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Abstract

Cyberspace search engines (CSEs) are systems001
designed to search and index information about002
network assets in cyberspace. However, using003
CSEs to grasp the status of cyberspace assets004
still encounters challenges in usability, due to005
the specificity of terminology and the profes-006
sionalism of cyberspace search engine query007
language (CSEQL). To improve the usability of008
CSEs, it is essential to support natural language009
querying. To this end, we propose a task called010
Text-to-CSEQL, which aims to translate natural011
language into CSEQL. We propose a method012
based on the large language model (LLM) to013
enable natural language interaction with CSEs.014
Specifically, we adopt retrieval-augmented gen-015
eration (RAG) techniques with LLM by con-016
structing a knowledge base. Upon receiving017
a natural language input, it extracts relevant018
fields and examples from the knowledge base,019
crafting a well-formed prompt for LLM. To020
comprehensively assess the method, we con-021
struct a dataset related to Text-to-CSEQL and022
design a new domain-specific evaluation met-023
ric, called Field Match (FM). Extensive experi-024
ments demonstrate that our framework is highly025
effective, outperforming existing methods. In026
addition, our method is adaptable and can ac-027
commodate various CSEs.028

1 Introduction029

A cyberspace search engine (CSE) (Li et al., 2020)030

is a specialized information retrieval system de-031

signed to search, index, and organize internet-032

connected resources. CSEs are becoming increas-033

ingly vital in areas like cyberspace asset discov-034

ery and management, cybersecurity risk assess-035

ment and monitoring, etc. Currently, there are036

numerous CSEs, each with its own version of cy-037

berspace search engine query language (CSEQL).038

This implies that accurate and efficient construc-039

tion of query statements requires a high level of040

specialized knowledge, posing challenges for users.041

Natural Language Input:

How do I find honeypot network assets with port 3306 open?

FOFA Query:

port=3306 && is_honeypot=True

Background Knowledge:

Field Example Descr iption = != *=

por t por t=6379
Query by open por t 

number .

is_honeypot is_honeypot=true
Filter  assets that ar e 

honeypots.

✓

✓ - -

✓ ✓

Figure 1: An example of natural language input is con-
verted into the corresponding CSE query statement for
FOFA based on background knowledge. In the example
FOFA query, blue represents query fields, red denotes
query values, and green is logical symbol.

Therefore, it is essential to enable natural language 042

interaction with CSEs. 043

Text-to-SQL (Deng et al., 2022; Gao et al., 2024; 044

Mao et al., 2024; Xie et al., 2024; Wretblad et al., 045

2024) aims to translate natural language into SQL 046

statements, enabling users to query vast amounts of 047

data stored in relational databases without needing 048

to write complex SQL code. Inspired by Text-to- 049

SQL, transforming natural language into CSEQL 050

is a practical approach to improve the convenience 051

of the interactions with CSEs. An example of trans- 052

formation is presented in Figure 1. Despite both 053

being query languages, SQL and CSEQL serve dis- 054

tinct purposes and exhibit significant differences. 055

In essence, SQL is primarily designed for querying 056

and managing data in relational databases, whereas 057

CSEQL is for querying cyberspace assets in CSEs. 058

These differences are reflected in their syntax: SQL 059

has a unified, standardized syntax, while CSEQL 060

syntax is platform-specific, with each platform em- 061

ploying customized syntactic forms. As a result, 062

directly applying Text-to-SQL methods to Text-to- 063

CSEQL is challenging due to the inherent differ- 064

ences between the two languages. 065
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Field Error

Syntax Error

Semantic Error
(port=3306 || is_honeypot=true) && os=centos

port=3306 || is_honeypot=true && os=centos

T

R

(port=3306 || is_honeypot=true) && os=centos

port=3306 || is_honeypot=true && os=centos

T

R

port:6379

port=6379

T

R

port:6379

port=6379

T

R

location=New York

region=New York

T

R

location=New York

region=New York

T

R

Figure 2: An overview of the errors when LLMs gener-
ate FOFA query statements. In the figure, "×" indicates
error cases, while "✓" denotes correct answers. The red
represents the incorrect parts generated by LLM and
the green represents the correct parts of the generated
query.

