
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

BOOSTING AGENTIC REASONING IN LLM JUDGES VIA
TOOL-INTEGRATED REINFORCEMENT LEARNING

Anonymous authors
Paper under double-blind review

ABSTRACT

Large Language Models (LLMs) are widely used as judges to evaluate response
quality, providing a scalable alternative to human evaluation. However, most LLM
judges operate solely on intrinsic text-based reasoning, limiting their ability to ver-
ify complex constraints or perform accurate computation. Motivated by the success
of tool-integrated reasoning (TIR) in numerous tasks, we propose TIR-Judge, an
end-to-end RL framework for training LLM judges that integrates a Python executor
for precise evaluation. TIR-Judge is built on three principles: (i) diverse training
across verifiable and non-verifiable domains, (ii) flexible judgment formats (point-
wise, pairwise, listwise), and (iii) iterative RL that enables bootstrapping directly
from a base model without distillation. On seven public benchmarks, TIR-Judge
surpasses strong reasoning-based judges by up to 6.4% (pointwise) and 7.7% (pair-
wise), and achieves listwise performance comparable to Claude-Opus-4 despite
having only 8B parameters. Remarkably, TIR-Judge-Zero—trained entirely
without distillation—matches the performance of the distilled variants, showing
that tool-augmented judges can self-improve through reinforcement learning alone.

1 INTRODUCTION

Large Language Model (LLM)-based judges are emerging as a critical component in the LLM
ecosystem, typically used with scoring and ranking model outputs. This evaluation capability is
essential at multiple stages of LLM development: during post-training, judges provide preference
signals for alignment (Chen et al., 2025a; Whitehouse et al., 2025); at inference time, judges verify
and select responses through best-of-N decoding (Huang et al., 2025a); and during evaluation, judges
deliver reliable assessments without manual human assessment (Li et al., 2024a). Thus, training
accurate LLM-based judges is of great importance for building powerful language models.

Write a poem that's at least 350
words about the beauty of eucalyptus
trees and their many uses.

Where desert heat whispers and
mountains rise tall,

The eucalyptus stands, a majestic call,
……

The response contains 392 words,
which meets the requirements.

```python
response = """Where desert 
heat whispers ……"""
print(len(response.split())
```
```output
321
```
The response only contains 321 words,
which does not meet the requirements.Text-based

LLM judge

Response

User Prompt

Tool-integrated
LLM judge

Figure 1: An example of LLM judge augmented with
code execution, enabling precise judgments.

Classical evaluation with reward models of-
ten outputs scores directly, which cannot
fully harvest the inherent reasoning capabil-
ity of LLM. Recent progress in generative
reward modeling (Zhang et al., 2025; Zhao
et al., 2025) and reinforcement learning equips
judges with thinking before producing final
predictions (Chen et al., 2025b; Whitehouse
et al., 2025; Guo et al., 2025b; Hong et al.,
2025). While these approaches enhance judge
quality by equipping LLMs with long chains of textual reasoning traces, they remain inherently
limited in scenarios that require precise computation or symbolic reasoning – capabilities that are
much more challenging for text-only models (Mirzadeh et al., 2025).

Recent advances in LLM tool-use provide a promising avenue to overcome the limitations of text-
only judges (Chen et al., 2023; Gao et al., 2023). By granting access to executable interfaces
for enumeration, verification, and computation, tools enable exact validation of reasoning steps
rather than relying on potentially error-prone text-based inference. For example, code execution
can automatically verify outputs on certain instructions (Zhou et al., 2023) (as shown in Figure 1)
or check intermediate calculations in math reasoning (Lu et al., 2025). Early attempts have also
explored equipping LLM judges with tool-use abilities (Peng et al., 2025; Findeis et al., 2025; Li et al.,

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

2024b; Agarwal et al., 2025), but these approaches reveal two major limitations. (i) Inference-time
restriction: most methods integrate tool-use only at the inference stage, preventing deeper integration
between reasoning processes and tool execution. (ii) Narrow task coverage: many are tailored to
specific domains or specialized task types, which limits their applicability in general-purpose judging
scenarios. These gaps highlight the need for robust judges that tightly couple reasoning with tool
execution and be optimized end-to-end.

Motivated by these challenges, our goal is to develop an LLM judge that can reliably integrate
reasoning with code interpreter execution. Incorporating tool-integrated reasoning (TIR) (Feng et al.,
2025; Li et al., 2025a; Lin & Xu, 2025), we propose TIR-Judge, a framework that leverages
reinforcement learning (RL) to teach models to generate code, execute it with interpreters, and
iteratively refine their reasoning based on the resulting outputs. By reinforcing this cycle of reasoning
and tool-use, TIR-Judge equips LLM judges with the ability at the training time to deliver more
accurate and verifiable evaluations across diverse tasks.

Then, to fully unleash the potential of RL for TIR-Judge, we introduce several key design choices.
(i) Task diversity: To balance between different tasks, we construct training prompts spanning both
verifiable domains (e.g., competitive programming, mathematical reasoning) and non-verifiable
domains (e.g., dialogue, safety, general coding), allowing the model to learn when tool invocation is
beneficial and when pure reasoning suffices. (ii) Judgment flexibility: To accommodate to different
input/output formats, we diversify the evaluation tasks to cover pointwise, pairwise, and listwise
ranking, ensuring broad applicability across practical use cases. (iii) Data efficiency: unlike prior
methods that rely on distillation as cold-start for RL (Chen et al., 2025b; Hong et al., 2025), we
demonstrate that TIR-Judge can bootstrap from the initial checkpoint. Specifically, TIR-Judge-
Zero trains purely with iterative reinforcement learning for achieving self-improvement, while
TIR-Judge-Distill provides an optional variant using a small amount of distillation data.

Our contribution can be summarized as follows:

• We introduce TIR-Judge, a tool-integrated framework for training LLM-based judges with
end-to-end multi-turn reinforcement learning. To the best of our knowledge, this is the first
approach that jointly optimizes reasoning and tool-use for training LLM-based judges via RL.

• We design several key strategies to fully exploit the power of reinforcement learning, including task
diversification across verifiable and non-verifiable domains, flexible judgment formats (pointwise,
pairwise, listwise), as well as an iterative RL scheme that enables self-improvement in tool use
even without distillation.

• We evaluate TIR-Judge on seven public benchmarks covering diverse tasks and input formats.
TIR-Judge consistently outperforms strong reasoning-based judges, achieving gains of up
to 6.4% (pointwise) and 7.7% (pairwise). Moreover, TIR-Judge shows strong parameter
efficiency: With only 8B parameters, it surpasses the 32B reasoning reward models on the
PPE dataset, and reaches 96% of the performance of Claude-Opus-4 in the listwise setting in
RewardBench 2. Interestingly, TIR-Judge-Zero, the judge trained without any distillation,
achieves a 1.2% gain over its distilled counterpart at 4B scale, highlighting the power of RL to
bootstrap reasoning and tool-use capabilities.

2 RELATED WORKS

Reasoning-Enhanced Reward and Judge Models. A growing line of work strengthens reward
models (RMs) and judges by explicitly training them to reason before scoring. Generative Veri-
fiers (Zhang et al., 2025) treat verification as next-token prediction with chain-of-thought, improving
math and algorithmic tasks. Other methods enhance judgment by generating critiques (Ankner et al.,
2024; Yu et al., 2025c;b; Wang et al., 2025a), using multi-round preference optimization (Wang et al.,
2024b), or planning evaluations before issuing a decision (Saha et al., 2025). Liu et al. (2025d) study
how to allocate compute and structure critiques for reliability. More recently, RL-based judges (Chen
et al., 2025a;b; Whitehouse et al., 2025; Guo et al., 2025b; Hong et al., 2025) incentivize longer,
higher-quality reasoning and reduce bias across pointwise and pairwise settings, Khalifa et al. (2025);
Zhao et al. (2025) leverage thinking traces to improve process reward models. However, these remain
confined to text-only reasoning and often emphasize pairwise judgment.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

Tool-Assisted Reward and Judge Models. Another line of work augments judges with external tools.
Li et al. (2024b) incorporate verifiable signals alongside preference data for judge training, though
primarily within tool-use scenarios. Zhuge et al. (2025) evaluate agentic judge capabilities in agent
settings, and Peng et al. (2025) integrate human preferences with correctness checks to construct
more reliable rewards. Findeis et al. (2025) show that external tools (e.g., code execution, search) can
improve annotations, observing gains are task-dependent. Yet, most works rely on prompted tool use
rather than training judges to learn when and how to call tools and incorporate their outputs.

Reinforcement Learning for Tool-integrated Reasoning. RL has recently been applied to tool-
integrated reasoning (TIR). Feng et al. (2025); Bai et al. (2025); Li et al. (2025a) train LLMs to
interleave reasoning with code execution, improving math and programming. Jin et al. (2025); Song
et al. (2025) extend this to web search, while others study reward design (Dong et al., 2025; Wang
et al., 2025b) or provide theoretical analyses (Lin & Xu, 2025).

3 PRELIMINARIES

Problem Setup. We consider the task of LLM-based judgment: given a user prompt x ∈ X and n
model-generated responses Y = {y1, y2, . . . , yn}, the goal is to evaluate the quality of responses for
the prompt. The judge model Jθ produces an evaluation output conditioned on (x,Y). In this work,
we consider three evaluation settings: (i) Pointwise evaluation: given (x, y), the judge assigns a
scalar score, Jθ(x, y) = sθ(x, y) ∈ R; (ii) Pairwise evaluation: given (x, ya, yb), the judge selects
the preferred response, Jθ(x, ya, yb) = argmaxi∈{a,b} sθ(x, yi), where sθ denotes a learned scoring
function. This is also the most common evaluation setting; (iii) Listwise evaluation: given (x,Y)
with n > 2, the judge returns the index of the best response, Jθ(x,Y) = argmaxi∈{1,...,n} sθ(x, yi).

These settings unify a broad range of evaluations under a common framework1.

Tool-Augmented Judge. We extend the judge with the ability to call an external Python execution
environment I. For the prompt x ∈ X , At step k, the judgment trajectory sk is represented as
sk = {r1, c1, o1, . . . , rk, ck, ok}, where ri is a natural language reasoning step, ci is a generated
code, and oi = I(ci) is the execution result of ci (Li et al., 2025a). The iterative process is defined as:

(rk, ck) ∼ J(x⊕ sk−1), ok = I(ck), sk = sk−1 ⊕ rk ⊕ ck ⊕ ok. (1)

This cycle continues until the judge produces a final prediction ai ∼ J(x⊕ sT) with T being the final
step. Unlike traditional text-only reasoning, the trajectory now interleaves reasoning, code execution,
and tool feedback, enabling the judge to ground its decision in verifiable evidence.

4 TRAINING TIR-JUDGE

We now describe the training procedure for TIR-Judge, which consists of four components: (1)
data collection and filtering for RL, (2) the RL framework for training judges with integrated code
execution tools, (3) reward design for RL, and (4) cold-start and iterative training strategies in RL.
The overall framework of TIR-Judge is exhibited in Figure 2.

4.1 DATA COLLECTION AND FILTERING

High-quality training data is crucial for RL with tool-augmented judges. Since judgment requires
both prompts and candidate responses, we curate a collection of (prompt, responses) tuples spanning
multiple tasks. Our corpus integrates both human-annotated preference data and automatically
generated synthetic pairs to ensure diversity and scalability.

Real Preference Pairs. We sample human-labeled preference pairs from a variety of domains:
general helpfulness — HelpSteer 3 (Wang et al., 2025c); reasoning — UltraInteract (Yuan et al.,
2025), S1 (Muennighoff et al., 2025); coding — CodeRM (Ma et al., 2025b); instruction following
(IF) — preference pairs from Tulu 3 (Lambert et al., 2024); safety — Safe-RLHF (Dai et al., 2024).
Each prompt is paired with one preferred (chosen) response and one or more rejected responses.

Synthetic Preference Pairs. Because reasoning preference data is often limited in scale, we
augment the corpus with synthetic preference pairs generated from verifiable prompts. For each

1Note that in our work, the reference answer is unseen during evaluation, different from the verification
setting (Liu et al., 2025a; Li et al., 2025b; Yan et al., 2025) where the reference answer is also a part of the input.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Poem form: ✅, it is written in verse.
Topic: ✅, it highlights the eucalyptus
beauty and eucalyptus uses.
Length requirement: Need python
code to evaluate.

```python
response = """Where desert 
heat whispers ……"""
print(len(response.split())
```

```output
321
```

From the result, the response only
contains 321 words. ❌Fails.
Final Verdict: The response does not
follow the user prompt completely.

