

# 000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 BOOSTING AGENTIC REASONING IN LLM JUDGES VIA TOOL-INTEGRATED REINFORCEMENT LEARNING

Anonymous authors

Paper under double-blind review

## ABSTRACT

Large Language Models (LLMs) are widely used as judges to evaluate response quality, providing a scalable alternative to human evaluation. However, most LLM judges operate solely on intrinsic text-based reasoning, limiting their ability to verify complex constraints or perform accurate computation. Motivated by the success of tool-integrated reasoning (TIR) in numerous tasks, we propose TIR-Judge, an end-to-end RL framework for training LLM judges that integrates a Python executor for precise evaluation. TIR-Judge is built on three principles: (i) diverse training across verifiable and non-verifiable domains, (ii) flexible judgment formats (pointwise, pairwise, listwise), and (iii) iterative RL that enables bootstrapping directly from a base model without distillation. On seven public benchmarks, TIR-Judge surpasses strong reasoning-based judges by up to 6.4% (pointwise) and 7.7% (pairwise), and achieves listwise performance comparable to Claude-Opus-4 despite having only 8B parameters. Remarkably, TIR-Judge-Zero—trained entirely without distillation—matches the performance of the distilled variants, showing that tool-augmented judges can self-improve through reinforcement learning alone.

## 1 INTRODUCTION

Large Language Model (LLM)-based judges are emerging as a critical component in the LLM ecosystem, typically used with scoring and ranking model outputs. This evaluation capability is essential at multiple stages of LLM development: during post-training, judges provide preference signals for alignment (Chen et al., 2025a; Whitehouse et al., 2025); at inference time, judges verify and select responses through best-of-N decoding (Huang et al., 2025a); and during evaluation, judges deliver reliable assessments without manual human assessment (Li et al., 2024a). Thus, training accurate LLM-based judges is of great importance for building powerful language models.

Classical evaluation with reward models often outputs scores directly, which cannot fully harvest the inherent reasoning capability of LLM. Recent progress in generative reward modeling (Zhang et al., 2025; Zhao et al., 2025) and reinforcement learning equips judges with thinking before producing final predictions (Chen et al., 2025b; Whitehouse et al., 2025; Guo et al., 2025b; Hong et al., 2025). While these approaches enhance judge quality by equipping LLMs with long chains of textual reasoning traces, they remain inherently limited in scenarios that require precise computation or symbolic reasoning – capabilities that are much more challenging for text-only models (Mirzadeh et al., 2025).

Recent advances in LLM tool-use provide a promising avenue to overcome the limitations of text-only judges (Chen et al., 2023; Gao et al., 2023). By granting access to executable interfaces for enumeration, verification, and computation, tools enable exact validation of reasoning steps rather than relying on potentially error-prone text-based inference. For example, code execution can automatically *verify outputs on certain instructions* (Zhou et al., 2023) (as shown in Figure 1) or *check intermediate calculations* in math reasoning (Lu et al., 2025). Early attempts have also explored equipping LLM judges with tool-use abilities (Peng et al., 2025; Findeis et al., 2025; Li et al.,

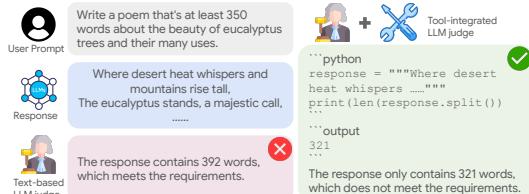


Figure 1: An example of LLM judge augmented with code execution, enabling precise judgments.

054 2024b; Agarwal et al., 2025), but these approaches reveal two major limitations. (i) *Inference-time*  
 055 *restriction*: most methods integrate tool-use only at the inference stage, preventing deeper integration  
 056 between reasoning processes and tool execution. (ii) *Narrow task coverage*: many are tailored to  
 057 specific domains or specialized task types, which limits their applicability in general-purpose judging  
 058 scenarios. These gaps highlight the need for robust judges that tightly couple reasoning with tool  
 059 execution and be optimized end-to-end.

060 Motivated by these challenges, our goal is to develop an LLM judge that can reliably integrate  
 061 reasoning with code interpreter execution. Incorporating tool-integrated reasoning (TIR) (Feng et al.,  
 062 2025; Li et al., 2025a; Lin & Xu, 2025), we propose TIR-Judge, a framework that leverages  
 063 reinforcement learning (RL) to teach models to generate code, execute it with interpreters, and  
 064 iteratively refine their reasoning based on the resulting outputs. By reinforcing this cycle of reasoning  
 065 and tool-use, TIR-Judge equips LLM judges with the ability at the training time to deliver more  
 066 accurate and verifiable evaluations across diverse tasks.

067 Then, to fully unleash the potential of RL for TIR-Judge, we introduce several key design choices.  
 068 (i) *Task diversity*: To balance between different tasks, we construct training prompts spanning both  
 069 verifiable domains (e.g., competitive programming, mathematical reasoning) and non-verifiable  
 070 domains (e.g., dialogue, safety, general coding), allowing the model to learn when tool invocation is  
 071 beneficial and when pure reasoning suffices. (ii) *Judgment flexibility*: To accommodate to different  
 072 input/output formats, we diversify the evaluation tasks to cover pointwise, pairwise, and listwise  
 073 ranking, ensuring broad applicability across practical use cases. (iii) *Data efficiency*: unlike prior  
 074 methods that rely on distillation as cold-start for RL (Chen et al., 2025b; Hong et al., 2025), we  
 075 demonstrate that TIR-Judge can bootstrap from the initial checkpoint. Specifically, TIR-Judge-  
 076 Zero trains purely with iterative reinforcement learning for achieving self-improvement, while  
 077 TIR-Judge-Distill provides an optional variant using a small amount of distillation data.

078 Our contribution can be summarized as follows:

- 079 • We introduce TIR-Judge, a tool-integrated framework for training LLM-based judges with  
 080 end-to-end multi-turn reinforcement learning. To the best of our knowledge, this is the first  
 081 approach that jointly optimizes reasoning and tool-use for training LLM-based judges via RL.
- 083 • We design several key strategies to fully exploit the power of reinforcement learning, including *task*  
 084 *diversification* across verifiable and non-verifiable domains, *flexible judgment formats* (pointwise,  
 085 pairwise, listwise), as well as an *iterative RL scheme* that enables self-improvement in tool use  
 086 even without distillation.
- 087 • We evaluate TIR-Judge on seven public benchmarks covering diverse tasks and input formats.  
 088 TIR-Judge consistently outperforms strong reasoning-based judges, achieving gains of up  
 089 to 6.4% (pointwise) and 7.7% (pairwise). Moreover, TIR-Judge shows strong parameter  
 090 efficiency: With only 8B parameters, it surpasses the 32B reasoning reward models on the  
 091 PPE dataset, and reaches 96% of the performance of Claude-Opus-4 in the listwise setting in  
 092 RewardBench 2. Interestingly, TIR-Judge-Zero, the judge trained without any distillation,  
 093 achieves a 1.2% gain over its distilled counterpart at 4B scale, highlighting the power of RL to  
 094 bootstrap reasoning and tool-use capabilities.