To effectively implement Text-to-CSEQL, the066

method should be able to accurately capture the067

relationship between each natural language query068

and its corresponding CSEQL statement. Large069

Language Models (LLMs) offer substantial bene-070

fits in processing and comprehending natural lan-071

guage. Intuitively, they could be applied to this072

task. Nevertheless, due to the hallucinations of073

LLMs, directly using LLMs for this task results in074

numerous errors. Figure 2 highlights three preva-075

lent errors encountered when utilizing LLMs to076

generate FOFA query statements: (1) field error. In077

FOFA query language, specific terms like “region"078

are required for searching assets in particular ar-079

eas, rather than using synonyms such as “location."080

(2) syntax error. The generated query statements081

must adhere strictly to syntactic requirements to082

ensure their validity. (3) semantic error. Minor083

linguistic discrepancies can result in substantial084

semantic misinterpretations, leading to incorrect085

query outcomes.086

To address these issues, we design a method087

that incorporates knowledge base construction,088

retrieval-augmented generation, and prompt de-089

sign. By harnessing the contextual learning abil-090

ity of LLMs, our method involves retrieving per-091

tinent query fields via field retrieval and leverag-092

ing related few-shot examples through few-shot093

retrieval from the knowledge base. Furthermore,094

we craft a meticulously designed prompt, adapted095

from COSTAR (Teo, 2024), to ensure precise gen-096

eration of CSE query statements using LLMs. This097

comprehensive integration of retrieved information098

and prompt engineering enhances the effectiveness099

and accuracy of our method.100

Since there is no existing dataset for evalua-101

tion, we have created a new dataset. The dataset102

contains natural language inputs and correspond- 103

ing CSE query statements of different CSEs. All 104

query statements are collected from real world, 105

written by users to meet legitimate information 106

needs. We leverage LLMs to generate natural 107

language descriptions of query statements, which 108

are subsequently verified by experts. Furthermore, 109

we introduce a domain-specific metric called field 110

match (FM) to evaluate our method comprehen- 111

sively. This metric assesses the accuracy of the 112

fields in the generated query statements. 113

Our main contributions are summarized as fol- 114

lows: 115

• We propose the Text-to-CSEQL task with the 116

motivation of enhancing usability of CSEs 117

with natural language interactions. 118

• We introduce a method to generate CSEQL 119

based on LLMs. This method leverages RAG 120

to alleviate hallucination through few-shot re- 121

trieval and field retrieval. 122

• We construct a dataset for evaluation. The 123

dataset contains natural language inputs and 124

real-world CSE query statements across mul- 125

tiple platforms, including Shodan, ZoomEye, 126

Censys, and FOFA. Moreover, a domain- 127

specific metric called FM is introduced to eval- 128

uate our method comprehensively. 129

• Extensive experiments on the dataset show 130

that our method outperforms existing methods 131

and can adapt to the syntax variations of dif- 132

ferent platforms. Ablation studies validate the 133

contribution of each module in our method. 134

2 Background 135

2.1 Cyberspace Search Engine 136

Cyberspace search engines (CSEs) have emerged 137

as powerful tools for exploring, analyzing, and un- 138

derstanding the vast array of devices, services, and 139

data residing within cyberspace. CSEs differ fun- 140

damentally from traditional web search engines 141

such as Google, Baidu, or Bing. While traditional 142

search engines primarily index and retrieve web 143

pages, CSEs are designed to actively probe and de- 144

tect entities and services within cyberspace. They 145

utilize a variety of protocols and techniques to dis- 146

cover open ports, services, and devices, and they 147

provide detailed information about these entities, 148

including their location, configuration, and security 149
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Difference
Cyberspace Search Engines

Shodan ZoomEye Censys FOFA
Matching symbol : : : =

Boolean logic symbol space , - + space - and or not && || !=
Field names,such as port port port services.port port

Number of fields 81 23 2406 77

Table 1: Comparison of CSEQL syntax differences
across four CSEs.

