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Abstract

Cyberspace search engines (CSEs) are systems
designed to search and index information about
network assets in cyberspace. However, using
CSEs to grasp the status of cyberspace assets
still encounters challenges in usability, due to
the specificity of terminology and the profes-
sionalism of cyberspace search engine query
language (CSEQL). To improve the usability of
CSEs, it is essential to support natural language
querying. To this end, we propose a task called
Text-to-CSEQL, which aims to translate natural
language into CSEQL. We propose a method
based on the large language model (LLM) to
enable natural language interaction with CSEs.
Specifically, we adopt retrieval-augmented gen-
eration (RAG) techniques with LLM by con-
structing a knowledge base. Upon receiving
a natural language input, it extracts relevant
fields and examples from the knowledge base,
crafting a well-formed prompt for LLM. To
comprehensively assess the method, we con-
struct a dataset related to Text-to-CSEQL and
design a new domain-specific evaluation met-
ric, called Field Match (FM). Extensive experi-
ments demonstrate that our framework is highly
effective, outperforming existing methods. In
addition, our method is adaptable and can ac-
commodate various CSEs.

1 Introduction

A cyberspace search engine (CSE) (Li et al., 2020)
is a specialized information retrieval system de-
signed to search, index, and organize internet-
connected resources. CSEs are becoming increas-
ingly vital in areas like cyberspace asset discov-
ery and management, cybersecurity risk assess-
ment and monitoring, etc. Currently, there are
numerous CSEs, each with its own version of cy-
berspace search engine query language (CSEQL).
This implies that accurate and efficient construc-
tion of query statements requires a high level of
specialized knowledge, posing challenges for users.

Background Knowledge:
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Natural Language Input:

How do | find honeypot network assets with port 3306 open?
FOFA Query:

port=3306 && is_honeypot=True

Figure 1: An example of natural language input is con-
verted into the corresponding CSE query statement for
FOFA based on background knowledge. In the example
FOFA query, blue represents query fields, red denotes
query values, and green is logical symbol.

Therefore, it is essential to enable natural language
interaction with CSEs.

Text-to-SQL (Deng et al., 2022; Gao et al., 2024;
Mao et al., 2024; Xie et al., 2024; Wretblad et al.,
2024) aims to translate natural language into SQL
statements, enabling users to query vast amounts of
data stored in relational databases without needing
to write complex SQL code. Inspired by Text-to-
SQL, transforming natural language into CSEQL
is a practical approach to improve the convenience
of the interactions with CSEs. An example of trans-
formation is presented in Figure 1. Despite both
being query languages, SQL and CSEQL serve dis-
tinct purposes and exhibit significant differences.
In essence, SQL is primarily designed for querying
and managing data in relational databases, whereas
CSEQL is for querying cyberspace assets in CSEs.
These differences are reflected in their syntax: SQL
has a unified, standardized syntax, while CSEQL
syntax is platform-specific, with each platform em-
ploying customized syntactic forms. As a result,
directly applying Text-to-SQL methods to Text-to-
CSEQL is challenging due to the inherent differ-
ences between the two languages.
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Figure 2: An overview of the errors when LLMs gener-
ate FOFA query statements. In the figure, "x" indicates
error cases, while "v'" denotes correct answers. The red
represents the incorrect parts generated by LLM and
the green represents the correct parts of the generated

query.

To effectively implement Text-to-CSEQL, the
method should be able to accurately capture the
relationship between each natural language query
and its corresponding CSEQL statement. Large
Language Models (LLMs) offer substantial bene-
fits in processing and comprehending natural lan-
guage. Intuitively, they could be applied to this
task. Nevertheless, due to the hallucinations of
LLMs, directly using LLMs for this task results in
numerous errors. Figure 2 highlights three preva-
lent errors encountered when utilizing LLMs to
generate FOFA query statements: (1) field error. In
FOFA query language, specific terms like “region"
are required for searching assets in particular ar-
eas, rather than using synonyms such as “location."
(2) syntax error. The generated query statements
must adhere strictly to syntactic requirements to
ensure their validity. (3) semantic error. Minor
linguistic discrepancies can result in substantial
semantic misinterpretations, leading to incorrect
query outcomes.

