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ABSTRACT

Large Language Models (LLMs) are widely used as judges to evaluate response
quality, providing a scalable alternative to human evaluation. However, most LLM
judges operate solely on intrinsic text-based reasoning, limiting their ability to ver-
ify complex constraints or perform accurate computation. Motivated by the success
of tool-integrated reasoning (TIR) in numerous tasks, we propose TIR-Judge, an
end-to-end RL framework for training LLM judges that integrates a Python executor
for precise evaluation. TIR-Judge is built on three principles: (i) diverse training
across verifiable and non-verifiable domains, (ii) flexible judgment formats (point-
wise, pairwise, listwise), and (iii) iterative RL that enables bootstrapping directly
from a base model without distillation. On seven public benchmarks, TIR-Judge
surpasses strong reasoning-based judges by up to 6.4% (pointwise) and 7.7% (pair-
wise), and achieves listwise performance comparable to Claude-Opus-4 despite
having only 8B parameters. Remarkably, TIR-Judge-Zero—trained entirely
without distillation—matches the performance of the distilled variants, showing
that tool-augmented judges can self-improve through reinforcement learning alone.

1 INTRODUCTION

Large Language Model (LLM)-based judges are emerging as a critical component in the LLM
ecosystem, typically used with scoring and ranking model outputs. This evaluation capability is
essential at multiple stages of LLM development: during post-training, judges provide preference
signals for alignment (Chen et al., 2025a; Whitehouse et al., 2025); at inference time, judges verify
and select responses through best-of-N decoding (Huang et al., 2025a); and during evaluation, judges
deliver reliable assessments without manual human assessment (Li et al., 2024a). Thus, training
accurate LLM-based judges is of great importance for building powerful language models.

Write a poem that's at least 350 
words about the beauty of eucalyptus 
trees and their many uses.

Where desert heat whispers and 
mountains rise tall,

The eucalyptus stands, a majestic call,
……

The response contains 392 words, 
which meets the requirements.

```python
response = """Where desert 
heat whispers ……"""
print(len(response.split())
```
```output
321
```
The response only contains 321 words, 
which does not meet the requirements.Text-based 

LLM judge

Response

User Prompt

Tool-integrated 
LLM judge

Figure 1: An example of LLM judge augmented with
code execution, enabling precise judgments.

Classical evaluation with reward models of-
ten outputs scores directly, which cannot
fully harvest the inherent reasoning capabil-
ity of LLM. Recent progress in generative
reward modeling (Zhang et al., 2025; Zhao
et al., 2025) and reinforcement learning equips
judges with thinking before producing final
predictions (Chen et al., 2025b; Whitehouse
et al., 2025; Guo et al., 2025b; Hong et al.,
2025). While these approaches enhance judge
quality by equipping LLMs with long chains of textual reasoning traces, they remain inherently
limited in scenarios that require precise computation or symbolic reasoning – capabilities that are
much more challenging for text-only models (Mirzadeh et al., 2025).

Recent advances in LLM tool-use provide a promising avenue to overcome the limitations of text-
only judges (Chen et al., 2023; Gao et al., 2023). By granting access to executable interfaces
for enumeration, verification, and computation, tools enable exact validation of reasoning steps
rather than relying on potentially error-prone text-based inference. For example, code execution
can automatically verify outputs on certain instructions (Zhou et al., 2023) (as shown in Figure 1)
or check intermediate calculations in math reasoning (Lu et al., 2025). Early attempts have also
explored equipping LLM judges with tool-use abilities (Peng et al., 2025; Findeis et al., 2025; Li et al.,
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2024b; Agarwal et al., 2025), but these approaches reveal two major limitations. (i) Inference-time
restriction: most methods integrate tool-use only at the inference stage, preventing deeper integration
between reasoning processes and tool execution. (ii) Narrow task coverage: many are tailored to
specific domains or specialized task types, which limits their applicability in general-purpose judging
scenarios. These gaps highlight the need for robust judges that tightly couple reasoning with tool
execution and be optimized end-to-end.

Motivated by these challenges, our goal is to develop an LLM judge that can reliably integrate
reasoning with code interpreter execution. Incorporating tool-integrated reasoning (TIR) (Feng et al.,
2025; Li et al., 2025a; Lin & Xu, 2025), we propose TIR-Judge, a framework that leverages
reinforcement learning (RL) to teach models to generate code, execute it with interpreters, and
iteratively refine their reasoning based on the resulting outputs. By reinforcing this cycle of reasoning
and tool-use, TIR-Judge equips LLM judges with the ability at the training time to deliver more
accurate and verifiable evaluations across diverse tasks.

Then, to fully unleash the potential of RL for TIR-Judge, we introduce several key design choices.
(i) Task diversity: To balance between different tasks, we construct training prompts spanning both
verifiable domains (e.g., competitive programming, mathematical reasoning) and non-verifiable
domains (e.g., dialogue, safety, general coding), allowing the model to learn when tool invocation is
beneficial and when pure reasoning suffices. (ii) Judgment flexibility: To accommodate to different
input/output formats, we diversify the evaluation tasks to cover pointwise, pairwise, and listwise
ranking, ensuring broad applicability across practical use cases. (iii) Data efficiency: unlike prior
methods that rely on distillation as cold-start for RL (Chen et al., 2025b; Hong et al., 2025), we
demonstrate that TIR-Judge can bootstrap from the initial checkpoint. Specifically, TIR-Judge-
Zero trains purely with iterative reinforcement learning for achieving self-improvement, while
TIR-Judge-Distill provides an optional variant using a small amount of distillation data.

Our contribution can be summarized as follows:

• We introduce TIR-Judge, a tool-integrated framework for training LLM-based judges with
end-to-end multi-turn reinforcement learning. To the best of our knowledge, this is the first
approach that jointly optimizes reasoning and tool-use for training LLM-based judges via RL.

• We design several key strategies to fully exploit the power of reinforcement learning, including task
diversification across verifiable and non-verifiable domains, flexible judgment formats (pointwise,
pairwise, listwise), as well as an iterative RL scheme that enables self-improvement in tool use
even without distillation.

• We evaluate TIR-Judge on seven public benchmarks covering diverse tasks and input formats.
TIR-Judge consistently outperforms strong reasoning-based judges, achieving gains of up
to 6.4% (pointwise) and 7.7% (pairwise). Moreover, TIR-Judge shows strong parameter
efficiency: With only 8B parameters, it surpasses the 32B reasoning reward models on the
PPE dataset, and reaches 96% of the performance of Claude-Opus-4 in the listwise setting in
RewardBench 2. Interestingly, TIR-Judge-Zero, the judge trained without any distillation,
achieves a 1.2% gain over its distilled counterpart at 4B scale, highlighting the power of RL to
bootstrap reasoning and tool-use capabilities.

2 RELATED WORKS

Reasoning-Enhanced Reward and Judge Models. A growing line of work strengthens reward
models (RMs) and judges by explicitly training them to reason before scoring. Generative Veri-
fiers (Zhang et al., 2025) treat verification as next-token prediction with chain-of-thought, improving
math and algorithmic tasks. Other methods enhance judgment by generating critiques (Ankner et al.,
2024; Yu et al., 2025c;b; Wang et al., 2025a), using multi-round preference optimization (Wang et al.,
2024b), or planning evaluations before issuing a decision (Saha et al., 2025). Liu et al. (2025d) study
how to allocate compute and structure critiques for reliability. More recently, RL-based judges (Chen
et al., 2025a;b; Whitehouse et al., 2025; Guo et al., 2025b; Hong et al., 2025) incentivize longer,
higher-quality reasoning and reduce bias across pointwise and pairwise settings, Khalifa et al. (2025);
Zhao et al. (2025) leverage thinking traces to improve process reward models. However, these remain
confined to text-only reasoning and often emphasize pairwise judgment.
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Tool-Assisted Reward and Judge Models. Another line of work augments judges with external tools.
Li et al. (2024b) incorporate verifiable signals alongside preference data for judge training, though
primarily within tool-use scenarios. Zhuge et al. (2025) evaluate agentic judge capabilities in agent
settings, and Peng et al. (2025) integrate human preferences with correctness checks to construct
more reliable rewards. Findeis et al. (2025) show that external tools (e.g., code execution, search) can
improve annotations, observing gains are task-dependent. Yet, most works rely on prompted tool use
rather than training judges to learn when and how to call tools and incorporate their outputs.

Reinforcement Learning for Tool-integrated Reasoning. RL has recently been applied to tool-
integrated reasoning (TIR). Feng et al. (2025); Bai et al. (2025); Li et al. (2025a) train LLMs to
interleave reasoning with code execution, improving math and programming. Jin et al. (2025); Song
et al. (2025) extend this to web search, while others study reward design (Dong et al., 2025; Wang
et al., 2025b) or provide theoretical analyses (Lin & Xu, 2025).

3 PRELIMINARIES

Problem Setup. We consider the task of LLM-based judgment: given a user prompt x ∈ X and n
model-generated responses Y = {y1, y2, . . . , yn}, the goal is to evaluate the quality of responses for
the prompt. The judge model Jθ produces an evaluation output conditioned on (x,Y). In this work,
we consider three evaluation settings: (i) Pointwise evaluation: given (x, y), the judge assigns a
scalar score, Jθ(x, y) = sθ(x, y) ∈ R; (ii) Pairwise evaluation: given (x, ya, yb), the judge selects
the preferred response, Jθ(x, ya, yb) = argmaxi∈{a,b} sθ(x, yi), where sθ denotes a learned scoring
function. This is also the most common evaluation setting; (iii) Listwise evaluation: given (x,Y)
with n > 2, the judge returns the index of the best response, Jθ(x,Y) = argmaxi∈{1,...,n} sθ(x, yi).

