; Hegselmann et al.,
2023; Dinh et al., 2022). The resultant serialized string is
combined with a task-specific prompt to form the input for
the LLM. There have been various proposed methods for
serialization, and this is still a topic of active research (Jaitly
et al., 2023). Among the serializations we have examined
are: list template (a list of column names and feature values),
and text template ( The <column name> is <value> ).
The training process uses the natural-language outputs of
the LLM, mapped to valid classes in the target space, as
part of fine-tuning (see Fig. 1). To clarify, table values
are serialized into serialize(x) and then transformed into a
format understandable by the LLM, tokenize(serialize(x)),
which is an embedding. Since these transformations are one-
to-one mappings, we denote the embedded form of input x
also as x ∈ X to represent x in the embedding space. This
allows us to simplify the notation and directly use x to refer
to the input values in the embedding space.
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2. Multiplicity in Fine-Tuned Tabular LLMs
Let f(·) = [f1(·), f2(·), . . . , fC(·)] : X → ∆C denote
an LLM that performs multi-class classification over C
classes, where ∆C is the C-dimensional probability sim-
plex (e.g., softmax outputs). Let F denote a broad class
of equally-well-performing fine-tuned models (a set of
competing fine-tuned models as measured by the accu-
racy), i.e, Fδ = {f : err(f) ≤ err(f0) + δ} where
err(f0) = 1

N

∑N
i=1 I[f̂0(xi) ̸= yi] for a reference model

f0 (with satisfactory accuracy) and test dataset with N ex-
amples. Here, f̂(x) = argmaxc∈[C] fc(x) denotes the pre-
dicted label. This is a set of fine-tuned models that perform
just as well as the reference baseline classifier f0, where
δ ∈ (0, 1) is the error tolerance. The appropriate choice of
δ is application-dependent (Marx et al., 2020).

Fine-tuning Multiplicity. We study the nature of mul-
tiplicity that arises in LLMs when fine-tuned for tabular
tasks. To illustrate fine-tuning multiplicity, we conduct
experiments using synthetic 2D data (see Fig. 2). While
fine-tuning an LLM on such data might seem excessive,
it provides a clear visualization of the phenomenon. We
fine-tune several competing models using the text template
( The <column name> is <value> ) and varying only
the random training seed. We reveal that fine-tuning LLMs
on such non-language tasks exhibit noisy and non-smooth
decision boundaries, even in regions where the model is
expected to confidently predict a specific class. We hypoth-
esize that this noisy behavior is likely because LLMs are
optimized for capturing complex language structures. When
fine-tuned on tabular data tasks, which often involve both
text and numeric values, LLMs leverage their pre-trained
knowledge but still exhibits instabilities.

Evaluating Fine-tuning Multiplicity. To evaluate the ex-
tent of multiplicity on actual fine-tuned models, we now
introduce specific empirical metrics that assess how predic-
tions may vary across different fine-tuned models.

Definition 1 (Arbitrariness (Gomez et al., 2024)). Arbi-
trariness over set Fδ measures the extent of conflicting pre-
dictions across the model space for a given set of inputs
{x1, . . . ,xn}. It is defined as: Aδ = 1

n

∑n
i=1 I[∃f, f ′ ∈

Fδ, : f̂(xi) ̸= f̂ ′(xi)].

Arbitrariness generalizes the Ambiguity measure which com-
putes the fraction of points where at least one model in
Fδ disagrees with a reference model (Marx et al., 2020).
Abitrariness measures the percentage of points that receive
conflicting predictions from any two models within the set
Fδ . Arbitrariness can also be defined on a single input, i.e.,
A(xi) = I[∃f, f ′ ∈ Fδ, : f̂(xi) ̸= f̂ ′(xi)].

Definition 2 (Discrepancy). Discrepancy quantifies the
maximum proportion of conflicting predictions between
a reference model and any competing model in the set:

Dδ(f0) := maxf∈Fδ
( 1n
∑n

i=1 I[f̂(xi) ̸= f̂0(xi)]).

Discrepancy measures the maximum number of predictions
that could change if a reference model is replaced with a
competing model. This means that, in practice, altering
multiple predictions requires that all conflicting predictions
come from a single competing model.

Definition 3 (Pairwise Disagreement (Black et al., 2022)).
Pairwise Disagreement assesses the variability among mod-
els by measuring the proportion of instances where pairs
of models within the competing set disagree: PDδ(x) :=

1
|Fδ|(|Fδ|−1)

∑
fi,fj∈Fδ,fi ̸=fj I[f̂ i(x) ̸= f̂ j(x)].

Since existing measures of multiplicity focus on predicted
labels, we propose two more nuanced measures that leverage
the predicted probabilities of model outputs:

Definition 4 (Prediction Variance). PV measures the vari-
ability of the model outputs for a given input x and
class c across different models in the set Fδ: PVδ(x) :=
1

|Fδ|
∑

f∈Fδ
(fc(x)− 1

|Fδ|
∑

f ′∈Fδ
f ′
c(x))

2.

Unlike threshold-based measures, Prediction Variance cap-
tures variability in predicted probabilities. We also de-
fine Prediction Range to quantify the maximum spread
in predicted probabilities: PRδ(x) := maxf∈Fδ

fc(x) −
minf∈Fδ

fc(x) (also see Watson-Daniels et al. (2023)).

For brevity, from now on we use f(x) to refer to the pre-
dicted probability for the specific class of interest (typically
the predicted class for x), rather than the full vector of
probabilities. Thus, f(x) ∈ [0, 1] will be a scalar.

3. A novel measure to preemptively capture
prediction consistency

Our objective is to define a measure, denoted as S(x, f),
for an input x and a given fine-tuned model f , that would
preemptively quantify the consistency of the prediction f̂(x)
over a broad class of equally-well-performing fine-tuned
models. We desire that the measure S(x, f) should be high
if the predictions for the input x is consistent across this
broad class of fine-tuned models (see Fig. 1).

Candidate Measure: Prediction confidence S(x, f) :=
f(x). While the prediction probability of a model f(·) of-
fers insights into its confidence in predicting a given class,
they are insufficient for assessing consistency under fine-
tuning multiplicity (see Table 2, Fig. 3, i.e., data point with
high f(x) or confidence can still be susceptible to multi-
plicity). In our synthetic data experiments (see Fig. 2), we
also observe that noisy behaviors emerge in regions where
the model should be confident in its predictions, leading to
conflicting outcomes across various fine-tuned models. This
indicates that relying solely on an input x may not provide
a reliable assessment of consistency. To address this, we
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Figure 2. Decision boundaries for multiple fine-tuned models of an LLM on synthetic datasets. We fine-tuned several models by
only changing the random training seed. All models achieve comparable training loss and accuracy, yet they converge to different
functions, exhibiting intriguing noisy patterns (a phenomenon absent in models like neural networks which are typically locally-smooth).
Interestingly, these noisy behaviors appear even in regions where the model is expected to confidently predict a specifc class. Observe
the location and shape of these noisy patterns vary unpredictably across the various fine-tuned models, making them a possible factor
contributing to prediction multiplicity. This highlights that model predictions alone may be unreliable and motivates our perturbation-based
approach to quantify multiplicity. The last two plots illustrate the local stability measure applied to model f1 across classes 0 and 1, i.e.,
S(·, f1). The local stability measure effectively highlights regions where predictions are reliable (indicated by bright yellow color) and
areas where predictions may be unstable.

propose a perturbation-based approach that leverages the
local neighborhood around the input x in the embedding
space, ultimately leading to our measure of local stability.

3.1. Proposed Measure: Local Stability

Definition 5 (Local Stability). For a given data point x,
let f(x) represent the predicted probability (e.g., softmax
logits) from a model f . The local stability is defined as:

Sk,σ(x, f) =
1

k

∑
xi∈Nx,k

f(xi)−
1

k

∑
xi∈Nx,k

|f(x)−f(xi)|,

Nx,k={x1,x2, . . . ,xk}⊂B(x, σ)={x′∈X |∥x′−x∥2<σ}
is a set of k points sampled independently from a distribution
over a hypersphere of radius σ centered at x.