posture. Several notable CSEs are designed in re-150

cent years, including Shodan (Sho), Censys (Cen),151

ZoomEye (Zoo) and FOFA (FOF).152

2.2 Cyberspace Search Engine Query153

Language and Syntax154

Cyberspace search engine query language155

(CSEQL) is a language used to retrieve cyberspace156

assets information that meet specific conditions157

on CSEs. Each CSE usually has its customized158

implementation of CSEQL, featuring distinct159

syntax rules. Table 1 shows the comparison of the160

difference in CSEQL syntax across four CSEs.161

When using CSEs, users have to construct the162

query statements that statisfy the corresponding163

syntax rules. A query statement typically consists164

of query conditions and logical connectors. Query165

conditions are composed of three parts: query166

field, matching symbol, and query value. Logical167

connectors include three types of logic operators:168

AND, OR and NOT. Query fields are divided into169

simple and nested fields based on their level of170

granularity. Matching symbols are categorized171

by precision into exact match, match, wildcard172

match, and mismatch. The query value depends173

on the query field, and the number of available174

choices can be classified as binary values, finite175

numbers greater than two, or uncertain content.176

For instance, a query statement of FOFA is as177

follows: is_honeypot=true && port=3306, where178

"is_honeypot" and "port" are query fields, "="179

is the matching symbol, and "true" and "3306"180

are query values. The entire query statement is181

designed to search for honeypot assets with port182

3306 open.183

3 Methods184

To describe the task accurately, we formulate it as185

a conditional probability problem. For a query task186

T described in natural language and its correspond-187

ing cyberspace search engine S, the objective of188

LLM is to predict the CSE query statement from T .189

The probability that LLM predict CSE query state-190

ment(q) can be defined as a conditional probability191

distribution. I(S) represents the relevant syntax 192

of the search engine S, P represents the prompt 193

template, and |q| denotes the length of the predicted 194

CSE query. qi and q<i represent the i-th token and 195

the prefix of qi, respectively. The parameters of 196

LLM M are denoted by Φ. The conversion from 197

natural language to CSE query statements using 198

the LLMs is represented as follows: 199

PΦ

(
q|P

(
T , I(S)

))
=

∏|q|
i=1 PΦ

(
qi|P

(
T , I(S)

)
, q<i

)
. (1) 200

3.1 Overview 201

The overview of our proposed method is illustrated 202

in Figure 3. The LLM predicts CSE query state- 203

ments based on natural language input. The first 204

step involves the construction of the knowledge 205

base. It encompasses CSE query statements along 206

with their corresponding natural language inputs. 207

Additionally it, contains information about CSE 208

query fields. Building on the success of RAG 209

in enhancing LLMs for domain-specific and com- 210

plex NLP tasks (Lewis et al., 2020), we utilize the 211

knowledge base as an external resource. Relevant 212

CSE query statements and question pairs are re- 213

trieved and integrated into the prompts. Related 214

fields are also retrieved to refine the prompt. Modi- 215

fied from COSTAR (Teo, 2024) prompt template, 216

we redesign a prompt template that introduces a 217

supplementary data section (for further details, see 218

Appendix A). 219

3.2 Few-shot Retrieval 220

Few-shot retrieval aims to identify relevant few- 221

shot for the natural language input. For an input 222

query Q, the retrieval process proceeds as follows: 223

1. All natural language questions are encoded by 224

the encoding model and their representations are 225

stored in the vector database. 2. The input query Q 226

is also encoded by the encoding model. 3. During 227

the retrieval process, the cosine similarity algo- 228

rithm is applied. 229

3.3 Field Retrieval 230

The objective of field retrieval is to identify the 231

fields associated with the natural language input. 232

In the CSEQL syntax manual, query fields typically 233

comprise their values and corresponding explana- 234

tions. The value of the fields are individual and iso- 235

lated, containing weak semantic information. Each 236

query field has a corresponding explanation that 237

contains some semantic information. To effectively 238
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Knowledge Base

NL Questions

CSE Queries

Find honeypot systems with a 

title containing 'beijing'

is_honeypot=true && 

title="beijing"

Query Syntax

Field Retrieval

Index

Embedding

Hybrid 

Retrieval

CSEQL

Few-shot Retrieval CSEQL Generation

Syntax Example Descr iption = != *=

app

app="Micro

soft-

Exchange"

Query by 

fingerprint 

organized 

by FOFA.

- -

fid

fid="sSXXG

NUO2FefBT

cCLIT/2Q==

"

Query by 

FeatureID 

aggregated 

by FOFA.