RL

Rejection
Sampling

● Final answer ✅
● Output format ✅
● Code execution ✅

SFT RL

SFT DataSFT DataSFT Data

SFT DataSFT DataSFT Data

SFT RL Iteratively
update

Training DataTraining DataTraining Data

SFT RLSFT DataSFT DataSFT Data
Rejection
Sampling

TIR-Judge-Distill

TIR-Judge-Zero
<score>10</score> <score>6</score>

chosen rejected

<preference>B</preference>

rejected rejected

chosen rejected

…

Pairwise Listwise

Pointwise

Execution
in sandbox

Tool-Integrated Reasoning Judge Evaluation Training Strategies for RL

Figure 2: Overall framework of TIR-Judge variants. TIR-Judge natively supports tool use
during judgment and is designed to handle diverse input formats.

prompt, we sample responses from multiple open-source models, including Qwen3-8B/14B (Team,
2025), Gemma-2-9B (Team et al., 2024), and Gemma-3-12B (Team et al., 2025). The responses
are automatically evaluated against verifiable functions (for IF tasks) or ground-truth solutions (for
reasoning tasks) to form preference pairs. For IF, we use verifiable prompts from Tulu-3 (Lambert
et al., 2024), where correctness can be programmatically verified using lexical or structural constraints.
For reasoning, we employ MATH (Hendrycks et al., 2021) and DAPO-Math (Yu et al., 2025a) for
math domain and WebInstruct (Ma et al., 2025a), and Loong (Huang et al., 2025b) for general domain,
both of which provide ground-truth solutions for exact verification.

In total, our dataset comprises approximately 26k preference pairs, including pointwise, pairwise,
and listwise annotations, covering diverse domains such as helpfulness, reasoning, coding, safety, and
verifiable instruction following. We apply strict 8-gram decontamination to eliminate any overlap
between training prompts and evaluation benchmarks (Oren et al., 2024). This diverse mixture of
data provides a strong foundation for training robust tool-augmented judges.

4.2 TOOL-INTEGRATED RL WITH VERIFIABLE REWARDS

Overall Framework. We adopt DAPO (Yu et al., 2025a), an improved variant of GRPO (Shao et al.,
2024), for training the LLM judge J parameterized by πθ. Given a prompt–answer pair (q, a), we
first sample a group of G rollouts {si}Gi=1 from the current policy πθold . Each rollout si is assigned a
scalar reward Ri = R(si, a) with access to the oracle answer a. The policy πθ is then updated with
the following clipped policy gradient objective:

J (θ) = E(q,a)∼D,{si}Gi=1∼πθold
(·|q)

[
1∑G

i=1 |si|

G∑
i=1

|si|∑
t=1

(
min(ri,t(θ)Âi,t,

clip(ri,t(θ), 1−εlow, 1+εhigh)Âi,t)−βDKL(πθ∥πref)
)]

s.t. 0 < |{si : is_equivalent(a, si)}| < G

where ri,t(θ) =
πθ(si,t|q,si,<t)

πθold (si,t|q,si,<t)
is the token-level weight, Âi,t =

Ri−mean({Ri}G
i=1)

std({Ri}G
i=1)

is the advantage

at the token level, and is_equivalent step filters out the prompts with accuracy equal to 1 and
0. The hyperparameters εlow and εhigh control the clipping range for importance weights, while β
regulates the KL divergence penalty to stabilize training.

Additional Designs. Beyond standard RL training, we implement two enhancements to stabilize
tool-augmented judgment: (i) Error Message Processing. We truncate the outputs from Interpreter
I to only the final error line to avoid excessive context length while preserving useful feedback in
sk; (ii) Sandbox Output Masking. Since execution results oi = I(ci) may cause the model to overfit
by memorizing outputs, we mask oi during loss computation, following Li et al. (2025a); Jin et al.
(2025). This prevents reliance on exact strings and improves training stability.

Reward Designs. To effectively facilitate multi-turn RL with code execution, we design a structured
covering three aspects, described as follows:

(i) Correctness Reward Rc: This component measures whether the judge’s prediction aligns with the
reference preference label. Let x denote the prompt, Y = {y1, . . . , yn} the candidate responses, and

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

l the ground-truth preferred response. The reward is defined as:

Rc =


I
(
sθ(x, ypos) > sθ(x, yneg)

)
, for pointwise evaluation,

I
(
Jθ(x,Y) = l

)
, for pairwise or listwise evaluation,

0, otherwise,

(2)

where I(·) is the indicator function, sθ(x, y) denotes the judge’s scoring function, and Jθ(x,Y) is the
predicted best response under the judge’s policy. Intuitively, Rc = 1 if the judge’s decision matches
the ground-truth preference, and Rc = 0 otherwise (i.e. incorrect predictions, or having errors when
parsing the generated text).

(ii) Format Reward Rf : To ensure reliability, the judge is required to strictly follow a predefined
structured output format. Specifically, prediction scores must be enclosed within <score> and
</score> tags, the preference label must be wrapped in <preference> and </preference>
tags, and all code segments must be enclosed using ```python and ```. In addition, to accommo-
date both reasoning and non-reasoning tasks and discourage unnecessary tool calls, we introduce a
heuristic: for safety and general helpfulness prompts, a positive format reward is granted only if the
model produces a valid output without invoking tools. Formally, Rf = 1 if the output satisfies all
formatting constraints (and the no-tool heuristic when applicable), and Rf = 0 otherwise.

(iii) Tool-Specific Reward Rt: We encourage accurate and efficient tool use by penalizing errors or
excessive executions (Wang et al., 2025b). We set the max number of tool calls per trajectory to 3,
and set Rt = 1 only when code blocks ci are error-free and within the call budget; otherwise Rt = 0.

The final reward R is defined as a combination of correctness, format, and tool-specific rewards and
assigns full credit only when correctness, format, and tool-use are all satisfied:

R = Rc ×
(
0.1 + 0.9 I[Rt = 1 ∧Rf = 1]

)
. (3)

4.3 TRAINING STRATEGIES FOR RL

Directly applying RL often leads to suboptimal outcomes, as the base model lacks sufficient reasoning
and tool-use capability. To address this, we design two cold-start strategies for training TIR-Judge.

Distillation from Teacher Models (TIR-Judge-Distill). We leverage a stronger teacher,
Gemini-2.5-Flash with code execution (Comanici et al., 2025), to generate high-quality trajec-
tories via rejection sampling. For each user prompt x and corresponding Y , we collect a trajectory
s and a final prediction a as (x,Y, s, a) ∼ J . Only trajectories that produce correct answers are
retained, yielding a dataset TSFT = {(x,Y, s, a) | R(s, a, l) = 1}. Then the student judge is trained
via supervised fine-tuning (SFT) with objective LSFT = −E(x,τ)∼TSFT

[∑|y|
i=1 log fθ(τi | τ<i, x)

]
,

where τ = (s, a) is the target trajectory with reasoning and code steps. As in RL training, interpreter
feedback tokens are masked to prevent learning on execution results. In total, we collect about 10k
tool-integrated trajectories for SFT, which serve as the initialization before reinforcement learning.

Iterative Training without Distillation (TIR-Judge-Zero). Beyond teacher distillation, we
investigate whether tool-augmented judges can improve purely through self-bootstrapping (Yuan
et al., 2024; Huang et al., 2023; Zelikman et al., 2022; Xiong et al., 2025). The process alternates
between RL, rejection sampling, and supervised fine-tuning.

Starting from the initial model πθ0 , we first obtain the checkpoint πθ1 via direct RL on training data
as πθ1 ← RL(πθ0) (Sec. 4.2). Then, for each prompt x, we sample multiple trajectories from πθ1
as {si}Gi=1 ∼ πθt(· | x) (G = 4 in our study), where each trajectory contains reasoning, code, and
execution results: si = {r1, c1, o1, . . . , rk, ck, ok}. We retain only valid trajectories that (i) produce
the correct answer l, (ii) satisfy the output format, and (iii) execute without interpreter errors as
Tt = {(x, s, a) | R(s, a, l) = 1}. To promote efficiency, for each prompt we further keep only one
trajectory, preferring the shortest response or the one with the fewest tool calls2. The dataset Tt is
then used for SFT, and the fine-tuned model initializes the next RL round. After each cycle, we select

2In practice, we prioritize trajectories with the fewest tool calls, since encouraging efficient tool usage is
the primary objective. If multiple trajectories tie under this criterion, we then choose the one with the shortest
trajectory length to further promote concise and efficient reasoning.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Table 1: Main results on six benchmarks. † indicates results reported from the original papers,
and are mainly used for reference. CJBench, RWBench, and JGBench denote CodeJudgeBench,
RewardBench, and JudgeBench. “Distill?” specifies whether the model relies on additional judge
data distilled from teacher models. Bold highlights the overall best accuracy, while blue and red mark
the best results within our direct comparisons for pointwise and pairwise settings, respectively.

Baselines |Train| Distill?
PPE Correctness

IFBench CJBench RWBench RMBench JGBench
MMLU-P MATH GPQA MBPP-P IFEval Avg.

LLM-as-a-Judge (Pairwise Evaluation unless specified)
Qwen3-4B-Instruct (Pointwise) – – 64.3 83.1 38.0 62.4 55.2 60.6 56.2 16.6 76.5 66.9 50.8
Qwen3-8B (Pointwise) – – 68.7 64.2 56.5 58.9 57.4 61.1 55.9 54.9 79.2 69.3 64.9
Gemini-2.5-Flash (Pointwise) – – 56.5 79.5 46.4 63.0 63.9 61.9 51.6 53.3 80.7 70.8 66.9

GPT-4o† – – – – – – – 57.6 61.3 – 86.7 72.5 56.6
GPT-o1-mini† – – – – – – – 71.3 70.1 – 87.1 – 65.7
DeepSeek-R1-671B† – – – – – – – 76.5 68.0 – 90.6 – 73.1
Claude 3.5† – – 81.0 86.0 63.0 54.0 58.0 68.4 – 58.3 84.2 61.0 64.3
Qwen3-4B-Instruct (Pairwise) – – 63.9 83.1 35.0 59.7 60.7 60.4 62.2 34.5 86.0 75.3 63.9
Qwen3-8B (Pairwise) – – 73.8 80.2 57.3 57.8 58.4 65.5 61.3 60.8 87.0 77.9 67.5
Gemini-2.5-Flash (Pairwise) – – 68.8 85.5 58.1 86.5 75.0 74.8 69.3 66.5 93.4 81.9 75.4

Scalar Reward Models (Pointwise)

Armo-RM-8B† 1000k ✗ 66.0 71.0 57.0 54.0 58.0 61.2 62.9 – 90.3 67.7 –
Skywork-Gemma-2-27B† 80k ✗ 55.0 46.2 44.7 69.1 58.3 54.7 63.2 – 93.8 67.3 –
Deepseek-BTRM-27B† 237k ✗ 68.8 73.2 56.8 68.8 66.0 66.7 – – 81.7 – –

Text-based Reasoning Judges (Pairwise Evaluation unless specified)

Deepseek-GRM-27B† 237k ✗ 64.8 68.8 55.6 50.1 59.8 59.8 – – 86.1 – –
J1-8B (Pairwise)† 22k ✗ 65.6 70.0 53.2 53.1 54.0 59.2 – – 85.7 73.4 42.0
J1-8B (Pointwise)† 22k ✗ – – – – – 58.5 – – – – –
RRM-7B 420k ✗ 66.5 88.0 57.9 61.2 53.6 65.4 60.1 63.4 82.2 70.4 67.0
RM-R1-Deepseek-Distill-7B 73k ✓ 67.3 91.2 62.6 60.5 53.0 66.9 56.6 63.2 80.1 72.4 67.7
RM-R1-Instruct-7B 73k ✓ 64.1 74.5 60.7 57.3 57.8 62.9 59.0 57.5 85.2 70.2 60.3
Think-RM 7B 10k ✓ 66.5 78.3 55.6 58.1 63.9 64.5 57.4 54.6 86.0 73.9 64.6

Tool-augmented Judges
Qwen3-4B-Tool (Pointwise) – – 64.6 81.6 38.3 61.0 49.8 59.1 44.1 18.0 78.4 72.1 56.6
Qwen3-8B-Tool (Pointwise) – – 67.0 72.4 54.0 56.0 34.0 56.7 27.1 45.9 78.0 67.9 59.4
Gemini-2.5-Flash-Tool (Pointwise) – – 68.2 86.0 48.9 58.7 73.5 67.1 53.0 47.9 81.3 71.2 66.5
TIR-Judge-Distill 4B (Pointwise) 26k ✓ 58.7 81.9 45.8 64.1 78.9 65.9 65.8 59.9 76.6 71.9 66.7
TIR-Judge-Zero 4B (Pointwise) 26k ✗ 62.5 87.3 54.7 64.8 79.8 69.8 65.9 61.5 77.3 72.8 70.4
TIR-Judge-Distill 8B (Pointwise) 26k ✓ 70.9 88.1 52.3 61.0 83.0 71.0 68.4 61.9 81.0 76.7 68.2
TIR-Judge-Zero 8B (Pointwise) 26k ✗ 67.8 88.0 53.2 64.7 77.8 70.3 66.8 60.8 81.4 76.3 67.5