Our local stability measure is tied to the confidence in
predicting a specific class (i.e., the probability values de-
rived from softmax logits), and not on the predicted labels.
It quantifies the stability of a model’s predictions using
the local neighborhood around an input x. The first term,
1
k

∑
xi

f(xi), captures the average confidence of the model
in this region. The second term, 1

k

∑
xi

|f(x) − f(xi)|,
penalizes variability by measuring how much the predic-
tions fluctuate within the neighborhood. By subtracting
this variability from the local average confidence, the mea-
sure ensures that high scores are assigned to predictions
with high local neighborhood prediction confidence and low
variability. This formulation is motivated by our observa-
tions on synthetic data, where models exhibited irregular,
non-smooth decision boundaries despite high confidence in

certain regions (see Fig. 2). See App. A for more intuitions
and properties of stability measure.

3.2. Theoretical Guarantees on Consistency

We present theoretical insights that motivate our proposed
stability measure Sk,σ(x, f), in quantifying the consistency
of predictions across a broad class of fine-tuned models.

Let f̄(·; W̄ ) represent a target function and f0(·;W ) denote
a pre-trained model. Parameter-efficient fine-tuning meth-
ods such as Low-Rank Adaptation (LoRA) adds a low-rank
updates into the weight matrices of a frozen pre-trained
model to effectively approximate the target function (Hu
et al., 2021). In this framework, the fine-tuned model is
represented as F (·;W +∆W ), where the low-rank weight
updates ∆W are added to the frozen model. We let the
fine-tuned model be a random variable, F (·;W + ∆W ),
where the randomness arises from the distribution of low-
rank weights ∆W ∈ W . For clarity, we use capital letters
(e.g., F,Xi, Z) to denote random variables, while lower-
case letters (e.g., xi, f, ϵ) indicate specific realizations. For
brevity, we omit the weight parametrization.

Assumption 1. Let f̄ and F denote the target and adapted
models, respectively. We assume:
• E[F (X)|X = x] = E[F (x)] = f̄(x), i.e., F (x) is an
unbiased estimator of f̄(x).
• EX [∥F (X) − f̄(X)∥ | F = f ] ≤ α, and the expected
norm of its gradient EX [∥∇(F − f̄)(X)∥ | F = f ] ≤ t,
where X is drawn independently from a distribution over
the hypersphere B(x, σ).
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• F and f̄ are twice differentiable with Hessians bounded
by L, i.e., ∥∇2F (x)∥, ∥∇2f̄(x)∥ ≤ L.

Our Assumptions are motivated by recent work by (Zeng &
Lee, 2023) which provides key theoretical insights into the
expressive power of LoRA adaptation for transformer mod-
els. Specifically, we assume that the fine-tuned model F (x)
is an unbiased estimator of the target function f̄(x), mean-
ing that across fine-tuned variations, the expectation of the
model remains centered around the true function. Their re-
sults also establish the expected error over a bounded region,
given by EX [∥F (X)− f̄(X)∥|F = f ] ≤ α. Under certain
conditions, they show the existence of adapter weights ∆W
such that α → 0. Additionally, we assume that the expected
gradient norm is bounded by t, implying that while gradi-
ents may vary across fine-tuned models, they remain close
to the target function in expectation over a local region.

Theorem 1 (Probabilistic Guarantee). Given a data point
x, a target model f̄ and local stability measure Sk,σ(x, F ).
Under Assumption 1, and for all ϵ > ϵ′, where ϵ′ = 2(α+
tσ) +O(Lσ2). We have:

Pr
(
f̄(x) ≥ Sk,σ(x, F )− ϵ

)
≥ 1− exp

(
−kϵ2

32

)
(1)

Theoretical Guarantee Interpretation. Our stability mea-
sure S(x, f) provides a probabilistic guarantee that if a data
point x has a sufficiently high local stability score on a
random model F , sampled from a broad class of equally-
well-performing fine-tuned models, then the prediction on
the target model f̄(x) will be at least S(x, f) − ϵ with
high probability. For example, if S(x, f) = 0.8, we can
be confident that f̄(x) will be at least 0.8 − ϵ with high
probability (i.e, the prediction will remain on the positive
predicted side). This implies that high local stability scores
are indicative of consistent predictions. The probability of
the bound holding increases exponentially with the sample
size k. Conversely, a low stability score does not provide
significant information about the prediction’s behavior, as it
does not guarantee a lower bound on the prediction.

Goodness of Model Class. The term ϵ′ is indicative of the
quality or goodness of the fine-tuned model class. A small ϵ′

indicates a well-behaved model class, suggesting that differ-
ent fine-tuned models produce similar outputs in expectation
within the local neighborhood of x even if predictions might
vary for a given data point. Similar behavior is visualized
in Figure 2, where, despite the presence of noisy variations
in the decision boundaries, the local predictions around a
given point remain relatively consistent across models. This
behavior is expected since these models are derived from
the same pre-trained model and trained with the goal of
achieving similar accuracy on the dataset. In this case, our
local stability measure provides an informative lower bound
on the predictions f̄(x) with a certifiably small gap.

Conversely, a large ϵ′ indicates a more erratic model class.
In this case, our bound becomes less informative, and the
local stability measure might perform poorly for a given
point. We interpret our results as follows: The model class
is not well-behaved; thus, one cannot certify a small gap be-
tween f̄(x) and our proposed measure. We do not provide
guarantees for all types of model changes, as this would
be challenging with only a single model. For example, if
fine-tuned models do not achieve sufficient accuracy, en-
counter significant variations in hyperparameter choices, or
large changes in the training data, ϵ′ is likely to be large.
Our focus is on multiplicity that arises due to randomness
in training, such as changes in the training seed or minor
adjustments in training settings (i.e., a broad class of equally-
well-performing fine-tuned models). In our evaluations, we
do not assume any specific values for ϵ′ and consider reg-
ular fine-tuned models without imposing any theoretical
constraint. The proof of Theorem 1 is provided in App. B.

4. Empirical Results
In this section, we experiment across different datasets to (i)
quantify the prevalence of fine-tuning multiplicity in Tabular
LLMs, and (ii) validate the effectiveness of our proposed
measure in quantifying the consistency of predictions over a
broad range of equally-well-performing fine-tuned models.

Datasets and Serialization. Our experiments utilize the
Diabetes (Kahn), German Credit (Hofmann, 1994),
Bank (Moro et al., 2014), Heart, Car, and Adult
datasets (Becker & Kohavi, 1996), serialized using the
Text Template, i.e., tabular entry is converted into a natural
language: The <column name> is <value> . This ap-
proach helps align the inputs with the training distribution
of LLMs, enhancing their performance in few-shot scenar-
ios (Hegselmann et al., 2023; Dinh et al., 2022).

Models and Fine-tuning Methods. We use the BIG-
SCIENCE T0 (Sanh et al., 2021) and Google FLAN-
T5 (Chung et al., 2024) encoder-decoder models as our
pretrained LLMs. T0 is specifically pre-trained for zero-shot
generalization through multitask learning. FLAN-T5 is in-
struction fine-tuned on a diverse range of tasks, achieving
strong performance in few-shot settings. These make both
models well-suited for our experiments. For fine-tuning,
we adopt the T-Few recipe (Liu et al., 2022), known for
its effectiveness in few-shot learning, and LoRA (Hu et al.,
2021). Detailed setup can be found in App. C.3.