-

✓

✓ ✓

……

……

……
{Question-Related Fields }

Question

IndexEmbedding

Question

Description

Field
Field Match

Semantic 

Retrieval

{Question-Related Few-shot }

{Related 

Few-shot}

{ Related 

Fields }

LLM

Figure 3: An overview of our proposed method. It consists of the knowledge base construction stage, the retrieval
stage, and the generation stage. The knowledge base construction stage involves the creation of three types of
knowledge: natural language (NL) questions, CSE queries, and query syntax. The retrieval stage involves few-shot
retrieval and field retrieval. The generation stage integrates the results from retrieval stage to prompt the LLM to
generate CSEQL.

retrieve fields related to the input, we propose a239

method that combines keyword retrieval with se-240

mantic retrieval. If a field appears in the input, it is241

considered relevant to the query. When the number242

of fields through keyword retrieval number does243

not meet the set threshold, semantic retrieval sup-244

plements keyword retrieval. The number of fields245

to be retrieved during field retrieval is set to K.246

When keyword retrieval returns N fields (N < K),247

semantic retrieval calculates the semantic similarity248

between the input and field explanation, selecting249

the top M=K-N fields as the result.250

3.4 Dataset251

This dataset is not only part of the knowledge base252

construction, but also serves as test data to assess253

the effectiveness of our method. The collected254

CSE query statements are real-world data. A por-255

tion of the CSE query data is gathered from the256

official website. The remaining portion is col-257

lected from "awesome-search-quries" repository258

by Project-Discovery (Pro). Additionally, we col-259

lect syntax and field information from the official260

websites of Shodan, ZoomEye, Censys, and FOFA.261

After gathering the data, We clean and reorganize262

it.263

Annotation. We employ a powerful LLM as anno-264

tator. The annotation model we use is GPT-4o. Its265

CSE Field Counts NL-CSEQL Pairs
Shodan 81 1792

ZoomEye 23 100
Censys 2405 175
FOFA 65 4068

Table 2: Detailed information regarding the dataset. It
includes an overview of the field counts and the number
of NL-CSEQL pairs.

task is to generate natural language descriptions for 266

CSE query statements. We provide the LLM with 267

field descriptions for each query, ensuring that its 268

output is faithful to the query’s purpose. To ensure 269

high-quality annotation, the data annotated by the 270

model are verified by experts. 271

Dataset Statistics. We analyze the number of fields 272

and queries for four CSEs. The detailed informa- 273

tion is shown in Table 2. We analyze FOFA data in 274

detail including the number of fields, the average 275

number of logical operators of per query statement, 276

the average number of fields per query statement, 277

the average length of natural language questions, 278

and the average length of query statements. The 279

statistical data are presented in Table 3. The data 280

analysis shows that frequently used query fields 281

follow a power-law distribution, with the top ten 282

most frequently used fields accounting for 84.15% 283

of all query statements. 284
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Quantity Value
# of question number 4068

# of field number 65
average logical operator/query 1.39

average field/query 1.22
question length/query 89.17

query length(char)/query 32.47

Table 3: Summary statistics of the FOFA dataset. For
the sample statistics, average values are reported.