AgentRM 8B + 8B (Pairwise) – – 64.6 76.0 52.8 61.7 73.0 65.6 67.0 59.2 87.7 69.7 59.4
Qwen3-4B-Tool (Pairwise) – – 63.5 83.3 35.9 58.9 62.3 60.8 59.2 29.2 85.2 75.7 63.0
Qwen3-8B-Tool (Pairwise) – – 72.0 85.2 56.0 54.3 60.8 65.7 52.5 54.9 86.2 77.3 65.9
Gemini-2.5-Flash-Tool (Pairwise) – – 73.1 87.5 60.2 85.2 84.0 78.0 68.5 66.3 90.1 80.9 74.6
TIR-Judge-Distill 4B (Pairwise) 26k ✓ 69.0 88.7 54.8 60.6 83.6 71.3 73.7 69.8 87.7 78.0 70.5
TIR-Judge-Zero 4B (Pairwise) 26k ✗ 75.0 93.3 61.7 67.3 84.5 76.3 70.3 70.8 86.7 80.8 73.7
TIR-Judge-Distill 8B (Pairwise) 26k ✓ 72.2 90.4 53.8 63.2 85.7 73.0 74.3 70.0 87.9 82.2 72.6
TIR-Judge-Zero 8B (Pairwise) 26k ✗ 76.6 94.0 58.5 68.8 80.8 75.7 68.9 69.3 89.1 83.7 72.0

For Reference: Text-based Reasoning Judge Baselines with >10B Parameters (Pairwise Evaluation)

J1 70B† 22k ✗ 79.0 86.0 65.9 66.0 67.3 72.8 – – 93.3 82.7 60.0
RRM 32B 420k ✗ 80.5 94.3 68.4 72.8 60.2 75.3 60.8 76.3 91.2 85.4 76.0
RM-R1-Deepseek-Distill-14B 73k ✓ 78.8 94.5 63.3 70.5 63.0 74.0 58.6 65.5 88.9 81.5 76.2
RM-R1-Deepseek-Distill-32B 73k ✓ 79.8 95.4 65.2 74.6 63.3 75.6 60.4 65.8 90.9 83.9 78.4

the best checkpoint based on held-out validation accuracy and repeat the RS→ SFT→ RL loop:

Tt+1 ← RS(πθt), πθt+1 ← SFT(πθ0 , Tt+1), πθt+1 ← RL(πθt+1).

This iterative process a stable refinement loop of better examples → better rollouts → even better
examples. It allows TIR-Judge-Zero to progressively bootstrap stronger reasoning and tool-use
capabilities entirely from a base model and facilitates self-improvement without distillation. Since
judgment rewards are deterministic and unambiguous (correct vs. incorrect), this iterative process
converges reliably in practice.

5 EXPERIMENTS

5.1 EXPERIMENT SETUPS

Evaluation Datasets. Following prior work (Whitehouse et al., 2025; Chen et al., 2025b), we
focus on reasoning tasks, evaluating TIR-Judge on PPE Correctness (Frick et al., 2025). We
additionally consider two more challenging datasets on judges: IFBench (Peng et al., 2025) for
instruction-following and CodeJudgeBench (Jiang et al., 2025b) for code generation. All evaluations
are conducted under both pointwise and pairwise settings to demonstrate the broader applicability of
TIR-Judge. We also evaluate on general-domain judge benchmarks, where reasoning constitutes a
subset, including RewardBench (Lambert et al., 2025), RM-Bench (Liu et al., 2025c) and JudgeBench
(Tan et al., 2025) for pointwise/pairwise evaluation, and RewardBench 2 (Malik et al., 2025) for
listwise evaluation.

Implementation Details. We use Qwen3-8B and Qwen3-4B-Instruct-2507 (Team, 2025)
as backbones, without enabling thinking mode, and implement training with Verl-Tool (Jiang et al.,

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

2025a). For SFT, we train with batch size 64, learning rate 2e-6, context length 8192, for 1 epoch.
For RL, we set the micro batchsize per gpu to 4, mini batchsize to 128 and number of rollout to 8.
We set εlow = 0.2, εhigh = 0.3, β = 0.01, max response length to 8192, learning rate 1e-6 and train
for 2 epochs. The experiments are run with 8 NVIDIA H100 80G GPUs. For data collection in Sec.
4.1, we generate 2 rollouts for each model with t = 0.9, p = 0.95. No external feedback (e.g., GPT
annotations) is used. For inference, we set t = 0 for generating responses.

Baselines. We consider the following group of baselines: (i) Off-the-shelf LLM as judges: GPT-
4o (Hurst et al., 2024), GPT-o1-mini (Jaech et al., 2024), Deepseek-R1 (Guo et al., 2025a), Claude 3.5
(Anthropic, 2025), Gemini-2.5-Flash (Comanici et al., 2025), Qwen-3 (Team, 2025); (ii) Standard
Reward Models: Armo-RM (Wang et al., 2024a), Skywork-Reward-Gemma-2 (Liu et al., 2024),
Deepseek-BTRM (Liu et al., 2025d); (iii) Text-based Judges trained with RL: Deepseek-GRM
(Liu et al., 2025d), J1 (Whitehouse et al., 2025), RM-R1 (Chen et al., 2025b), RRM (Guo et al.,
2025b) and Think-RM (Hong et al., 2025); (iv) Tool-augmented Judges (Inference-time): Gemini-
2.5-Flash-Tool (Comanici et al., 2025), AgentRM (Peng et al., 2025)3, and Qwen-3 (Team, 2025)
(our backbone) that use the same code execution tool as TIR-Judge but only inject tools at the
inference time.

5.2 MAIN EXPERIMENT RESULTS

Experiments for Pointwise/Pairwise Judging tasks. Table 1 shows the main results of TIR-Judge
on six judge benchmarks. The per-task accuracy on several benchmark is deferred to Table 5. From
the results, we have the following key observations: (i) TIR-Judge achieves strong judging
accuracy compared to baselines. Notably, on the PPE benchmark, TIR-Judge outperforms
baselines with similar sizes by 4.8%-9.9% for pointwise judging and 4.5%-8.8% for pairwise judging.
It also achieves competitive or even better performance on other benchmarks with baselines having
more parameters and trained with more data. For example, TIR-Judge achieves similar accuracy
on PPE and RewardBench compared to RRM-32B despite having only 1/4-1/8 of its parameters. (ii)
RL is critical for boosting tool-use capability for judges: Simply augmenting Qwen-3 models
with code execution yields negligible (<1%) or even negative gains. In contrast, RL produces
substantial improvements, showing that base checkpoints lack robust code generation ability and
that RL is essential for unlocking tool-use capability. Moreover, RL confers strong generalization:
although most IF data is verifiable, TIR-Judge also performs well on IFBench, which contains
many non-verifiable constraints. (iii) Iterative RL is surprisingly effective to serve as another
alternative to distillation : Comparing TIR-Judge-Zero with TIR-Judge-Distill, we find that
TIR-Judge-Zero delivers comparable or better performance, outperforming the distilled variant on
4/6 benchmarks (pointwise) and 3/6 benchmarks (pairwise). This demonstrates that TIR-Judge-Zero
offers a viable alternative for data-scarce regimes, achieving competitive performance to distillation-
based methods, albeit with additional overheads in training time.

Table 2: Results on 5 tasks in RewardBench2,
sorted by average performance.

Datasets IF Math Fact Focus Safety Avg.
Claude-Opus-4 41.9 74.9 82.7 86.2 89.5 76.5
Gemini-2.5-flash-Preview 55.3 81.1 65.7 86.7 90.9 75.9
TIR-Judge-Zero 8B 45.6 84.1 64.8 89.5 82.7 73.4
TIR-Judge-Distill 8B 58.1 72.7 63.8 81.4 82.0 71.6
GPT-4.1 39.7 65.2 82.9 73.4 87.3 69.7
Claude-Sonnet-4 35.9 70.5 76.1 76.0 89.1 69.5
TIR-Judge-Zero 4B 47.5 86.4 59.3 85.2 62.9 68.3
TIR-Judge-Distill 4B 55.0 78.1 55.8 75.0 73.1 67.3
GPT-4.1-mini 41.2 72.1 60.8 73.5 72.6 65.7
GPT-4o 33.1 62.3 56.8 72.9 86.2 64.9
Claude-3.5-sonnet 38.8 56.8 52.8 87.0 85.2 64.7

Experiments on Listwise Judging tasks.
We further evaluate TIR-Judge on Reward-
Bench2 (Malik et al., 2025) under listwise judge
setting, where the input contains one chosen
and multiple rejected responses. As shown in
Table 2, TIR-Judge achieves strong perfor-
mance, matching 96% performance of Claude-
Opus-4, the current best model on the leader-
board, despite being 8B parameter only. The
advantage is more notable on tasks such as in-
struction following and mathematical reasoning,
where TIR-Judge’s integration of code execu-
tion provides a clear gain.

5.3 ADDITIONAL STUDIES

Diverse Data Mixture is essential for RL. We study the impact of task composition in RL in
Figure 3. Training exclusively on chat or reasoning tasks leads to poor transfer across subtasks,

3For fairness, we use Qwen-3 as the backbone for AgentRM. Note that AgentRM additionally leverages
Armo-RM to assist judgment.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

PPE-IFEval PPE-MBPP-Plus PPE-MATH PPE-MMLU-Pro PPE-GPQA RMBench-Chat RMBench-Safety
25

50

75

Pe
rf

or
m

an
ce

TIR-Judge-Zero 8B w/ only IF w/ only Coding w/ only Reasoning w/ only Helpfulness & Safety

Figure 3: The effect of different data mixture used in RL training of TIR-Judge-Zero.

PPE-IFEval

PPE-MBPP-Plus
PPE-MATH

PPE-MMLU-Pro
PPE-GPQA

RMBench-Chat

RMBench-Safety
25

50

75

Pe
rf

or
m

an
ce

Direct RL (1) w/ Tool Direct RL (1) w/o Tool

(a) Tool Use v.s. Text-only Judges

AIME 2024 AIME 2025 BigCodeBench IFEval
25

50

75

B
es

t o
f N

 A
vg

. A
cc

ur
ac

y Pass@1
MV@16

RRM-7B (Pairwise)
TIR-Judge-Zero-4B Best

TIR-Judge-Zero-8B Best

(b) Best-of-N Inference

Figure 4: Experimental results comparing tool-augmented judges against text-only judges under the
same training data and settings, as well as the best-of-N inference performance.

largely because the scarcity of tool-use prompts prevents the model from fully developing tool-use
capabilities. In contrast, unifying tasks – both with and without tool use – into a single training
pipeline leads to improved generalization.

Tool Use vs. Text-Only. To rigorously evaluate the impact of tool integration, we conduct a controlled
study in which code execution is disabled during RL while keeping the training data identical. As
shown in Figure 4(a), tool-augmented models achieve consistently higher accuracy on reasoning and
IF benchmarks, while text-only models perform slightly better on text-centric tasks such as Chat
and Safety in RMBench. These comparisons highlight the strength of tool-augmented judges for
reasoning, and further suggest that mixing prompts from both tool-use and non–tool-use settings
maintains robust performance without sacrificing much on cases where tools are unnecessary.

0 5 10 15
Avg. # Prompts per Second

60

65

70

75

Av
g.

 P
PE

 P
er

fo
rm

an
ce

Qwen-3-4B

Qwen-3-8B
RRM-7B

RM-R1-distill 7B

Think-RM 7B

RRM-32B
RM-R1-distill 32B

TIR-Judge-Distill 4B

TIR-Judge-Zero 4B

TIR-Judge-Distill 8B
TIR-Judge-Zero 8B

Figure 6: Study on Inference Efficiency.

Efficiency Studies. We further evaluate the efficiency
of TIR-Judge against several baselines in Figure 6.
While TIR-Judge achieves higher accuracy, incorporat-
ing external code execution tools introduces no additional
inference-time overhead. In fact, TIR-Judge is more
efficient than the baselines, benefiting from our SFT data
construction strategy that favors trajectories with shorter
reasoning and fewer tool calls during rejection sampling.

Iterative RL progressively improves TIR-Judge-
Zero. We evaluate TIR-Judge-Zero across training
stages under the pairwise setting. As shown in Figure
5, we observe substantial gains after the first round of
RL. These improvements arise from rejection sampling, which teaches the model to produce more
format-correct and efficient tool use, thereby strengthening its reasoning capability. Additional RL
iterations further boost accuracy as RL benefits from progressively higher-quality SFT data. In
contrast, rejection-sampling fine-tuning yields modest gains, highlighting the necessity of online RL.