To address these issues, we design a method
that incorporates knowledge base construction,
retrieval-augmented generation, and prompt de-
sign. By harnessing the contextual learning abil-
ity of LLMs, our method involves retrieving per-
tinent query fields via field retrieval and leverag-
ing related few-shot examples through few-shot
retrieval from the knowledge base. Furthermore,
we craft a meticulously designed prompt, adapted
from COSTAR (Teo, 2024), to ensure precise gen-
eration of CSE query statements using LLMs. This
comprehensive integration of retrieved information
and prompt engineering enhances the effectiveness
and accuracy of our method.

Since there is no existing dataset for evalua-
tion, we have created a new dataset. The dataset

contains natural language inputs and correspond-
ing CSE query statements of different CSEs. All
query statements are collected from real world,
written by users to meet legitimate information
needs. We leverage LLMs to generate natural
language descriptions of query statements, which
are subsequently verified by experts. Furthermore,
we introduce a domain-specific metric called field
match (FM) to evaluate our method comprehen-
sively. This metric assesses the accuracy of the
fields in the generated query statements.

Our main contributions are summarized as fol-
lows:

* We propose the Text-to-CSEQL task with the
motivation of enhancing usability of CSEs
with natural language interactions.

* We introduce a method to generate CSEQL
based on LLMs. This method leverages RAG
to alleviate hallucination through few-shot re-
trieval and field retrieval.

* We construct a dataset for evaluation. The
dataset contains natural language inputs and
real-world CSE query statements across mul-
tiple platforms, including Shodan, ZoomEye,
Censys, and FOFA. Moreover, a domain-
specific metric called FM is introduced to eval-
uate our method comprehensively.

* Extensive experiments on the dataset show
that our method outperforms existing methods
and can adapt to the syntax variations of dif-
ferent platforms. Ablation studies validate the
contribution of each module in our method.

2 Background

2.1 Cyberspace Search Engine

Cyberspace search engines (CSEs) have emerged
as powerful tools for exploring, analyzing, and un-
derstanding the vast array of devices, services, and
data residing within cyberspace. CSEs differ fun-
damentally from traditional web search engines
such as Google, Baidu, or Bing. While traditional
search engines primarily index and retrieve web
pages, CSEs are designed to actively probe and de-
tect entities and services within cyberspace. They
utilize a variety of protocols and techniques to dis-
cover open ports, services, and devices, and they
provide detailed information about these entities,
including their location, configuration, and security



Difference Cyberspace Search Engines

Shodan ZoomEye Censys FOFA
Matching symbol : : =
Boolean logic symbol  space,- +space- andornot &&ll!=
Field names,such as port port port services.port  port
Number of fields 81 23 2406 77

Table 1: Comparison of CSEQL syntax differences
across four CSEs.

posture. Several notable CSEs are designed in re-
cent years, including Shodan (Sho), Censys (Cen),
ZoomEye (Zoo) and FOFA (FOF).

2.2 Cyberspace Search Engine Query
Language and Syntax

Cyberspace search engine query language
(CSEQL) is a language used to retrieve cyberspace
assets information that meet specific conditions
on CSEs. Each CSE usually has its customized
implementation of CSEQL, featuring distinct
syntax rules. Table 1 shows the comparison of the
difference in CSEQL syntax across four CSEs.
When using CSEs, users have to construct the
query statements that statisfy the corresponding
syntax rules. A query statement typically consists
of query conditions and logical connectors. Query
conditions are composed of three parts: query
field, matching symbol, and query value. Logical
connectors include three types of logic operators:
AND, OR and NOT. Query fields are divided into
simple and nested fields based on their level of
granularity. Matching symbols are categorized
by precision into exact match, match, wildcard
match, and mismatch. The query value depends
on the query field, and the number of available
choices can be classified as binary values, finite
numbers greater than two, or uncertain content.
For instance, a query statement of FOFA is as
follows: is_honeypot=true && port=3306, where
"is_honeypot" and "port" are query fields, "="
is the matching symbol, and "true" and "3306"
are query values. The entire query statement is
designed to search for honeypot assets with port
3306 open.