## 096 2 RELATED WORKS

098 **Reasoning-Enhanced Reward and Judge Models.** A growing line of work strengthens reward  
 099 models (RMs) and judges by explicitly training them to *reason* before scoring. Generative Veri-  
 100 fiers (Zhang et al., 2025) treat verification as next-token prediction with chain-of-thought, improving  
 101 math and algorithmic tasks. Other methods enhance judgment by generating critiques (Ankner et al.,  
 102 2024; Yu et al., 2025c;b; Wang et al., 2025a), using multi-round preference optimization (Wang et al.,  
 103 2024b), or planning evaluations before issuing a decision (Saha et al., 2025). Liu et al. (2025d) study  
 104 how to allocate compute and structure critiques for reliability. More recently, RL-based judges (Chen  
 105 et al., 2025a;b; Whitehouse et al., 2025; Guo et al., 2025b; Hong et al., 2025) incentivize longer,  
 106 higher-quality reasoning and reduce bias across pointwise and pairwise settings, Khalifa et al. (2025);  
 107 Zhao et al. (2025) leverage thinking traces to improve process reward models. However, these remain  
 108 confined to text-only reasoning and often emphasize pairwise judgment.

108 **Tool-Assisted Reward and Judge Models.** Another line of work augments judges with external tools.  
 109 [Li et al. \(2024b\)](#) incorporate verifiable signals alongside preference data for judge training, though  
 110 primarily within tool-use scenarios. [Zhuge et al. \(2025\)](#) evaluate agentic judge capabilities in agent  
 111 settings, and [Peng et al. \(2025\)](#) integrate human preferences with correctness checks to construct  
 112 more reliable rewards. [Findeis et al. \(2025\)](#) show that external tools (e.g., code execution, search) can  
 113 improve annotations, observing gains are task-dependent. Yet, most works rely on *prompted* tool use  
 114 rather than training judges to *learn when and how* to call tools and incorporate their outputs.

115 **Reinforcement Learning for Tool-integrated Reasoning.** RL has recently been applied to tool-  
 116 integrated reasoning (TIR). [Feng et al. \(2025\)](#); [Bai et al. \(2025\)](#); [Li et al. \(2025a\)](#) train LLMs to  
 117 interleave reasoning with code execution, improving math and programming. [Jin et al. \(2025\)](#); [Song  
 118 et al. \(2025\)](#) extend this to web search, while others study reward design ([Dong et al., 2025](#); [Wang  
 119 et al., 2025b](#)) or provide theoretical analyses ([Lin & Xu, 2025](#)).

### 3 PRELIMINARIES

123 **Problem Setup.** We consider the task of *LLM-based judgment*: given a user prompt  $x \in \mathcal{X}$  and  $n$   
 124 model-generated responses  $\mathcal{Y} = \{y_1, y_2, \dots, y_n\}$ , the goal is to evaluate the quality of responses for  
 125 the prompt. The judge model  $J_\theta$  produces an evaluation output conditioned on  $(x, \mathcal{Y})$ . In this work,  
 126 we consider three evaluation settings: (i) **Pointwise evaluation**: given  $(x, y)$ , the judge assigns a  
 127 scalar score,  $J_\theta(x, y) = s_\theta(x, y) \in \mathbb{R}$ ; (ii) **Pairwise evaluation**: given  $(x, y_a, y_b)$ , the judge selects  
 128 the preferred response,  $J_\theta(x, y_a, y_b) = \arg \max_{i \in \{a, b\}} s_\theta(x, y_i)$ , where  $s_\theta$  denotes a learned scoring  
 129 function. This is also the most common evaluation setting; (iii) **Listwise evaluation**: given  $(x, \mathcal{Y})$   
 130 with  $n > 2$ , the judge returns the index of the best response,  $J_\theta(x, \mathcal{Y}) = \arg \max_{i \in \{1, \dots, n\}} s_\theta(x, y_i)$ .  
 131 These settings unify a broad range of evaluations under a common framework<sup>1</sup>.

132 **Tool-Augmented Judge.** We extend the judge with the ability to call an external *Python execution*  
 133 *environment*  $\mathcal{I}$ . For the prompt  $x \in \mathcal{X}$ , At step  $k$ , the judgment trajectory  $s_k$  is represented as  
 134  $s_k = \{r_1, c_1, o_1, \dots, r_k, c_k, o_k\}$ , where  $r_i$  is a natural language reasoning step,  $c_i$  is a generated  
 135 code, and  $o_i = \mathcal{I}(c_i)$  is the execution result of  $c_i$  ([Li et al., 2025a](#)). The iterative process is defined as:

$$(r_k, c_k) \sim J(x \oplus s_{k-1}), \quad o_k = \mathcal{I}(c_k), \quad s_k = s_{k-1} \oplus r_k \oplus c_k \oplus o_k. \quad (1)$$

137 This cycle continues until the judge produces a final prediction  $a_i \sim J(x \oplus s_T)$  with  $T$  being the final  
 138 step. Unlike traditional text-only reasoning, the trajectory now interleaves reasoning, code execution,  
 139 and tool feedback, enabling the judge to ground its decision in verifiable evidence.

### 4 TRAINING TIR-JUDGE

143 We now describe the training procedure for TIR-Judge, which consists of four components: (1)  
 144 data collection and filtering for RL, (2) the RL framework for training judges with integrated code  
 145 execution tools, (3) reward design for RL, and (4) cold-start and iterative training strategies in RL.  
 146 The overall framework of TIR-Judge is exhibited in Figure 2.

#### 4.1 DATA COLLECTION AND FILTERING

149 High-quality training data is crucial for RL with tool-augmented judges. Since judgment requires  
 150 both prompts and candidate responses, we curate a collection of (prompt, responses) tuples spanning  
 151 multiple tasks. Our corpus integrates both human-annotated preference data and automatically  
 152 generated synthetic pairs to ensure diversity and scalability.

153 **Real Preference Pairs.** We sample human-labeled preference pairs from a variety of domains:  
 154 **general helpfulness** — *HelpSteer 3* ([Wang et al., 2025c](#)); **reasoning** — *UltraInteract* ([Yuan et al.,  
 155 2025](#)), *S1* ([Muennighoff et al., 2025](#)); **coding** — *CodeRM* ([Ma et al., 2025b](#)); **instruction following**  
 156 (**IF**) — preference pairs from *Tulu 3* ([Lambert et al., 2024](#)); **safety** — *Safe-RLHF* ([Dai et al., 2024](#)).  
 157 Each prompt is paired with one preferred (*chosen*) response and one or more *rejected* responses.

158 **Synthetic Preference Pairs.** Because reasoning preference data is often limited in scale, we  
 159 augment the corpus with *synthetic* preference pairs generated from verifiable prompts. For each

161 <sup>1</sup>Note that in our work, the reference answer is *unseen* during evaluation, different from the *verification*  
 setting ([Liu et al., 2025a](#); [Li et al., 2025b](#); [Yan et al., 2025](#)) where the reference answer is also a part of the input.