These settings unify a broad range of evaluations under a common framework1.

Tool-Augmented Judge. We extend the judge with the ability to call an external Python execution
environment I. For the prompt x ∈ X , At step k, the judgment trajectory sk is represented as
sk = {r1, c1, o1, . . . , rk, ck, ok}, where ri is a natural language reasoning step, ci is a generated
code, and oi = I(ci) is the execution result of ci (Li et al., 2025a). The iterative process is defined as:

(rk, ck) ∼ J(x⊕ sk−1), ok = I(ck), sk = sk−1 ⊕ rk ⊕ ck ⊕ ok. (1)

This cycle continues until the judge produces a final prediction ai ∼ J(x⊕ sT ) with T being the final
step. Unlike traditional text-only reasoning, the trajectory now interleaves reasoning, code execution,
and tool feedback, enabling the judge to ground its decision in verifiable evidence.

4 TRAINING TIR-JUDGE

We now describe the training procedure for TIR-Judge, which consists of four components: (1)
data collection and filtering for RL, (2) the RL framework for training judges with integrated code
execution tools, (3) reward design for RL, and (4) cold-start and iterative training strategies in RL.
The overall framework of TIR-Judge is exhibited in Figure 2.

4.1 DATA COLLECTION AND FILTERING

High-quality training data is crucial for RL with tool-augmented judges. Since judgment requires
both prompts and candidate responses, we curate a collection of (prompt, responses) tuples spanning
multiple tasks. Our corpus integrates both human-annotated preference data and automatically
generated synthetic pairs to ensure diversity and scalability.

Real Preference Pairs. We sample human-labeled preference pairs from a variety of domains:
general helpfulness — HelpSteer 3 (Wang et al., 2025c); reasoning — UltraInteract (Yuan et al.,
2025), S1 (Muennighoff et al., 2025); coding — CodeRM (Ma et al., 2025b); instruction following
(IF) — preference pairs from Tulu 3 (Lambert et al., 2024); safety — Safe-RLHF (Dai et al., 2024).
Each prompt is paired with one preferred (chosen) response and one or more rejected responses.

Synthetic Preference Pairs. Because reasoning preference data is often limited in scale, we
augment the corpus with synthetic preference pairs generated from verifiable prompts. For each

1Note that in our work, the reference answer is unseen during evaluation, different from the verification
setting (Liu et al., 2025a; Li et al., 2025b; Yan et al., 2025) where the reference answer is also a part of the input.
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Poem form: ✅, it is written in verse.
Topic: ✅, it highlights the eucalyptus 
beauty and eucalyptus uses.
Length requirement: Need python 
code to evaluate.

```python
response = """Where desert 
heat whispers ……"""
print(len(response.split())
```

```output
321
```

From the result, the response only 
contains 321 words. ❌Fails.
Final Verdict: The response does not 
follow the user prompt completely.

RL

Rejection 
Sampling

● Final answer ✅
● Output format ✅
● Code execution ✅

SFT RL

SFT DataSFT DataSFT Data

SFT DataSFT DataSFT Data

SFT RL Iteratively 
update

Training DataTraining DataTraining Data

SFT RLSFT DataSFT DataSFT Data
Rejection 
Sampling

TIR-Judge-Distill

TIR-Judge-Zero
<score>10</score> <score>6</score>

chosen rejected

<preference>B</preference>

rejected rejected

chosen rejected

…

Pairwise Listwise

Pointwise

Execution
in sandbox

Tool-Integrated Reasoning Judge Evaluation Training Strategies for RL

Figure 2: Overall framework of TIR-Judge variants. TIR-Judge natively supports tool use
during judgment and is designed to handle diverse input formats.

prompt, we sample responses from multiple open-source models, including Qwen3-8B/14B (Team,
2025), Gemma-2-9B (Team et al., 2024), and Gemma-3-12B (Team et al., 2025). The responses
are automatically evaluated against verifiable functions (for IF tasks) or ground-truth solutions (for
reasoning tasks) to form preference pairs. For IF, we use verifiable prompts from Tulu-3 (Lambert
et al., 2024), where correctness can be programmatically verified using lexical or structural constraints.
For reasoning, we employ MATH (Hendrycks et al., 2021) and DAPO-Math (Yu et al., 2025a) for
math domain and WebInstruct (Ma et al., 2025a), and Loong (Huang et al., 2025b) for general domain,
both of which provide ground-truth solutions for exact verification.

In total, our dataset comprises approximately 26k preference pairs, including pointwise, pairwise,
and listwise annotations, covering diverse domains such as helpfulness, reasoning, coding, safety, and
verifiable instruction following. We apply strict 8-gram decontamination to eliminate any overlap
between training prompts and evaluation benchmarks (Oren et al., 2024). This diverse mixture of
data provides a strong foundation for training robust tool-augmented judges.

4.2 TOOL-INTEGRATED RL WITH VERIFIABLE REWARDS

Overall Framework. We adopt DAPO (Yu et al., 2025a), an improved variant of GRPO (Shao et al.,
2024), for training the LLM judge J parameterized by πθ. Given a prompt–answer pair (q, a), we
first sample a group of G rollouts {si}Gi=1 from the current policy πθold . Each rollout si is assigned a
scalar reward Ri = R(si, a) with access to the oracle answer a. The policy πθ is then updated with
the following clipped policy gradient objective:

J (θ) = E(q,a)∼D,{si}Gi=1∼πθold
(·|q)

[
1∑G

i=1 |si|

G∑
i=1

|si|∑
t=1

(
min(ri,t(θ)Âi,t,

clip(ri,t(θ), 1−εlow, 1+εhigh)Âi,t)−βDKL(πθ∥πref)
)]

s.t. 0 < |{si : is_equivalent(a, si)}| < G

where ri,t(θ) =
πθ(si,t|q,si,<t)

πθold (si,t|q,si,<t)
is the token-level weight, Âi,t =

Ri−mean({Ri}G
i=1)

std({Ri}G
i=1)

is the advantage

at the token level, and is_equivalent step filters out the prompts with accuracy equal to 1 and
0. The hyperparameters εlow and εhigh control the clipping range for importance weights, while β
regulates the KL divergence penalty to stabilize training.

Additional Designs. Beyond standard RL training, we implement two enhancements to stabilize
tool-augmented judgment: (i) Error Message Processing. We truncate the outputs from Interpreter
I to only the final error line to avoid excessive context length while preserving useful feedback in
sk; (ii) Sandbox Output Masking. Since execution results oi = I(ci) may cause the model to overfit
by memorizing outputs, we mask oi during loss computation, following Li et al. (2025a); Jin et al.
(2025). This prevents reliance on exact strings and improves training stability.

Reward Designs. To effectively facilitate multi-turn RL with code execution, we design a structured
covering three aspects, described as follows:

(i) Correctness Reward Rc: This component measures whether the judge’s prediction aligns with the
reference preference label. Let x denote the prompt, Y = {y1, . . . , yn} the candidate responses, and
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l the ground-truth preferred response. The reward is defined as:

Rc =


I
(
sθ(x, ypos) > sθ(x, yneg)

)
, for pointwise evaluation,

I
(
Jθ(x,Y) = l

)
, for pairwise or listwise evaluation,

0, otherwise,

(2)

where I(·) is the indicator function, sθ(x, y) denotes the judge’s scoring function, and Jθ(x,Y) is the
predicted best response under the judge’s policy. Intuitively, Rc = 1 if the judge’s decision matches
the ground-truth preference, and Rc = 0 otherwise (i.e. incorrect predictions, or having errors when
parsing the generated text).

(ii) Format Reward Rf : To ensure reliability, the judge is required to strictly follow a predefined
structured output format. Specifically, prediction scores must be enclosed within <score> and
</score> tags, the preference label must be wrapped in <preference> and </preference>
tags, and all code segments must be enclosed using ```python and ```. In addition, to accommo-
date both reasoning and non-reasoning tasks and discourage unnecessary tool calls, we introduce a
heuristic: for safety and general helpfulness prompts, a positive format reward is granted only if the
model produces a valid output without invoking tools. Formally, Rf = 1 if the output satisfies all
formatting constraints (and the no-tool heuristic when applicable), and Rf = 0 otherwise.

(iii) Tool-Specific Reward Rt: We encourage accurate and efficient tool use by penalizing errors or
excessive executions (Wang et al., 2025b). We set the max number of tool calls per trajectory to 3,
and set Rt = 1 only when code blocks ci are error-free and within the call budget; otherwise Rt = 0.

The final reward R is defined as a combination of correctness, format, and tool-specific rewards and
assigns full credit only when correctness, format, and tool-use are all satisfied:

R = Rc ×
(
0.1 + 0.9 I[Rt = 1 ∧Rf = 1]

)
. (3)

4.3 TRAINING STRATEGIES FOR RL

Directly applying RL often leads to suboptimal outcomes, as the base model lacks sufficient reasoning
and tool-use capability. To address this, we design two cold-start strategies for training TIR-Judge.

Distillation from Teacher Models (TIR-Judge-Distill). We leverage a stronger teacher,
Gemini-2.5-Flash with code execution (Comanici et al., 2025), to generate high-quality trajec-
tories via rejection sampling. For each user prompt x and corresponding Y , we collect a trajectory
s and a final prediction a as (x,Y, s, a) ∼ J . Only trajectories that produce correct answers are
retained, yielding a dataset TSFT = {(x,Y, s, a) | R(s, a, l) = 1}. Then the student judge is trained
via supervised fine-tuning (SFT) with objective LSFT = −E(x,τ)∼TSFT

[∑|y|
i=1 log fθ(τi | τ<i, x)

]
,

where τ = (s, a) is the target trajectory with reasoning and code steps. As in RL training, interpreter
feedback tokens are masked to prevent learning on execution results. In total, we collect about 10k
tool-integrated trajectories for SFT, which serve as the initialization before reinforcement learning.