Evaluating Extent of Fine-tuning Multiplicity. We mea-
sure the extent of fine-tuning multiplicity across the various
datasets and fine-tuning methods, we use the multiplicity
evaluation metrics (see Section 2). To evaluate these multi-
plicity metrics across our datasets, we fine-tune 40 models
on Tfew recipe and LoRA using different random seeds and
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Table 1. Evaluated Multiplicity for Different Datasets and Number
of Shots on BIGSCIENCE T0. Evaluated on 40 fine-tuned mod-
els on T-Few recipe using different random seeds. Multiplicity
observed in predictions across different fine-tuned model, even
when models exhibit similar accuracy (in this setting δ = 0.02).
Fine-tuning using LoRA achieves results in the same ballpark (see
LoRA Table 6 in App. C)

Dataset No. Multiplicity Evaluation Metrics (BIGSCIENCE T0)

Shots Arbit. Disc. Avg. Pair. Avg. Pred. Avg. Pred. Avg. Model
Disag. Variance Range Accuracy

Adult
64 10% 9% 7% 0.01 0.10 83%

128 10% 7% 8% 0.01 0.10 84%
512 11% 8% 7% 0.01 0.12 85%

German
64 18% 10% 6% 0.01 0.20 71%

128 17% 11% 6% 0.01 0.16 71%
512 23% 12% 7% 0.02 0.23 72%

Diabetes
64 29% 18% 10% 0.04 0.31 71%

128 13% 17% 11% 0.03 0.13 72%
512 16% 16% 10% 0.02 0.18 78%

Bank
64 11% 9% 6% 0.01 0.31 66%

128 15% 8% 7% 0.03 0.22 75%
512 14% 8% 7% 0.02 0.16 81%

Heart
64 6% 4% 2% 0.01 0.05 78%

128 9% 4% 3% 0.01 0.10 83%
512 18% 7% 5% 0.01 0.19 82%

Car
64 19% 10% 6% 0.01 0.18 81%

128 16% 7% 5% 0.01 0.14 86%
512 8% 4% 2% 0.01 0.09 94%

test on a sample set. Here are the experiments we conducted:

• We evaluate multiplicity on the BIGSCIENCE T0 model
fine-tuned using T-Few (see Table 1).
• We evaluate multiplicity on BIGSCIENCE T0 fine-tuned
using LoRA (see Table 6 in App. C).
• We evaluate multiplicity on FLAN-T5 model fine-tuned
using T-Few (see Table 7 in App. C).

Comparing Local Stability Measure to Evaluated Mul-
tiplicity. We assess the utility of our proposed stability
measure Sk,σ(x, f) in informing the presence of fine-tuning
multiplicity. This utility is measured using the Spearman
correlation coefficient (see Definition 6), between our sta-
bility Sk,σ(x, f) (estimated on just one model) and the
evaluated multiplicity (evaluated on several finetuned mod-
els), e.g., Spearman(Sk,σ(x, f), PVδ(x)) across the test set.
Here, our local stability measure is taken with respect to the
model’s predicted class for f̂(x).

Baselines: For comparison, we include the following base-
lines: 1) Prediction probability f(x) which measures the
confidence of the model in predicting a given class. 2)
Binary Drop-Out Method (Hsu et al., 2024): Since there
are no other baselines, we adapt this Drop-out method for
TabLLMs. This method drops random weights of the model
to explore models in the Rashomon set (i.e., set of compet-
ing models) without retraining several models. For a fair
comparison, we compare our method (sampling k points in
the neighborhood of our data point in the embedding space,
and computing the local stability measure) to theirs (averag-

Table 2. This table reports the Absolute Spearman Correlation be-
tween the stability measure and various multiplicity evaluation
metrics for 128 shots on the datasets. In most cases, our stability
measure Sk,σ(x, f) shows a higher correlation with these multi-
plicity measures compared to predicted probabilities and drop-out
method, indicating that the stability measure Sk,σ(x, f) better in-
forms about the multiplicity than other measures. See full Table 8
with 64 and 512 shot cases in App. C.

Dataset Number Measure Arbit. Pairwise Prediction Prediction
of Shots Disag. Variance Range

Adult 128 Pred. Prob. 0.67 0.62 0.30 0.54
Drop-Out 0.74 0.83 0.69 0.81
Stability 0.80 0.96 0.84 0.91

German 128 Pred. Prob. 0.57 0.57 0.86 0.86
Drop-Out 0.50 0.56 0.74 0.84
Stability 0.54 0.54 0.87 0.87

Diabetes 128 Pred. Prob. 0.88 0.93 0.93 0.95
Drop-Out 0.89 0.92 0.92 0.94
Stability 0.92 0.95 0.93 0.95

Bank 128 Pred. Prob. 0.54 0.57 0.73 0.62
Drop-Out 0.62 0.70 0.75 0.51
Stability 0.79 0.84 0.87 0.86

Heart 128 Pred. Prob. 0.61 0.46 0.50 0.26
Drop-Out 0.64 0.76 0.74 0.83
Stability 0.89 0.90 0.97 0.87

Car 128 Pred. Prob. 0.56 0.26 0.29 0.01
Drop-Out 0.63 0.66 0.57 0.52
Stability 0.97 0.91 0.93 0.94

ing the predictions of k models with different dropped-out
weights). Note that these require the same number of infer-
ences, hence complexity for both methods are around the
same. Here are the experiments we conducted:

• We plot the evaluated multiplicity against our stability
measure, predicted probabilities, and the drop-out method.
See Figure 3 for illustration on the Adult 128 shot
(BIGSCIENCE T0 model). For other dataset refer to Fig-
ure 6, 7, 8 in App. C.

• We compute the absolute spearman correlation between
the stability measures and various multiplicity evaluation
metrics (128-shot setting on all datasets presented in Ta-
ble 2). Results on BIGSCIENCE T0 model with 64 and
512 shots are presented in Table 8 in App. C. Results for
FLAN-T5 model are presented in Table 9 in App. C.

Ablations and Hyperparameter Selection. Theorem 1
indicate that increasing the sample size k exponentially im-
proves the probability that the stability guarantee holds.
However, this also increases the computational cost of
model inference. We use k = 30, the maximum number
that fits into one inference pass on the GPU.

For the neighborhood radius σ, we sampled perturbed points
from a truncated Gaussian distribution with a variance of
0.01, which consistently performed well across all experi-
ments. To guide the choice of σ, we suggest the following
data-driven approach. (1) Compute Pairwise Distances: For
all training samples, calculate the median distance dmed

between each point and its k-nearest neighbors (e.g. k = 5)
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Figure 3. Evaluated multiplicity (assessed on 40 retrained models) versus our stability measure, predicted probabilities, and drop-out
method (evaluated on one model) for the 128-shot setting on the Adult dataset. The plots demonstrate that high local stability values
correspond to low multiplicity across various multiplicity evaluation metrics. Also, observe that high predicted probability values (i.e.,
high prediction confidence) do not imply low multiplicity. Our stability measure provides better insight into the multiplicity of predictions
compared to the predicted probabilities or drop-out prediction. App. C for visualizations on other datasets.

in the embedding space. (2) Set σ as a fraction of dmed (e.g.,
σ = 0.1dmed). This captures the natural scale of the data
while ensuring perturbations stay within the local neighbor-
hood. This mirrors neighborhood-scale hyperparameters
used in clustering, kernel methods (Ester et al., 1996; Cortes
& Vapnik, 1995), and certified robustness (Cohen et al.,
2019; Salman et al., 2019), which similarly rely on training
data pairwise distances to set their parameters.

We used error tolerance δ = 0.02, corresponding to a 2%
margin of accuracy deviation. Evaluating multiplicity by re-
fining multiple models is computationally expensive. Thus,
we limited our study to 40 models. For the drop-out rate in
the baseline, we use p = 0.1 following the recommendation
in Hsu et al. (2024). To evaluate the impact of varying key
parameters, we conducted the following ablation studies:

• We perform an ablation study on the sample size k, ob-
serving improved performance with increasing k. Detailed
results are provided in Table 11 in App. C.

• We explore the effect of varying the neighborhood radius
σ. Results of this ablation study are summarized in Fig. 9
and Table 12 in App. C. Best performance is observed at
σ=10−2. When σ is too small (10−4), we sample (almost)
the same points and our local stability measure is not more
informative than the prediction probability. When σ is too
large (10−1), all information about the data point is lost.

• We also evaluate the Drop-Out method with varying drop-
out rates p ∈ {0.01, 0.1, 0.2, 0.5}. The correlation values
between evaluated multiplicity and the stability measures
for the 512-shot setting on the Diabetes dataset are sum-
marized in Table 13 in App. C. Our stability measure out-
performs the dropout method for all p values.