4 Experiment285

To evaluate our method, we have summarized the286

following three research questions:287

• RQ1: How does our method perform compare288

to existing work?289

• RQ2: How does our method perform across290

different CSEs?291

• RQ3: How do the components of our method292

impact performance?293

4.1 Experimental Setup294

Baselines. We compare our method with ex-295

isting tools developed by CSEs. CensysGPT296

Beta (Censys) is a tool developed by Censys297

to simplify query construction. Another tool is298

ZoomeyeGPT (Knownsec) introduced by Zoom-299

Eye. Due to the lack of tools and methods for300

generating query statements for FOFA and Shodan,301

the method of using simple prompt is selected as302

the baseline.303

Large Language Models. We employ several lead-304

ing LLMs in the experiment. These include GPT-305

3.5 Turbo (Brown et al., 2020b) and GPT-4o mini306

(GPT) of OpenAI, Gemini 1.5 Pro (Team et al.,307

2024) of Google, Claude 3.5 Sonnet (Anthropic,308

2024) of Anthropic and Kimi (AI., 2023) of Moon-309

shot.310

Implementation of RAG. For few-shot retrieval,311

we employ semantic retrieval as the primary312

method. The encoding model, bge-large-en-v1.5313

(Xiao et al., 2024), sourced from Hugging Face, has314

been fine-tuned to enhance retrieval performance315

for large-scale generation tasks. We use FAISS316

(Douze et al., 2024) as the vector database, with317

the number of retrieved few-shot is set to five. In318

field retrieval, we adopt a hybrid approach that com-319

bines keyword-based and dense retrieval methods.320

The implementation of dense retrieval is identical321

to that of few-shot retrieval. The number of fields 322

is set to four. 323

Evaluation Metrics. For evaluation, we follow 324

the prior study (Zhong et al., 2020; Deng et al., 325

2022; Staniek et al., 2024) to use Exact Match 326

(EM) score. Specifically, the EM metric measures 327

whether the generated CSE query statement exactly 328

matches the ground truth. It is note that EM evalu- 329

ates the performance of our method through strict 330

comparison. Furthermore, to assess whether field 331

errors in the generated CSE query statements have 332

been resolved, a domain-specific evaluation metric, 333

Field Match (FM), is introduced. This metric eval- 334

uates the accuracy of field generation in the CSE 335

query statement by measuring the match between 336

the fields of the generated CSE query statement 337

and ground truth. The formula for calculating FM 338

score is as follows: 339

FM =
ΣN
n=1score(F̂n, Fn)

N
, (2) 340

score(F̂n, Fn) =

{
1, if F̂n = Fn

0, if F̂n ̸= Fn,
(3) 341

where N denotes the total number of samples. 342

F̂ = {f̂n, n ∈ (1,m)} and F = {fn, n ∈ (1,m)} 343

represent the set of fields from the generated CSE 344

query statement and the ground truth. 345

4.2 Experimental Results 346

4.2.1 Main Results 347

We compare our method with existing tools, includ- 348

ing CensysGPT Beta (Censys) and ZoomeyeGPT 349

(Knownsec) in terms of the EM and FM score. Ta- 350

ble 4 and 5 show the experimental results. 351

Since the model of CensysGPT Beta cannot be 352

changed and its method is closed-source, we only 353

obtain a set of experimental data. As displayed in 354

Table 4, our method achieves a 9.1% higher EM 355

score and a 24.4% higher FM score on average com- 356

pared to CensysGPT Beta. These results demon- 357

strate that our method is effective in the test case. 358

Compared to ZoomeyeGPT, our method exhibits 359

an improvement of 26.2% EM score and 31.4% FM 360

score averagely on the dataset of ZoomEye. These 361

results underscore the superior performance of our 362

method in improving the quality of generated query 363

statements. 364

An error analysis on the generated queries of 365

ZoomEye is conducted and detailed cases are 366
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model
CeneysGPT Beta ours

EM FM EM FM

Kimi \ \ 0.491 0.777

GPT-4o mini \ \ 0.543 0.743

GPT-3.5 Turbo 0.434 0.526 0.469 0.749

Claude 3.5 Sonnet \ \ 0.606 0.851

Gemini 1.5 Pro \ \ 0.514 0.731

Table 4: Comparison of the EM and FM score between
our method and CensysGPT Beta.

model
ZoomeyeGPT ours
EM FM EM FM

Kimi 0.34 0.55 0.59 0.82
GPT-4o mini 0.35 0.53 0.61 0.83

GPT-3.5 Turbo 0.32 0.49 0.66 0.89
Claude 3.5 Sonnet 0.36 0.52 0.61 0.86

Gemini 1.5 Pro 0.44 0.60 0.65 0.86

Table 5: EM and FM score of our method and
ZoomeyeGPT across different LLMs.

shown in Table 6. Our method outperforms367

ZoomeyeGPT, possibly due to the redundant field368

information provided by ZoomeyeGPT. This sug-369

gests that excessive fields should be excluded from370

the prompt. Moreover, the absence of some official371

fields in the prompt, such as "app," contributes to372

the poor performance of ZoomeyeGPT.373

Case 1

Input Find all assets associated with '北京大学'.

Ground truth / 
Our method org:"北京大学"

ZoomeyeGPT org:"北京大学" organization:"北京大学"

Case 2

Input Search for all assets that utilize the '用友GRP-U8' 
application.

Ground truth / 
Our method app:"用友GRP-U8"

ZoomeyeGPT title:"用友GRP-U8" ssl:"用友GRP-U8" hostname:"用
友GRP-U8"  org:"用友GRP-U8" isp:"用友GRP-U8"

Table 6: Case study on ZoomEye data. The red content
highlights the error compared to the green ground truth.