Iterative Training without Distillation (TIR-Judge-Zero). Beyond teacher distillation, we
investigate whether tool-augmented judges can improve purely through self-bootstrapping (Yuan
et al., 2024; Huang et al., 2023; Zelikman et al., 2022; Xiong et al., 2025). The process alternates
between RL, rejection sampling, and supervised fine-tuning.

Starting from the initial model πθ0 , we first obtain the checkpoint πθ1 via direct RL on training data
as πθ1 ← RL(πθ0) (Sec. 4.2). Then, for each prompt x, we sample multiple trajectories from πθ1
as {si}Gi=1 ∼ πθt(· | x) (G = 4 in our study), where each trajectory contains reasoning, code, and
execution results: si = {r1, c1, o1, . . . , rk, ck, ok}. We retain only valid trajectories that (i) produce
the correct answer l, (ii) satisfy the output format, and (iii) execute without interpreter errors as
Tt = {(x, s, a) | R(s, a, l) = 1}. To promote efficiency, for each prompt we further keep only one
trajectory, preferring the shortest response or the one with the fewest tool calls2. The dataset Tt is
then used for SFT, and the fine-tuned model initializes the next RL round. After each cycle, we select

2In practice, we prioritize trajectories with the fewest tool calls, since encouraging efficient tool usage is
the primary objective. If multiple trajectories tie under this criterion, we then choose the one with the shortest
trajectory length to further promote concise and efficient reasoning.
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Table 1: Main results on six benchmarks. † indicates results reported from the original papers,
and are mainly used for reference. CJBench, RWBench, and JGBench denote CodeJudgeBench,
RewardBench, and JudgeBench. “Distill?” specifies whether the model relies on additional judge
data distilled from teacher models. Bold highlights the overall best accuracy, while blue and red mark
the best results within our direct comparisons for pointwise and pairwise settings, respectively.

Baselines |Train| Distill?
PPE Correctness

IFBench CJBench RWBench RMBench JGBench
MMLU-P MATH GPQA MBPP-P IFEval Avg.

LLM-as-a-Judge (Pairwise Evaluation unless specified)
Qwen3-4B-Instruct (Pointwise) – – 64.3 83.1 38.0 62.4 55.2 60.6 56.2 16.6 76.5 66.9 50.8
Qwen3-8B (Pointwise) – – 68.7 64.2 56.5 58.9 57.4 61.1 55.9 54.9 79.2 69.3 64.9
Gemini-2.5-Flash (Pointwise) – – 56.5 79.5 46.4 63.0 63.9 61.9 51.6 53.3 80.7 70.8 66.9

GPT-4o† – – – – – – – 57.6 61.3 – 86.7 72.5 56.6
GPT-o1-mini† – – – – – – – 71.3 70.1 – 87.1 – 65.7
DeepSeek-R1-671B† – – – – – – – 76.5 68.0 – 90.6 – 73.1
Claude 3.5† – – 81.0 86.0 63.0 54.0 58.0 68.4 – 58.3 84.2 61.0 64.3
Qwen3-4B-Instruct (Pairwise) – – 63.9 83.1 35.0 59.7 60.7 60.4 62.2 34.5 86.0 75.3 63.9
Qwen3-8B (Pairwise) – – 73.8 80.2 57.3 57.8 58.4 65.5 61.3 60.8 87.0 77.9 67.5
Gemini-2.5-Flash (Pairwise) – – 68.8 85.5 58.1 86.5 75.0 74.8 69.3 66.5 93.4 81.9 75.4

Scalar Reward Models (Pointwise)

Armo-RM-8B† 1000k ✗ 66.0 71.0 57.0 54.0 58.0 61.2 62.9 – 90.3 67.7 –
Skywork-Gemma-2-27B† 80k ✗ 55.0 46.2 44.7 69.1 58.3 54.7 63.2 – 93.8 67.3 –
Deepseek-BTRM-27B† 237k ✗ 68.8 73.2 56.8 68.8 66.0 66.7 – – 81.7 – –

Text-based Reasoning Judges (Pairwise Evaluation unless specified)

Deepseek-GRM-27B† 237k ✗ 64.8 68.8 55.6 50.1 59.8 59.8 – – 86.1 – –
J1-8B (Pairwise)† 22k ✗ 65.6 70.0 53.2 53.1 54.0 59.2 – – 85.7 73.4 42.0
J1-8B (Pointwise)† 22k ✗ – – – – – 58.5 – – – – –
RRM-7B 420k ✗ 66.5 88.0 57.9 61.2 53.6 65.4 60.1 63.4 82.2 70.4 67.0
RM-R1-Deepseek-Distill-7B 73k ✓ 67.3 91.2 62.6 60.5 53.0 66.9 56.6 63.2 80.1 72.4 67.7
RM-R1-Instruct-7B 73k ✓ 64.1 74.5 60.7 57.3 57.8 62.9 59.0 57.5 85.2 70.2 60.3
Think-RM 7B 10k ✓ 66.5 78.3 55.6 58.1 63.9 64.5 57.4 54.6 86.0 73.9 64.6

Tool-augmented Judges
Qwen3-4B-Tool (Pointwise) – – 64.6 81.6 38.3 61.0 49.8 59.1 44.1 18.0 78.4 72.1 56.6
Qwen3-8B-Tool (Pointwise) – – 67.0 72.4 54.0 56.0 34.0 56.7 27.1 45.9 78.0 67.9 59.4
Gemini-2.5-Flash-Tool (Pointwise) – – 68.2 86.0 48.9 58.7 73.5 67.1 53.0 47.9 81.3 71.2 66.5
TIR-Judge-Distill 4B (Pointwise) 26k ✓ 58.7 81.9 45.8 64.1 78.9 65.9 65.8 59.9 76.6 71.9 66.7
TIR-Judge-Zero 4B (Pointwise) 26k ✗ 62.5 87.3 54.7 64.8 79.8 69.8 65.9 61.5 77.3 72.8 70.4
TIR-Judge-Distill 8B (Pointwise) 26k ✓ 70.9 88.1 52.3 61.0 83.0 71.0 68.4 61.9 81.0 76.7 68.2
TIR-Judge-Zero 8B (Pointwise) 26k ✗ 67.8 88.0 53.2 64.7 77.8 70.3 66.8 60.8 81.4 76.3 67.5

AgentRM 8B + 8B (Pairwise) – – 64.6 76.0 52.8 61.7 73.0 65.6 67.0 59.2 87.7 69.7 59.4
Qwen3-4B-Tool (Pairwise) – – 63.5 83.3 35.9 58.9 62.3 60.8 59.2 29.2 85.2 75.7 63.0
Qwen3-8B-Tool (Pairwise) – – 72.0 85.2 56.0 54.3 60.8 65.7 52.5 54.9 86.2 77.3 65.9
Gemini-2.5-Flash-Tool (Pairwise) – – 73.1 87.5 60.2 85.2 84.0 78.0 68.5 66.3 90.1 80.9 74.6
TIR-Judge-Distill 4B (Pairwise) 26k ✓ 69.0 88.7 54.8 60.6 83.6 71.3 73.7 69.8 87.7 78.0 70.5
TIR-Judge-Zero 4B (Pairwise) 26k ✗ 75.0 93.3 61.7 67.3 84.5 76.3 70.3 70.8 86.7 80.8 73.7
TIR-Judge-Distill 8B (Pairwise) 26k ✓ 72.2 90.4 53.8 63.2 85.7 73.0 74.3 70.0 87.9 82.2 72.6
TIR-Judge-Zero 8B (Pairwise) 26k ✗ 76.6 94.0 58.5 68.8 80.8 75.7 68.9 69.3 89.1 83.7 72.0

For Reference: Text-based Reasoning Judge Baselines with >10B Parameters (Pairwise Evaluation)

J1 70B† 22k ✗ 79.0 86.0 65.9 66.0 67.3 72.8 – – 93.3 82.7 60.0
RRM 32B 420k ✗ 80.5 94.3 68.4 72.8 60.2 75.3 60.8 76.3 91.2 85.4 76.0
RM-R1-Deepseek-Distill-14B 73k ✓ 78.8 94.5 63.3 70.5 63.0 74.0 58.6 65.5 88.9 81.5 76.2
RM-R1-Deepseek-Distill-32B 73k ✓ 79.8 95.4 65.2 74.6 63.3 75.6 60.4 65.8 90.9 83.9 78.4

the best checkpoint based on held-out validation accuracy and repeat the RS→ SFT→ RL loop:

Tt+1 ← RS(πθt), πθt+1 ← SFT(πθ0 , Tt+1), πθt+1 ← RL(πθt+1).

This iterative process a stable refinement loop of better examples → better rollouts → even better
examples. It allows TIR-Judge-Zero to progressively bootstrap stronger reasoning and tool-use
capabilities entirely from a base model and facilitates self-improvement without distillation. Since
judgment rewards are deterministic and unambiguous (correct vs. incorrect), this iterative process
converges reliably in practice.

5 EXPERIMENTS

5.1 EXPERIMENT SETUPS

Evaluation Datasets. Following prior work (Whitehouse et al., 2025; Chen et al., 2025b), we
focus on reasoning tasks, evaluating TIR-Judge on PPE Correctness (Frick et al., 2025). We
additionally consider two more challenging datasets on judges: IFBench (Peng et al., 2025) for
instruction-following and CodeJudgeBench (Jiang et al., 2025b) for code generation. All evaluations
are conducted under both pointwise and pairwise settings to demonstrate the broader applicability of
TIR-Judge. We also evaluate on general-domain judge benchmarks, where reasoning constitutes a
subset, including RewardBench (Lambert et al., 2025), RM-Bench (Liu et al., 2025c) and JudgeBench
(Tan et al., 2025) for pointwise/pairwise evaluation, and RewardBench 2 (Malik et al., 2025) for
listwise evaluation.