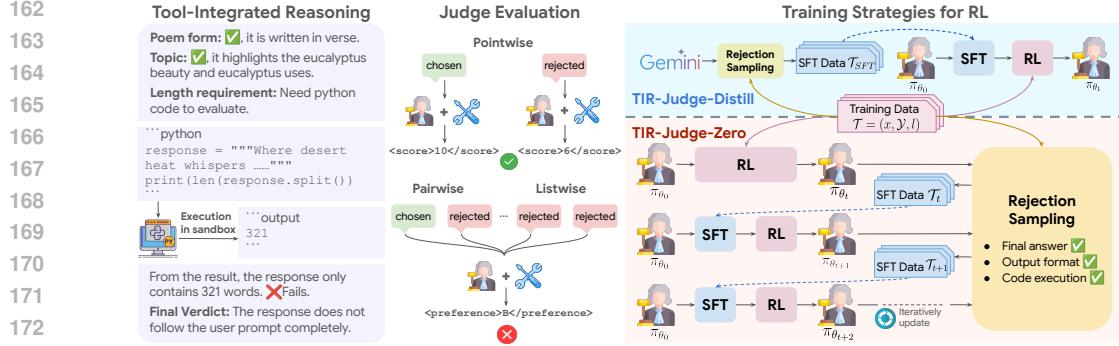


Figure 2: Overall framework of TIR-Judge variants. TIR-Judge natively supports tool use during judgment and is designed to handle diverse input formats.

prompt, we sample responses from multiple open-source models, including *Qwen3-8B/14B* (Team, 2025), *Gemma-2-9B* (Team et al., 2024), and *Gemma-3-12B* (Team et al., 2025). The responses are automatically evaluated against verifiable functions (for IF tasks) or ground-truth solutions (for reasoning tasks) to form preference pairs. For **IF**, we use verifiable prompts from *Tulu-3* (Lambert et al., 2024), where correctness can be programmatically verified using lexical or structural constraints. For **reasoning**, we employ *MATH* (Hendrycks et al., 2021) and *DAPO-Math* (Yu et al., 2025a) for math domain and *WebInstruct* (Ma et al., 2025a), and *Loong* (Huang et al., 2025b) for general domain, both of which provide ground-truth solutions for exact verification.

In total, our dataset comprises approximately 26k preference pairs, including pointwise, pairwise, and listwise annotations, covering diverse domains such as helpfulness, reasoning, coding, safety, and verifiable instruction following. We apply strict 8-gram decontamination to eliminate any overlap between training prompts and evaluation benchmarks (Oren et al., 2024). This diverse mixture of data provides a strong foundation for training robust tool-augmented judges.

#### 4.2 TOOL-INTEGRATED RL WITH VERIFIABLE REWARDS

**Overall Framework.** We adopt DAPO (Yu et al., 2025a), an improved variant of GRPO (Shao et al., 2024), for training the LLM judge  $J$  parameterized by  $\pi_\theta$ . Given a prompt–answer pair  $(q, a)$ , we first sample a group of  $G$  rollouts  $\{s_i\}_{i=1}^G$  from the current policy  $\pi_{\theta_{\text{old}}}$ . Each rollout  $s_i$  is assigned a scalar reward  $R_i = R(s_i, a)$  with access to the oracle answer  $a$ . The policy  $\pi_\theta$  is then updated with the following clipped policy gradient objective:

$$\mathcal{J}(\theta) = \mathbb{E}_{(q, a) \sim \mathcal{D}, \{s_i\}_{i=1}^G \sim \pi_{\theta_{\text{old}}}(\cdot|q)} \left[ \frac{1}{\sum_{i=1}^G |s_i|} \sum_{i=1}^G \sum_{t=1}^{|s_i|} \left( \min(r_{i,t}(\theta) \hat{A}_{i,t}, \right. \right. \\ \left. \left. \text{clip}(r_{i,t}(\theta), 1 - \varepsilon_{\text{low}}, 1 + \varepsilon_{\text{high}}) \hat{A}_{i,t}) - \beta D_{\text{KL}}(\pi_\theta \| \pi_{\text{ref}}) \right) \right] \text{ s.t. } 0 < |\{s_i : \text{is\_equivalent}(a, s_i)\}| < G$$

where  $r_{i,t}(\theta) = \frac{\pi_\theta(s_{i,t}|q, s_{i,< t})}{\pi_{\theta_{\text{old}}}(s_{i,t}|q, s_{i,< t})}$  is the token-level weight,  $\hat{A}_{i,t} = \frac{R_i - \text{mean}(\{R_i\}_{i=1}^G)}{\text{std}(\{R_i\}_{i=1}^G)}$  is the advantage at the token level, and `is_equivalent` step filters out the prompts with accuracy equal to 1 and 0. The hyperparameters  $\varepsilon_{\text{low}}$  and  $\varepsilon_{\text{high}}$  control the clipping range for importance weights, while  $\beta$  regulates the KL divergence penalty to stabilize training.

**Additional Designs.** Beyond standard RL training, we implement two enhancements to stabilize tool-augmented judgment: (i) *Error Message Processing*. We truncate the outputs from Interpreter  $\mathcal{I}$  to only the final error line to avoid excessive context length while preserving useful feedback in  $s_k$ ; (ii) *Sandbox Output Masking*. Since execution results  $o_i = \mathcal{I}(c_i)$  may cause the model to overfit by memorizing outputs, we mask  $o_i$  during loss computation, following Li et al. (2025a); Jin et al. (2025). This prevents reliance on exact strings and improves training stability.

**Reward Designs.** To effectively facilitate multi-turn RL with code execution, we design a structured covering three aspects, described as follows:

(i) *Correctness Reward*  $R_c$ : This component measures whether the judge’s prediction aligns with the reference preference label. Let  $x$  denote the prompt,  $\mathcal{Y} = \{y_1, \dots, y_n\}$  the candidate responses, and

216  $l$  the ground-truth preferred response. The reward is defined as:  
 217

$$218 \quad R_c = \begin{cases} \mathbb{I}(s_\theta(x, y_{\text{pos}}) > s_\theta(x, y_{\text{neg}})), & \text{for pointwise evaluation,} \\ 219 \quad \mathbb{I}(J_\theta(x, \mathcal{Y}) = l), & \text{for pairwise or listwise evaluation,} \\ 220 \quad 0, & \text{otherwise,} \end{cases} \quad (2)$$

222 where  $\mathbb{I}(\cdot)$  is the indicator function,  $s_\theta(x, y)$  denotes the judge’s scoring function, and  $J_\theta(x, \mathcal{Y})$  is the  
 223 predicted best response under the judge’s policy. Intuitively,  $R_c = 1$  if the judge’s decision matches  
 224 the ground-truth preference, and  $R_c = 0$  otherwise (i.e. incorrect predictions, or having errors when  
 225 parsing the generated text).