5.4 BEST-OF-N EVALUATION ON POLICY MODELS

We conduct parallel test-time compute scaling experiment to study whether TIR-Judge can im-
prove the downstream performance of the policy model, where we conduct a study on reward-guided
best-of-N inference over datasets from multiple domains including AIME-2024, AIME-2025, Big-
CodeBench (Zhuo et al., 2025) and IFEval (Zhou et al., 2023). The detailed experimental setup is
deferred to Appendix F.

Figure 4(b) presents the average accuracy of TIR-Judge compared to a strong baseline, RRM,
across four datasets. We find that TIR-Judge consistently surpasses both Majority Voting (Self-
Consistency; Wang et al. (2023)) and RRM by clear margins, demonstrating its effectiveness.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

4B 8B

60

80

Pe
rf

or
m

an
ce

PPE

4B 8B

50

60

70

IFBench

4B 8B
40

60

CodeJudgeBench

Base
TIR-Judge-Zero-RL-0

TIR-Judge-Distill-SFT
TIR-Judge-Zero-RL-1

TIR-Judge-Distill-RL
TIR-Judge-Zero-RL-2

TIR-Judge-Zero-RS

Figure 5: Accuracy of TIR-Judge across different training stages. Base denotes the backbone
model without additional training. TIR-Judge-Zero-RS is a variant inspired by Zelikman et al.
(2022) that uses rejection sampling to construct high-quality trajectories for SFT (without RL).
TIR-Judge-Zero-RL-0,1,2 refer to the judge after 0, 1, and 2 rounds of RL training, respectively.

Table 3: A case study from IFEval demonstrating the judgement generated by TIR-Judge-Zero 8B
and Qwen3-8B. Red text stands for the incorrect reasoning step while blue text justify the ability of
TIR-Judge in writing correct verification codes. Part of responses are omitted due to space limits.

User Prompt Write a letter to your friend who recently moved away. Your response should be in English, and in all capital letters. The letter o should appear at least 40 times.
Response A MY DEAREST FRIEND,IT HAS BEEN SO LONG SINCE YOU MOVED AWAY, AND I MISS YOU TERRIBLY. I CAN’T WAIT TO HEAR FROM

YOU AND TO CATCH UP. WITH LOTS OF LOVE, YOUR FRIEND
Response B MY DEAR FRIEND,IT HAS BEEN SOME TIME SINCE YOU MOVED AWAY, I WISH YOU NOTHING BUT THE BEST ON YOUR NEW

ADVENTURE, FRIEND.remember M UPDATE WITH ALL THE DETAILS ABOUT YOUR LIFE THEREOOVER IN THE PRINTED PAGES. PLEASE
SEND Oast THOUGHTS YOUR WAY, AS I KNOW YOURS ARE ALWAYS NEARLY ALWAYS WITH YOUR FRIEND FOR LIFE

Judge Trajectory by
TIR-Judge-Zero
8B

To evaluate the responses, I will perform the following checks:
1. Ensure both responses are in all capital letters.
2. Count the number of times the letter "O" appears in each response.
“‘python

Count occurrences of ’O’ (case-sensitive)
count_o_a = response_a.count(’O’)
count_o_b = response_b.count(’O’)

Check if responses are in all capital letters
is_upper_a = response_a == response_a.upper()
is_upper_b = response_b == response_b.upper()

print(f"Response A - ’O’ count: count_o_a, All caps: is_upper_a")
print(f"Response B - ’O’ count: count_o_b, All caps: is_upper_b")
“‘
“‘output
Response A - ’O’ count: 58, All caps: True
Response B - ’O’ count: 60, All caps: False
“‘
<preference>A</preference>

Qwen3-8B Analysis of Response A:
- Language: Entirely in English. ✓
- Capitalization: All text is in all capital letters. ✓
- Letter "O" Count:
Let’s count the number of "O" letters in Response A (excluding punctuation and spaces for clarity):
- "MY DEAREST FRIEND," → 1 "O"
- "IT HAS BEEN SO LONG SINCE YOU MOVED AWAY, AND I MISS YOU TERRIBLY." → 2 "O"s
......
Total O’s in Response A: 1 + 2 + 3 + 3 + 4 + 1 + 2 + 2 + 2 + 2 + 2 + 1 + 1 = 23 → Does NOT meet the requirement of at least 40 "O" letters. ✗

Analysis of Response B:
- Language: Entirely in English. ✓
- Capitalization: All text is in all capital letters. ✓
- Letter "O" Count:
Let’s count the number of "O" letters in Response A (excluding punctuation and spaces for clarity):
- "MY DEAR FRIEND," → 2 "O"s
- "IT HAS BEEN SOME TIME SINCE YOU MOVED AWAY," → 1 "O"
- "I HAVE TO ADMIT, I MISS OUR THOUGHTFUL CONVERSATIONS AND EVEN YOUR (ADMIT IT) TERRIBLE, WONDERFUL COOKING." → 4
"O"s
......
Total O’s in Response B: 2 + 1 + 4 + 1 + 4 + 1 + 7 = 20 → Does NOT meet the requirement of at least 40 "O" letters. ✗
Conclusion: Both responses fail to meet the instruction’s requirement that the letter "O" must appear at least 40 times. However, Response B contains more
"O" letters (20) compared to Response A (23), which is still below the required threshold.
Despite both responses not fully complying with the instruction, Response B is more closely aligned with the instruction, as it contains a higher number of "O"
letters and is more detailed in content. <preference>B</preference>

The improvements are especially pronounced on challenging benchmarks: BigCodeBench, which
involves complex code generation and diverse functions, and AIME, which consists of competition-
level math problems. On these tasks, TIR-Judge achieves absolute gains of 3.9–6.7% over RRM.
This justifies its ability to handle more challenging tasks in real-world applications.

5.5 CASE STUDIES

Table 3 presents an example from the IFEval subset of the PPE benchmark. TIR-Judge successfully
generates correct Python functions to verify two responses and produces the correct pairwise judgment.
In contrast, text-only judges struggle, as counting remains challenging and often leads to incorrect and

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

Table 4: Breakdown of Code Execution Errors. We categorize errors into Syntax, Runtime, and
Formatting failures.

Error Type TIR-Judge-Zero TIR-Judge-Distill Qwen-3-Tool
Syntax 1.20% 3.65% 4.95%
Runtime 0.00% 0.00% 0.00%
Format 0.17% 0.14% 0.97%

hallucinated reasoning steps, which yield incorrect predictions. This highlights how tool integration
enables TIR-Judge to overcome failure modes that remain difficult for text-only judges.

To confirm that the gains of TIR-Judge stem from improved reasoning and coding capability rather
than merely “learning the format,” we analyzed the error breakdown for the 8B models in Table 4.
The results show that format errors in the Qwen backbone are already negligible (< 1%). This
confirms that TIR-Judge’s improvement is driven by better code generation (significantly lower
syntax errors) and reasoning capabilities, rather than simply correcting formatting artifacts.

6 CONCLUSION

In this work, we introduce TIR-Judge, the first tool-integrated framework for training LLM
judges with end-to-end reinforcement learning. Different from prior works on text-only judges,
TIR-Judge tightly couples reasoning with code execution to enable judges to perform precise
verification and computation. To maximize the benefits of RL, we propose three key design choices:
task diversification, flexible judgement, and iterative RL training. Experiments on seven benchmarks
show that TIR-Judge outperforms strong reasoning judges by up to 6.4% (pointwise) and 7.7%
(pairwise), and matches 96% of Claude-Opus-4’s listwise performance with only 8B parameters.
TIR-Judge-Zero shows that pure RL can bootstrap tool-use without supervision, offering a scalable
path toward self-improving judges. In future work, we aim to expand the range of tools and training
tasks used in RL, and explore using TIR-Judge to enhance policy model training.

ETHICS STATEMENT

Our work aims to advance the development of LLM-based judges by complementing reasoning
with tool use. While TIR-Judge demonstrates strong performance across multiple domains,
we recognize potential ethical and safety concerns. In particular, the use of external tools (e.g.,
code execution environments) raises risks if malicious or unsafe code were executed, such as
file manipulation, unauthorized access, or propagation of harmful outputs. To mitigate this, our
experiments are conducted in sandboxed environments with restricted permissions, and no real-world
files or systems are exposed.

REPRODUCIBILITY STATEMENT

We place strong emphasis on reproducibility and provide comprehensive implementation details.
Hyperparameters and training configurations are reported in Section 5.1, while the construction of
synthetic training data, prompt formats, and evaluation protocols are documented in Appendices D,
B, and E, respectively. Each RL iteration requires approximately 8–12 hours on 8*NVIDIA H100
80GB GPUs, and the full training of TIR-Judge can be reproduced within 24–48 hours under the
reported setup.

REFERENCES

Mayank Agarwal, Ibrahim Abdelaziz, Kinjal Basu, Merve Unuvar, Luis A Lastras, Yara Rizk, and
Pavan Kapanipathi. Toolrm: Outcome reward models for tool-calling large language models. arXiv
preprint arXiv:2509.11963, 2025.

Zachary Ankner, Mansheej Paul, Brandon Cui, Jonathan D Chang, and Prithviraj Ammanabrolu.
Critique-out-loud reward models. arXiv preprint arXiv:2408.11791, 2024.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Anthropic. Introducing claude 3.5 sonnet. Technical report, 2025.

Fei Bai, Yingqian Min, Beichen Zhang, Zhipeng Chen, Wayne Xin Zhao, Lei Fang, Zheng Liu,
Zhongyuan Wang, and Ji-Rong Wen. Towards effective code-integrated reasoning. arXiv preprint
arXiv:2505.24480, 2025.

Nuo Chen, Zhiyuan Hu, Qingyun Zou, Jiaying Wu, Qian Wang, Bryan Hooi, and Bingsheng He.
Judgelrm: Large reasoning models as a judge. arXiv preprint arXiv:2504.00050, 2025a.

Wenhu Chen, Xueguang Ma, Xinyi Wang, and William W. Cohen. Program of thoughts prompting:
Disentangling computation from reasoning for numerical reasoning tasks. Transactions on Machine
Learning Research, 2023.

Xiusi Chen, Gaotang Li, Ziqi Wang, Bowen Jin, Cheng Qian, Yu Wang, Hongru Wang, Yu Zhang,
Denghui Zhang, Tong Zhang, et al. Rm-r1: Reward modeling as reasoning. arXiv preprint
arXiv:2505.02387, 2025b.

Gheorghe Comanici, Eric Bieber, Mike Schaekermann, Ice Pasupat, Noveen Sachdeva, Inderjit
Dhillon, Marcel Blistein, Ori Ram, Dan Zhang, Evan Rosen, et al. Gemini 2.5: Pushing the frontier
with advanced reasoning, multimodality, long context, and next generation agentic capabilities.
arXiv preprint arXiv:2507.06261, 2025.

Josef Dai, Xuehai Pan, Ruiyang Sun, Jiaming Ji, Xinbo Xu, Mickel Liu, Yizhou Wang, and Yaodong
Yang. Safe RLHF: Safe reinforcement learning from human feedback. In The Twelfth International
Conference on Learning Representations, 2024.

Guanting Dong, Yifei Chen, Xiaoxi Li, Jiajie Jin, Hongjin Qian, Yutao Zhu, Hangyu Mao, Guorui
Zhou, Zhicheng Dou, and Ji-Rong Wen. Tool-star: Empowering llm-brained multi-tool reasoner
via reinforcement learning. arXiv preprint arXiv:2505.16410, 2025.

Jiazhan Feng, Shijue Huang, Xingwei Qu, Ge Zhang, Yujia Qin, Baoquan Zhong, Chengquan Jiang,
Jinxin Chi, and Wanjun Zhong. Retool: Reinforcement learning for strategic tool use in llms.
arXiv preprint arXiv:2504.11536, 2025.

Arduin Findeis, Floris Weers, Guoli Yin, Ke Ye, Ruoming Pang, and Tom Gunter. Can external
validation tools improve annotation quality for LLM-as-a-judge? In Proceedings of the 63rd
Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), July
2025.

Evan Frick, Tianle Li, Connor Chen, Wei-Lin Chiang, Anastasios Nikolas Angelopoulos, Jiantao
Jiao, Banghua Zhu, Joseph E. Gonzalez, and Ion Stoica. How to evaluate reward models for RLHF.
In The Thirteenth International Conference on Learning Representations, 2025.

Luyu Gao, Aman Madaan, Shuyan Zhou, Uri Alon, Pengfei Liu, Yiming Yang, Jamie Callan, and
Graham Neubig. Pal: Program-aided language models. In International Conference on Machine
Learning, pp. 10764–10799. PMLR, 2023.

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Peiyi Wang, Qihao Zhu, Runxin Xu, Ruoyu
Zhang, Shirong Ma, Xiao Bi, et al. Deepseek-r1 incentivizes reasoning in llms through reinforce-
ment learning. Nature, 645(8081):633–638, 2025a.