4.2.2 Analysis374

Performance on Different CSEs. To evaluate the375

performance of our method on different CSEs, we376

compared it with a simple prompt method on four377

CESs. Table 7 shows that our method significantly378

outperforms simple prompt on different CSEs, par-379

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
Number of fields retrieved

30

40

50

60

70

80

90

Re
ca

ll(
%

)

Keyword-based retrieval
BM25 retrieval
Dense retrieval
Key+BM25 retrieval
Key+dense retrieval (ours)

Figure 4: Comparison between different field retrieval
methods and retrieval numbers based on the FOFA
dataset.

ticularly on Censys and Shodan. This performance 380

indicates the following: (1) Our method not only 381

reduces hallucination of LLMs but also can ac- 382

commodate various CSE syntaxes. (2) In addition, 383

different models achieve a low EM score on Cen- 384

sys under simple prompt with an average value 385

of 0.024. Nested fields are the primary cause of 386

LLMs’ poor performance. This result highlights 387

a key principle of field setting: prioritize simple 388

fields over nested ones whenever possible. (3) Dif- 389

ferent models exhibit varying abilities in generating 390

query statements across different CSEs. Under the 391

same method, no single LLM is universally optimal 392

for the Text-to-CSEQL task, necessitating the use 393

of different models for different CSEs. 394

model
Shodan ZoomEye Censys FOFA

simple ours simple ours simple ours simple ours

Kimi 0.104 0.821 0.320 0.590 0.023 0.491 0.424 0.672

GPT-4o mini 0.101 0.845 0.310 0.610 0.006 0.543 0.429 0.687

GPT-3.5 Turbo 0.276 0.825 0.390 0.660 0.011 0.469 0.372 0.600

Claude 3.5 Sonnet 0.322 0.842 0.510 0.610 0.057 0.606 0.548 0.688

Gemini 1.5 Pro 0.188 0.706 0.460 0.650 0.023 0.514 0.545 0.690

Table 7: Experimental results of EM score on different
CSEs. Simple denotes simple prompt method.

Ablation Study. To evaluate the impact of each 395

component in our proposed method, we conduct 396

ablation studies on the FOFA portion of the dataset. 397

Table 8 shows the results of the ablation study. We 398

remove field retrieval preventing LLMs from ac- 399

cessing field information. As shown in Table 8, the 400

average EM and FM score drop 0.036 and 0.005 401

without field retrieval respectively. These results 402

suggest that incorporating field retrieval enhances 403

our method’s effectiveness. Furthermore, removing 404
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Method
Kimi GPT-4o mini GPT-3.5 Turbo Claude 3.5 Sonnet Gemini 1.5 Pro

EM FM EM FM EM FM EM FM EM FM

Our method

full method 0.672 0.94 0.687 0.957 0.767 0.939 0.688 0.959 0.69 0.959
r.m. field retrieval 0.672 0.938 0.681 0.948 0.605 0.931 0.684 0.956 0.683 0.954

r.m. few-shot retrieval 0.620 0.879 0.624 0.874 0.481 0.846 0.648 0.921 0.640 0.913

Other methods
v.s. all_fields 0.407 0.856 0.369 0.887 0.465 0.870 0.511 0.902 0.514 0.902

v.s. advanced 0.412 0.599 0.411 0.560 0.301 0.472 0.481 0.723 0.483 0.730

Table 8: Ablation experiment results on FOFA. EM and FM score are shown in the table under different method and
model conditions. The "all_fields" method provides all field information in the prompt. The "advanced" method
provides two related examples in the prompt. r.m. stands for "remove" and vs. stands for "versus".

few-shot setting
Kimi GPT-4o mini GPT-3.5 Turbo Claude 3.5 Sonnet Gemini 1.5 Pro

EM FM EM FM EM FM EM FM EM FM

few-shot@1 0.623 0.882 0.633 0.892 0.533 0.879 0.656 0.922 0.656 0.922
few-shot@2 0.651 0.914 0.660 0.926 0.598 0.909 0.667 0.944 0.668 0.945
few-shot@3 0.665 0.930 0.668 0.934 0.608 0.916 0.676 0.950 0.676 0.950
few-shot@4 0.668 0.935 0.674 0.940 0.613 0.930 0.676 0.953 0.677 0.952

few-shot@5 0.672 0.938 0.681 0.948 0.605 0.931 0.684 0.956 0.683 0.954

Table 9: Experimental results of few-shot retrieval on FOFA. The table shows the EM and FM score under different
few-shot numbers and LLMs. The best performances of LLMs under each few-shot number is in bold. The
few-shot@1/2/3/4/5 indicates the use of the first 1,2,3,4, or 5 similar examples to enhance the generation capability
of LLM.