Implementation Details. We use Qwen3-8B and Qwen3-4B-Instruct-2507 (Team, 2025)
as backbones, without enabling thinking mode, and implement training with Verl-Tool (Jiang et al.,

6
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2025a). For SFT, we train with batch size 64, learning rate 2e-6, context length 8192, for 1 epoch.
For RL, we set the micro batchsize per gpu to 4, mini batchsize to 128 and number of rollout to 8.
We set εlow = 0.2, εhigh = 0.3, β = 0.01, max response length to 8192, learning rate 1e-6 and train
for 2 epochs. The experiments are run with 8 NVIDIA H100 80G GPUs. For data collection in Sec.
4.1, we generate 2 rollouts for each model with t = 0.9, p = 0.95. No external feedback (e.g., GPT
annotations) is used. For inference, we set t = 0 for generating responses.

Baselines. We consider the following group of baselines: (i) Off-the-shelf LLM as judges: GPT-
4o (Hurst et al., 2024), GPT-o1-mini (Jaech et al., 2024), Deepseek-R1 (Guo et al., 2025a), Claude 3.5
(Anthropic, 2025), Gemini-2.5-Flash (Comanici et al., 2025), Qwen-3 (Team, 2025); (ii) Standard
Reward Models: Armo-RM (Wang et al., 2024a), Skywork-Reward-Gemma-2 (Liu et al., 2024),
Deepseek-BTRM (Liu et al., 2025d); (iii) Text-based Judges trained with RL: Deepseek-GRM
(Liu et al., 2025d), J1 (Whitehouse et al., 2025), RM-R1 (Chen et al., 2025b), RRM (Guo et al.,
2025b) and Think-RM (Hong et al., 2025); (iv) Tool-augmented Judges (Inference-time): Gemini-
2.5-Flash-Tool (Comanici et al., 2025), AgentRM (Peng et al., 2025)3, and Qwen-3 (Team, 2025)
(our backbone) that use the same code execution tool as TIR-Judge but only inject tools at the
inference time.

5.2 MAIN EXPERIMENT RESULTS

Experiments for Pointwise/Pairwise Judging tasks. Table 1 shows the main results of TIR-Judge
on six judge benchmarks. The per-task accuracy on several benchmark is deferred to Table 5. From
the results, we have the following key observations: (i) TIR-Judge achieves strong judging
accuracy compared to baselines. Notably, on the PPE benchmark, TIR-Judge outperforms
baselines with similar sizes by 4.8%-9.9% for pointwise judging and 4.5%-8.8% for pairwise judging.
It also achieves competitive or even better performance on other benchmarks with baselines having
more parameters and trained with more data. For example, TIR-Judge achieves similar accuracy
on PPE and RewardBench compared to RRM-32B despite having only 1/4-1/8 of its parameters. (ii)
RL is critical for boosting tool-use capability for judges: Simply augmenting Qwen-3 models
with code execution yields negligible (<1%) or even negative gains. In contrast, RL produces
substantial improvements, showing that base checkpoints lack robust code generation ability and
that RL is essential for unlocking tool-use capability. Moreover, RL confers strong generalization:
although most IF data is verifiable, TIR-Judge also performs well on IFBench, which contains
many non-verifiable constraints. (iii) Iterative RL is surprisingly effective to serve as another
alternative to distillation : Comparing TIR-Judge-Zero with TIR-Judge-Distill, we find that
TIR-Judge-Zero delivers comparable or better performance, outperforming the distilled variant on
4/6 benchmarks (pointwise) and 3/6 benchmarks (pairwise). This demonstrates that TIR-Judge-Zero
offers a viable alternative for data-scarce regimes, achieving competitive performance to distillation-
based methods, albeit with additional overheads in training time.

Table 2: Results on 5 tasks in RewardBench2,
sorted by average performance.

Datasets IF Math Fact Focus Safety Avg.
Claude-Opus-4 41.9 74.9 82.7 86.2 89.5 76.5
Gemini-2.5-flash-Preview 55.3 81.1 65.7 86.7 90.9 75.9
TIR-Judge-Zero 8B 45.6 84.1 64.8 89.5 82.7 73.4
TIR-Judge-Distill 8B 58.1 72.7 63.8 81.4 82.0 71.6
GPT-4.1 39.7 65.2 82.9 73.4 87.3 69.7
Claude-Sonnet-4 35.9 70.5 76.1 76.0 89.1 69.5
TIR-Judge-Zero 4B 47.5 86.4 59.3 85.2 62.9 68.3
TIR-Judge-Distill 4B 55.0 78.1 55.8 75.0 73.1 67.3
GPT-4.1-mini 41.2 72.1 60.8 73.5 72.6 65.7
GPT-4o 33.1 62.3 56.8 72.9 86.2 64.9
Claude-3.5-sonnet 38.8 56.8 52.8 87.0 85.2 64.7

Experiments on Listwise Judging tasks.
We further evaluate TIR-Judge on Reward-
Bench2 (Malik et al., 2025) under listwise judge
setting, where the input contains one chosen
and multiple rejected responses. As shown in
Table 2, TIR-Judge achieves strong perfor-
mance, matching 96% performance of Claude-
Opus-4, the current best model on the leader-
board, despite being 8B parameter only. The
advantage is more notable on tasks such as in-
struction following and mathematical reasoning,
where TIR-Judge’s integration of code execu-
tion provides a clear gain.

5.3 ADDITIONAL STUDIES

Diverse Data Mixture is essential for RL. We study the impact of task composition in RL in
Figure 3. Training exclusively on chat or reasoning tasks leads to poor transfer across subtasks,

3For fairness, we use Qwen-3 as the backbone for AgentRM. Note that AgentRM additionally leverages
Armo-RM to assist judgment.
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Figure 3: The effect of different data mixture used in RL training of TIR-Judge-Zero.
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Figure 4: Experimental results comparing tool-augmented judges against text-only judges under the
same training data and settings, as well as the best-of-N inference performance.

largely because the scarcity of tool-use prompts prevents the model from fully developing tool-use
capabilities. In contrast, unifying tasks – both with and without tool use – into a single training
pipeline leads to improved generalization.

Tool Use vs. Text-Only. To rigorously evaluate the impact of tool integration, we conduct a controlled
study in which code execution is disabled during RL while keeping the training data identical. As
shown in Figure 4(a), tool-augmented models achieve consistently higher accuracy on reasoning and
IF benchmarks, while text-only models perform slightly better on text-centric tasks such as Chat
and Safety in RMBench. These comparisons highlight the strength of tool-augmented judges for
reasoning, and further suggest that mixing prompts from both tool-use and non–tool-use settings
maintains robust performance without sacrificing much on cases where tools are unnecessary.
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TIR-Judge-Distill 4B

TIR-Judge-Zero 4B

TIR-Judge-Distill 8B
TIR-Judge-Zero 8B

Figure 6: Study on Inference Efficiency.

Efficiency Studies. We further evaluate the efficiency
of TIR-Judge against several baselines in Figure 6.
While TIR-Judge achieves higher accuracy, incorporat-
ing external code execution tools introduces no additional
inference-time overhead. In fact, TIR-Judge is more
efficient than the baselines, benefiting from our SFT data
construction strategy that favors trajectories with shorter
reasoning and fewer tool calls during rejection sampling.

Iterative RL progressively improves TIR-Judge-
Zero. We evaluate TIR-Judge-Zero across training
stages under the pairwise setting. As shown in Figure
5, we observe substantial gains after the first round of
RL. These improvements arise from rejection sampling, which teaches the model to produce more
format-correct and efficient tool use, thereby strengthening its reasoning capability. Additional RL
iterations further boost accuracy as RL benefits from progressively higher-quality SFT data. In
contrast, rejection-sampling fine-tuning yields modest gains, highlighting the necessity of online RL.

5.4 BEST-OF-N EVALUATION ON POLICY MODELS

We conduct parallel test-time compute scaling experiment to study whether TIR-Judge can im-
prove the downstream performance of the policy model, where we conduct a study on reward-guided
best-of-N inference over datasets from multiple domains including AIME-2024, AIME-2025, Big-
CodeBench (Zhuo et al., 2025) and IFEval (Zhou et al., 2023). The detailed experimental setup is
deferred to Appendix F.

Figure 4(b) presents the average accuracy of TIR-Judge compared to a strong baseline, RRM,
across four datasets. We find that TIR-Judge consistently surpasses both Majority Voting (Self-
Consistency; Wang et al. (2023)) and RRM by clear margins, demonstrating its effectiveness.
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Figure 5: Accuracy of TIR-Judge across different training stages. Base denotes the backbone
model without additional training. TIR-Judge-Zero-RS is a variant inspired by Zelikman et al.
(2022) that uses rejection sampling to construct high-quality trajectories for SFT (without RL).
TIR-Judge-Zero-RL-0,1,2 refer to the judge after 0, 1, and 2 rounds of RL training, respectively.

Table 3: A case study from IFEval demonstrating the judgement generated by TIR-Judge-Zero 8B
and Qwen3-8B. Red text stands for the incorrect reasoning step while blue text justify the ability of
TIR-Judge in writing correct verification codes. Part of responses are omitted due to space limits.