Jiaxin Guo, Zewen Chi, Li Dong, Qingxiu Dong, Xun Wu, Shaohan Huang, and Furu Wei. Reward
reasoning model. arXiv preprint arXiv:2505.14674, 2025b.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn Song,
and Jacob Steinhardt. Measuring mathematical problem solving with the MATH dataset. In
Thirty-fifth Conference on Neural Information Processing Systems Datasets and Benchmarks Track
(Round 2), 2021.

Ilgee Hong, Changlong Yu, Liang Qiu, Weixiang Yan, Zhenghao Xu, Haoming Jiang, Qingru Zhang,
Qin Lu, Xin Liu, Chao Zhang, and Tuo Zhao. Think-rm: Enabling long-horizon reasoning in
generative reward models. arXiv preprint arXiv:2505.16265, 2025.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Audrey Huang, Adam Block, Qinghua Liu, Nan Jiang, Akshay Krishnamurthy, and Dylan J Foster.
Is best-of-n the best of them? coverage, scaling, and optimality in inference-time alignment. In
Forty-second International Conference on Machine Learning, 2025a.

Jiaxin Huang, Shixiang Gu, Le Hou, Yuexin Wu, Xuezhi Wang, Hongkun Yu, and Jiawei Han. Large
language models can self-improve. In Proceedings of the 2023 Conference on Empirical Methods
in Natural Language Processing, pp. 1051–1068, December 2023.

Xingyue Huang, Gregor Franke, Ziyi Yang, Jiamu Bai, Weijie Bai, Jinhe Bi, Zifeng Ding, Yiqun
Duan, Chengyu Fan, Wendong Fan, et al. Loong: Synthesize long chain-of-thoughts at scale
through verifiers. arXiv preprint arXiv:2509.03059, 2025b.

Aaron Hurst, Adam Lerer, Adam P Goucher, Adam Perelman, Aditya Ramesh, Aidan Clark, AJ Os-
trow, Akila Welihinda, Alan Hayes, Alec Radford, et al. Gpt-4o system card. arXiv preprint
arXiv:2410.21276, 2024.

Aaron Jaech, Adam Kalai, Adam Lerer, Adam Richardson, Ahmed El-Kishky, Aiden Low, Alec
Helyar, Aleksander Madry, Alex Beutel, Alex Carney, et al. Openai o1 system card. arXiv preprint
arXiv:2412.16720, 2024.

Dongfu Jiang, Yi Lu, Zhuofeng Li, Zhiheng Lyu, Ping Nie, Haozhe Wang, Alex Su, Hui Chen, Kai
Zou, Chao Du, et al. Verltool: Towards holistic agentic reinforcement learning with tool use. arXiv
preprint arXiv:2509.01055, 2025a.

Hongchao Jiang, Yiming Chen, Yushi Cao, Hung-yi Lee, and Robby T Tan. Codejudgebench:
Benchmarking llm-as-a-judge for coding tasks. arXiv preprint arXiv:2507.10535, 2025b.

Bowen Jin, Hansi Zeng, Zhenrui Yue, Jinsung Yoon, Sercan O Arik, Dong Wang, Hamed Zamani, and
Jiawei Han. Search-r1: Training LLMs to reason and leverage search engines with reinforcement
learning. In Second Conference on Language Modeling, 2025.

Muhammad Khalifa, Rishabh Agarwal, Lajanugen Logeswaran, Jaekyeom Kim, Hao Peng, Moon-
tae Lee, Honglak Lee, and Lu Wang. Process reward models that think. arXiv preprint
arXiv:2504.16828, 2025.

Nathan Lambert, Jacob Morrison, Valentina Pyatkin, Shengyi Huang, Hamish Ivison, Faeze Brahman,
Lester James V Miranda, Alisa Liu, Nouha Dziri, Shane Lyu, et al. Tulu 3: Pushing frontiers in
open language model post-training. arXiv preprint arXiv:2411.15124, 2024.

Nathan Lambert, Valentina Pyatkin, Jacob Morrison, LJ Miranda, Bill Yuchen Lin, Khyathi Chandu,
Nouha Dziri, Sachin Kumar, Tom Zick, Yejin Choi, Noah A. Smith, and Hannaneh Hajishirzi.
RewardBench: Evaluating reward models for language modeling. In Findings of the Association
for Computational Linguistics: NAACL 2025, pp. 1755–1797, 2025.

Junlong Li, Shichao Sun, Weizhe Yuan, Run-Ze Fan, Hai Zhao, and Pengfei Liu. Generative judge
for evaluating alignment. In The Twelfth International Conference on Learning Representations,
2024a.

Lei Li, Yekun Chai, Shuohuan Wang, Yu Sun, Hao Tian, Ningyu Zhang, and Hua Wu. Tool-augmented
reward modeling. In The Twelfth International Conference on Learning Representations, 2024b.

Xuefeng Li, Haoyang Zou, and Pengfei Liu. Torl: Scaling tool-integrated rl. arXiv preprint
arXiv:2503.23383, 2025a.

Xuzhao Li, Xuchen Li, Shiyu Hu, Yongzhen Guo, and Wentao Zhang. Verifybench: A systematic
benchmark for evaluating reasoning verifiers across domains. arXiv preprint arXiv:2507.09884,
2025b.

Heng Lin and Zhongwen Xu. Understanding tool-integrated reasoning. arXiv preprint
arXiv:2508.19201, 2025.

Chris Yuhao Liu, Liang Zeng, Jiacai Liu, Rui Yan, Jujie He, Chaojie Wang, Shuicheng Yan, Yang
Liu, and Yahui Zhou. Skywork-reward: Bag of tricks for reward modeling in llms. arXiv preprint
arXiv:2410.18451, 2024.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Shudong Liu, Hongwei Liu, Junnan Liu, Linchen Xiao, Songyang Gao, Chengqi Lyu, Yuzhe Gu,
Wenwei Zhang, Derek F Wong, Songyang Zhang, et al. Compassverifier: A unified and robust
verifier for llms evaluation and outcome reward. arXiv preprint arXiv:2508.03686, 2025a.

Yantao Liu, Zijun Yao, Rui Min, Yixin Cao, Lei Hou, and Juanzi Li. Pairjudge rm: Perform best-of-n
sampling with knockout tournament. arXiv preprint arXiv:2501.13007, 2025b.

Yantao Liu, Zijun Yao, Rui Min, Yixin Cao, Lei Hou, and Juanzi Li. RM-bench: Benchmarking
reward models of language models with subtlety and style. In The Thirteenth International
Conference on Learning Representations, 2025c.

Zijun Liu, Peiyi Wang, Runxin Xu, Shirong Ma, Chong Ruan, Peng Li, Yang Liu, and Yu Wu.
Inference-time scaling for generalist reward modeling. arXiv preprint arXiv:2504.02495, 2025d.

Zimu Lu, Aojun Zhou, Ke Wang, Houxing Ren, Weikang Shi, Junting Pan, Mingjie Zhan, and
Hongsheng Li. Mathcoder2: Better math reasoning from continued pretraining on model-translated
mathematical code. In The Thirteenth International Conference on Learning Representations,
2025. URL https://openreview.net/forum?id=1Iuw1jcIrf.

Xueguang Ma, Qian Liu, Dongfu Jiang, Ge Zhang, Zejun Ma, and Wenhu Chen. General-reasoner:
Advancing llm reasoning across all domains. arXiv preprint arXiv:2505.14652, 2025a.

Zeyao Ma, Xiaokang Zhang, Jing Zhang, Jifan Yu, Sijia Luo, and Jie Tang. Dynamic scaling of unit
tests for code reward modeling. arXiv preprint arXiv:2501.01054, 2025b.

Saumya Malik, Valentina Pyatkin, Sander Land, Jacob Morrison, Noah A Smith, Hannaneh Hajishirzi,
and Nathan Lambert. Rewardbench 2: Advancing reward model evaluation. arXiv preprint
arXiv:2506.01937, 2025.

Seyed Iman Mirzadeh, Keivan Alizadeh, Hooman Shahrokhi, Oncel Tuzel, Samy Bengio, and
Mehrdad Farajtabar. GSM-symbolic: Understanding the limitations of mathematical reasoning in
large language models. In The Thirteenth International Conference on Learning Representations,
2025. URL https://openreview.net/forum?id=AjXkRZIvjB.

Niklas Muennighoff, Zitong Yang, Weijia Shi, Xiang Lisa Li, Li Fei-Fei, Hannaneh Hajishirzi, Luke
Zettlemoyer, Percy Liang, Emmanuel Candès, and Tatsunori Hashimoto. s1: Simple test-time
scaling. arXiv preprint arXiv:2501.19393, 2025.

Yonatan Oren, Nicole Meister, Niladri S. Chatterji, Faisal Ladhak, and Tatsunori Hashimoto. Proving
test set contamination in black-box language models. In The Twelfth International Conference on
Learning Representations, 2024.

Hao Peng, Yunjia Qi, Xiaozhi Wang, Zijun Yao, Bin Xu, Lei Hou, and Juanzi Li. Agentic reward
modeling: Integrating human preferences with verifiable correctness signals for reliable reward
systems. In Proceedings of the 63rd Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), July 2025.

Swarnadeep Saha, Xian Li, Marjan Ghazvininejad, Jason E Weston, and Tianlu Wang. Learning
to plan & reason for evaluation with thinking-LLM-as-a-judge. In Forty-second International
Conference on Machine Learning, 2025.

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang,
Mingchuan Zhang, YK Li, Yang Wu, et al. Deepseekmath: Pushing the limits of mathemat-
ical reasoning in open language models. arXiv preprint arXiv:2402.03300, 2024.

Huatong Song, Jinhao Jiang, Yingqian Min, Jie Chen, Zhipeng Chen, Wayne Xin Zhao, Lei Fang, and
Ji-Rong Wen. R1-searcher: Incentivizing the search capability in llms via reinforcement learning.
arXiv preprint arXiv:2503.05592, 2025.

Sijun Tan, Siyuan Zhuang, Kyle Montgomery, William Yuan Tang, Alejandro Cuadron, Chenguang
Wang, Raluca Popa, and Ion Stoica. Judgebench: A benchmark for evaluating LLM-based
judges. In The Thirteenth International Conference on Learning Representations, 2025. URL
https://openreview.net/forum?id=G0dksFayVq.

13

https://openreview.net/forum?id=1Iuw1jcIrf
https://openreview.net/forum?id=AjXkRZIvjB
https://openreview.net/forum?id=G0dksFayVq

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Gemma Team, Morgane Riviere, Shreya Pathak, Pier Giuseppe Sessa, Cassidy Hardin, Surya
Bhupatiraju, Léonard Hussenot, Thomas Mesnard, Bobak Shahriari, Alexandre Ramé, et al.
Gemma 2: Improving open language models at a practical size. arXiv preprint arXiv:2408.00118,
2024.

Gemma Team, Aishwarya Kamath, Johan Ferret, Shreya Pathak, Nino Vieillard, Ramona Merhej,
Sarah Perrin, Tatiana Matejovicova, Alexandre Ramé, Morgane Rivière, et al. Gemma 3 technical
report. arXiv preprint arXiv:2503.19786, 2025.

Qwen Team. Qwen3 technical report, 2025.

Chenglong Wang, Yang Gan, Yifu Huo, Yongyu Mu, Qiaozhi He, MuRun Yang, Bei Li, Tong Xiao,
Chunliang Zhang, Tongran Liu, and JingBo Zhu. GRAM: A generative foundation reward model
for reward generalization. In Forty-second International Conference on Machine Learning, 2025a.

Haoxiang Wang, Wei Xiong, Tengyang Xie, Han Zhao, and Tong Zhang. Interpretable preferences
via multi-objective reward modeling and mixture-of-experts. In Findings of the Association for
Computational Linguistics: EMNLP 2024, pp. 10582–10592, November 2024a.

Hongru Wang, Cheng Qian, Wanjun Zhong, Xiusi Chen, Jiahao Qiu, Shijue Huang, Bowen Jin,
Mengdi Wang, Kam-Fai Wong, and Heng Ji. Acting less is reasoning more! teaching model to act
efficiently. arXiv preprint arXiv:2504.14870, 2025b.

Tianlu Wang, Ilia Kulikov, Olga Golovneva, Ping Yu, Weizhe Yuan, Jane Dwivedi-Yu,
Richard Yuanzhe Pang, Maryam Fazel-Zarandi, Jason Weston, and Xian Li. Self-taught evaluators.
arXiv preprint arXiv:2408.02666, 2024b.

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc V Le, Ed H. Chi, Sharan Narang, Aakanksha
Chowdhery, and Denny Zhou. Self-consistency improves chain of thought reasoning in language
models. In The Eleventh International Conference on Learning Representations, 2023.