few-shot retrieval decreases the average EM and405

FM scores by 0.098 and 0.064, respectively. These406

findings highlight the necessity of the few-shot re-407

trieval module.408

Field Retrieval. As shown in Figure 4, our pro-409

posed field retrieval method achieves the highest410

recall rate among five methods. The comparison411

results demonstrate the effectiveness of integrat-412

ing keyword matching with dense retrieval. This413

superior performance can be attributed to the com-414

plementary strengths of both methods. Keyword415

matching ensure high accuracy but lacks flexibil-416

ity in handling diverse query expressions. In con-417

trast, semantic similarity retrieval is more flex-418

ible, accommodating a broader range of query419

formulations, but it may not be as accurate as420

keyword matching. Notably, BM25 (Robertson421

and Zaragoza, 2009) retrieval exhibits poor perfor-422

mance. This is because the description of field is423

relatively short, and BM25 is prone to errors in424

queries and documents that are relatively short. Re-425

garding retrieval performance, we compared the426

recall rates for different numbers of retrieved fields.427

As shown in the Figure 4, the recall rate of dense428

retrieval is lower than that of keyword-based re-429

trieval when the number of retrieved fields is fewer 430

than two. This result suggests that keyword-based 431

retrieval is more effective when retrieving a small 432

number of fields. 433

Few-shot Retrieval. Few-shot retrieval leverages 434

the contextual learning ability of LLMs. Research 435

by (Brown et al., 2020a) has confirmed the exis- 436

tence of contextual learning capabilities in LLMs. 437

We evaluate the performance of our method under 438

various few-shot settings. As described in Table 439

9, it can be observed that as the number of few- 440

shot increases, both the EM and FM score of the 441

generated queries grow. This result suggests that 442

increasing the number of few-shot can enhance the 443

performance of our method. The increase in both 444

EM and FM score can be attributed to the inclusion 445

of both field and syntax information in the provided 446

few-shot. We can also observe that the growth rate 447

of the EM and FM score is decreasing, indicating 448

that as the number of few-shot examples increases, 449

the impact of few-shot learning diminishes. 450

5 Related Work 451

Natural Language Search for Cyberspace As- 452

sets. With the aim of improving the usability 453
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of CSEs, previous work has explored the use of454