User Prompt Write a letter to your friend who recently moved away. Your response should be in English, and in all capital letters. The letter o should appear at least 40 times.
Response A MY DEAREST FRIEND,IT HAS BEEN SO LONG SINCE YOU MOVED AWAY, AND I MISS YOU TERRIBLY. ...... I CAN’T WAIT TO HEAR FROM

YOU AND TO CATCH UP. WITH LOTS OF LOVE, YOUR FRIEND
Response B MY DEAR FRIEND,IT HAS BEEN SOME TIME SINCE YOU MOVED AWAY, ...... I WISH YOU NOTHING BUT THE BEST ON YOUR NEW

ADVENTURE, FRIEND.remember M UPDATE WITH ALL THE DETAILS ABOUT YOUR LIFE THEREOOVER IN THE PRINTED PAGES. PLEASE
SEND Oast THOUGHTS YOUR WAY, AS I KNOW YOURS ARE ALWAYS NEARLY ALWAYS WITH YOUR FRIEND FOR LIFE

Judge Trajectory by
TIR-Judge-Zero
8B

To evaluate the responses, I will perform the following checks:
1. Ensure both responses are in all capital letters.
2. Count the number of times the letter "O" appears in each response.
“‘python

# Count occurrences of ’O’ (case-sensitive)
count_o_a = response_a.count(’O’)
count_o_b = response_b.count(’O’)

# Check if responses are in all capital letters
is_upper_a = response_a == response_a.upper()
is_upper_b = response_b == response_b.upper()

print(f"Response A - ’O’ count: count_o_a, All caps: is_upper_a")
print(f"Response B - ’O’ count: count_o_b, All caps: is_upper_b")
“‘
“‘output
Response A - ’O’ count: 58, All caps: True
Response B - ’O’ count: 60, All caps: False
“‘
<preference>A</preference>

Qwen3-8B Analysis of Response A:
- Language: Entirely in English. ✓
- Capitalization: All text is in all capital letters. ✓
- Letter "O" Count:
Let’s count the number of "O" letters in Response A (excluding punctuation and spaces for clarity):
- "MY DEAREST FRIEND," → 1 "O"
- "IT HAS BEEN SO LONG SINCE YOU MOVED AWAY, AND I MISS YOU TERRIBLY." → 2 "O"s
......
Total O’s in Response A: 1 + 2 + 3 + 3 + 4 + 1 + 2 + 2 + 2 + 2 + 2 + 1 + 1 = 23 → Does NOT meet the requirement of at least 40 "O" letters. ✗

Analysis of Response B:
- Language: Entirely in English. ✓
- Capitalization: All text is in all capital letters. ✓
- Letter "O" Count:
Let’s count the number of "O" letters in Response A (excluding punctuation and spaces for clarity):
- "MY DEAR FRIEND," → 2 "O"s
- "IT HAS BEEN SOME TIME SINCE YOU MOVED AWAY," → 1 "O"
- "I HAVE TO ADMIT, I MISS OUR THOUGHTFUL CONVERSATIONS AND EVEN YOUR (ADMIT IT) TERRIBLE, WONDERFUL COOKING." → 4
"O"s
......
Total O’s in Response B: 2 + 1 + 4 + 1 + 4 + 1 + 7 = 20 → Does NOT meet the requirement of at least 40 "O" letters. ✗
Conclusion: Both responses fail to meet the instruction’s requirement that the letter "O" must appear at least 40 times. However, Response B contains more
"O" letters (20) compared to Response A (23), which is still below the required threshold.
Despite both responses not fully complying with the instruction, Response B is more closely aligned with the instruction, as it contains a higher number of "O"
letters and is more detailed in content. <preference>B</preference>

The improvements are especially pronounced on challenging benchmarks: BigCodeBench, which
involves complex code generation and diverse functions, and AIME, which consists of competition-
level math problems. On these tasks, TIR-Judge achieves absolute gains of 3.9–6.7% over RRM.
This justifies its ability to handle more challenging tasks in real-world applications.

5.5 CASE STUDIES

Table 3 presents an example from the IFEval subset of the PPE benchmark. TIR-Judge successfully
generates correct Python functions to verify two responses and produces the correct pairwise judgment.
In contrast, text-only judges struggle, as counting remains challenging and often leads to incorrect and

9
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Table 4: Breakdown of Code Execution Errors. We categorize errors into Syntax, Runtime, and
Formatting failures.

Error Type TIR-Judge-Zero TIR-Judge-Distill Qwen-3-Tool
Syntax 1.20% 3.65% 4.95%
Runtime 0.00% 0.00% 0.00%
Format 0.17% 0.14% 0.97%

hallucinated reasoning steps, which yield incorrect predictions. This highlights how tool integration
enables TIR-Judge to overcome failure modes that remain difficult for text-only judges.

To confirm that the gains of TIR-Judge stem from improved reasoning and coding capability rather
than merely “learning the format,” we analyzed the error breakdown for the 8B models in Table 4.
The results show that format errors in the Qwen backbone are already negligible (< 1%). This
confirms that TIR-Judge’s improvement is driven by better code generation (significantly lower
syntax errors) and reasoning capabilities, rather than simply correcting formatting artifacts.

6 CONCLUSION

In this work, we introduce TIR-Judge, the first tool-integrated framework for training LLM
judges with end-to-end reinforcement learning. Different from prior works on text-only judges,
TIR-Judge tightly couples reasoning with code execution to enable judges to perform precise
verification and computation. To maximize the benefits of RL, we propose three key design choices:
task diversification, flexible judgement, and iterative RL training. Experiments on seven benchmarks
show that TIR-Judge outperforms strong reasoning judges by up to 6.4% (pointwise) and 7.7%
(pairwise), and matches 96% of Claude-Opus-4’s listwise performance with only 8B parameters.
TIR-Judge-Zero shows that pure RL can bootstrap tool-use without supervision, offering a scalable
path toward self-improving judges. In future work, we aim to expand the range of tools and training
tasks used in RL, and explore using TIR-Judge to enhance policy model training.

ETHICS STATEMENT

Our work aims to advance the development of LLM-based judges by complementing reasoning
with tool use. While TIR-Judge demonstrates strong performance across multiple domains,
we recognize potential ethical and safety concerns. In particular, the use of external tools (e.g.,
code execution environments) raises risks if malicious or unsafe code were executed, such as
file manipulation, unauthorized access, or propagation of harmful outputs. To mitigate this, our
experiments are conducted in sandboxed environments with restricted permissions, and no real-world
files or systems are exposed.

REPRODUCIBILITY STATEMENT

We place strong emphasis on reproducibility and provide comprehensive implementation details.
Hyperparameters and training configurations are reported in Section 5.1, while the construction of
synthetic training data, prompt formats, and evaluation protocols are documented in Appendices D,
B, and E, respectively. Each RL iteration requires approximately 8–12 hours on 8*NVIDIA H100
80GB GPUs, and the full training of TIR-Judge can be reproduced within 24–48 hours under the
reported setup.
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A USAGE OF LLMS IN THE SUBMISSION

We leveraged LLMs solely as a writing aid for paper preparation. Its application was restricted
to editorial tasks such as improving the coherence and flow of existing text, suggesting minor
grammatical corrections, and enhancing overall readability. The authors are exclusively responsible
for all aspects of the research design, experimental results, and the core intellectual content and
conclusions presented in this work.

B PROMPT TEMPLATE

We provide the detailed prompt template used in TIR-Judge in the following.

You are an expert judge for evaluating whether a model-generated response correctly answer
the user’s instruction. Please carefully read both the Instruction and the Response below.
Your goal is to assess whether the response accurately and completely follows the instruction,
focusing strictly on correctness and fidelity. Do not consider writing style, tone, or fluency
unless they affect instruction compliance.

You may use Python code to assist your evaluation, by writing the code between the “‘python
and “‘ tags following with “‘output. Each program between “‘python and “‘ tags are indepen-
dent program. This is especially helpful for verifying complex requirements, such as checking
capitalization, counting words, letters, keywords, or placeholders, checking the correctness of
calculation steps for reasoning problems, as well as running test cases on the coding responses.

Instruction: {prompt}

Response: {response}

Guidelines: In the end of your response, please give a score in range 1 to 10 in the format such
as <score>10</score> to indicate the quality of the response. A score of 10 indicates that the
response fully adheres to the instruction and provides a correct answer. A score of 1 indicates
that the response is irrelevant, evasive, or fails to address key aspects of the instruction.

Figure 7: Prompt for response generation with tools on pointwise evaluation.

You are an expert judge for evaluating whether a model-generated response correctly answer
the user’s instruction. Please carefully read Instruction, Response A and Response B below.
Your goal is to assess which response accurately and completely follows the instruction,
focusing strictly on correctness and fidelity. Do not consider writing style, tone, or fluency
unless they affect instruction compliance.

You may use Python code to assist your evaluation, by writing the code between the “‘python
and “‘ tags following with “‘output. Each program between “‘python and “‘ tags are indepen-
dent program. This is especially helpful for verifying complex requirements, such as checking
capitalization, counting words, letters, keywords, or placeholders, checking the correctness of
calculation steps for reasoning problems, as well as running test cases on the coding responses.

Instruction: {prompt}

Response A: {response A}

Response B: {response B}

Guidelines: In the end of your response, please give a preference in the format such as
<preference>A</preference> to indicate the better response.

Figure 8: Prompt for response generation with tools on pairwise evaluation.
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You are an expert judge for evaluating whether a model-generated response correctly answer
the user’s instruction. Please carefully read Instruction and all responses below. Your goal is
to assess which response accurately and completely follows the instruction, focusing strictly
on correctness and fidelity. Do not consider writing style, tone, or fluency unless they affect
instruction compliance.