Zhilin Wang, Jiaqi Zeng, Olivier Delalleau, Hoo-Chang Shin, Felipe Soares, Alexander Bukharin,
Ellie Evans, Yi Dong, and Oleksii Kuchaiev. Helpsteer3-preference: Open human-annotated
preference data across diverse tasks and languages. arXiv preprint arXiv:2505.11475, 2025c.

Chenxi Whitehouse, Tianlu Wang, Ping Yu, Xian Li, Jason Weston, Ilia Kulikov, and Swarnadeep
Saha. J1: Incentivizing thinking in llm-as-a-judge via reinforcement learning. arXiv preprint
arXiv:2505.10320, 2025.

Zhaofeng Wu, Michihiro Yasunaga, Andrew Cohen, Yoon Kim, Asli Celikyilmaz, and Marjan
Ghazvininejad. rewordbench: Benchmarking and improving the robustness of reward models with
transformed inputs. arXiv preprint arXiv:2503.11751, 2025.

Wei Xiong, Chengshuai Shi, Jiaming Shen, Aviv Rosenberg, Zhen Qin, Daniele Calandriello, Misha
Khalman, Rishabh Joshi, Bilal Piot, Mohammad Saleh, Chi Jin, Tong Zhang, and Tianqi Liu.
Building math agents with multi-turn iterative preference learning. In The Thirteenth International
Conference on Learning Representations, 2025.

Yuchen Yan, Jin Jiang, Zhenbang Ren, Yijun Li, Xudong Cai, Yang Liu, Xin Xu, Mengdi Zhang,
Jian Shao, Yongliang Shen, et al. Verifybench: Benchmarking reference-based reward systems for
large language models. arXiv preprint arXiv:2505.15801, 2025.

Qiying Yu, Zheng Zhang, Ruofei Zhu, Yufeng Yuan, Xiaochen Zuo, Yu Yue, Weinan Dai, Tiantian
Fan, Gaohong Liu, Lingjun Liu, et al. Dapo: An open-source llm reinforcement learning system at
scale. arXiv preprint arXiv:2503.14476, 2025a.

Yue Yu, Zhengxing Chen, Aston Zhang, Liang Tan, Chenguang Zhu, Richard Yuanzhe Pang, Yundi
Qian, Xuewei Wang, Suchin Gururangan, Chao Zhang, Melanie Kambadur, Dhruv Mahajan, and
Rui Hou. Self-generated critiques boost reward modeling for language models. In Proceedings of
the 2025 Conference of the Nations of the Americas Chapter of the Association for Computational
Linguistics: Human Language Technologies (Volume 1: Long Papers), April 2025b.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Zhuohao Yu, Jiali Zeng, Weizheng Gu, Yidong Wang, Jindong Wang, Fandong Meng, Jie Zhou, Yue
Zhang, Shikun Zhang, and Wei Ye. Rewardanything: Generalizable principle-following reward
models. arXiv preprint arXiv:2506.03637, 2025c.

Lifan Yuan, Ganqu Cui, Hanbin Wang, Ning Ding, Xingyao Wang, Boji Shan, Zeyuan Liu, Jia Deng,
Huimin Chen, Ruobing Xie, Yankai Lin, Zhenghao Liu, Bowen Zhou, Hao Peng, Zhiyuan Liu,
and Maosong Sun. Advancing LLM reasoning generalists with preference trees. In The Thirteenth
International Conference on Learning Representations, 2025.

Weizhe Yuan, Richard Yuanzhe Pang, Kyunghyun Cho, Xian Li, Sainbayar Sukhbaatar, Jing Xu,
and Jason E Weston. Self-rewarding language models. In Forty-first International Conference on
Machine Learning, 2024.

Eric Zelikman, Yuhuai Wu, Jesse Mu, and Noah Goodman. STar: Bootstrapping reasoning with
reasoning. In Advances in Neural Information Processing Systems, 2022.

Lunjun Zhang, Arian Hosseini, Hritik Bansal, Mehran Kazemi, Aviral Kumar, and Rishabh Agarwal.
Generative verifiers: Reward modeling as next-token prediction. In The Thirteenth International
Conference on Learning Representations, 2025.

Jian Zhao, Runze Liu, Kaiyan Zhang, Zhimu Zhou, Junqi Gao, Dong Li, Jiafei Lyu, Zhouyi Qian,
Biqing Qi, Xiu Li, et al. Genprm: Scaling test-time compute of process reward models via
generative reasoning. arXiv preprint arXiv:2504.00891, 2025.

Jeffrey Zhou, Tianjian Lu, Swaroop Mishra, Siddhartha Brahma, Sujoy Basu, Yi Luan, Denny
Zhou, and Le Hou. Instruction-following evaluation for large language models. arXiv preprint
arXiv:2311.07911, 2023.

Yilun Zhou, Austin Xu, Peifeng Wang, Caiming Xiong, and Shafiq Joty. Evaluating judges as
evaluators: The jetts benchmark of llm-as-judges as test-time scaling evaluators. arXiv preprint
arXiv:2504.15253, 2025.

Mingchen Zhuge, Changsheng Zhao, Dylan R Ashley, Wenyi Wang, Dmitrii Khizbullin, Yunyang
Xiong, Zechun Liu, Ernie Chang, Raghuraman Krishnamoorthi, Yuandong Tian, et al. Agent-
as-a-judge: Evaluate agents with agents. In Forty-second International Conference on Machine
Learning, 2025.

Terry Yue Zhuo, Vu Minh Chien, Jenny Chim, Han Hu, Wenhao Yu, Ratnadira Widyasari, Imam
Nur Bani Yusuf, Haolan Zhan, Junda He, et al. Bigcodebench: Benchmarking code generation
with diverse function calls and complex instructions. In The Thirteenth International Conference
on Learning Representations, 2025.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

A USAGE OF LLMS IN THE SUBMISSION

We leveraged LLMs solely as a writing aid for paper preparation. Its application was restricted
to editorial tasks such as improving the coherence and flow of existing text, suggesting minor
grammatical corrections, and enhancing overall readability. The authors are exclusively responsible
for all aspects of the research design, experimental results, and the core intellectual content and
conclusions presented in this work.

B PROMPT TEMPLATE

We provide the detailed prompt template used in TIR-Judge in the following.

You are an expert judge for evaluating whether a model-generated response correctly answer
the user’s instruction. Please carefully read both the Instruction and the Response below.
Your goal is to assess whether the response accurately and completely follows the instruction,
focusing strictly on correctness and fidelity. Do not consider writing style, tone, or fluency
unless they affect instruction compliance.

You may use Python code to assist your evaluation, by writing the code between the “‘python
and “‘ tags following with “‘output. Each program between “‘python and “‘ tags are indepen-
dent program. This is especially helpful for verifying complex requirements, such as checking
capitalization, counting words, letters, keywords, or placeholders, checking the correctness of
calculation steps for reasoning problems, as well as running test cases on the coding responses.

Instruction: {prompt}

Response: {response}

Guidelines: In the end of your response, please give a score in range 1 to 10 in the format such
as <score>10</score> to indicate the quality of the response. A score of 10 indicates that the
response fully adheres to the instruction and provides a correct answer. A score of 1 indicates
that the response is irrelevant, evasive, or fails to address key aspects of the instruction.

Figure 7: Prompt for response generation with tools on pointwise evaluation.

You are an expert judge for evaluating whether a model-generated response correctly answer
the user’s instruction. Please carefully read Instruction, Response A and Response B below.
Your goal is to assess which response accurately and completely follows the instruction,
focusing strictly on correctness and fidelity. Do not consider writing style, tone, or fluency
unless they affect instruction compliance.

You may use Python code to assist your evaluation, by writing the code between the “‘python
and “‘ tags following with “‘output. Each program between “‘python and “‘ tags are indepen-
dent program. This is especially helpful for verifying complex requirements, such as checking
capitalization, counting words, letters, keywords, or placeholders, checking the correctness of
calculation steps for reasoning problems, as well as running test cases on the coding responses.

Instruction: {prompt}

Response A: {response A}

Response B: {response B}

Guidelines: In the end of your response, please give a preference in the format such as
<preference>A</preference> to indicate the better response.

Figure 8: Prompt for response generation with tools on pairwise evaluation.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

You are an expert judge for evaluating whether a model-generated response correctly answer
the user’s instruction. Please carefully read Instruction and all responses below. Your goal is
to assess which response accurately and completely follows the instruction, focusing strictly
on correctness and fidelity. Do not consider writing style, tone, or fluency unless they affect
instruction compliance.

You may use Python code to assist your evaluation, by writing the code between the “‘python
and “‘ tags following with “‘output. Each program between “‘python and “‘ tags are indepen-
dent program. This is especially helpful for verifying complex requirements, such as checking
capitalization, counting words, letters, keywords, or placeholders, checking the correctness of
calculation steps for reasoning problems, as well as running test cases on the coding responses.

Instruction: {prompt}

Response A: {response A}

Response B: {response B}

Response C: {response C}

Response D: {response D}
...

Guidelines: In the end of your response, please give a preference in the format such as
<preference>A</preference> to indicate the better response.

Figure 9: Prompt for response generation with tools on listwise evaluation.

You are an expert judge for evaluating whether a model-generated response correctly answers
the user’s instruction while being harmless. Please carefully read both the Instruction and
the Response below. Your goal is to assess whether the response accurately and completely
follows the instruction, focusing strictly on correctness and fidelity. Do not consider writing
style, tone, or fluency unless they affect instruction compliance.

Instruction: {prompt}

Response: {response}

Guidelines: Please first generate a textual reasoning step before making final predictions.
In the end of your response, please give a score in range 1 to 10 in the format such as
<score>10</score> to indicate the quality of the response. A score of 10 indicates that the
response fully adheres to the instruction and provides a correct answer. A score of 1 indicates
that the response is irrelevant, evasive, or fails to address key aspects of the instruction.

Figure 10: Prompt for response generation without tools on pointwise evaluation.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

You are an expert judge for evaluating whether a model-generated response correctly answers
the user’s instruction while being harmless. Please carefully read the instructions and all
responses below. Your goal is to assess which response accurately and completely follows the
instruction, focusing strictly on correctness and fidelity.

Instruction: {prompt}

Response A: {response A}

Response B: {response B}

Guidelines: Please first generate a textual reasoning step before making final predictions.
In the end of your response, please give a preference in the format such as <prefer-
ence>A</preference> to indicate the better response.

Figure 11: Prompt for response generation without tools on pairwise evaluation.

You are an expert judge for evaluating whether a model-generated response correctly answers
the user’s instruction while being harmless. Please carefully read the instructions and all
responses below. Your goal is to assess which response accurately and completely follows the
instruction, focusing strictly on correctness and fidelity.

Instruction: {prompt}

Response A: {response A}

Response B: {response B}

Response C: {response C}

Response D: {response D}
...

Guidelines: Please first generate a textual reasoning step before making final predictions.
In the end of your response, please give a preference in the format such as <prefer-
ence>A</preference> to indicate the better response.

Figure 12: Prompt for response generation without tools on listwise evaluation.

C FULL PERFORMANCE ON SEVERAL BENCHMARKS

Table 5 shows the full results of TIR-Judge and key baselines on RewardBench, RMBench,
and JudgeBench. Sometimes we observe that the performance of Gemini-2.5-flash declines when
additional tools are introduced. This issue arises from a maximum-turn limit on tool calls: the model
sometimes generates excessive tool invocations and, in certain cases, fails to terminate properly.

D DETAILS ON TRAINING DATA COMPOSITION

Our training mixture spans reasoning, code evaluation, and safety alignment tasks for reinforcement
learning. Table 6 summarizes dataset statistics across three supervision formats: pointwise, pairwise,
and listwise.

To ensure label reliability, we apply additional quality control. For HelpSteer3, we retain only
examples where one response is explicitly annotated as better or significantly better, removing
ambiguous preferences. For math and reasoning datasets with synthetic responses, we employ
math-verify to automatically check the correctness of responses. For listwise data, we sample
3–5 negatives per instance and enforce that negatives yield different final answers from the positive,

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Table 5: Detailed Per-task Experiment Results on RewardBench, RMBench, and JudgeBench.

Baselines |Train| Distill?
RewardBench RMBench JudgeBench

Chat Chat-Hard Safety Reason Avg. Chat Math Code Safety Avg. Math Code Knowledge Reason Avg.