• To assess the contribution of the variability term in
our stability measure, we compare it to two baselines
that capture only local variability: (i) absolute deviation
S1(x) = 1

k

∑
|f(xi) − f(x)|, and (ii) squared deviation

Table 3. Correlations and runtimes on the Adult dataset (128-shot)
(100 finetuned models with an overall training time of 456 mins).
Train time refers to the total time required to train the models
needed; Evaluation time includes inference and computation time
of the method over the entire test set. Stability achieves high
correlations with multiplicity metrics at lower computational cost.

Measure Arbit. Pairwise Pred. Pred. Train Eval.
Disag. Var. Range Time Time

Re-training 1.00 1.00 1.00 1.00 456 mins 94.7 mins
Pred. Prob. 0.63 0.61 0.39 0.63 4.56 mins 0.51 mins
Drop-Out 0.79 0.78 0.70 0.86 4.56 mins 102 mins
AWP 0.65 0.71 0.55 0.72 4.56 mins 977.6 mins
Stability 0.81 0.96 0.80 0.93 4.56 mins 19.4 mins

S2(x) = 1
k

∑
(f(xi) − f(x))2. As shown in Table 10 in

App. C, both alternatives yield consistently weaker correla-
tions with multiplicity metrics, highlighting the importance
of incorporating both local mean and variability terms.

• To evaluate the applicability of our stability measure be-
yond LoRA-based fine-tuning, we conduct an ablation using
two alternative tuning strategies: Prompt Tuning (Lester
et al., 2021) and Prefix Tuning (Li & Liang, 2021). As
shown in Table 14 in App. C, our Stability measure contin-
ues to correlate with multiplicity, though the correlations
are somewhat weaker than in the LoRA case, likely due to
the limitations of these tuning methods, which are known to
be less effective than LoRA in few-shot settings.

Computational Efficiency. We compare the computa-
tional requirements of our Stability measure against, retrain-
ing, dropout-based, Prediction probability, and Adversarial
Weight Perturbation (AWP) (Hsu & Calmon, 2022) in terms
of both training and evaluation runtimes. Table 3 summa-
rizes the cumulative training time and the total evaluation
time over the Adult test set. Figure 4 plots each method’s
total runtime and correlation with multiplicity metrics. We
found AWP to be expensive for LLMs since each gradient-
optimization step requires full forward passes on the test
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 9.18hrs
 corr 1.00

 0.40hrs
 corr 0.88

 1.78hrs
 corr 0.78

 0.08hrs
 corr 0.56  16.37hrs

 corr 0.66

Figure 4. Total runtime across the Adult test dataset. Our pro-
posed method (Stability) achieves significantly lower runtime com-
pared to the re-training and baselines while maintaining strong
average correlation with multiplicity evaluation metrics.

Table 4. Mean and std of stability values for correctly vs. incor-
rectly classified data points on the Hospital dataset. Stability
achieves a larger separation between correct (0.8710) and incor-
rect (0.5729) data points than baselines, suggesting it is better at
discriminating against unreliable predictions.

Method Correct Incorrect
Mean Std Mean Std

Stability 0.8710 0.1465 0.5729 0.1458
Pred. Prob. 0.8994 0.2160 0.7965 0.2256
Drop-Out 0.8190 0.2832 0.7217 0.1929

set to enforce Rashomon-set constraints, incurring heavy
inference and gradient-computation costs. Dropout requires
a prior check to ensure all dropped-out models (the models
to be aggregated) are in the competing model set, hence
our method would be more computationally efficient under
the same k. Stability achieves the best runtime–correlation
trade-off compared to baselines (see Fig. 4).

Scalability to Large Datasets. We evaluate our method
on the Hospital Readmission dataset (Gardner et al.,
2023)(∼100k data points, 50+ features). Retraining 40 mod-
els to evaluate multiplicity would takes over 5 days (3.5
hrs/model), while our method requires only a single model
and a fast forward-pass sampling step. We train one model
and compare Stability and baselines across correctly and
incorrectly classified test points (see Table 4). Stability
achieves a larger separation between correct and incorrect
data points than baselines. We can also use our measure to
analyze data points that are both confident and stable, or
identify those that appear confident but are actually unstable.
In Table 5, we grouped predictions based on their confi-
dence and stability values. Observe that while 41% of the
predictions were both confident and stable, a notable 20%
of the predictions were confident but unstable, indicating
that high confidence alone is not enough.

Discussion. Our multiplicity evaluation metrics, summa-
rized in Table 1,6,7, reveal significant variability in model

Table 5. Breakdown of test predictions by confidence and stability
(threshold = 0.75). 41% of predictions are both confident and sta-
ble, while a significant 20% are confident yet unstable—revealing
cases where high confidence masks unreliability and underscoring
the value of our stability measure.

Pred. Prob. Stability % Test Description

High (≥0.75) High (≥0.75) 41% Confident & Stable
High (≥0.75) Low (<0.75) 20% Confident but Unstable
Low (<0.75) High (≥0.75) 22% Unconfident but Stable
Low (<0.75) Low (<0.75) 17% Unconfident & Unstable

predictions across different fine-tuned variants, even when
they exhibit similar accuracy. This multiplicity is not cap-
tured by merely examining predicted probabilities, as pre-
dictions with high confidence can still be susceptible to
multiplicity (see Fig. 3). Our stability measure, Sk,σ(x, f),
was compared with the prediction probabilities f(x). The
results, presented in Table 2,8,9, demonstrate that our sta-
bility measure consistently shows mainly higher correlation
with multiplicity metrics across all models and datasets
compared to prediction probabilities and drop-out method.
This indicates that Sk,σ(x, f) is more informative than the
baselines in informing the fine-tuning multiplicity. The
drop-out method is however better than the prediction prob-
abilities alone. We hypothesize that our method is more
suitable for LLMs because the embedding space of LLMs
is significantly smaller than the parameter space (possibly
more informative also). The drop-out method might need
significantly more inferences to compete due to this.

We study the unique nature of fine-tuning multiplicity in
Tabular LLMs. Marx et al. (2020); Rudin et al. (2024) argue
for the necessity of measuring and reporting multiplicity to
better inform predictions. Traditional methods to measure
multiplicity in classical ML are impractical for LLMs due to
the computational challenge of retraining several fine-tuned
models (Marx et al., 2020; Hsu & Calmon, 2022; Watson-
Daniels et al., 2023). Our proposed measure, which requires
only the given model and leverages the embedding space
to inform multiplicity, addresses this issue. This approach
reduces the complexity from retraining and inference to just
inference, making it more feasible to apply in practice. Al-
though, a large k (number of sampled points) may be needed
for accurate stability estimation, it remains computationally
more efficient than retraining multiple models. Compared to
existing methods, our stability measure achieves a superior
trade-off between runtime and correlation with evaluated
multiplicity metrics, as shown in Figure 4. Our work pro-
vides practitioners with meaningful information about the
multiplicity of predictions, which may lead them to carefully
evaluate which predictions to trust and which to treat with
caution. Our research has significant implications in several
high-stakes applications, e.g., hiring, finance, education,
etc., where inconsistent predictions can lead to distrust.
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Impact Statement
Broader Societal Impacts. The application of LLMs to tab-
ular data, particularly in high-stakes domains such as finance
and healthcare, presents both opportunities and risks (Bom-
masani et al., 2021). Our work aims to address one of the
critical challenges associated with these models: the insta-
bility introduced when fine-tuning large models on small
datasets. This instability, manifested as overfitting and mul-
tiplicity, can undermine the reliability of model predictions
in scenarios where stability is crucial. By measuring multi-
plicity, our work contributes to the responsible deployment
of LLMs in domains where erroneous predictions can have
severe consequences (Bommasani et al., 2021; Creel & Hell-
man, 2022). Tabular data is central to these high-stakes
domains but remains underexplored compared to text and
vision (Hegselmann et al., 2023). Recent work emphasizes
the need for reliable foundation models in this modality (van
Breugel & van der Schaar, 2024).

Our approach also supports regulatory compliance by
enhancing transparency and accountability in automated
decision-making systems. Quantifying prediction consis-
tency aligns with regulations such as the General Data Pro-
tection Regulation (GDPR) (Voigt, 2017) and upcoming
AI legislation, which increasingly demand explainable and
reliable AI models (Chamola et al., 2023). While LLMs
are more computationally expensive than traditional mod-
els, our method reduces the costs of assessing multiplicity.
By avoiding repeated retraining, it enhances cost efficiency
and minimizes environmental impact, lowering both energy
consumption and carbon footprint (Luccioni et al., 2023).