3 Methods

To describe the task accurately, we formulate it as
a conditional probability problem. For a query task
T described in natural language and its correspond-
ing cyberspace search engine S, the objective of
LLM is to predict the CSE query statement from 7.
The probability that LLM predict CSE query state-
ment(q) can be defined as a conditional probability

distribution. Z(S) represents the relevant syntax
of the search engine S, P represents the prompt
template, and Iql denotes the length of the predicted
CSE query. ¢; and g-; represent the i-th token and
the prefix of ¢;, respectively. The parameters of
LLM M are denoted by ®. The conversion from
natural language to CSE query statements using
the LLMs is represented as follows:

P (aP(T,Z(S))) = [1%, Ps (a:|P (T, Z(S)), qi). (1)

3.1 Overview

The overview of our proposed method is illustrated
in Figure 3. The LLM predicts CSE query state-
ments based on natural language input. The first
step involves the construction of the knowledge
base. It encompasses CSE query statements along
with their corresponding natural language inputs.
Additionally it, contains information about CSE
query fields. Building on the success of RAG
in enhancing LL.Ms for domain-specific and com-
plex NLP tasks (Lewis et al., 2020), we utilize the
knowledge base as an external resource. Relevant
CSE query statements and question pairs are re-
trieved and integrated into the prompts. Related
fields are also retrieved to refine the prompt. Modi-
fied from COSTAR (Teo, 2024) prompt template,
we redesign a prompt template that introduces a
supplementary data section (for further details, see
Appendix A).

3.2 Few-shot Retrieval

Few-shot retrieval aims to identify relevant few-
shot for the natural language input. For an input
query Q, the retrieval process proceeds as follows:
1. All natural language questions are encoded by
the encoding model and their representations are
stored in the vector database. 2. The input query Q
is also encoded by the encoding model. 3. During
the retrieval process, the cosine similarity algo-
rithm is applied.

3.3 Field Retrieval

The objective of field retrieval is to identify the
fields associated with the natural language input.
In the CSEQL syntax manual, query fields typically
comprise their values and corresponding explana-
tions. The value of the fields are individual and iso-
lated, containing weak semantic information. Each
query field has a corresponding explanation that
contains some semantic information. To effectively
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Figure 3: An overview of our proposed method. It consists of the knowledge base construction stage, the retrieval
stage, and the generation stage. The knowledge base construction stage involves the creation of three types of
knowledge: natural language (NL) questions, CSE queries, and query syntax. The retrieval stage involves few-shot
retrieval and field retrieval. The generation stage integrates the results from retrieval stage to prompt the LLM to

generate CSEQL.

retrieve fields related to the input, we propose a
method that combines keyword retrieval with se-
mantic retrieval. If a field appears in the input, it is
considered relevant to the query. When the number
of fields through keyword retrieval number does
not meet the set threshold, semantic retrieval sup-
plements keyword retrieval. The number of fields
to be retrieved during field retrieval is set to K.
When keyword retrieval returns N fields (N < K),
semantic retrieval calculates the semantic similarity
between the input and field explanation, selecting
the top M=K-N fields as the result.

3.4 Dataset

This dataset is not only part of the knowledge base
construction, but also serves as test data to assess
the effectiveness of our method. The collected
CSE query statements are real-world data. A por-
tion of the CSE query data is gathered from the
official website. The remaining portion is col-
lected from "awesome-search-quries" repository
by Project-Discovery (Pro). Additionally, we col-
lect syntax and field information from the official
websites of Shodan, ZoomEye, Censys, and FOFA.
After gathering the data, We clean and reorganize
it.