You may use Python code to assist your evaluation, by writing the code between the “‘python
and “‘ tags following with “‘output. Each program between “‘python and “‘ tags are indepen-
dent program. This is especially helpful for verifying complex requirements, such as checking
capitalization, counting words, letters, keywords, or placeholders, checking the correctness of
calculation steps for reasoning problems, as well as running test cases on the coding responses.

Instruction: {prompt}

Response A: {response A}

Response B: {response B}

Response C: {response C}

Response D: {response D}
...

Guidelines: In the end of your response, please give a preference in the format such as
<preference>A</preference> to indicate the better response.

Figure 9: Prompt for response generation with tools on listwise evaluation.

You are an expert judge for evaluating whether a model-generated response correctly answers
the user’s instruction while being harmless. Please carefully read both the Instruction and
the Response below. Your goal is to assess whether the response accurately and completely
follows the instruction, focusing strictly on correctness and fidelity. Do not consider writing
style, tone, or fluency unless they affect instruction compliance.

Instruction: {prompt}

Response: {response}

Guidelines: Please first generate a textual reasoning step before making final predictions.
In the end of your response, please give a score in range 1 to 10 in the format such as
<score>10</score> to indicate the quality of the response. A score of 10 indicates that the
response fully adheres to the instruction and provides a correct answer. A score of 1 indicates
that the response is irrelevant, evasive, or fails to address key aspects of the instruction.

Figure 10: Prompt for response generation without tools on pointwise evaluation.
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You are an expert judge for evaluating whether a model-generated response correctly answers
the user’s instruction while being harmless. Please carefully read the instructions and all
responses below. Your goal is to assess which response accurately and completely follows the
instruction, focusing strictly on correctness and fidelity.

Instruction: {prompt}

Response A: {response A}

Response B: {response B}

Guidelines: Please first generate a textual reasoning step before making final predictions.
In the end of your response, please give a preference in the format such as <prefer-
ence>A</preference> to indicate the better response.

Figure 11: Prompt for response generation without tools on pairwise evaluation.

You are an expert judge for evaluating whether a model-generated response correctly answers
the user’s instruction while being harmless. Please carefully read the instructions and all
responses below. Your goal is to assess which response accurately and completely follows the
instruction, focusing strictly on correctness and fidelity.

Instruction: {prompt}

Response A: {response A}

Response B: {response B}

Response C: {response C}

Response D: {response D}
...

Guidelines: Please first generate a textual reasoning step before making final predictions.
In the end of your response, please give a preference in the format such as <prefer-
ence>A</preference> to indicate the better response.

Figure 12: Prompt for response generation without tools on listwise evaluation.

C FULL PERFORMANCE ON SEVERAL BENCHMARKS

Table 5 shows the full results of TIR-Judge and key baselines on RewardBench, RMBench,
and JudgeBench. Sometimes we observe that the performance of Gemini-2.5-flash declines when
additional tools are introduced. This issue arises from a maximum-turn limit on tool calls: the model
sometimes generates excessive tool invocations and, in certain cases, fails to terminate properly.

D DETAILS ON TRAINING DATA COMPOSITION

Our training mixture spans reasoning, code evaluation, and safety alignment tasks for reinforcement
learning. Table 6 summarizes dataset statistics across three supervision formats: pointwise, pairwise,
and listwise.

To ensure label reliability, we apply additional quality control. For HelpSteer3, we retain only
examples where one response is explicitly annotated as better or significantly better, removing
ambiguous preferences. For math and reasoning datasets with synthetic responses, we employ
math-verify to automatically check the correctness of responses. For listwise data, we sample
3–5 negatives per instance and enforce that negatives yield different final answers from the positive,
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Table 5: Detailed Per-task Experiment Results on RewardBench, RMBench, and JudgeBench.

Baselines |Train| Distill?
RewardBench RMBench JudgeBench

Chat Chat-Hard Safety Reason Avg. Chat Math Code Safety Avg. Math Code Knowledge Reason Avg.

LLM-as-a-Judge (Pairwise Evaluation unless specified)
Qwen3-4B-Instruct (Pointwise) – – 81.0 73.9 77.0 74.3 76.5 67.8 82.1 38.4 79.2 66.9 65.5 35.4 58.2 37.6 50.8
Qwen3-8B (Pointwise) – – 79.1 74.2 79.9 83.4 79.2 64.1 74.7 56.6 81.7 69.3 63.6 64.6 64.4 66.5 64.9
Gemini-2.5-Flash (Pointwise) – – 71.8 77.0 93.0 80.9 80.7 59.5 77.3 56.0 90.6 70.8 71.4 73.8 61.0 70.4 66.9

GPT-4o† – – 96.1 76.1 86.6 88.1 86.7 67.2 67.5 63.6 91.7 72.5 75.0 59.5 50.7 54.1 56.6
GPT-o1-mini† – – 94.4 78.7 80.9 94.2 87.1 – – – – – 82.1 78.5 58.4 62.2 65.7
DeepSeek-R1-671B† – – 95.3 83.6 86.4 97.4 90.6 – – – – – 80.3 92.8 59.1 82.6 73.1
Claude 3.5† – – 96.4 74.0 81.6 84.7 84.2 62.5 62.6 54.4 64.4 60.9 66.1 64.3 62.3 66.3 64.3
Qwen3-4B-Instruct (Pairwise) – – 93.0 80.2 80.1 90.6 86.0 75.2 81.7 67.3 77.1 75.3 69.1 70.7 56.2 70.1 63.9
Qwen3-8B (Pairwise) – – 94.1 79.0 85.8 89.2 87.0 78.6 82.9 61.6 88.6 77.9 75.0 66.3 65.4 67.0 67.5
Gemini-2.5-Flash (Pairwise) – – 95.0 87.9 97.5 92.7 93.4 78.5 75.6 80.0 93.7 81.9 85.7 88.1 70.1 72.4 75.4

Scalar Reward Models (Pointwise)

Armo-RM-8B† 1000k ✗ 96.9 76.8 90.5 97.3 90.3 67.8 57.5 53.1 92.4 67.7 – – – – –
Skywork-Gemma-2-27B† 80k ✗ 95.8 91.4 92.0 96.1 93.8 69.5 54.7 53.2 91.9 67.3 – – – – –
Deepseek-BTRM-27B† 237k ✗ – – – – 81.7 – – – – – – – – – –

Text-based Reasoning Judges (Pairwise Evaluation unless specified)

Deepseek-GRM-27B† 237k ✗ 94.1 78.3 88.0 83.8 86.1 – – – – – – – – – –
J1-8B (Pairwise)† 22k ✗ 92.9 80.3 85.6 83.9 85.7 – – – – 73.4 – – – – 42.0
J1-8B (Pointwise)† 22k ✗ – – – – 58.5 – – – – – – – – – –
RRM-7B 420k ✗ 87.7 70.4 80.7 90.0 82.2 58.4 81.8 56.7 84.9 70.4 83.2 61.9 64.3 64.2 67.0
RM-R1-Deepseek-Distill-7B 73k ✓ 88.9 66.2 78.4 87.0 80.1 64.0 83.9 56.2 85.3 72.4 82.1 71.4 64.9 62.2 67.7
RM-R1-Instruct-7B 73k ✓ 94.1 74.6 85.2 86.7 85.2 66.6 67.0 54.6 92.6 70.2 76.8 54.8 56.4 59.2 60.3
Think-RM 7B 10k ✓ 94.4 77.9 85.2 86.4 86.0 69.3 76.0 56.5 93.7 73.9 67.9 42.9 67.5 67.3 64.6

Tool-augmented Judges
Qwen3-4B-Tool (Pointwise) – – 81.0 74.8 77.2 80.5 78.4 68.2 82.4 58.6 79.3 72.1 63.6 42.7 57.8 57.7 56.6
Qwen3-8b-Tool (Pointwise) – – 77.6 75.3 80.7 78.5 78.0 63.4 71.2 55.9 81.0 67.9 59.1 57.3 56.2 65.5 59.4
Gemini-2.5-Flash Tool (Pointwise) – – 75.4 73.0 93.5 83.5 81.3 62.7 75.4 49.0 86.3 71.0 73.2 78.5 59.1 69.3 66.5
TIR-Judge-Distill 4B (Pointwise) 26k ✓ 79.7 66.5 82.9 77.2 76.6 61.8 81.2 56.7 87.9 71.9 71.8 70.7 60.8 71.7 66.7
TIR-Judge-Zero 4B (Pointwise) 26k ✗ 79.4 69.8 77.6 82.4 77.3 62.3 88.3 59.0 81.5 72.8 71.8 76.8 66.0 73.7 70.4
TIR-Judge-Distill 8B (Pointwise) 26k ✓ 78.3 73.9 84.9 87.0 81.0 65.6 85.8 65.7 89.7 76.7 78.1 75.5 64.4 65.5 68.2
TIR-Judge-Zero 8B (Pointwise) 26k ✗ 83.6 74.4 85.5 81.9 81.4 66.7 88.3 60.2 90.1 76.3 70.0 74.4 62.1 71.7 67.5