Furthermore, observing the nature of fine-tuning multiplic-
ity in Tabular LLMs pave the way for future research into
model stability. It also facilitates continual learning by in-
forming the robustness of a prediction to potential model

updates in a dynamic environments where data constantly
evolves (Amba Hombaiah et al., 2021; Wu et al., 2024;
Wang et al., 2024a). Lastly, our work could play a role in
mitigating fairwashing risks and explanation bias (Black
et al., 2022; Sokol et al., 2023; Rudin et al., 2024). This
transparency is crucial for maintaining ethical standards and
trustworthiness in AI deployment (Chamola et al., 2023).

Limitations. Our work provides a measure to assess fine-
tuning multiplicity, but does not directly resolve this issue.
Future research could focus on mitigation methods to ensure
more consistent model predictions. A key constraint is the
applicability to higher-dimensional datasets due to the lim-
ited context window size of current LLMs, though extending
context windows is an active area of research (Peng et al.,
2023; Chen et al., 2023a). Additionally, our method’s perfor-
mance can be sensitive to hyperparameters, such as sample
size and neighborhood radius; incorrect choices may lead
to an inaccurate assessment of robustness. Our approach
also assumes access to the embedding space, limiting its
application to open-source models. Furthermore, the bound
in Theorem 1 is not directly computable. Estimating these
unknowns such as ϵ′ could be a direction for future work.
Despite these limitations, our measure serves as a crucial
step toward understanding and quantifying fine-tuning mul-
tiplicity, laying the groundwork for future advancements.
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Figure 5. Additional motivation for our local stability measure. Our measure relies on both local variability and mean confidence as they
capture synergistic aspects of prediction robustness.

A. Additional Intuition Behind the Stability Measure
How stability differs from existing robustness measures: Our focus on model multiplicity distinguishes this work from
traditional robustness measures, which address different aspects of model behavior such as out-of-distribution (OOD)
generalization, stability under natural perturbations, and uncertainty estimation (Djolonga et al., 2020). OOD generalization
typically evaluates how well a model performs on data that differs from the training distribution (e.g., classifying objects
seen from novel viewpoints or in cluttered settings). This is often quantified using test datasets with altered conditions or
domain shifts, and methods like domain adaptation are employed to enhance robustness. Stability under natural perturbations
assesses the sensitivity of predictions and predicted probabilities to small, random changes in the input, such as Gaussian
noise or image transformations. Uncertainty estimation, on the other hand, focuses on calibrating the predicted probabilities
to reflect true likelihoods, often using measures like Expected Calibration Error or entropy-based metrics to evaluate how
well the model quantifies confidence in its predictions. While these methods provide valuable insights into different facets
of robustness, their goals differ significantly from ours.

Han et al. (2023) is more closely related to our approach, as it quantifies robustness by measuring the fraction of stable
predictions within a local neighborhood. While both approaches leverage the neighborhood around a data point, the
objectives diverge: Han et al. (2023) focuses on quantifying the probability of stable predictions against perturbations to
evaluate robustness to noise. In contrast, our measure aims to capture the consistency of predictions (multiplicity) among
competing models within the Rashomon set. Additionally, our stability measure’s unique mean-variance nature further
distinguishes it (see Figure 4). Unlike existing metrics, it not only accounts for the average prediction within a neighborhood
but also penalizes the variability in predictions. Moreover, we provide theoretical guarantees on the consistency of predictions
with high stability scores over a broad range of equally-well performing models. Recent work has also explored consistency
in LLMs across repeated inference runs or under slight semantic perturbations to the input (Novikova et al., 2025; Raj et al.,
2025; 2022; Nalbandyan et al., 2025).

B. Proof of Theoretical Guarantee
Theorem 1 (Probabilistic Guarantee). Given a data point x, a target model f̄ and local stability measure Sk,σ(x, F ). Under
Assumption 1, and for all ϵ > ϵ′, where ϵ′ = 2(α+ tσ) +O(Lσ2). We have:

Pr
(
f̄(x) ≥ Sk,σ(x, F )− ϵ

)
≥ 1− exp

(
−kϵ2

32

)
(1)

Proof. To prove Theorem 1, we begin with Lemma 1.

Assume the fine-tuned models F belong to a discrete class of random variables. A specific model realization is represented
as f i for i = 1, 2, . . . , |Fδ|, with the complete set denoted by F = {f1, f2, . . . , f |F|}. Each model f i is selected with
probability pi, where

∑|Fδ|
i=1 pi = 1.

Lemma 1. Given Zi = F (Xi)− f̄(Xi)− |f̄(Xi)− f̄(x)|+ |F (Xi)− F (x)| and Z = 1
k

∑k
i=1 Zi, under Assumption 1,
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for any ϵ̃ > ϵ′ > 0, we have:

Pr(Z ≥ ϵ′ + ϵ̃) ≤ exp

(
−k(ϵ̃+ ϵ′)2

32

)
. (2)

Lemma 2 (Hoeffding’s Inequality). For a given random variable Xi such that Xi ∈ [a, b] almost surely, and for any ε > 0,

Pr

(∣∣∣∣1k
k∑

i=1

Xi − E(Xi)

∣∣∣∣ > ε

)
≤ 2 exp

(
− 2kε2

(b− a)2

)
. (3)

See Bentkus (2004) for detailed proof of Hoeffding’s Inequality.

Since f̄(·), F (·) ∈ [0, 1], we have Zi ∈ [−2, 2]. Hence, from Lemma 2, we have:

Pr (|Z − E[Z|F = f ]| ≥ ϵ̃ | F = f) ≤ 2 exp

(
−kϵ̃2

8

)
(4)

Given |E [Z|F = f ] | < ϵ′, we have −ϵ′ < E [Z|F = f ] < ϵ′ ∀f (see Lemma 3). Now observe that:

Pr(Z ≥ ϵ′ + ϵ̃|F = f)
(a)
≤ Pr(Z ≥ E [Z|F=f ] + ϵ̃|F=f) ≤ exp

(
−kϵ̃2

8

)
. (5)

Here, (a) holds since E [Z|F = f ] < ϵ′. The event on the left is a subset of that on the right. Therefore, the probability of
the event {Z ≥ ϵ′ + ϵ̃} occurring cannot be more than the probability of the event {Z ≥ E [Z|F = f ] + ϵ̃} occurring.

Pr(Z ≥ ϵ′ + ϵ̃)
(b)
=
∑
i

Pr(Z ≥ ϵ′ + ϵ̃|F = f i) Pr(F = f i) (6)

(c)
≤ exp

(
−kϵ̃2

8

)∑
i

Pr(F = f i) (7)

= exp

(
−kϵ̃2

8

)
(8)

(d)
≤ exp

(
−k(ϵ̃+ ϵ′)2

32

)
(9)

Here, (b) holds from the law of total probability. Next, (c) follows from (5). Finally, (d) holds from using the inequality
4ϵ̃2 > (ϵ̃+ ϵ′)2 which holds for ϵ̃ > ϵ′ > 0. Setting ϵ = ϵ̃+ ϵ′.

We have:

Pr

(
1

k

k∑
i=1

f̄(Xi) ≥
1

k

k∑
i=1

(
F (Xi)− |F (Xi)− F (x)|+ |f̄(Xi)− f̄(x)|

)
− ϵ

)
≥ 1− exp

(
−kϵ2

32

)
. (10)

Observe that f̄(x) ≥ f̄(xi)− |f̄(xi)− f̄(x)|. This applies directly from the reverse triangle inequality, i.e., for any real
numbers a and b, we have:|a| ≥ |b| − |a− b|. Hence,

f̄(x) ≥ 1

k

k∑
i=1

(f̄(Xi)− |f̄(Xi)− f̄(x)|) (11)

Therefore, plugging (11) into (10), we have:

Pr
(
f̄(x) ≥ 1

k

k∑
i=1

(F (Xi)− |F (Xi)− F (x)|+ |f̄(Xi)− f̄(x)| − |f̄(Xi)− f̄(x)| − ϵ)
)

(12)

= Pr
(
f̄(x) ≥ 1

k

k∑
i=1

(F (Xi)− |F (Xi)− F (x)|)− ϵ
)
≥ 1− exp

(
−kϵ2

32

)
. (13)
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Given Sk,σ(x, F ) = 1
k

∑k
i=1(F (Xi)− |F (x)− F (Xi)|), we have:

Pr
(
f̄(x) ≥ Sk,σ(x, F )− ϵ

)
≥ 1− exp

(
−kϵ2

32

)
. (14)

Using Lemma 3, we show that E[Z|F = f ] ≤ ϵ′ which completes the proof.