Annotation. We employ a powerful LLM as anno-
tator. The annotation model we use is GPT-4o. Its

CSE Field Counts NL-CSEQL Pairs
Shodan 81 1792
ZoomEye 23 100
Censys 2405 175
FOFA 65 4068

Table 2: Detailed information regarding the dataset. It
includes an overview of the field counts and the number
of NL-CSEQL pairs.

task is to generate natural language descriptions for
CSE query statements. We provide the LLM with
field descriptions for each query, ensuring that its
output is faithful to the query’s purpose. To ensure
high-quality annotation, the data annotated by the
model are verified by experts.

Dataset Statistics. We analyze the number of fields
and queries for four CSEs. The detailed informa-
tion is shown in Table 2. We analyze FOFA data in
detail including the number of fields, the average
number of logical operators of per query statement,
the average number of fields per query statement,
the average length of natural language questions,
and the average length of query statements. The
statistical data are presented in Table 3. The data
analysis shows that frequently used query fields
follow a power-law distribution, with the top ten
most frequently used fields accounting for 84.15%
of all query statements.



Quantity Value
# of question number 4068

# of field number 65
average logical operator/query  1.39
average field/query 1.22
question length/query 89.17
query length(char)/query 32.47

Table 3: Summary statistics of the FOFA dataset. For
the sample statistics, average values are reported.

4 Experiment

To evaluate our method, we have summarized the
following three research questions:

* RQ1: How does our method perform compare
to existing work?

* RQ2: How does our method perform across
different CSEs?

* RQ3: How do the components of our method
impact performance?

4.1 Experimental Setup

Baselines. We compare our method with ex-
isting tools developed by CSEs. CensysGPT
Beta (Censys) is a tool developed by Censys
to simplify query construction. Another tool is
ZoomeyeGPT (Knownsec) introduced by Zoom-
Eye. Due to the lack of tools and methods for
generating query statements for FOFA and Shodan,
the method of using simple prompt is selected as
the baseline.

Large Language Models. We employ several lead-
ing LLMs in the experiment. These include GPT-
3.5 Turbo (Brown et al., 2020b) and GPT-40 mini
(GPT) of OpenAl, Gemini 1.5 Pro (Team et al.,
2024) of Google, Claude 3.5 Sonnet (Anthropic,
2024) of Anthropic and Kimi (AI., 2023) of Moon-
shot.

Implementation of RAG. For few-shot retrieval,
we employ semantic retrieval as the primary
method. The encoding model, bge-large-en-v1.5
(Xiao et al., 2024), sourced from Hugging Face, has
been fine-tuned to enhance retrieval performance
for large-scale generation tasks. We use FAISS
(Douze et al., 2024) as the vector database, with
the number of retrieved few-shot is set to five. In
field retrieval, we adopt a hybrid approach that com-
bines keyword-based and dense retrieval methods.
The implementation of dense retrieval is identical

to that of few-shot retrieval. The number of fields
is set to four.

Evaluation Metrics. For evaluation, we follow
the prior study (Zhong et al., 2020; Deng et al.,
2022; Staniek et al., 2024) to use Exact Match
(EM) score. Specifically, the EM metric measures
whether the generated CSE query statement exactly
matches the ground truth. It is note that EM evalu-
ates the performance of our method through strict
comparison. Furthermore, to assess whether field
errors in the generated CSE query statements have
been resolved, a domain-specific evaluation metric,
Field Match (FM), is introduced. This metric eval-
uates the accuracy of field generation in the CSE
query statement by measuring the match between
the fields of the generated CSE query statement
and ground truth. The formula for calculating FM
score is as follows:

B »N_ score(F),, F},)

FM n 2
N ) (2)
. 1, ifE,=F
score(Fy,, Fy) =< 1 J " 3)
0, ifE, #F,,

where N denotes the total number of samples.
F={fu,ne(@,m)}and F = {f,,n € (1,m)}
represent the set of fields from the generated CSE
query statement and the ground truth.