226 (ii) *Format Reward*  $R_f$ : To ensure reliability, the judge is required to strictly follow a predefined  
 227 structured output format. Specifically, prediction scores must be enclosed within `<score>` and  
 228 `</score>` tags, the preference label must be wrapped in `<preference>` and `</preference>`  
 229 tags, and all code segments must be enclosed using ````python` and `````. In addition, to accommodate  
 230 both *reasoning* and *non-reasoning* tasks and *discourage unnecessary tool calls*, we introduce a  
 231 heuristic: for safety and general helpfulness prompts, a positive format reward is granted only if the  
 232 model produces a valid output *without* invoking tools. Formally,  $R_f = 1$  if the output satisfies all  
 233 formatting constraints (and the no-tool heuristic when applicable), and  $R_f = 0$  otherwise.

234 (iii) *Tool-Specific Reward*  $R_t$ : We encourage accurate and efficient tool use by penalizing errors or  
 235 excessive executions (Wang et al., 2025b). We set the max number of tool calls per trajectory to 3,  
 236 and set  $R_t = 1$  only when code blocks  $c_i$  are error-free and within the call budget; otherwise  $R_t = 0$ .

237 The final reward  $R$  is defined as a combination of correctness, format, and tool-specific rewards and  
 238 assigns full credit only when correctness, format, and tool-use are all satisfied:  
 239

$$240 \quad R = R_c \times (0.1 + 0.9 \mathbb{I}[R_t = 1 \wedge R_f = 1]). \quad (3)$$

### 241 4.3 TRAINING STRATEGIES FOR RL

243 Directly applying RL often leads to suboptimal outcomes, as the base model lacks sufficient reasoning  
 244 and tool-use capability. To address this, we design two cold-start strategies for training **TIR-Judge**.  
 245

246 **Distillation from Teacher Models (TIR-Judge-Distill).** We leverage a stronger teacher,  
 247 Gemini-2.5-Flash with code execution (Comanici et al., 2025), to generate high-quality trajec-  
 248 tories via rejection sampling. For each user prompt  $x$  and corresponding  $\mathcal{Y}$ , we collect a trajectory  
 249  $s$  and a final prediction  $a$  as  $(x, \mathcal{Y}, s, a) \sim J$ . Only trajectories that produce correct answers are  
 250 retained, yielding a dataset  $\mathcal{T}_{\text{SFT}} = \{(x, \mathcal{Y}, s, a) \mid R(s, a, l) = 1\}$ . Then the student judge is trained  
 251 via supervised fine-tuning (SFT) with objective  $\mathcal{L}_{\text{SFT}} = -\mathbb{E}_{(x, \tau) \sim \mathcal{T}_{\text{SFT}}} \left[ \sum_{i=1}^{|y|} \log f_\theta(\tau_i \mid \tau_{<i}, x) \right]$ ,  
 252 where  $\tau = (s, a)$  is the target trajectory with reasoning and code steps. As in RL training, *interpreter*  
 253 *feedback tokens are masked* to prevent learning on execution results. In total, we collect about 10k  
 254 tool-integrated trajectories for SFT, which serve as the initialization before reinforcement learning.

255 **Iterative Training without Distillation (TIR-Judge-Zero).** Beyond teacher distillation, we  
 256 investigate whether tool-augmented judges can improve purely through *self-bootstrapping* (Yuan  
 257 et al., 2024; Huang et al., 2023; Zelikman et al., 2022; Xiong et al., 2025). The process alternates  
 258 between RL, rejection sampling, and supervised fine-tuning.

259 Starting from the initial model  $\pi_{\theta_0}$ , we first obtain the checkpoint  $\pi_{\theta_1}$  via direct RL on training data  
 260 as  $\pi_{\theta_1} \leftarrow \text{RL}(\pi_{\theta_0})$  (Sec. 4.2). Then, for each prompt  $x$ , we sample multiple trajectories from  $\pi_{\theta_1}$   
 261 as  $\{s_i\}_{i=1}^G \sim \pi_{\theta_1}(\cdot \mid x)$  ( $G = 4$  in our study), where each trajectory contains reasoning, code, and  
 262 execution results:  $s_i = \{r_1, c_1, o_1, \dots, r_k, c_k, o_k\}$ . We retain only valid trajectories that (i) produce  
 263 the correct answer  $l$ , (ii) satisfy the output format, and (iii) execute without interpreter errors as  
 264  $\mathcal{T}_t = \{(x, s, a) \mid R(s, a, l) = 1\}$ . To promote efficiency, for each prompt we further keep only one  
 265 trajectory, preferring the shortest response or the one with the fewest tool calls<sup>2</sup>. The dataset  $\mathcal{T}_t$  is  
 266 then used for SFT, and the fine-tuned model initializes the next RL round. After each cycle, we select  
 267

268 <sup>2</sup>In practice, we prioritize trajectories with the fewest tool calls, since encouraging efficient tool usage is  
 269 the primary objective. If multiple trajectories tie under this criterion, we then choose the one with the shortest  
 trajectory length to further promote concise and efficient reasoning.

Table 1: Main results on six benchmarks.  $\dagger$  indicates results reported from the original papers, and are mainly used for reference. CJBench, RWBench, and JGBench denote CodeJudgeBench, RewardBench, and JudgeBench. “Distill?” specifies whether the model relies on additional judge data distilled from teacher models. **Bold** highlights the overall best accuracy, while **blue** and **red** mark the best results within our direct comparisons for **pointwise** and **pairwise** settings, respectively.