Lemma 3. Let F, f̄ be twice differentiable functions with Hessians bounded by L, i.e., ∥∇2F (x)∥, ∥∇2f̄(x)∥ ≤ L for all
x. Let EXi [∥F (Xi) − f̄(Xi)∥|F = f ] ≤ α and EXi [∥∇(F − f̄)(Xi)∥|F = f ] ≤ t, where Xi is drawn uniformly from
distribution over the hypersphere B(x, σ). If Zi =

[
F (Xi)− f̄(Xi)

]
−
∣∣f̄(Xi)− f̄(x)

∣∣+ ∣∣F (Xi)− F (x)
∣∣, then,

E[Zi|F = f ] ≤ α+ tσ + O(Lσ2)︸ ︷︷ ︸
Hessian Error

, (15)

Proof. We first bound E[F (Xi)− f̄(Xi)]:

Since E[|F (Xi)− f̄(Xi)|] ≤ α for all it follows that E[F (Xi)− f̄(Xi)] ≤ α.

Next, we bound E
[
|F (Xi)− F (x)| − |f̄(Xi)− f̄(x)|

]
:

Expand F (Xi) and f̄(Xi) around x using Taylor’s expansion:

F (x) = F (Xi) +∇F (Xi)
T (x−Xi) +

1

2
(x−Xi)

T∇2F (ξF )(x−Xi),

f̄(x) = f̄(Xi) +∇f̄(Xi)
T (x−Xi) +

1

2
(x−Xi)

T∇2f̄(ξf̄ )(x−Xi),

(16)

for some ξF , ξf̄ ∈ B(x, σ). The absolute differences become:

|F (Xi)− F (x)| ≤
∣∣∇F (Xi)

T (x−Xi)
∣∣+ 1

2
L∥Xi − x∥2,

|f̄(Xi)− f̄(x)| ≥
∣∣∇f̄(Xi)

T (x−Xi)
∣∣− 1

2
L∥Xi − x∥2.

(17)

Subtracting these:

|F (Xi)− F (x)| − |f̄(Xi)− f̄(x)| ≤
∣∣∇F (Xi)

T (x−Xi)
∣∣− ∣∣∇f̄(Xi)

T (x−Xi)
∣∣+ L∥Xi − x∥2. (18)

Using the reverse triangle inequality |a| − |b| ≤ |a− b|:

|F (Xi)− F (x)| − |f̄(Xi)− f̄(x)| ≤
∣∣∇(F − f̄)(Xi)

T (x−Xi)
∣∣+ L∥Xi − x∥2. (19)

Taking Expectation:

E
[∣∣∇(F − f̄)(Xi)

T (x−Xi)
∣∣] ≤ E[∥∇(F − f̄)(Xi)∥∥Xi − x∥] ≤ E[∥∇(F − f̄)(Xi)∥σ ≤ tσ (20)

Hessian Term: E
[
L∥Xi − x∥2

]
= L · E[∥Xi − x∥2] = O(Lσ2).

Combining the inequalities, we have:
E[Zi|F = f ] ≤ α+ tσ +O(Lσ2). (21)
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C. Expanded Experimental Section
C.1. Relevant Definition

Definition 6 (Spearman Correlation). Spearman’s correlation, Spearman(X,Y ), measures the strength and direction of a
monotonic relationship between two variables. It is the Pearson correlation coefficient of their ranked values. Given n pairs
(Xi, Yi), it is computed as:

Spearman(X,Y ) = 1−
6
∑n

i=1 d
2
i

n(n2 − 1)
=

cov(rank(X), rank(Y ))

σrank(X)σrank(Y )
,

where di is the difference between the ranks of Xi and Yi. The value ranges from −1 (perfect negative monotonicity) to 1
(perfect positive monotonicity), with 0 indicating no monotonic relationship.

C.2. Dataset Details

This section provides detailed descriptions of the datasets used in our experiments.

Adult dataset (Becker & Kohavi, 1996), also known as the “Census Income” dataset, is used for predicting whether an
individual earns more than $50,000 annually based on various demographic attributes. It consists of 48,842 instances with
14 attributes, including age, work class, education, marital status, occupation, relationship, race, sex, capital gain, capital
loss, hours per week, and native country. The dataset is commonly used in classification tasks.

German Credit dataset (Hofmann, 1994) is used for credit risk evaluation. It consists of 1, 000 instances with 20
attributes, which include personal information, credit history, and loan attributes. The target variable indicates whether the
credit is good or bad. This dataset is often used for binary classification problems and helps in understanding the factors
affecting creditworthiness. The dataset is commonly used in classification tasks.

Diabetes dataset (Kahn) is used for predicting the onset of diabetes based on diagnostic measurements. It contains 768
instances with 8 attributes, including the number of pregnancies, glucose concentration, blood pressure, skin thickness,
insulin level, body mass index (BMI), diabetes pedigree function, and age. The target variable indicates whether the
individual has diabetes. The dataset is commonly used in classification tasks.

Bank dataset (Moro et al., 2014) is used for predicting whether a client will subscribe to a term deposit based on data
from direct marketing campaigns of a Portuguese bank. It includes 45,211 instances in the training set and 18 attributes,
such as age, job type, marital status, education, credit balance, housing loan status, and contact details from the marketing
campaigns. The target variable indicates whether the client subscribed to the term deposit. This dataset is commonly used in
binary classification tasks.

Heart dataset (Detrano et al., 1989) contains data from four different hospitals. It includes 918 patients, each represented
by 11 clinical variables, with the task being a binary classification of coronary artery disease. Among the patients, 508 are
labeled positive for the condition.

Car dataset (Kadra et al., 2021) contains entries describing various cars characterized by six attributes. The task is a
classification problem aimed at evaluating the state of each car. The dataset comprises 1,728 examples.

Hospital Remission dataset (Gardner et al., 2023) contains 99,493 inpatient encounters from 130 U.S. hospitals
(1999–2008) that involve diabetic patients. The dataset provides 50+ attributes aimed at predicting whether a patient will be
readmitted within 30 days after discharge. It is commonly used for binary classification tasks assessing post-discharge risk
and care quality.

C.3. Experimental Setup

Our experiments were carried out using the BIGSCIENCE T0 and Google Flan T5 models fine-tuned on several datasets.
The number of shots was set to 64,128, and 512 for each dataset. To evaluate multiplicity and local stability, we fine-tuned
40 models with different random seeds for each dataset and recorded their predictions. The training process involved setting
the batch size to 2 for smaller training sizes and 8 for larger sizes. The learning rate was set to 0.003. For each dataset, we
determined the number of training steps adaptively based on the number of shots, ensuring sufficient iterations for model
convergence. Specifically, the training steps were calculated as 20× (number of shots/batch size). All experiments were
performed on 2 NVIDIA RTX A4500 and 4 NVIDIA RTX 6000 GPUs. To ensure reproducibility and robustness of the
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results, different random seeds (i.e., 2, 4, 8, etc) were used for each fine-tuning iteration. For fine-tuning with LoRA we use
a rank of 4. Given the infeasibility of computing the exact size of |Fδ| due to its potentially vast model space, we employ an
expensive sampling approach, i.e., fine-tuning with various seeds. We select a finite number of models from Fδ for practical
evaluation, allowing us to evaluate the multiplicity metrics. It is very computationally expensive to fine-tune several models
to evaluate multiplicity. This motivates the need for a measure to quantify stability given one model.