4.2 Experimental Results
4.2.1 Main Results

We compare our method with existing tools, includ-
ing CensysGPT Beta (Censys) and ZoomeyeGPT
(Knownsec) in terms of the EM and FM score. Ta-
ble 4 and 5 show the experimental results.

Since the model of CensysGPT Beta cannot be
changed and its method is closed-source, we only
obtain a set of experimental data. As displayed in
Table 4, our method achieves a 9.1% higher EM
score and a 24.4% higher FM score on average com-
pared to CensysGPT Beta. These results demon-
strate that our method is effective in the test case.
Compared to ZoomeyeGPT, our method exhibits
an improvement of 26.2% EM score and 31.4% FM
score averagely on the dataset of ZoomEye. These
results underscore the superior performance of our
method in improving the quality of generated query
statements.

An error analysis on the generated queries of
ZoomEye is conducted and detailed cases are



CeneysGPT Beta ours
model
EM FM EM FM

Kimi \ \ 0.491 0.777
GPT-40 mini \ \ 0.543 0.743
GPT-3.5 Turbo 0.434 0.526 0.469 0.749
Claude 3.5 Sonnet \ \ 0.606 0.851
Gemini 1.5 Pro \ \ 0.514 0.731

Table 4: Comparison of the EM and FM score between
our method and CensysGPT Beta.

model ZoomeyeGPT ours
EM FM EM FM
Kimi 034 055 059 0.82
GPT-40 mini 035 053 0.61 0.83
GPT-3.5 Turbo  0.32 049 0.66 0.89
Claude 3.5 Sonnet 0.36  0.52 0.61 0.86
Gemini 1.5Pro 044 0.60 0.65 0.86

Table 5: EM and FM score of our method and
ZoomeyeGPT across different LLMs.

shown in Table 6. Our method outperforms
ZoomeyeGPT, possibly due to the redundant field
information provided by ZoomeyeGPT. This sug-
gests that excessive fields should be excluded from
the prompt. Moreover, the absence of some official
fields in the prompt, such as "app," contributes to
the poor performance of ZoomeyeGPT.
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Figure 4: Comparison between different field retrieval
methods and retrieval numbers based on the FOFA
dataset.

ticularly on Censys and Shodan. This performance
indicates the following: (1) Our method not only
reduces hallucination of LLMs but also can ac-
commodate various CSE syntaxes. (2) In addition,
different models achieve a low EM score on Cen-
sys under simple prompt with an average value
of 0.024. Nested fields are the primary cause of
LLMs’ poor performance. This result highlights
a key principle of field setting: prioritize simple
fields over nested ones whenever possible. (3) Dif-
ferent models exhibit varying abilities in generating
query statements across different CSEs. Under the
same method, no single LLM is universally optimal
for the Text-to-CSEQL task, necessitating the use

Case 1 of different models for different CSEs.
Input Find all assets associated with "4t K24
Shodan ZoomEye Censys FOFA
Ground truth / o model : - - -
org:"JbHT K" simple ours ~ simple ours  simple ours  simple ours
Our method =
Kimi 0.104 0.821 0320 0.590 0.023 0491 0424 0.672
ZoomeyeGPT org:"JEHUK =" organization:"Jb 5T " GPT-4omini 0101 0.845 0.310 0.610 0.006 0.543 0.429 0.687
Case 2 GPT-35Turbo 0276 0.825 0.390 0.660 0.011 0.469 0.372 0.600
o Search for all assets that atilize the T JZGRP-US Claude 3.5 Sonnet  0.322 0.842 0510 0.610 0.057 0.606 0.548 0.688
pu application. Gemini 1.5Pro  0.188 0.706 0.460 0.650 0.023 0.514 0.545 0.690
Ground truth / app:" i KGRP-US" ) )
Our method Table 7: Experimental results of EM score on different
tithJ"J’]/)CGRP-US" SSICHJH))L‘GRP-Ug" hostnamc:”“] CSEg Sim le denotes Slm le TOMm| tmethod
ZoomeyeGPT | o 2 p.US" org:"}1] L GRP-US" isp:"Ji| JZGRP-US" P pie promp