| 275                                                                       | Baselines                                                                                                | ↓Train | Distill? | PPE Correctness |      |      |        |        |             | IFBench     | CJBench     | RWBench     | RMBench     | JGBench     |
|---------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|--------|----------|-----------------|------|------|--------|--------|-------------|-------------|-------------|-------------|-------------|-------------|
|                                                                           |                                                                                                          |        |          | MMLU-P          | MATH | GPQA | MBPP-P | IFEval | Avg.        |             |             |             |             |             |
| <b>LLM-as-a-Judge (Pairwise Evaluation unless specified)</b>              |                                                                                                          |        |          |                 |      |      |        |        |             |             |             |             |             |             |
| 277                                                                       | Qwen3-4B-Instruct (Pointwise)                                                                            | –      | –        | 64.3            | 83.1 | 38.0 | 62.4   | 55.2   | 60.6        | 56.2        | 16.6        | 76.5        | 66.9        | 50.8        |
| 278                                                                       | Qwen3-8B (Pointwise)                                                                                     | –      | –        | 68.7            | 64.2 | 56.5 | 58.9   | 57.4   | 61.1        | 55.9        | 54.9        | 79.2        | 69.3        | 64.9        |
| 279                                                                       | Gemini-2.5-Flash (Pointwise)                                                                             | –      | –        | 56.5            | 79.5 | 46.4 | 63.0   | 63.9   | 61.9        | 51.6        | 53.3        | 80.7        | 70.8        | 66.9        |
| 280                                                                       | GPT-4 $\dagger$                                                                                          | –      | –        | –               | –    | –    | –      | 57.6   | 61.3        | –           | 86.7        | 72.5        | 56.6        | –           |
| 281                                                                       | GPT-01-mini $\dagger$                                                                                    | –      | –        | –               | –    | –    | –      | 71.3   | 70.1        | –           | 87.1        | –           | 65.7        | –           |
| 282                                                                       | DeepSeek-R1-671B $\dagger$                                                                               | –      | –        | –               | –    | –    | –      | –      | –           | 68.0        | –           | 90.6        | –           | 73.1        |
| 283                                                                       | Claude 3.5 $\dagger$                                                                                     | –      | –        | 81.0            | 86.0 | 63.0 | 54.0   | 58.0   | 68.4        | –           | 58.3        | 84.2        | 61.0        | 64.3        |
| 284                                                                       | Qwen3-4B-Instruct (Pairwise)                                                                             | –      | –        | 63.9            | 83.1 | 35.0 | 59.7   | 60.7   | 60.4        | 62.2        | 34.5        | 86.0        | 75.3        | 63.9        |
| 285                                                                       | Qwen3-8B (Pairwise)                                                                                      | –      | –        | 73.8            | 80.2 | 57.3 | 57.8   | 58.4   | 65.5        | 61.3        | 60.8        | 87.0        | 77.9        | 67.5        |
| 286                                                                       | Gemini-2.5-Flash (Pairwise)                                                                              | –      | –        | 68.8            | 85.5 | 58.1 | 86.5   | 75.0   | 74.8        | 69.3        | 66.5        | 93.4        | 81.9        | 75.4        |
| <b>Scalar Reward Models (Pointwise)</b>                                   |                                                                                                          |        |          |                 |      |      |        |        |             |             |             |             |             |             |
| 287                                                                       | Armo-RM-8B $\dagger$                                                                                     | 1000k  | <b>X</b> | 66.0            | 71.0 | 57.0 | 54.0   | 58.0   | 61.2        | 62.9        | –           | 90.3        | 67.7        | –           |
| 288                                                                       | Skywor-Gemma-2-27B $\dagger$                                                                             | 80k    | <b>X</b> | 55.0            | 46.2 | 44.7 | 69.1   | 58.3   | 54.7        | 63.2        | –           | <b>93.8</b> | 67.3        | –           |
| 289                                                                       | Deepseek-BTRM-27B $\dagger$                                                                              | 237k   | <b>X</b> | 68.8            | 73.2 | 56.8 | 68.8   | 66.0   | 66.7        | –           | –           | 81.7        | –           | –           |
| <b>Text-based Reasoning Judges (Pairwise Evaluation unless specified)</b> |                                                                                                          |        |          |                 |      |      |        |        |             |             |             |             |             |             |
| 290                                                                       | Deepseek-GRM-27B $\dagger$                                                                               | 237k   | <b>X</b> | 64.8            | 68.8 | 55.6 | 50.1   | 59.8   | 59.8        | –           | –           | 86.1        | –           | –           |
| 291                                                                       | J1-8B (Pairwise) $\dagger$                                                                               | 22k    | <b>X</b> | 65.6            | 70.0 | 53.2 | 53.1   | 54.0   | 59.2        | –           | –           | 85.7        | 73.4        | 42.0        |
| 292                                                                       | J1-8B (Pointwise) $\dagger$                                                                              | 22k    | –        | –               | –    | –    | –      | –      | 58.5        | –           | –           | –           | –           | –           |
| 293                                                                       | RRM-7B                                                                                                   | 420k   | <b>X</b> | 66.5            | 88.0 | 57.9 | 61.2   | 53.6   | 65.4        | 60.1        | 63.4        | 82.2        | 70.4        | 67.0        |
| 294                                                                       | RM-R1-Deepseek-Distill-7B                                                                                | 73k    | <b>✓</b> | 67.3            | 91.2 | 62.6 | 60.5   | 53.0   | 66.9        | 56.6        | 63.2        | 80.1        | 72.4        | 67.7        |
| 295                                                                       | RM-R1-Instruct-7B                                                                                        | 73k    | <b>✓</b> | 64.1            | 74.5 | 60.7 | 57.3   | 57.8   | 62.9        | 59.0        | 57.5        | 85.2        | 70.2        | 60.3        |
| 296                                                                       | Think-RM 7B                                                                                              | 10k    | <b>✓</b> | 66.5            | 78.3 | 55.6 | 58.1   | 63.9   | 64.5        | 57.4        | 54.6        | 86.0        | 73.9        | 64.6        |
| <b>Tool-augmented Judges</b>                                              |                                                                                                          |        |          |                 |      |      |        |        |             |             |             |             |             |             |
| 297                                                                       | Qwen3-4B-Tool (Pointwise)                                                                                | –      | –        | 64.6            | 81.6 | 38.3 | 61.0   | 49.8   | 59.1        | 44.1        | 18.0        | 78.4        | 72.1        | 56.6        |
| 298                                                                       | Qwen3-8B-Tool (Pointwise)                                                                                | –      | –        | 67.0            | 72.4 | 54.0 | 56.0   | 34.0   | 56.7        | 27.1        | 45.9        | 78.0        | 67.9        | 59.4        |
| 299                                                                       | Gemini-2.5-Flash-Tool (Pointwise)                                                                        | –      | –        | 68.2            | 86.0 | 48.9 | 58.7   | 73.5   | 67.1        | 53.0        | 47.9        | 81.3        | 71.2        | 66.5        |
| 300                                                                       | <b>TIR-Judge-Distill 4B (Pointwise)</b>                                                                  | 26k    | <b>✓</b> | 58.7            | 81.9 | 45.8 | 64.1   | 78.9   | 65.9        | 65.8        | 59.9        | <b>76.6</b> | 71.9        | 66.7        |
| 301                                                                       | <b>TIR-Judge-Zero 4B (Pointwise)</b>                                                                     | 26k    | <b>X</b> | 62.5            | 87.3 | 54.7 | 64.8   | 79.8   | 69.8        | 65.9        | 61.5        | 77.3        | 72.8        | 70.4        |
| 302                                                                       | <b>TIR-Judge-Distill 8B (Pointwise)</b>                                                                  | 26k    | <b>✓</b> | 70.9            | 88.1 | 52.3 | 61.0   | 83.0   | <b>71.0</b> | <b>68.4</b> | <b>61.9</b> | 81.0        | 76.7        | <b>68.2</b> |
| 303                                                                       | <b>TIR-Judge-Zero 8B (Pointwise)</b>                                                                     | 26k    | <b>X</b> | 67.8            | 88.0 | 53.2 | 64.7   | 77.8   | 70.3        | 66.8        | 60.8        | <b>81.4</b> | <b>76.3</b> | 67.5        |
| 304                                                                       | <b>For Reference: Text-based Reasoning Judge Baselines with &gt;10B Parameters (Pairwise Evaluation)</b> |        |          |                 |      |      |        |        |             |             |             |             |             |             |
| 305                                                                       | J1 70B $\dagger$                                                                                         | 22k    | <b>X</b> | 79.0            | 86.0 | 65.9 | 66.0   | 67.3   | 72.8        | –           | –           | 93.3        | 82.7        | 60.0        |
| 306                                                                       | RRM 32B                                                                                                  | 420k   | <b>X</b> | 80.5            | 94.3 | 68.4 | 72.8   | 60.2   | 75.3        | 60.8        | <b>76.3</b> | 91.2        | <b>85.4</b> | 76.0        |
| 307                                                                       | RM-R1-Deepseek-Distill-14B                                                                               | 73k    | <b>✓</b> | 78.8            | 94.5 | 63.3 | 70.5   | 63.0   | 74.0        | 58.6        | 65.5        | 88.9        | 81.5        | 76.2        |
| 308                                                                       | RM-R1-Deepseek-Distill-32B                                                                               | 73k    | <b>✓</b> | 79.8            | 95.4 | 65.2 | 74.6   | 63.3   | 75.6        | 60.4        | 65.8        | 90.9        | 83.9        | <b>78.4</b> |

the best checkpoint based on held-out validation accuracy and repeat the  $\text{RS} \rightarrow \text{SFT} \rightarrow \text{RL}$  loop:

$$\mathcal{T}_{t+1} \leftarrow \text{RS}(\pi_{\theta_t}), \quad \pi_{\theta_{t+1}} \leftarrow \text{SFT}(\pi_{\theta_0}, \mathcal{T}_{t+1}), \quad \pi_{\theta_{t+1}} \leftarrow \text{RL}(\pi_{\theta_{t+1}}).$$