C.4. Expanded Results

This section presents a broader set of experimental results. We evaluate multiplicity across several datasets using both the
BIGSCIENCE T0 model fine-tuned with LoRA (see Table 6) and the FLAN-T5 model fine-tuned using the Tfew recipe
(see Table 7). Additionally, Figures 6, 7, and 8 visualize the evaluated multiplicity versus the stability measure for Bank,
Diabetes, and German Credit datasets respectively. We also report the correlation between the stability measure
and various multiplicity evaluation metrics for BIGSCIENCE T0 model fine-tuned using Tfew recipe (see Table 8) and
FLAN-T5 model fine-tuned using Tfew recipe (see Table 9).

Table 6. Multiplicity Evaluation Metrics for Different Datasets and Number of Shots. Evaluated on 40 fine-tuned BIGSCIENCE T0
models on LoRA using different random seeds. Multiplicity observed in predictions across different fine-tuned model, even when models
exhibit similar accuracy (in this setting δ = 0.02).

Dataset No. Multiplicity Evaluation Metrics (BIGSCIENCE T0)
Shots Arbitrariness Discrepancy Avg. Pairwise Avg. Pred. Avg. Pred. Avg. Model

Disagreement Variance Range Accuracy

Adult
64 11% 6% 9% 0.01 0.11 83%

128 10% 9% 6% 0.01 0.10 84%
512 11% 3% 10% 0.01 0.12 85%

German
64 19% 10% 6% 0.04 0.40 70%

128 17% 11% 6% 0.01 0.16 71%
512 21% 14% 8% 0.03 0.26 72%

Diabetes
64 20% 13% 11% 0.04 0.21 70%

128 16% 14% 11% 0.08 0.14 73%
512 19% 13% 11% 0.04 0.17 76%

Bank
64 13% 9% 7% 0.01 0.28 66%

128 14% 9% 7% 0.03 0.21 73%
512 14% 8% 7% 0.03 0.22 78%

Table 7. Evaluated Multiplicity for Different Datasets and Number of Shots. Evaluated on 40 fine-tuned FLAN-T5 models using Tfew
recipe with different random seeds. Multiplicity observed in predictions across different fine-tuned models, even when models exhibit
similar accuracy (in this setting δ = 0.02). The accuracy of FLAN T5 model on the dataset is less than the BIGSCIENCE T0 model
observed in Table 1.

Dataset No. Multiplicity Evaluation Metrics (FLAN-T5)
Shots Arbitrariness Discrepancy Avg. Pairwise Avg. Pred. Avg. Pred. Avg. Model

Disagreement Variance Range Accuracy

Adult
64 13.96% 6.93% 5.05% 0.010 0.139 74.25%

128 8.81% 3.84% 3.39% 0.008 0.091 77.50%
512 12.02% 5.71% 4.49% 0.012 0.123 79.17%

German
64 18.50% 11.00% 6.19% 0.015 0.194 64.85%

128 30.00% 13.50% 10.47% 0.031 0.287 69.25%
512 35.50% 16.50% 12.88% 0.041 0.362 69.40%

Diabetes
64 15.58% 7.79% 6.23% 0.016 0.170 68.18%

128 11.69% 5.84% 4.81% 0.012 0.129 59.29%
512 21.43% 9.74% 7.37% 0.022 0.207 69.55%

Bank
64 12.86% 7.46% 4.69% 0.003 0.125 66.96%

128 17.95% 6.90% 6.59% 0.006 0.165 65.94%
512 17.17% 6.61% 6.24% 0.017 0.173 79.40%
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Table 8. This table reports the Spearman correlation between the stability measure, predicted probabilities, and the drop-out method with
various multiplicity evaluation metrics for different numbers of shots on several datasets (BIGSCIENCE T0 fine-tuned using Tfew
recipe). In most cases, the stability measure Sk,σ(x, f) shows a higher correlation with these multiplicity measures compared to predicted
probabilities and drop-out, indicating that the stability measure Sk,σ(x, f) better informs about the multiplicity than the other measures
do. The dropout method performing better than naive predicted probability.

Dataset Number of Shots Measure Arbitrariness Pairwise Disagreement Prediction Variance Prediction Range

Adult

64
Pred. Prob. 0.67 0.66 0.50 0.62
Drop-Out 0.83 0.78 0.81 0.87
Stability 0.95 0.90 0.91 0.89

128
Pred. Prob. 0.67 0.62 0.30 0.54
Drop-Out 0.74 0.83 0.69 0.81
Stability 0.80 0.96 0.84 0.91

512
Pred. Prob. 0.70 0.69 0.56 0.72
Drop-Out 0.78 0.78 0.88 0.88
Stability 0.90 0.86 0.93 0.92

German Credit

64
Pred. Prob. 0.99 0.99 0.80 0.79
Drop-Out 0.73 0.71 0.82 0.76
Stability 0.95 0.95 0.98 0.84

128
Pred. Prob. 0.57 0.57 0.86 0.86
Drop-Out 0.50 0.56 0.74 0.84
Stability 0.54 0.54 0.87 0.87

512
Pred. Prob. 0.54 0.56 0.83 0.82
Drop-Out 0.69 0.67 0.72 0.65
Stability 0.59 0.60 0.87 0.86

Diabetes

64
Pred. Prob. 0.03 0.38 0.04 0.08
Drop-Out 0.30 0.19 0.54 0.46
Stability 0.45 0.51 0.31 0.23

128
Pred. Prob. 0.88 0.93 0.93 0.95
Drop-Out 0.89 0.92 0.92 0.94
Stability 0.92 0.95 0.93 0.95

512
Pred. Prob. 0.21 0.23 0.24 0.30
Drop-Out 0.74 0.83 0.75 0.74
Stability 0.80 0.89 0.74 0.68

Bank

64
Pred. Prob. 0.70 0.69 0.56 0.74
Drop-Out 0.79 0.77 0.77 0.80
Stability 0.83 0.78 0.81 0.80

128
Pred. Prob. 0.54 0.57 0.73 0.62
Drop-Out 0.62 0.70 0.75 0.51
Stability 0.79 0.84 0.87 0.86

512
Pred. Prob. 0.71 0.68 0.81 0.76
Drop-Out 0.90 0.89 0.87 0.84
Stability 0.91 0.92 0.91 0.87

Heart

64
Pred. Prob. 0.70 0.21 0.30 0.69
Drop-Out 0.56 0.48 0.54 0.56
Stability 0.98 0.86 0.98 0.98

128
Pred. Prob. 0.61 0.46 0.50 0.26
Drop-Out 0.64 0.76 0.74 0.83
Stability 0.89 0.90 0.97 0.87

512
Pred. Prob. 0.80 0.65 0.48 0.35
Drop-Out 0.94 0.90 0.90 0.94
Stability 0.89 0.95 0.86 0.95

Car

64
Pred. Prob. 0.83 0.83 0.40 0.83
Drop-Out 0.85 0.83 0.96 0.97
Stability 0.76 0.69 0.86 0.75

128
Pred. Prob. 0.56 0.26 0.29 0.01
Drop-Out 0.63 0.66 0.57 0.52
Stability 0.97 0.91 0.93 0.94

512
Pred. Prob. 0.91 0.94 0.72 0.86
Drop-Out 0.98 0.96 0.95 0.93
Stability 0.68 0.59 0.56 0.67
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Table 9. This table reports the Spearman correlation between the predicted probabilities, drop-out method, and the stability measure with
various multiplicity evaluation metrics for different numbers of shots on several datasets (Flan T5 model fine-tuned using Tfew recipe).
In most cases, the stability measure shows a higher correlation with these multiplicity measures compared to predicted probabilities and
drop-out, indicating that the stability measure better informs about the multiplicity than the other measures do. The dropout method
performs competitively in some cases.