Table 6: Case study on ZoomEye data. The red content
highlights the error compared to the green ground truth.

4.2.2 Analysis

Performance on Different CSEs. To evaluate the
performance of our method on different CSEs, we
compared it with a simple prompt method on four
CESs. Table 7 shows that our method significantly
outperforms simple prompt on different CSEs, par-

Ablation Study. To evaluate the impact of each
component in our proposed method, we conduct
ablation studies on the FOFA portion of the dataset.
Table 8 shows the results of the ablation study. We
remove field retrieval preventing LLMs from ac-
cessing field information. As shown in Table 8, the
average EM and FM score drop 0.036 and 0.005
without field retrieval respectively. These results
suggest that incorporating field retrieval enhances
our method’s effectiveness. Furthermore, removing



Method Kimi GPT-40o mini  GPT-3.5 Turbo Claude 3.5 Sonnet Gemini 1.5 Pro

etho

EM FM EM M EM M EM FM EM M
full method 0.672 094 0.687 0957 0.767 0.939 0.688 0.959 0.69 0.959
Our method r.m. field retrieval 0.672 0938 0.681 0948 0.605 0.931 0.684 0.956 0.683 0.954
r.m. few-shot retrieval 0.620 0.879 0.624 0.874 0.481 0.846 0.648 0.921 0.640 00913
v.s. all_fields 0.407 0.856 0.369 0.887 0.465 0.870 0.511 0.902 0.514  0.902
Other methods

v.s. advanced 0412 0599 0411 0560 0.301 0472 0481 0.723 0.483 0.730

Table 8: Ablation experiment results on FOFA. EM and FM score are shown in the table under different method and
model conditions. The "all_fields" method provides all field information in the prompt. The "advanced" method
provides two related examples in the prompt. r.m. stands for "remove" and vs. stands for "versus".

. Kimi GPT-40 mini  GPT-3.5 Turbo Claude 3.5 Sonnet Gemini 1.5 Pro
few-shot setting
FM EM FM EM FM EM FM EM FM

few-shot@1 0.623 0.882 0.633 0.892 0.533 0.879 0.656 0.922 0.656 0.922
few-shot@?2 0.651 0.914 0.660 0.926 0.598 0.909 0.667 0.944 0.668 0.945
few-shot@3 0.665 0.930 0.668 0934 0.608 0.916 0.676 0.950 0.676  0.950
few-shot@4 0.668 0.935 0.674 0940 0.613 0.930 0.676 0.953 0.677 0.952
few-shot@5 0.672 0.938 0.681 0.948 0.605 0.931 0.684 0.956 0.683 0.954

Table 9: Experimental results of few-shot retrieval on FOFA. The table shows the EM and FM score under different
few-shot numbers and LLMs. The best performances of LLMs under each few-shot number is in bold. The
few-shot@1/2/3/4/5 indicates the use of the first 1,2,3,4, or 5 similar examples to enhance the generation capability

of LLM.

few-shot retrieval decreases the average EM and
FM scores by 0.098 and 0.064, respectively. These
findings highlight the necessity of the few-shot re-
trieval module.