LLMs as a translator to convert natural language455

inputs into query statements. Censys has developed456

CensysGPT Beta (Censys) using an API provided457

by OpenAI. Users can utilize it to generate query458

statements from natural language for Censys. Un-459

fortunately, the method used by CensysGPT Beta460

is closed-source and CensysGPT Beta is limited461

to generating queries for the Censys. ZoomEye462

addresses this by developing a plugin tool called463

ZoomeyeGPT (Knownsec). It employs prompt en-464

gineering to enable LLMs to convert natural lan-465

guage into ZoomEye query statements.466

Text-to-SQL. The Text-to-SQL task is closely re-467

lated to the Text-to-CSEQL task we propose. It468

maps natural language questions on the given re-469

lational database into SQL queries. The develop-470

ment of Text-to-SQL has evolved from early rule-471

based models to advanced LLMs. Research in472

Text-to-SQL is categorized into three types: 1) rule-473

based methods; 2) deep learning-based methods;474

3) LLM-based methods. Early systems (Zelle and475

Mooney, 1996; Saha et al., 2016) used handcrafted476

grammar rules and heuristic methods to convert477

natural language queries into SQL statements but478

faced limitations when handling complex queries479

and varied database schemas. With the develop-480

ment of deep learning, neural network-based mod-481

els emerged, capable of learning patterns directly482

from the training data instead of relying solely on483

predefined rules. The Text-to-SQL task is com-484

monly treated as a sequence-to-sequence problem485

(Guo et al., 2019; Choi et al., 2021; Wang et al.,486

2020; Cao et al., 2021). Some methods explic-487

itly encode the database schema, while (Scholak488

et al., 2021) shows that fine-tuning a pretrained T5489

model (Raffel et al., 2020) could significantly im-490

prove the performance of Text-to-SQL. In recent491

years, LLMs have emerged as a new paradigm for492

the Text-to-SQL task. Different from deep learn-493

ing, LLM-based Text-to-SQL methods primarily494

focus on prompt LLMs to generate correct SQL495

queries. This approach, known as prompt engineer-496

ing, includes question representations (Chang and497

Fosler-Lussier, 2023; Pourreza and Rafiei, 2023),498

example selection (Nan et al., 2023), and example499

organization (Gao et al., 2024).500

Text-to-DSL. A domain-specific language (DSL)501

is a programming language designed for a particu-502

lar application domain. Due to the excellent natural503

language processing capabilities of LLMs, Text-to-504

DSL has attracted growing interest. (Wang et al.,505

2023) proposes a method called "Grammar Prompt- 506

ing" to leverage the performance of LLMs in DSL 507

generation tasks, particularly in generating highly 508

structured language strings from a small number 509

of examples. In the domain of geographic infor- 510

mation, Text-to-OverpassQL (Staniek et al., 2024) 511

develops a natural language interface that enabled 512

users to query complex geographic data from the 513

OpenStreetMap database in natural language. In 514

the healthcare field, (Ziletti and DAmbrosi, 2024) 515

introduces a method that integrates Text-to-SQL 516

generation with RAG to answer epidemiological 517

questions. In the field of linguistic research, the 518

first Text-to-CQL task is introduced by (Lu et al., 519

2024) and aims to automatically convert natural 520

language into corpus query language (CQL). 521

6 Conclusion 522

In this work, we propose a new task called Text- 523

to-CSEQL. Text-to-CSEQL aims to generate query 524

statements for CSEs from natural language. We 525

then propose a retrieval-augmented CSEQL genera- 526

tion method based on LLM. Our method leverages 527

few-shot retrieval and field retrieval to alleviate hal- 528

lucinations of LLMs. Due to the lack of publicly 529

available datasets for evaluating our method, we 530

have construct a new dataset. Furthermore, we pro- 531

pose a novel domain-specific evaluation metric to 532

comprehensively assess the proposed approach. Ex- 533

tensive experiments demonstrate that our method 534

improves the overall EM and FM score compared 535

to existing tools. Additionally, our method can 536

adapt to the syntax variations of different plat- 537

forms.. Looking ahead, we hope that our work 538

can lay the groundwork for further research in Text- 539

to-CSEQL and promote the usability of CSEs. 540

Limitations 541

We have conducted our experiments with some 542

leading LLMs such as GPT-3.5 Turbo, Claude 3.5 543

Sonnet and others. Given our budget limitations, 544

we will defer exploring our method alongside other 545

advanced LLMs to future research efforts. More- 546

over, our work on understanding the intent of nat- 547

ural language inputs and optimizing the output 548

CSEQL is still in the early stage. Further in-depth 549

research can be conducted in these two areas to 550

enhance the performance of LLMs in generating 551

CSEQL. 552
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### Context
You want to convert a natural language task into a FOFA query. A natural language task might be something like:
"Search for all assets that have an IP address of 1.1.1.1."
FOFA queries are used to search cyberspace assets in the FOFA platform.
For instance, the above task would convert into the FOFA query:
ip="1.1.1.1"
{few_shot}
### Objective
The GPT should convert natural language tasks into FOFA queries,
following FOFA’s syntax and logic operator rules.
The task includes:
1. Strictly generating FOFA queries without additional explanations or context.
2. Adhering to FOFA’s syntax, logic operators, and fields, as outlined in the provided tables.
3. Handling varied natural language inputs, such as:
- "Search for all assets that have an IP address of 1.1.1.1.",
- "Find domains using port 80.",
- "List assets associated with example.com.".
### Style
The GPT should adopt a technical and precise style, focusing strictly on generating accurate FOFA queries.
It should behave like a FOFA expert, with expertise in cyberspace asset search
and a thorough understanding of FOFA’s syntax, operators, and field rules.
### Tone
The GPT should use a straightforward and neutral tone, focusing on delivering the FOFA query output
without unnecessary elaboration or additional context.
### Audience
The GPT’s outputs should be accessible to everyone, including technical users familiar with FOFA syntax
and non-technical users who may need clear and precise FOFA queries without additional jargon.
### Supplementary Data
Below are FOFA query fields and their descriptions to help the GPT generate accurate queries:
{fields}
### Response
The GPT should return its output in JSON format with two keys:
- text: A natural language summary of the query, echoing the input task in a simplified form.
- query: The corresponding FOFA query string.
Example:
{{
"text": "Search for all assets with the IP address 1.1.1.1.",
"query": "ip=\"1.1.1.1\""
}}

Table 10: The content of modified COSTAR prompt for CSEQL generation
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