Dataset Number of Shots Measure Arbitrariness Pairwise Disagreement Prediction Variance Prediction Range

Adult

64
Pred. Prob. 0.62 0.67 0.72 0.56
Drop-Out 0.60 0.65 0.67 0.57
Stability 0.63 0.72 0.72 0.60

128
Pred. Prob. 0.75 0.74 0.65 0.75
Drop-Out 0.85 0.78 0.83 0.75
Stability 0.88 0.90 0.84 0.79

512
Pred. Prob. 0.78 0.68 0.42 0.45
Drop-Out 0.78 0.78 0.42 0.45
Stability 0.79 0.71 0.78 0.68

German Credit

64
Pred. Prob. 0.27 0.04 0.27 0.17
Drop-Out 0.73 0.45 0.60 0.17
Stability 0.77 0.67 0.78 0.76

128
Pred. Prob. 0.85 0.76 0.85 0.91
Drop-Out 0.86 0.91 0.85 0.91
Stability 0.89 0.91 0.89 0.92

512
Pred. Prob. 0.42 0.29 0.27 0.19
Drop-Out 0.43 0.36 0.28 0.33
Stability 0.61 0.60 0.67 0.69

Diabetes

64
Pred. Prob. 0.09 0.04 0.27 0.23
Drop-Out 0.24 0.41 0.54 0.50
Stability 0.27 0.55 0.31 0.25

128
Pred. Prob. 0.16 0.06 0.17 0.16
Drop-Out 0.46 0.55 0.54 0.63
Stability 0.52 0.57 0.44 0.52

512
Pred. Prob. 0.61 0.35 0.12 0.19
Drop-Out 0.71 0.42 0.42 0.51
Stability 0.79 0.40 0.39 0.40

Bank

64
Pred. Prob. 0.26 0.04 0.27 0.17
Drop-Out 0.24 0.60 0.60 0.60
Stability 0.77 0.67 0.78 0.76

128
Pred. Prob. 0.45 0.54 0.73 0.62
Drop-Out 0.62 0.70 0.75 0.82
Stability 0.89 0.71 0.78 0.84

512
Pred. Prob. 0.42 0.29 0.27 0.11
Drop-Out 0.44 0.29 0.37 0.43
Stability 0.61 0.60 0.30 0.380
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Figure 6. Evaluated multiplicity (assessed on 40 retrained models) versus our stability measure (evaluated on one model) for the 512-shot
setting on the Bank dataset. The plots demonstrate that high stability values correspond to low multiplicity across various multiplicity
evaluation metrics. Predictive probabilities and Drop-Out not providing any providing any useful insight into multiplicity.

Figure 7. Evaluated multiplicity (assessed on 40 retrained models) versus our stability measure (evaluated on one model) for the 512-shot
setting on the Diabetes dataset. The plots demonstrate that high stability values correspond to low multiplicity across various
multiplicity evaluation metrics. Predictive probabilities not providing any providing any useful insight about multiplicity. The drop-out
method performs better than predictive probabilities but still worse than stability.

Figure 8. Evaluated multiplicity (assessed on 40 retrained models) versus our stability measure (evaluated on one model) for the 512-shot
setting on the German Credit dataset. The plots demonstrate that high stability values correspond to low multiplicity across various
multiplicity evaluation metrics. In this setting Prediction probability is performing competitively. But generally stability measure provides
better insight into the multiplicity of predictions compared to the predicted probabilities. The drop-out method is performing significantly
worse than the other two measures.
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Figure 9. Ablation study on different σ values: The chosen value of σ = 0.01 yields the best performance across all evaluation metrics.
Smaller values of σ (e.g., σ = 10−4) result in perturbations that are too close to the original data points, leading to similar outcomes as
prediction probability alone, as the sampled points are nearly identical. On the other hand, larger values (e.g., σ = 10−2) produce overly
noisy perturbations, rendering the results uninformative.

C.5. Expanded Ablations

We include the complete ablation results referenced in the main paper. Table 11 presents the results of varying the sample
size k. Table 12 and Figures 9 examines the effect of different values of σ on the stability measure. Additionally, Table 13
compares the stability measure with the drop-out method with different drop-out rates p. Finally, Table 10 compares the
stability measure with variability-based alternatives. Table 14 compares performance under LoRA, Prompt Tuning, and
Prefix Tuning on the Bank dataset.

Table 10. Correlation between the proposed consistency measures and various multiplicity evaluation metrics. New additional measures:
S1(x) = 1

k

∑
|f(xi) − f(x)| (absolute variability). S2(x) = 1

k

∑
(f(xi) − f(x))2 (squared variability). The proposed Stability

measure outperforms both dropout-based method and purely variability-based alternatives

Dataset Number Measure Arbitrariness Pairwise Prediction Prediction
of Shots Disagreement Variance Range

Adult 128

Pred. Prob. 0.67 0.62 0.30 0.54
Drop-Out 0.74 0.83 0.69 0.81
S1(x) 0.70 0.65 0.63 0.72
S2(x) 0.70 0.64 0.60 0.73

Stability 0.80 0.96 0.84 0.91

Table 11. Ablation study on different k values: Correlation between our stability measure (evaluated on a single model) and various
measures of multiplicity for different sample sizes k on the Diabetes dataset (T0 model). We observe better performance with
increasing k as suggested by our theoretical results. Larger sample size k values are advantageous, as they ensure that the guarantees hold
with high probability. However, computational cost of model inference (forward pass) increases.

k Prediction Range Prediction Variance Pairwise Disagreement Arbitrariness

2 0.77 0.77 0.53 0.52
5 0.82 0.83 0.56 0.55
10 0.87 0.87 0.62 0.61
20 0.89 0.88 0.70 0.79
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Table 12. Ablation study on different σ values: Correlation between our stability measure (evaluated on one model) and various
evaluation measures for different values of σ and evaluated multiplicity for Diabetes dataset and 128-shot case (T0 model). Best
performance observed when σ = 10−2. To guide the choice of σ, one could consider the spread of training data points in the embedding
space (e.g., we use a value equivalent to 10% of the variance of the training data). For all our experiments, we used a fixed value of 0.01,
which consistently worked well across different datasets and experiments. When σ is too small, we basically sample (almost) the same
points and our stability measure is not more informative than the prediction probability. When σ is too large, one loses all information
about the data point.

σ Prediction Range Prediction Variance Pairwise Disagreement Arbitrariness

10−4 0.82 0.83 0.84 0.80
10−3 0.91 0.92 0.90 0.86
10−2 0.95 0.93 0.95 0.92
10−1 0.10 0.08 0.33 0.23

Table 13. This table reports the correlation between the stability measure and various evaluated multiplicity for the 512-shot setting on the
Diabetes dataset. The stability measure Sk,σ(x, f) shows a higher correlation with multiplicity compared to predicted probabilities
and drop-out and ensemble method, indicating that the stability measure Sk,σ(x, f) better informs multiplicity than the other measures.

Method Arbitrariness Pairwise Disagreement Prediction Variance Prediction Range

Pred. Prob. 0.21 0.23 0.24 0.30
drop-out p = 0.01 0.21 0.23 0.27 0.28
drop-out p = 0.1 0.62 0.61 0.59 0.64
drop-out p = 0.2 0.74 0.36 0.53 0.54
drop-out p = 0.5 0.16 0.17 0.18 0.16
Stability 0.80 0.89 0.74 0.68

Table 14. We compare the correlation in our default LoRA setting against Prompt Tuning and Prefix Tuning (Bank dataset) to assess
the generalizability of our method beyond LoRA. Although the stability measure achieves the highest correlations under LoRA, it still
provides meaningful signals under Prompt and Prefix tuning.

Dataset Measure Arbitrariness Pairwise Prediction Prediction
Disagreement Variance Range

Bank

Pred. Prob. (LoRA) 0.54 0.57 0.73 0.62
Pred. Prob. (Prompt Tuning) 0.50 0.48 0.61 0.55
Pred. Prob. (Prefix Tuning) 0.52 0.49 0.59 0.51

Drop-Out (LoRA) 0.62 0.70 0.75 0.51
Drop-Out (Prompt Tuning) 0.48 0.53 0.60 0.49
Drop-Out (Prefix Tuning) 0.55 0.50 0.58 0.46

Stability (LoRA) 0.79 0.84 0.87 0.86
Stability (Prompt Tuning) 0.63 0.60 0.58 0.61
Stability (Prefix Tuning) 0.59 0.62 0.60 0.57
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