Field Retrieval. As shown in Figure 4, our pro-
posed field retrieval method achieves the highest
recall rate among five methods. The comparison
results demonstrate the effectiveness of integrat-
ing keyword matching with dense retrieval. This
superior performance can be attributed to the com-
plementary strengths of both methods. Keyword
matching ensure high accuracy but lacks flexibil-
ity in handling diverse query expressions. In con-
trast, semantic similarity retrieval is more flex-
ible, accommodating a broader range of query
formulations, but it may not be as accurate as
keyword matching. Notably, BM25 (Robertson
and Zaragoza, 2009) retrieval exhibits poor perfor-
mance. This is because the description of field is
relatively short, and BM25 is prone to errors in
queries and documents that are relatively short. Re-
garding retrieval performance, we compared the
recall rates for different numbers of retrieved fields.
As shown in the Figure 4, the recall rate of dense
retrieval is lower than that of keyword-based re-

trieval when the number of retrieved fields is fewer
than two. This result suggests that keyword-based
retrieval is more effective when retrieving a small
number of fields.

Few-shot Retrieval. Few-shot retrieval leverages
the contextual learning ability of LLMs. Research
by (Brown et al., 2020a) has confirmed the exis-
tence of contextual learning capabilities in LLMs.
We evaluate the performance of our method under
various few-shot settings. As described in Table
9, it can be observed that as the number of few-
shot increases, both the EM and FM score of the
generated queries grow. This result suggests that
increasing the number of few-shot can enhance the
performance of our method. The increase in both
EM and FM score can be attributed to the inclusion
of both field and syntax information in the provided
few-shot. We can also observe that the growth rate
of the EM and FM score is decreasing, indicating
that as the number of few-shot examples increases,
the impact of few-shot learning diminishes.

5 Related Work

Natural Language Search for Cyberspace As-
sets. With the aim of improving the usability



of CSEs, previous work has explored the use of
LLMs as a translator to convert natural language
inputs into query statements. Censys has developed
CensysGPT Beta (Censys) using an API provided
by OpenAl. Users can utilize it to generate query
statements from natural language for Censys. Un-
fortunately, the method used by CensysGPT Beta
is closed-source and CensysGPT Beta is limited
to generating queries for the Censys. ZoomEye
addresses this by developing a plugin tool called
ZoomeyeGPT (Knownsec). It employs prompt en-
gineering to enable LLMs to convert natural lan-
guage into ZoomEye query statements.
Text-to-SQL. The Text-to-SQL task is closely re-
lated to the Text-to-CSEQL task we propose. It
maps natural language questions on the given re-
lational database into SQL queries. The develop-
ment of Text-to-SQL has evolved from early rule-
based models to advanced LLMs. Research in
Text-to-SQL is categorized into three types: 1) rule-
based methods; 2) deep learning-based methods;
3) LLM-based methods. Early systems (Zelle and
Mooney, 1996; Saha et al., 2016) used handcrafted
grammar rules and heuristic methods to convert
natural language queries into SQL statements but
faced limitations when handling complex queries
and varied database schemas. With the develop-
ment of deep learning, neural network-based mod-
els emerged, capable of learning patterns directly
from the training data instead of relying solely on
predefined rules. The Text-to-SQL task is com-
monly treated as a sequence-to-sequence problem
(Guo et al., 2019; Choi et al., 2021; Wang et al.,
2020; Cao et al., 2021). Some methods explic-
itly encode the database schema, while (Scholak
et al., 2021) shows that fine-tuning a pretrained TS
model (Raffel et al., 2020) could significantly im-
prove the performance of Text-to-SQL. In recent
years, LLMs have emerged as a new paradigm for
the Text-to-SQL task. Different from deep learn-
ing, LLM-based Text-to-SQL methods primarily
focus on prompt LLMs to generate correct SQL
queries. This approach, known as prompt engineer-
ing, includes question representations (Chang and
Fosler-Lussier, 2023; Pourreza and Rafiei, 2023),
example selection (Nan et al., 2023), and example
organization (Gao et al., 2024).