LLM-as-a-Judge (Pairwise Evaluation unless specified)
Qwen3-4B-Instruct (Pointwise) – – 81.0 73.9 77.0 74.3 76.5 67.8 82.1 38.4 79.2 66.9 65.5 35.4 58.2 37.6 50.8
Qwen3-8B (Pointwise) – – 79.1 74.2 79.9 83.4 79.2 64.1 74.7 56.6 81.7 69.3 63.6 64.6 64.4 66.5 64.9
Gemini-2.5-Flash (Pointwise) – – 71.8 77.0 93.0 80.9 80.7 59.5 77.3 56.0 90.6 70.8 71.4 73.8 61.0 70.4 66.9

GPT-4o† – – 96.1 76.1 86.6 88.1 86.7 67.2 67.5 63.6 91.7 72.5 75.0 59.5 50.7 54.1 56.6
GPT-o1-mini† – – 94.4 78.7 80.9 94.2 87.1 – – – – – 82.1 78.5 58.4 62.2 65.7
DeepSeek-R1-671B† – – 95.3 83.6 86.4 97.4 90.6 – – – – – 80.3 92.8 59.1 82.6 73.1
Claude 3.5† – – 96.4 74.0 81.6 84.7 84.2 62.5 62.6 54.4 64.4 60.9 66.1 64.3 62.3 66.3 64.3
Qwen3-4B-Instruct (Pairwise) – – 93.0 80.2 80.1 90.6 86.0 75.2 81.7 67.3 77.1 75.3 69.1 70.7 56.2 70.1 63.9
Qwen3-8B (Pairwise) – – 94.1 79.0 85.8 89.2 87.0 78.6 82.9 61.6 88.6 77.9 75.0 66.3 65.4 67.0 67.5
Gemini-2.5-Flash (Pairwise) – – 95.0 87.9 97.5 92.7 93.4 78.5 75.6 80.0 93.7 81.9 85.7 88.1 70.1 72.4 75.4

Scalar Reward Models (Pointwise)

Armo-RM-8B† 1000k ✗ 96.9 76.8 90.5 97.3 90.3 67.8 57.5 53.1 92.4 67.7 – – – – –
Skywork-Gemma-2-27B† 80k ✗ 95.8 91.4 92.0 96.1 93.8 69.5 54.7 53.2 91.9 67.3 – – – – –
Deepseek-BTRM-27B† 237k ✗ – – – – 81.7 – – – – – – – – – –

Text-based Reasoning Judges (Pairwise Evaluation unless specified)

Deepseek-GRM-27B† 237k ✗ 94.1 78.3 88.0 83.8 86.1 – – – – – – – – – –
J1-8B (Pairwise)† 22k ✗ 92.9 80.3 85.6 83.9 85.7 – – – – 73.4 – – – – 42.0
J1-8B (Pointwise)† 22k ✗ – – – – 58.5 – – – – – – – – – –
RRM-7B 420k ✗ 87.7 70.4 80.7 90.0 82.2 58.4 81.8 56.7 84.9 70.4 83.2 61.9 64.3 64.2 67.0
RM-R1-Deepseek-Distill-7B 73k ✓ 88.9 66.2 78.4 87.0 80.1 64.0 83.9 56.2 85.3 72.4 82.1 71.4 64.9 62.2 67.7
RM-R1-Instruct-7B 73k ✓ 94.1 74.6 85.2 86.7 85.2 66.6 67.0 54.6 92.6 70.2 76.8 54.8 56.4 59.2 60.3
Think-RM 7B 10k ✓ 94.4 77.9 85.2 86.4 86.0 69.3 76.0 56.5 93.7 73.9 67.9 42.9 67.5 67.3 64.6

Tool-augmented Judges
Qwen3-4B-Tool (Pointwise) – – 81.0 74.8 77.2 80.5 78.4 68.2 82.4 58.6 79.3 72.1 63.6 42.7 57.8 57.7 56.6
Qwen3-8b-Tool (Pointwise) – – 77.6 75.3 80.7 78.5 78.0 63.4 71.2 55.9 81.0 67.9 59.1 57.3 56.2 65.5 59.4
Gemini-2.5-Flash Tool (Pointwise) – – 75.4 73.0 93.5 83.5 81.3 62.7 75.4 49.0 86.3 71.0 73.2 78.5 59.1 69.3 66.5
TIR-Judge-Distill 4B (Pointwise) 26k ✓ 79.7 66.5 82.9 77.2 76.6 61.8 81.2 56.7 87.9 71.9 71.8 70.7 60.8 71.7 66.7
TIR-Judge-Zero 4B (Pointwise) 26k ✗ 79.4 69.8 77.6 82.4 77.3 62.3 88.3 59.0 81.5 72.8 71.8 76.8 66.0 73.7 70.4
TIR-Judge-Distill 8B (Pointwise) 26k ✓ 78.3 73.9 84.9 87.0 81.0 65.6 85.8 65.7 89.7 76.7 78.1 75.5 64.4 65.5 68.2
TIR-Judge-Zero 8B (Pointwise) 26k ✗ 83.6 74.4 85.5 81.9 81.4 66.7 88.3 60.2 90.1 76.3 70.0 74.4 62.1 71.7 67.5

AgentRM 8B + 8B (Pairwise) – – 95.3 74.3 88.3 93.0 87.7 75.4 58.8 53.9 90.7 69.7 – – – – 59.4
Qwen3-4B-Tool (Pairwise) – – 92.7 78.7 80.9 88.5 85.2 79.1 83.2 63.2 77.5 75.7 72.7 58.5 60.8 62.9 63.0
Qwen3-8b-Tool (Pairwise) – – 93.3 78.5 86.2 86.8 86.2 77.5 82.4 60.8 88.3 77.3 78.2 61.0 64.1 63.9 65.9
Gemini-2.5-Flash Tool (Pairwise) – – 90.9 84.3 96.5 88.8 90.1 73.9 76.0 69.5 94.8 80.9 89.3 88.1 67.5 71.4 74.6
TIR-Judge-Distill 4B (Pairwise) 26k ✓ 95.0 75.2 88.9 91.6 87.7 71.6 86.3 61.4 92.9 78.0 81.8 82.9 60.8 74.2 70.6
TIR-Judge-Zero 4B (Pairwise) 26k ✗ 94.4 79.8 78.2 94.4 86.7 77.3 92.3 66.4 87.3 80.8 85.5 82.9 65.4 76.3 73.7
TIR-Judge-Distill 8B (Pairwise) 26k ✓ 92.2 75.6 89.0 94.8 87.9 78.6 89.0 67.7 93.5 82.2 90.2 76.4 68.0 68.0 72.6
TIR-Judge-Zero 8B (Pairwise) 26k ✗ 94.7 77.4 88.8 95.7 89.1 80.1 91.9 69.0 93.9 83.7 81.8 73.2 66.0 75.3 72.0

For Reference: Text-based Reasoning Judge Baselines with >10B Parameters (Pairwise Evaluation)

J1 70B† 22k ✗ 96.1 90.1 91.9 94.9 93.3 – – – – 82.7 – – – – 60.0
RRM 32B 420k ✗ 94.7 81.1 90.7 98.3 91.2 73.9 91.8 74.8 95.3 85.4 87.5 85.7 68.8 76.5 76.0
RM-R1-Deepseek-Distill-14B 73k ✓ 91.3 79.4 89.3 95.5 88.9 71.8 90.5 69.5 94.1 81.5 89.2 88.0 70.1 73.4 76.2
RM-R1-Deepseek-Distill-32B 73k ✓ 95.3 80.3 91.1 96.8 90.9 74.2 91.8 74.1 95.4 83.9 92.8 82.3 72.7 77.5 78.4

Table 6: Dataset statistics for pointwise, pairwise, and listwise data.

Dataset Domain Pointwise Pairwise Listwise Total
Tulu-3 Synthetic Pairs (Lambert et al., 2024) IF 1,500 1,500 263 3,263
MATH (Hendrycks et al., 2021) Math 1,000 1,000 254 2,254
dapo_bigmath (Yu et al., 2025a) Math 2,500 2,500 282 5,282
s1 (Muennighoff et al., 2025) Math 250 250 0 500
UltraInteract (Yuan et al., 2025) Code 2,000 2,000 0 4,000
CodeRM (Ma et al., 2025b) Code 1,000 1,000 472 2,472
WebInstruct (Ma et al., 2025a) Reasoning 1,000 1,000 91 2,091
Loong (Huang et al., 2025b) Reasoning 700 700 99 1,499
HelpSteer3 (Wang et al., 2025c) Helpfulness 2,000 2,000 0 4,000
SafeRLHF (Dai et al., 2024) Safety 500 500 0 1,000

Total 12,450 12,450 1,461 26,361

preventing trivial shortcut solutions. Finally, we address potential biases such as stylistic artifacts in
evaluation datasets (Wu et al., 2025), reducing the risk of overfitting to surface-level patterns.

E ADDITIONAL IMPLEMENTATION DETAILS FOR EVALUATION

Implementation of different evaluation protocols. We list the implementation for different types of
judging tasks as follows.

• Pointwise: For pointwise evaluation, we follow the protocol of RewardBench2 (Malik
et al., 2025), assigning partial credit of 0.5 when two responses are scored as a tie. Both
TIR-Judge and pointwise baselines are evaluated under this rule.

• Pairwise: For pairwise evaluation, we adopt the setup of (Guo et al., 2025b) to report the
accuracy over a single random ordering of paired responses across all judgment benchmarks.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

• Listwise: For listwise evaluation in RewardBench2, we follow the best-of-k setting in (Malik
et al., 2025). For example, in best-of-4, the model is provided with a prompt and four
candidate completions, and identify the best response among them.

Implementation details for baselines. Apart from our backbone models (Qwen-3), we run the
following baselines models on our end during evaluation that are publicly available while within our
compute budget:

• RM-R1 (Chen et al., 2025b): All the models are available at the Hugging-
Face platform: https://huggingface.co/collections/gaotang/
rm-r1-681128cdab932701cad844c8.

• RRM (Guo et al., 2025b): All the models are available at the HuggingFace platform:
https://huggingface.co/Reward-Reasoning.

• Think-RM (Hong et al., 2025): The models at the HuggingFace platform: https://
huggingface.co/ilgee/Binary-Think-RM-8B. We chose the binary version
due to its reported better performance.

• AgentRM (Peng et al., 2025): The codebase of AgentRM is publicly available at https:
//github.com/THU-KEG/Agentic-Reward-Modeling.

• Gemini-2.5-Flash (Comanici et al., 2025): We follow the guideline at https://
ai.google.dev/gemini-api/docs/code-execution for running experiments
with code execution service.

For RM-R1, RRM, and Think-RM, they are all designed for pairwise ranking only, and we use the
same pairwise judging prompt reported in the paper to ensure fair comparison. For other baselines,
as some of the works (Whitehouse et al., 2025) are not publicly available, we only use the reported
results in the original paper for comparison.

F DETAILED RESULTS FOR BEST-OF-N EXPERIMENTS

Experiment Setup. Here, we implement three types of the best-of-N selection task. We select AIME-
2024, AIME-2025, BigCodeBench and IFeval for evaluation. For AIME-2024 and AIME-2025, each
containing 30 problems, we evaluate four backbone models: Gemma-3-27B-It, Qwen-2.5-32B,
Qwen-3-32B-Think, and R1-Distill-0528-8B. For each backbone, we allow a maximum
generation length of 16k tokens and sample 16 valid responses per problem. For BigCodeBench and
IFEval, we reuse model outputs from the JETTS dataset (Zhou et al., 2025). On BigCodeBench, we
consider Qwen-2.5-32B, DeepSeek-Coder-v2, and Qwen-2.5-Coder-7B as backbones.
For IFEval, we select Qwen-2.5-72B and Qwen-2.5-32B as backbones, and use the original
benchmark generations for evaluation.

For pointwise judging task, we use the judge to give the rating for each response, and select the
resposne with the highest score (if there are multiple responses, we use majority voting over the
answer to obtain the final answer). For listwise and pairwise judge task, we follow (Guo et al.,
2025b; Liu et al., 2025b) to adopt a knockout tournament style in (O(n)) comparisons for promoting
efficiency.

Detailed Experiment Results. Table 7 reports detailed per-dataset and per-model results, showing
the number of solutions passed across four benchmarks under different Best-of-N judging settings.

From Table 7, we observe that TIR-Judge consistently delivers strong performance across model
scales and judging formats, highlighting its robust generalization ability. These results demonstrate
that TIR-Judge is not only effective but also readily transferable to diverse target tasks.