This iterative process a stable refinement loop of *better examples*  $\rightarrow$  *better rollouts*  $\rightarrow$  even better examples. It allows TIR-Judge-Zero to progressively bootstrap stronger reasoning and tool-use capabilities entirely from a base model and facilitates self-improvement without distillation. Since judgment rewards are deterministic and unambiguous (correct vs. incorrect), this iterative process converges reliably in practice.

## 5 EXPERIMENTS

### 5.1 EXPERIMENT SETUPS

**Evaluation Datasets.** Following prior work (Whitehouse et al., 2025; Chen et al., 2025b), we focus on *reasoning tasks*, evaluating TIR-Judge on PPE Correctness (Frick et al., 2025). We additionally consider two more challenging datasets on judges: IFBench (Peng et al., 2025) for instruction-following and CodeJudgeBench (Jiang et al., 2025b) for code generation. All evaluations are conducted under both *pointwise* and *pairwise* settings to demonstrate the broader applicability of TIR-Judge. We also evaluate on *general-domain* judge benchmarks, where reasoning constitutes a subset, including RewardBench (Lambert et al., 2025), RM-Bench (Liu et al., 2025c) and JudgeBench (Tan et al., 2025) for pointwise/pairwise evaluation, and RewardBench 2 (Malik et al., 2025) for *listwise* evaluation.

**Implementation Details.** We use Qwen3-8B and Qwen3-4B-Instruct-2507 (Team, 2025) as backbones, without enabling thinking mode, and implement training with Verl-Tool (Jiang et al.,

324). For SFT, we train with batch size 64, learning rate 2e-6, context length 8192, for 1 epoch.  
 325 For RL, we set the micro batchsize per gpu to 4, mini batchsize to 128 and number of rollout to 8.  
 326 We set  $\varepsilon_{\text{low}} = 0.2$ ,  $\varepsilon_{\text{high}} = 0.3$ ,  $\beta = 0.01$ , max response length to 8192, learning rate 1e-6 and train  
 327 for 2 epochs. The experiments are run with 8 NVIDIA H100 80G GPUs. For data collection in Sec.  
 328 4.1, we generate 2 rollouts for each model with  $t = 0.9$ ,  $p = 0.95$ . No external feedback (e.g., GPT  
 329 annotations) is used. **For inference, we set  $t = 0$  for generating responses.**

330 **Baselines.** We consider the following group of baselines: (i) **Off-the-shelf LLM as judges**: GPT-  
 331 4o (Hurst et al., 2024), GPT-01-mini (Jaech et al., 2024), Deepseek-R1 (Guo et al., 2025a), Claude 3.5  
 332 (Anthropic, 2025), Gemini-2.5-Flash (Comanici et al., 2025), Qwen-3 (Team, 2025); (ii) **Standard  
 333 Reward Models**: Armo-RM (Wang et al., 2024a), Skywork-Reward-Gemma-2 (Liu et al., 2024),  
 334 Deepseek-BTRM (Liu et al., 2025d); (iii) **Text-based Judges trained with RL**: Deepseek-GRM  
 335 (Liu et al., 2025d), J1 (Whitehouse et al., 2025), RM-R1 (Chen et al., 2025b), RRM (Guo et al.,  
 336 2025b) and Think-RM (Hong et al., 2025); (iv) **Tool-augmented Judges (Inference-time)**: Gemini-  
 337 2.5-Flash-Tool (Comanici et al., 2025), AgentRM (Peng et al., 2025)<sup>3</sup>, and Qwen-3 (Team, 2025)  
 338 (our backbone) that use the same code execution tool as TIR-Judge **but only inject tools at the  
 339 inference time**.

## 340 5.2 MAIN EXPERIMENT RESULTS

341 **Experiments for Pointwise/Pairwise Judging tasks.** Table 1 shows the main results of TIR-Judge  
 342 on six judge benchmarks. The per-task accuracy on several benchmark is deferred to Table 5. From  
 343 the results, we have the following key observations: (i) **TIR-Judge achieves strong judging  
 344 accuracy compared to baselines.** Notably, on the PPE benchmark, TIR-Judge outperforms  
 345 baselines with similar sizes by 4.8%-9.9% for pointwise judging and 4.5%-8.8% for pairwise judging.  
 346 It also achieves competitive or even better performance on other benchmarks with baselines having  
 347 more parameters and trained with more data. For example, TIR-Judge achieves similar accuracy  
 348 on PPE and RewardBench compared to RRM-32B despite having only 1/4-1/8 of its parameters. (ii)  
 349 **RL is critical for boosting tool-use capability for judges**: Simply augmenting Qwen-3 models  
 350 with code execution yields negligible (<1%) or even negative gains. In contrast, RL produces  
 351 substantial improvements, showing that base checkpoints lack robust code generation ability and  
 352 that RL is essential for unlocking tool-use capability. Moreover, RL confers strong generalization:  
 353 although most IF data is verifiable, TIR-Judge also performs well on IFBench, which contains  
 354 many non-verifiable constraints. (iii) **Iterative RL is surprisingly effective to serve as another  
 355 alternative to distillation** : Comparing TIR-Judge-Zero with TIR-Judge-Distill, we find that  
 356 TIR-Judge-Zero delivers comparable or better performance, outperforming the distilled variant on  
 357 4/6 benchmarks (pointwise) and 3/6 benchmarks (pairwise). **This demonstrates that TIR-Judge-Zero  
 358 offers a viable alternative for data-scarce regimes, achieving competitive performance to distillation-  
 359 based methods, albeit with additional overheads in training time.**

## 360 5.3 Experiments on Listwise Judging tasks.

361 We further evaluate TIR-Judge on Reward-  
 362 Bench2 (Malik et al., 2025) under *listwise* judge  
 363 setting, where the input contains one chosen  
 364 and multiple rejected responses. As shown in  
 365 Table 2, TIR-Judge achieves strong perfor-  
 366 mance, matching 96% performance of Claude-  
 367 Opus-4, the current best model on the leader-  
 368 board, despite being 8B parameter only. The  
 369 advantage is more notable on tasks such as in-  
 370 struction following and mathematical reasoning,  
 371 where TIR-Judge’s integration of code execu-  
 372 tion provides a clear gain.