Text-to-DSL. A domain-specific language (DSL)
is a programming language designed for a particu-
lar application domain. Due to the excellent natural
language processing capabilities of LLMs, Text-to-
DSL has attracted growing interest. (Wang et al.,

2023) proposes a method called "Grammar Prompt-
ing" to leverage the performance of LLMs in DSL
generation tasks, particularly in generating highly
structured language strings from a small number
of examples. In the domain of geographic infor-
mation, Text-to-OverpassQL (Staniek et al., 2024)
develops a natural language interface that enabled
users to query complex geographic data from the
OpenStreetMap database in natural language. In
the healthcare field, (Ziletti and DAmbrosi, 2024)
introduces a method that integrates Text-to-SQL
generation with RAG to answer epidemiological
questions. In the field of linguistic research, the
first Text-to-CQL task is introduced by (Lu et al.,
2024) and aims to automatically convert natural
language into corpus query language (CQL).

6 Conclusion

In this work, we propose a new task called Text-
to-CSEQL. Text-to-CSEQL aims to generate query
statements for CSEs from natural language. We
then propose a retrieval-augmented CSEQL genera-
tion method based on LLM. Our method leverages
few-shot retrieval and field retrieval to alleviate hal-
lucinations of LLMs. Due to the lack of publicly
available datasets for evaluating our method, we
have construct a new dataset. Furthermore, we pro-
pose a novel domain-specific evaluation metric to
comprehensively assess the proposed approach. Ex-
tensive experiments demonstrate that our method
improves the overall EM and FM score compared
to existing tools. Additionally, our method can
adapt to the syntax variations of different plat-
forms.. Looking ahead, we hope that our work
can lay the groundwork for further research in Text-
to-CSEQL and promote the usability of CSEs.

Limitations

We have conducted our experiments with some
leading LLMs such as GPT-3.5 Turbo, Claude 3.5
Sonnet and others. Given our budget limitations,
we will defer exploring our method alongside other
advanced LLMs to future research efforts. More-
over, our work on understanding the intent of nat-
ural language inputs and optimizing the output
CSEQL is still in the early stage. Further in-depth
research can be conducted in these two areas to
enhance the performance of LLMs in generating
CSEQL.
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### Context

You want to convert a natural language task into a FOFA query. A natural language task might be something like:
"Search for all assets that have an IP address of 1.1.1.1."

FOFA queries are used to search cyberspace assets in the FOFA platform.

For instance, the above task would convert into the FOFA query:

ip="1.1.1.1"

{few_shot}

### Objective

The GPT should convert natural language tasks into FOFA queries,

following FOFA’s syntax and logic operator rules.

The task includes:

1. Strictly generating FOFA queries without additional explanations or context.

2. Adhering to FOFA’s syntax, logic operators, and fields, as outlined in the provided tables.

3. Handling varied natural language inputs, such as:

- "Search for all assets that have an IP address of 1.1.1.1.",

- "Find domains using port 80.",

- "List assets associated with example.com.".

#i## Style

The GPT should adopt a technical and precise style, focusing strictly on generating accurate FOFA queries.
It should behave like a FOFA expert, with expertise in cyberspace asset search

and a thorough understanding of FOFA’s syntax, operators, and field rules.

### Tone

The GPT should use a straightforward and neutral tone, focusing on delivering the FOFA query output
without unnecessary elaboration or additional context.

### Audience

The GPT’s outputs should be accessible to everyone, including technical users familiar with FOFA syntax
and non-technical users who may need clear and precise FOFA queries without additional jargon.

### Supplementary Data

Below are FOFA query fields and their descriptions to help the GPT generate accurate queries:

{fields}

### Response

The GPT should return its output in JSON format with two keys:

- text: A natural language summary of the query, echoing the input task in a simplified form.

- query: The corresponding FOFA query string.

Example:

&

"text": "Search for all assets with the IP address 1.1.1.1.",

"query": "ip=\"1.1.1.1\""

1

Table 10: The content of modified COSTAR prompt for CSEQL generation
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