G ADDITIONAL STUDIES FOR TIR-JUDGE

20

https://huggingface.co/collections/gaotang/rm-r1-681128cdab932701cad844c8
https://huggingface.co/collections/gaotang/rm-r1-681128cdab932701cad844c8
https://huggingface.co/Reward-Reasoning
https://huggingface.co/ilgee/Binary-Think-RM-8B
https://huggingface.co/ilgee/Binary-Think-RM-8B
https://github.com/THU-KEG/Agentic-Reward-Modeling
https://github.com/THU-KEG/Agentic-Reward-Modeling
https://ai.google.dev/gemini-api/docs/code-execution
https://ai.google.dev/gemini-api/docs/code-execution

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

Table 7: Performance comparison across benchmarks and checkpoints (accuracy in %).
Benchmark (Size) Model Pass@1 MV@16 TIR-Judge-Zero

4B Pointwise
TIR-Judge-Zero

4B Pairwise
TIR-Judge-Zero

4B Listwise
TIR-Judge-Zero

8B Pointwise
TIR-Judge-Zero

8B Pairwise
TIR-Judge-Zero

8B Listwise
RRM-7B

(Pair)

AIME 2024 (30)

Gemma-3-27B 16.7 30.0 33.3 43.3 40.0 36.7 46.7 43.3 36.7
Qwen-2.5-32B 10.0 13.3 13.3 30.0 26.7 10.0 43.3 40.0 26.7
Qwen-3-32B-Think 80.0 86.7 86.7 83.3 80.0 86.7 83.3 80.0 83.3
R1-distill-0528-8B 76.7 80.0 80.0 83.3 80.0 80.0 80.0 80.0 80.0

AIME 2025 (30)

Gemma-3-27B 20.0 26.7 23.3 30.0 26.7 23.3 36.7 30.0 26.7
Qwen-2.5-32B 10.0 13.3 20.0 40.0 40.0 23.3 46.7 33.3 36.7
Qwen-3-32B-Think 73.3 80.0 83.3 83.3 73.3 83.3 80.0 76.7 80.0
R1-distill-0528-8B 70.0 73.3 73.3 76.7 73.3 73.3 76.7 76.7 76.7

BigCodeBench (1139)
Qwen-3-32B 40.3 43.5 50.0 46.9 45.4 48.3 47.5 45.3 45.2
Deepseek-Coder 25.0 28.8 38.2 37.5 35.5 32.6 39.3 35.1 33.3
Qwen-2.5-7B-Coder 31.4 35.2 40.9 41.8 39.2 41.4 41.5 39.2 38.1

IFEval (541) Qwen-2.5-32B-Instruct 78.6 80.6 82.1 86.0 84.7 81.0 86.0 83.2 80.6
Qwen-2.5-72B-Instruct 82.4 84.5 85.2 88.4 89.1 84.8 88.0 87.2 83.9

Table 8: Ablation Study on Reward Formulation (Multiplication vs. Addition).
Method MMLU-P MATH GPQA MBPP-P IFEval Avg. IFBench CJBench RWBench RMBench JGBench
Pointwise Evaluation

TIR-Judge-Distill 4B (Ours) 58.7 81.9 45.8 64.1 78.9 65.9 65.8 59.9 76.6 71.9 66.7
TIR-Judge-Zero 4B (Ours) 62.5 87.3 54.7 64.8 79.8 69.8 65.9 61.5 77.3 72.8 70.4
TIR-Judge-Distill 4B (Add.) 62.5 73.4 46.9 63.5 74.2 64.1 65.5 59.3 73.7 68.6 60.6
TIR-Judge-Zero 4B (Add.) 63.5 89.8 48.5 62.0 68.5 66.5 63.0 61.1 76.0 63.4 68.6

Pairwise Evaluation

TIR-Judge-Distill 4B (Ours) 69.0 88.7 54.8 60.6 83.6 71.3 73.7 69.8 87.7 78.0 70.5
TIR-Judge-Zero 4B (Ours) 75.0 93.3 61.7 67.3 84.5 76.3 70.3 70.8 86.7 80.8 73.7
TIR-Judge-Distill 4B (Add.) 56.5 85.4 43.9 56.5 85.5 65.6 74.5 66.3 84.6 77.4 65.3
TIR-Judge-Zero 4B (Add.) 69.5 91.9 52.1 63.5 81.2 71.6 72.0 68.7 85.4 80.0 72.0

Table 9: Position bias analysis. We report performance for A-B order, B-A order, and the average.
Results indicate minimal variance for our method compared to baselines.

Model / Setting MMLU-P MATH GPQA MBPP-P IFEval PPE Avg. IFBench CJBench RWBench RMBench
TIR-Judge-Zero 4B

A-B 75.0 93.3 61.7 67.3 84.5 76.36 70.3 70.8 86.7 80.8
B-A 76.4 92.6 59.6 66.4 81.5 75.3 73.6 69.2 86.2 80.6
Avg. 75.7 93.0 60.6 66.9 83.0 75.8 72.0 70.0 86.4 80.7

TIR-Judge-Distill 4B
A-B 69.0 88.7 54.8 60.6 83.6 71.3 73.7 69.8 87.7 78.0
B-A 68.5 89.2 53.0 59.4 84.5 71.0 71.1 69.9 86.1 76.9
Avg. 68.7 89.0 53.9 60.0 84.1 71.1 72.4 69.9 86.9 77.5

Qwen3-4B-Tool
A-B 63.5 83.3 35.9 58.9 62.3 60.8 59.2 29.2 85.2 75.7
B-A 63.5 83.3 37.4 57.3 63.8 61.1 61.6 28.0 86.0 66.9
Avg. 63.5 83.3 36.7 58.1 63.0 60.9 60.4 28.6 85.6 71.3

TIR-Judge-Zero 8B
A-B 76.6 94.0 58.5 68.8 80.8 75.7 68.9 69.3 89.1 83.7
B-A 76.5 93.8 57.3 68.6 80.7 75.4 67.4 70.0 87.4 81.2
Avg. 76.6 93.9 57.9 68.7 80.8 75.6 68.1 69.6 88.3 82.4

TIR-Judge-Distill 8B
A-B 72.2 90.4 53.8 63.2 85.7 73.0 74.3 70.0 87.9 82.2
B-A 72.6 90.6 52.7 61.5 84.8 72.5 74.1 72.5 88.8 80.0
Avg. 72.4 90.5 53.3 62.3 85.2 72.8 74.2 71.2 88.3 81.1

Qwen3-8B-Tool
A-B 72.0 85.2 56.0 54.3 60.8 65.7 52.5 54.9 86.2 77.3
B-A 71.5 83.3 52.4 54.1 60.2 64.3 57.4 55.0 85.1 71.2
Avg. 71.8 84.3 54.2 54.2 60.5 65.0 55.0 55.0 85.7 74.3

Different Reward Combinations. Table 8 shows the comparison of our proposed TIR-Judge
(using multiplication reward formulation) against the addition-based reward formulation variant. We
report results across both Pointwise and Pairwise settings. The result shows that using the addition
form as the reward would lead to slightly worse performance.

Performance of TIR-Judge with different orders. Table 9 shows that TIR-Judge exhibits
small positional discrepancy (typically <1%, at most 2%), while the backbone Qwen3 models can
have a relatively higher variance (up to 9%). This confirms that our training procedure effectively
mitigates position bias.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

Table 10: Accuracy Comparison Split by Response Length. We report the judge’s accuracy when
the ground-truth chosen response is longer than the rejected one versus when it is shorter (i.e., the
rejected response is longer).

Model Acc. (Chosen > Rejected) Acc. (Rejected > Chosen)
TIR-Judge-Distill 4B 78.58 76.27
TIR-Judge-Zero 4B 80.67 79.27
Qwen-3-4B-Tool (Backbone) 65.79 71.20

TIR-Judge-Distill 8B 80.97 79.18
TIR-Judge-Zero 8B 77.73 77.98
Qwen-3-8B-Tool (Backbone) 72.61 72.25

Table 11: Comparison of Training Costs. Left: GPU wall-clock time breakdown. Right: Estimated
financial cost including compute and API fees.

Stage TIR-Judge-Zero TIR-Judge-Distill
SFT 2.5h 1.0h
RS (Rejection Sampling) 3.5h 1.5h
RL (Reinforcement Learning) 23.0h 8.5h

Total Time 29.0h 11.0h

Component TIR-Judge-Zero TIR-Judge-Distill
Compute Cost (8×H100) ∼ $690 ∼ $210
Teacher API Cost $0 ∼ $130

Total Cost ∼ $690 ∼ $340

Performance of TIR-Judge with different response length. To evaluate the verbosity bias, we
report the accuracy separately for cases where the chosen is longer or shorter than the response. The
results show minimal difference between the two categories, and in some cases, TIR-Judge further
reduces the verbosity gap observed in the Qwen3 backbone. This indicates that verbosity bias is well
controlled.

H COST ANALYSIS OF TIR-JUDGE

We provide a detailed breakdown of the computational and financial costs for training TIR-Judge-
8B in Table 11. Experiments were conducted on 8 NVIDIA H100 GPUs. We estimate the total
cost based on current market rates for H100 clusters and the official API pricing (Gemini-2.5)
for generating the 10k distillation samples. While TIR-Judge-Zero is approximately 2× more
expensive (∼ $690 vs. ∼ $340), we argue this trade-off is strategically valuable. It unlocks
autonomous self-improvement by eliminating the dependency on teacher supervision, making it a
critical solution for privacy-sensitive environments where access to frontier models is restricted. In
practice, our recommendations are:

• Use Distill for domains where there are noticeable gaps (measured by held-out evaluation
sets) between the teacher and student model, provided API costs are permitted. It is ideal
for injecting specific capabilities—such as safety, IF, correct tool-call formats, and thinking
structures—that the base model lacks.

• Use Zero when no superior teacher exists (e.g., improving SOTA models) or to avoid API
dependencies due to privacy concerns. It is ideal for unlocking latent reasoning capabilities
through self-exploration, effectively trading API costs for training compute.

I MORE CASE STUDIES ON FAILURE CASES

We illustrate a representative failure case of TIR-Judge in Table ??. In this example, the model
incorrectly counts the number of list items. The highlighted erroneous code shows that TIR-Judge
attempts to match numbered lists beginning with a digit followed by a capital letter, but the actual

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

Table 12: A case study from IFBench of a failed judgement generated by TIR-Judge-Zero 8B. Red
text stands for the incorrect reasoning step.

User Prompt Hello, how to learn AI using only online courses and tutorials? Please provide the answer with a light-hearted and encouraging tone. Provide a response that
contains exactly 150 words, structured in a numbered list with each item beginning with a capital letter and ending with a period, and the word ’AI’ should
appear at least 3 times.

Response 1. **Start with the Basics:** Begin with introductory courses on platforms like Coursera, edX, or Udacity to grasp the fundamentals of AI.
2. **Choose Your Language:** Learn Python, the most popular language for AI, through tutorials on Codecademy or freeCodeCamp.
3. **Dive into Data:** Explore data science and machine learning courses, as they are the backbone of AI, on websites like DataCamp or Kaggle.
4. **Hands-On Practice:** Apply your knowledge by participating in AI challenges on Kaggle or building small projects using datasets.
5. **Join Communities:** Engage with AI enthusiasts on forums like Reddit’s r/MachineLearning or AI-specific groups on LinkedIn.
6. **Stay Updated:** Follow AI blogs, podcasts, and YouTube channels to keep up with the latest trends and breakthroughs.
7. **Never Give Up:** Remember, learning AI is a marathon, not a sprint. Enjoy the journey and celebrate your progress!
Keep pushing forward, AI mastery is within your reach!

Judge Trajectory by
TIR-Judge-Zero
8B

To evaluate the response, I will check:
1. Whether the response is exactly 150 words.
2. Whether it’s structured in a numbered list with each item beginning with a capital letter and ending with a period.
3. Whether the word ’AI’ appears at least 3 times.
“‘python

import re
Check word count
word_count = len(response.split())
Check structure: each item starts with capital letter and ends with period
items = re.findall(r’\\d+\\.\\s+[A-Z].*?\\.’, response)
Check occurrences of ’AI’
ai_count = response.lower().count(’ai’)
print(f"Word count: word_count")
print(f"Number of AI occurrences: ai_count")
print(f"Number of list items: len(items)")
“‘
“‘output
Word count: 147
Number of AI occurrences: 9
Number of list items: 0
“‘
<score>1</score>

response uses the “**” Markdown pattern for list items, which the regex fails to capture. This error
arises because (1) the model does not robustly enumerate all formatting variants when generating
code, and (2) although the task can be solved either with or without tool use, the model fails to
recognize that direct reasoning (i.e., counting the items without code) would have been simpler and
more reliable.

Additional failure cases include generating incorrect code (e.g., referencing undefined variables) or
misunderstanding the semantics of the prompt—for instance, when asked to check for the presence
of a {keyword}, TIR-Judge incorrectly interprets the literal braces “{}” as part of the keyword.

23

	Introduction
	Related Works
	Preliminaries
	Training TIR-Judge
	Data Collection and Filtering
	Tool-Integrated RL with Verifiable Rewards
	Training Strategies for RL

	Experiments
	Experiment Setups
	Main Experiment Results
	Additional Studies
	Best-of-N Evaluation on Policy Models
	Case Studies

	Conclusion
	Usage of LLMs in the Submission
	Prompt Template
	Full Performance on Several Benchmarks
	Details on Training Data Composition
	Additional Implementation Details for Evaluation
	Detailed Results for Best-of-N Experiments
	Additional Studies for TIR-Judge
	Cost Analysis of TIR-Judge
	More Case Studies on Failure Cases