AgentRM 8B + 8B (Pairwise) – – 95.3 74.3 88.3 93.0 87.7 75.4 58.8 53.9 90.7 69.7 – – – – 59.4
Qwen3-4B-Tool (Pairwise) – – 92.7 78.7 80.9 88.5 85.2 79.1 83.2 63.2 77.5 75.7 72.7 58.5 60.8 62.9 63.0
Qwen3-8b-Tool (Pairwise) – – 93.3 78.5 86.2 86.8 86.2 77.5 82.4 60.8 88.3 77.3 78.2 61.0 64.1 63.9 65.9
Gemini-2.5-Flash Tool (Pairwise) – – 90.9 84.3 96.5 88.8 90.1 73.9 76.0 69.5 94.8 80.9 89.3 88.1 67.5 71.4 74.6
TIR-Judge-Distill 4B (Pairwise) 26k ✓ 95.0 75.2 88.9 91.6 87.7 71.6 86.3 61.4 92.9 78.0 81.8 82.9 60.8 74.2 70.6
TIR-Judge-Zero 4B (Pairwise) 26k ✗ 94.4 79.8 78.2 94.4 86.7 77.3 92.3 66.4 87.3 80.8 85.5 82.9 65.4 76.3 73.7
TIR-Judge-Distill 8B (Pairwise) 26k ✓ 92.2 75.6 89.0 94.8 87.9 78.6 89.0 67.7 93.5 82.2 90.2 76.4 68.0 68.0 72.6
TIR-Judge-Zero 8B (Pairwise) 26k ✗ 94.7 77.4 88.8 95.7 89.1 80.1 91.9 69.0 93.9 83.7 81.8 73.2 66.0 75.3 72.0

For Reference: Text-based Reasoning Judge Baselines with >10B Parameters (Pairwise Evaluation)

J1 70B† 22k ✗ 96.1 90.1 91.9 94.9 93.3 – – – – 82.7 – – – – 60.0
RRM 32B 420k ✗ 94.7 81.1 90.7 98.3 91.2 73.9 91.8 74.8 95.3 85.4 87.5 85.7 68.8 76.5 76.0
RM-R1-Deepseek-Distill-14B 73k ✓ 91.3 79.4 89.3 95.5 88.9 71.8 90.5 69.5 94.1 81.5 89.2 88.0 70.1 73.4 76.2
RM-R1-Deepseek-Distill-32B 73k ✓ 95.3 80.3 91.1 96.8 90.9 74.2 91.8 74.1 95.4 83.9 92.8 82.3 72.7 77.5 78.4

Table 6: Dataset statistics for pointwise, pairwise, and listwise data.

Dataset Domain Pointwise Pairwise Listwise Total
Tulu-3 Synthetic Pairs (Lambert et al., 2024) IF 1,500 1,500 263 3,263
MATH (Hendrycks et al., 2021) Math 1,000 1,000 254 2,254
dapo_bigmath (Yu et al., 2025a) Math 2,500 2,500 282 5,282
s1 (Muennighoff et al., 2025) Math 250 250 0 500
UltraInteract (Yuan et al., 2025) Code 2,000 2,000 0 4,000
CodeRM (Ma et al., 2025b) Code 1,000 1,000 472 2,472
WebInstruct (Ma et al., 2025a) Reasoning 1,000 1,000 91 2,091
Loong (Huang et al., 2025b) Reasoning 700 700 99 1,499
HelpSteer3 (Wang et al., 2025c) Helpfulness 2,000 2,000 0 4,000
SafeRLHF (Dai et al., 2024) Safety 500 500 0 1,000

Total 12,450 12,450 1,461 26,361

preventing trivial shortcut solutions. Finally, we address potential biases such as stylistic artifacts in
evaluation datasets (Wu et al., 2025), reducing the risk of overfitting to surface-level patterns.

E ADDITIONAL IMPLEMENTATION DETAILS FOR EVALUATION

Implementation of different evaluation protocols. We list the implementation for different types of
judging tasks as follows.

• Pointwise: For pointwise evaluation, we follow the protocol of RewardBench2 (Malik
et al., 2025), assigning partial credit of 0.5 when two responses are scored as a tie. Both
TIR-Judge and pointwise baselines are evaluated under this rule.

• Pairwise: For pairwise evaluation, we adopt the setup of (Guo et al., 2025b) to report the
accuracy over a single random ordering of paired responses across all judgment benchmarks.
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• Listwise: For listwise evaluation in RewardBench2, we follow the best-of-k setting in (Malik
et al., 2025). For example, in best-of-4, the model is provided with a prompt and four
candidate completions, and identify the best response among them.

Implementation details for baselines. Apart from our backbone models (Qwen-3), we run the
following baselines models on our end during evaluation that are publicly available while within our
compute budget:

• RM-R1 (Chen et al., 2025b): All the models are available at the Hugging-
Face platform: https://huggingface.co/collections/gaotang/
rm-r1-681128cdab932701cad844c8.

• RRM (Guo et al., 2025b): All the models are available at the HuggingFace platform:
https://huggingface.co/Reward-Reasoning.

• Think-RM (Hong et al., 2025): The models at the HuggingFace platform: https://
huggingface.co/ilgee/Binary-Think-RM-8B. We chose the binary version
due to its reported better performance.

• AgentRM (Peng et al., 2025): The codebase of AgentRM is publicly available at https:
//github.com/THU-KEG/Agentic-Reward-Modeling.

• Gemini-2.5-Flash (Comanici et al., 2025): We follow the guideline at https://
ai.google.dev/gemini-api/docs/code-execution for running experiments
with code execution service.

For RM-R1, RRM, and Think-RM, they are all designed for pairwise ranking only, and we use the
same pairwise judging prompt reported in the paper to ensure fair comparison. For other baselines,
as some of the works (Whitehouse et al., 2025) are not publicly available, we only use the reported
results in the original paper for comparison.

F DETAILED RESULTS FOR BEST-OF-N EXPERIMENTS

Experiment Setup. Here, we implement three types of the best-of-N selection task. We select AIME-
2024, AIME-2025, BigCodeBench and IFeval for evaluation. For AIME-2024 and AIME-2025, each
containing 30 problems, we evaluate four backbone models: Gemma-3-27B-It, Qwen-2.5-32B,
Qwen-3-32B-Think, and R1-Distill-0528-8B. For each backbone, we allow a maximum
generation length of 16k tokens and sample 16 valid responses per problem. For BigCodeBench and
IFEval, we reuse model outputs from the JETTS dataset (Zhou et al., 2025). On BigCodeBench, we
consider Qwen-2.5-32B, DeepSeek-Coder-v2, and Qwen-2.5-Coder-7B as backbones.
For IFEval, we select Qwen-2.5-72B and Qwen-2.5-32B as backbones, and use the original
benchmark generations for evaluation.

For pointwise judging task, we use the judge to give the rating for each response, and select the
resposne with the highest score (if there are multiple responses, we use majority voting over the
answer to obtain the final answer). For listwise and pairwise judge task, we follow (Guo et al.,
2025b; Liu et al., 2025b) to adopt a knockout tournament style in (O(n)) comparisons for promoting
efficiency.

Detailed Experiment Results. Table 7 reports detailed per-dataset and per-model results, showing
the number of solutions passed across four benchmarks under different Best-of-N judging settings.

From Table 7, we observe that TIR-Judge consistently delivers strong performance across model
scales and judging formats, highlighting its robust generalization ability. These results demonstrate
that TIR-Judge is not only effective but also readily transferable to diverse target tasks.

G ADDITIONAL STUDIES FOR TIR-JUDGE
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Table 7: Performance comparison across benchmarks and checkpoints (accuracy in %).
Benchmark (Size) Model Pass@1 MV@16 TIR-Judge-Zero

4B Pointwise
TIR-Judge-Zero

4B Pairwise
TIR-Judge-Zero

4B Listwise
TIR-Judge-Zero

8B Pointwise
TIR-Judge-Zero

8B Pairwise
TIR-Judge-Zero

8B Listwise
RRM-7B

(Pair)

AIME 2024 (30)

Gemma-3-27B 16.7 30.0 33.3 43.3 40.0 36.7 46.7 43.3 36.7
Qwen-2.5-32B 10.0 13.3 13.3 30.0 26.7 10.0 43.3 40.0 26.7
Qwen-3-32B-Think 80.0 86.7 86.7 83.3 80.0 86.7 83.3 80.0 83.3
R1-distill-0528-8B 76.7 80.0 80.0 83.3 80.0 80.0 80.0 80.0 80.0

AIME 2025 (30)

Gemma-3-27B 20.0 26.7 23.3 30.0 26.7 23.3 36.7 30.0 26.7
Qwen-2.5-32B 10.0 13.3 20.0 40.0 40.0 23.3 46.7 33.3 36.7
Qwen-3-32B-Think 73.3 80.0 83.3 83.3 73.3 83.3 80.0 76.7 80.0
R1-distill-0528-8B 70.0 73.3 73.3 76.7 73.3 73.3 76.7 76.7 76.7

BigCodeBench (1139)
Qwen-3-32B 40.3 43.5 50.0 46.9 45.4 48.3 47.5 45.3 45.2
Deepseek-Coder 25.0 28.8 38.2 37.5 35.5 32.6 39.3 35.1 33.3
Qwen-2.5-7B-Coder 31.4 35.2 40.9 41.8 39.2 41.4 41.5 39.2 38.1

IFEval (541) Qwen-2.5-32B-Instruct 78.6 80.6 82.1 86.0 84.7 81.0 86.0 83.2 80.6
Qwen-2.5-72B-Instruct 82.4 84.5 85.2 88.4 89.1 84.8 88.0 87.2 83.9

Table 8: Ablation Study on Reward Formulation (Multiplication vs. Addition).
Method MMLU-P MATH GPQA MBPP-P IFEval Avg. IFBench CJBench RWBench RMBench JGBench
Pointwise Evaluation

TIR-Judge-Distill 4B (Ours) 58.7 81.9 45.8 64.1 78.9 65.9 65.8 59.9 76.6 71.9 66.7
TIR-Judge-Zero 4B (Ours) 62.5 87.3 54.7 64.8 79.8 69.8 65.9 61.5 77.3 72.8 70.4
TIR-Judge-Distill 4B (Add.) 62.5 73.4 46.9 63.5 74.2 64.1 65.5 59.3 73.7 68.6 60.6
TIR-Judge-Zero 4B (Add.) 63.5 89.8 48.5 62.0 68.5 66.5 63.0 61.1 76.0 63.4 68.6

Pairwise Evaluation

TIR-Judge-Distill 4B (Ours) 69.0 88.7 54.8 60.6 83.6 71.3 73.7 69.8 87.7 78.0 70.5
TIR-Judge-Zero 4B (Ours) 75.0 93.3 61.7 67.3 84.5 76.3 70.3 70.8 86.7 80.8 73.7
TIR-Judge-Distill 4B (Add.) 56.5 85.4 43.9 56.5 85.5 65.6 74.5 66.3 84.6 77.4 65.3
TIR-Judge-Zero 4B (Add.) 69.5 91.9 52.1 63.5 81.2 71.6 72.0 68.7 85.4 80.0 72.0

Table 9: Position bias analysis. We report performance for A-B order, B-A order, and the average.
Results indicate minimal variance for our method compared to baselines.