## 373 5.3 ADDITIONAL STUDIES

374 **Diverse Data Mixture is essential for RL.** We study the impact of task composition in RL in  
 375 Figure 3. Training exclusively on chat or reasoning tasks leads to poor transfer across subtasks,  
 376

377 <sup>3</sup>For fairness, we use Qwen-3 as the backbone for AgentRM. Note that AgentRM additionally leverages  
 Armo-RM to assist judgment.

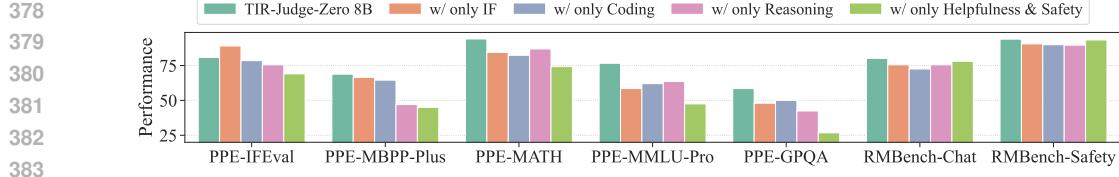
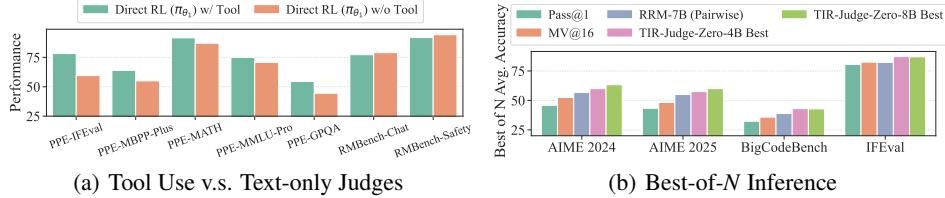


Figure 3: The effect of different data mixture used in RL training of TIR-Judge-Zero.

Figure 4: Experimental results comparing tool-augmented judges against text-only judges under the same training data and settings, as well as the best-of- $N$  inference performance.

largely because the scarcity of tool-use prompts prevents the model from fully developing tool-use capabilities. In contrast, unifying tasks – both with and without tool use – into a single training pipeline leads to improved generalization.

**Tool Use vs. Text-Only.** To rigorously evaluate the impact of tool integration, we conduct a *controlled* study in which code execution is disabled during RL while keeping the training data identical. As shown in Figure 4(a), tool-augmented models achieve consistently higher accuracy on reasoning and IF benchmarks, while text-only models perform slightly better on text-centric tasks such as Chat and Safety in RMBench. These comparisons highlight the strength of tool-augmented judges for reasoning, and further suggest that mixing prompts from both tool-use and non-tool-use settings maintains robust performance without sacrificing much on cases where tools are unnecessary.

**Efficiency Studies.** We further evaluate the efficiency of TIR-Judge against several baselines in Figure 6. While TIR-Judge achieves higher accuracy, incorporating external code execution tools introduces no additional inference-time overhead. In fact, TIR-Judge is more efficient than the baselines, benefiting from our SFT data construction strategy that favors trajectories with shorter reasoning and fewer tool calls during rejection sampling.

**Iterative RL progressively improves TIR-Judge-Zero.** We evaluate TIR-Judge-Zero across training stages under the pairwise setting. As shown in Figure 5, we observe substantial gains after the first round of RL. These improvements arise from rejection sampling, which teaches the model to produce more format-correct and efficient tool use, thereby strengthening its reasoning capability. Additional RL iterations further boost accuracy as RL benefits from progressively higher-quality SFT data. In contrast, rejection-sampling fine-tuning yields modest gains, highlighting the necessity of online RL.

#### 5.4 BEST-OF-N EVALUATION ON POLICY MODELS

We conduct parallel test-time compute scaling experiment to study whether TIR-Judge can improve the downstream performance of the policy model, where we conduct a study on **reward-guided best-of- $N$  inference** over datasets from multiple domains including *AIME-2024*, *AIME-2025*, *BigCodeBench* (Zhuo et al., 2025) and *IFEval* (Zhou et al., 2023). The detailed experimental setup is deferred to Appendix F.

Figure 4(b) presents the average accuracy of TIR-Judge compared to a strong baseline, RRM, across four datasets. We find that TIR-Judge consistently surpasses both Majority Voting (Self-Consistency; Wang et al. (2023)) and RRM by clear margins, demonstrating its effectiveness.

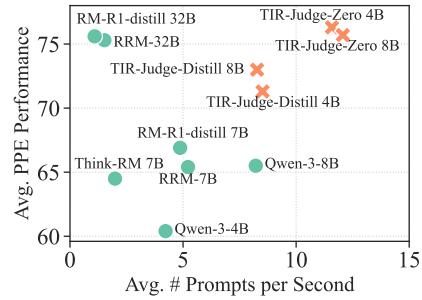


Figure 6: Study on Inference Efficiency.

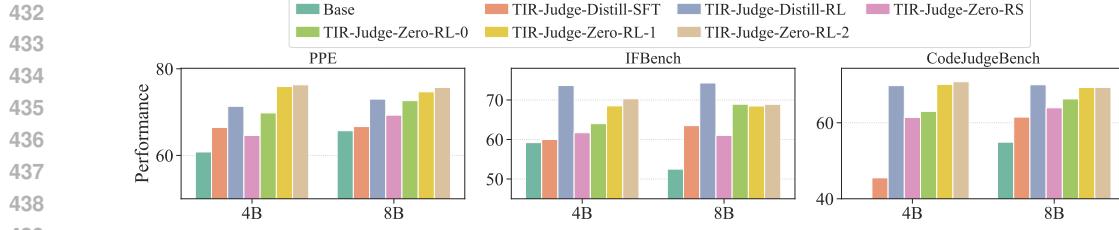


Figure 5: Accuracy of TIR-Judge across different training stages. Base denotes the backbone model without additional training. TIR-Judge-Zero-RS is a variant inspired by Zelikman et al. (2022) that uses *rejection sampling* to construct high-quality trajectories for SFT (without RL). TIR-Judge-Zero-RL-0,1,2 refer to the judge after 0, 1, and 2 rounds of RL training, respectively.