Model / Setting MMLU-P MATH GPQA MBPP-P IFEval PPE Avg. IFBench CJBench RWBench RMBench
TIR-Judge-Zero 4B

A-B 75.0 93.3 61.7 67.3 84.5 76.36 70.3 70.8 86.7 80.8
B-A 76.4 92.6 59.6 66.4 81.5 75.3 73.6 69.2 86.2 80.6
Avg. 75.7 93.0 60.6 66.9 83.0 75.8 72.0 70.0 86.4 80.7

TIR-Judge-Distill 4B
A-B 69.0 88.7 54.8 60.6 83.6 71.3 73.7 69.8 87.7 78.0
B-A 68.5 89.2 53.0 59.4 84.5 71.0 71.1 69.9 86.1 76.9
Avg. 68.7 89.0 53.9 60.0 84.1 71.1 72.4 69.9 86.9 77.5

Qwen3-4B-Tool
A-B 63.5 83.3 35.9 58.9 62.3 60.8 59.2 29.2 85.2 75.7
B-A 63.5 83.3 37.4 57.3 63.8 61.1 61.6 28.0 86.0 66.9
Avg. 63.5 83.3 36.7 58.1 63.0 60.9 60.4 28.6 85.6 71.3

TIR-Judge-Zero 8B
A-B 76.6 94.0 58.5 68.8 80.8 75.7 68.9 69.3 89.1 83.7
B-A 76.5 93.8 57.3 68.6 80.7 75.4 67.4 70.0 87.4 81.2
Avg. 76.6 93.9 57.9 68.7 80.8 75.6 68.1 69.6 88.3 82.4

TIR-Judge-Distill 8B
A-B 72.2 90.4 53.8 63.2 85.7 73.0 74.3 70.0 87.9 82.2
B-A 72.6 90.6 52.7 61.5 84.8 72.5 74.1 72.5 88.8 80.0
Avg. 72.4 90.5 53.3 62.3 85.2 72.8 74.2 71.2 88.3 81.1

Qwen3-8B-Tool
A-B 72.0 85.2 56.0 54.3 60.8 65.7 52.5 54.9 86.2 77.3
B-A 71.5 83.3 52.4 54.1 60.2 64.3 57.4 55.0 85.1 71.2
Avg. 71.8 84.3 54.2 54.2 60.5 65.0 55.0 55.0 85.7 74.3

Different Reward Combinations. Table 8 shows the comparison of our proposed TIR-Judge
(using multiplication reward formulation) against the addition-based reward formulation variant. We
report results across both Pointwise and Pairwise settings. The result shows that using the addition
form as the reward would lead to slightly worse performance.

Performance of TIR-Judge with different orders. Table 9 shows that TIR-Judge exhibits
small positional discrepancy (typically <1%, at most 2%), while the backbone Qwen3 models can
have a relatively higher variance (up to 9%). This confirms that our training procedure effectively
mitigates position bias.
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Table 10: Accuracy Comparison Split by Response Length. We report the judge’s accuracy when
the ground-truth chosen response is longer than the rejected one versus when it is shorter (i.e., the
rejected response is longer).

Model Acc. (Chosen > Rejected) Acc. (Rejected > Chosen)
TIR-Judge-Distill 4B 78.58 76.27
TIR-Judge-Zero 4B 80.67 79.27
Qwen-3-4B-Tool (Backbone) 65.79 71.20

TIR-Judge-Distill 8B 80.97 79.18
TIR-Judge-Zero 8B 77.73 77.98
Qwen-3-8B-Tool (Backbone) 72.61 72.25

Table 11: Comparison of Training Costs. Left: GPU wall-clock time breakdown. Right: Estimated
financial cost including compute and API fees.

Stage TIR-Judge-Zero TIR-Judge-Distill
SFT 2.5h 1.0h
RS (Rejection Sampling) 3.5h 1.5h
RL (Reinforcement Learning) 23.0h 8.5h

Total Time 29.0h 11.0h

Component TIR-Judge-Zero TIR-Judge-Distill
Compute Cost (8×H100) ∼ $690 ∼ $210
Teacher API Cost $0 ∼ $130

Total Cost ∼ $690 ∼ $340

Performance of TIR-Judge with different response length. To evaluate the verbosity bias, we
report the accuracy separately for cases where the chosen is longer or shorter than the response. The
results show minimal difference between the two categories, and in some cases, TIR-Judge further
reduces the verbosity gap observed in the Qwen3 backbone. This indicates that verbosity bias is well
controlled.

H COST ANALYSIS OF TIR-JUDGE

We provide a detailed breakdown of the computational and financial costs for training TIR-Judge-
8B in Table 11. Experiments were conducted on 8 NVIDIA H100 GPUs. We estimate the total
cost based on current market rates for H100 clusters and the official API pricing (Gemini-2.5)
for generating the 10k distillation samples. While TIR-Judge-Zero is approximately 2× more
expensive (∼ $690 vs. ∼ $340), we argue this trade-off is strategically valuable. It unlocks
autonomous self-improvement by eliminating the dependency on teacher supervision, making it a
critical solution for privacy-sensitive environments where access to frontier models is restricted. In
practice, our recommendations are:

• Use Distill for domains where there are noticeable gaps (measured by held-out evaluation
sets) between the teacher and student model, provided API costs are permitted. It is ideal
for injecting specific capabilities—such as safety, IF, correct tool-call formats, and thinking
structures—that the base model lacks.

• Use Zero when no superior teacher exists (e.g., improving SOTA models) or to avoid API
dependencies due to privacy concerns. It is ideal for unlocking latent reasoning capabilities
through self-exploration, effectively trading API costs for training compute.

I MORE CASE STUDIES ON FAILURE CASES

We illustrate a representative failure case of TIR-Judge in Table ??. In this example, the model
incorrectly counts the number of list items. The highlighted erroneous code shows that TIR-Judge
attempts to match numbered lists beginning with a digit followed by a capital letter, but the actual
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Table 12: A case study from IFBench of a failed judgement generated by TIR-Judge-Zero 8B. Red
text stands for the incorrect reasoning step.

User Prompt Hello, how to learn AI using only online courses and tutorials? Please provide the answer with a light-hearted and encouraging tone. Provide a response that
contains exactly 150 words, structured in a numbered list with each item beginning with a capital letter and ending with a period, and the word ’AI’ should
appear at least 3 times.

Response 1. **Start with the Basics:** Begin with introductory courses on platforms like Coursera, edX, or Udacity to grasp the fundamentals of AI.
2. **Choose Your Language:** Learn Python, the most popular language for AI, through tutorials on Codecademy or freeCodeCamp.
3. **Dive into Data:** Explore data science and machine learning courses, as they are the backbone of AI, on websites like DataCamp or Kaggle.
4. **Hands-On Practice:** Apply your knowledge by participating in AI challenges on Kaggle or building small projects using datasets.
5. **Join Communities:** Engage with AI enthusiasts on forums like Reddit’s r/MachineLearning or AI-specific groups on LinkedIn.
6. **Stay Updated:** Follow AI blogs, podcasts, and YouTube channels to keep up with the latest trends and breakthroughs.
7. **Never Give Up:** Remember, learning AI is a marathon, not a sprint. Enjoy the journey and celebrate your progress!
Keep pushing forward, AI mastery is within your reach!

Judge Trajectory by
TIR-Judge-Zero
8B

To evaluate the response, I will check:
1. Whether the response is exactly 150 words.
2. Whether it’s structured in a numbered list with each item beginning with a capital letter and ending with a period.
3. Whether the word ’AI’ appears at least 3 times.
“‘python

import re
# Check word count
word_count = len(response.split())
# Check structure: each item starts with capital letter and ends with period
items = re.findall(r’\\d+\\.\\s+[A-Z].*?\\.’, response)
# Check occurrences of ’AI’
ai_count = response.lower().count(’ai’)
print(f"Word count: word_count")
print(f"Number of AI occurrences: ai_count")
print(f"Number of list items: len(items)")
“‘
“‘output
Word count: 147
Number of AI occurrences: 9
Number of list items: 0
“‘
<score>1</score>

response uses the “**” Markdown pattern for list items, which the regex fails to capture. This error
arises because (1) the model does not robustly enumerate all formatting variants when generating
code, and (2) although the task can be solved either with or without tool use, the model fails to
recognize that direct reasoning (i.e., counting the items without code) would have been simpler and
more reliable.

Additional failure cases include generating incorrect code (e.g., referencing undefined variables) or
misunderstanding the semantics of the prompt—for instance, when asked to check for the presence
of a {keyword}, TIR-Judge incorrectly interprets the literal braces “{}” as part of the keyword.
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