Table 3: A case study from IFEval demonstrating the judgement generated by TIR-Judge-Zero 8B and Qwen3-8B. Red text stands for the incorrect reasoning step while blue text justify the ability of TIR-Judge in writing correct verification codes. Part of responses are omitted due to space limits.

|                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|---------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| User Prompt                           | Write a letter to your friend who recently moved away. Your response should be in English, and in all capital letters. The letter o should appear at least 40 times.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Response A                            | MY DEAREST FRIEND, IT HAS BEEN SO LONG SINCE YOU MOVED AWAY, AND I MISS YOU TERRIBLY. .... I CAN'T WAIT TO HEAR FROM YOU AND TO CATCH UP, WITH LOTS OF LOVE, YOUR FRIEND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Response B                            | MY DEAR FRIEND, IT HAS BEEN SOME TIME SINCE YOU MOVED AWAY, .... I WISH YOU NOTHING BUT THE BEST ON YOUR NEW ADVENTURE, FRIEND. remember M UPDATE WITH ALL THE DETAILS ABOUT YOUR LIFE THEREOVER IN THE PRINTED PAGES. PLEASE SEND Oast THOUGHTS YOUR WAY, AS I KNOW YOURS ARE ALWAYS NEARLY ALWAYS WITH YOUR FRIEND FOR LIFE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Judge Trajectory by TIR-Judge-Zero 8B | To evaluate the responses, I will perform the following checks:<br>1. Ensure both responses are in all capital letters.<br>2. Count the number of times the letter "O" appears in each response.<br>```python                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                       | # Count occurrences of 'O' (case-sensitive)<br>count_o_a = response_a.count('O')<br>count_o_b = response_b.count('O')<br><br># Check if responses are in all capital letters<br>is_upper_a = response_a == response_a.upper()<br>is_upper_b = response_b == response_b.upper()<br><br>print(f"Response A - 'O' count: {count_o_a}, All caps: {is_upper_a}")<br>print(f"Response B - 'O' count: {count_o_b}, All caps: {is_upper_b}")<br>```\n>output<br>Response A - 'O' count: 58, All caps: True<br>Response B - 'O' count: 60, All caps: False<br>```\n<preference>A</preference>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Qwen3-8B                              | <b>Analysis of Response A:</b><br>- <b>Language:</b> Entirely in English. ✓<br>- <b>Capitalization:</b> All text is in all capital letters. ✓<br>- <b>Letter "O" Count:</b><br>Let's count the number of "O" letters in Response A (excluding punctuation and spaces for clarity):<br>"MY DEAREST FRIEND," → 1 "O"<br>"IT HAS BEEN SO LONG SINCE YOU MOVED AWAY, AND I MISS YOU TERRIBLY." → 2 "O"s<br>.....<br><b>Total O's in Response A:</b> 1 + 2 + 3 + 3 + 4 + 1 + 2 + 2 + 2 + 2 + 1 + 1 = 23 → Does NOT meet the requirement of at least 40 "O" letters. ✗<br><br><b>Analysis of Response B:</b><br>- <b>Language:</b> Entirely in English. ✓<br>- <b>Capitalization:</b> All text is in all capital letters. ✓<br>- <b>Letter "O" Count:</b><br>Let's count the number of "O" letters in Response A (excluding punctuation and spaces for clarity):<br>"MY DEAR FRIEND," → 2 "O's<br>"IT HAS BEEN SOME TIME SINCE YOU MOVED AWAY," → 1 "O"<br>"I HAVE TO ADMIT, I MISS OUR THOUGHTFUL CONVERSATIONS AND EVEN YOUR (ADMIT IT) TERRIBLE, WONDERFUL COOKING." → 4 "O's<br>.....<br><b>Total O's in Response B:</b> 2 + 1 + 4 + 1 + 4 + 1 + 7 = 20 → Does NOT meet the requirement of at least 40 "O" letters. ✗<br><b>Conclusion:</b> Both responses fail to meet the instruction's requirement that the letter "O" must appear at least 40 times. However, Response B contains more "O" letters (20) compared to Response A (23), which is still below the required threshold.<br>Despite both responses not fully complying with the instruction, Response B is more closely aligned with the instruction, as it contains a higher number of "O" letters and is more detailed in content. <preference>B</preference> |

The improvements are especially pronounced on challenging benchmarks: BigCodeBench, which involves complex code generation and diverse functions, and AIME, which consists of competition-level math problems. On these tasks, TIR-Judge achieves absolute gains of 3.9–6.7% over RRM. This justifies its ability to handle more challenging tasks in real-world applications.

## 5.5 CASE STUDIES

Table 3 presents an example from the IFEval subset of the PPE benchmark. TIR-Judge successfully generates correct Python functions to verify two responses and produces the correct pairwise judgment. In contrast, text-only judges struggle, as counting remains challenging and often leads to *incorrect* and

486

487 Table 4: Breakdown of Code Execution Errors. We categorize errors into Syntax, Runtime, and  
488 Formatting failures.

| Error Type | TIR-Judge-Zero | TIR-Judge-Distill | Qwen-3-Tool |
|------------|----------------|-------------------|-------------|
| Syntax     | 1.20%          | 3.65%             | 4.95%       |
| Runtime    | 0.00%          | 0.00%             | 0.00%       |
| Format     | 0.17%          | 0.14%             | 0.97%       |

494

495 *hallucinated* reasoning steps, which yield incorrect predictions. This highlights how tool integration  
496 enables TIR-Judge to overcome failure modes that remain difficult for text-only judges.497 To confirm that the gains of TIR-Judge stem from improved reasoning and coding capability rather  
498 than merely “learning the format,” we analyzed the error breakdown for the 8B models in Table 4.  
499 The results show that format errors in the Qwen backbone are already negligible (< 1%). This  
500 confirms that TIR-Judge’s improvement is driven by better code generation (significantly lower  
501 syntax errors) and reasoning capabilities, rather than simply correcting formatting artifacts.

502

503 

## 6 CONCLUSION

504

505 In this work, we introduce TIR-Judge, the first tool-integrated framework for training LLM  
506 judges with end-to-end reinforcement learning. Different from prior works on text-only judges,  
507 TIR-Judge tightly couples reasoning with code execution to enable judges to perform precise  
508 verification and computation. To maximize the benefits of RL, we propose three key design choices:  
509 *task diversification*, *flexible judgement*, and *iterative RL training*. Experiments on seven benchmarks  
510 show that TIR-Judge outperforms strong reasoning judges by up to 6.4% (pointwise) and 7.7%  
511 (pairwise), and matches 96% of Claude-Opus-4’s listwise performance with only 8B parameters.  
512 TIR-Judge-Zero shows that pure RL can bootstrap tool-use without supervision, offering a scalable  
513 path toward self-improving judges. In future work, we aim to expand the range of tools and training  
514 tasks used in RL, and explore using TIR-Judge to enhance policy model training.

515

516 

## ETHICS STATEMENT

517

518 Our work aims to advance the development of LLM-based judges by complementing reasoning  
519 with tool use. While TIR-Judge demonstrates strong performance across multiple domains,  
520 we recognize potential ethical and safety concerns. In particular, the use of external tools (e.g.,  
521 code execution environments) raises risks if malicious or unsafe code were executed, such as  
522 file manipulation, unauthorized access, or propagation of harmful outputs. To mitigate this, our  
523 experiments are conducted in sandboxed environments with restricted permissions, and no real-world  
524 files or systems are exposed.

525

526 

## REPRODUCIBILITY STATEMENT

527

528 We place strong emphasis on reproducibility and provide comprehensive implementation details.  
529 Hyperparameters and training configurations are reported in Section 5.1, while the construction of  
530 synthetic training data, prompt formats, and evaluation protocols are documented in Appendices D,  
531 B, and E, respectively. Each RL iteration requires approximately 8–12 hours on 8\*NVIDIA H100  
532 80GB GPUs, and the full training of TIR-Judge can be reproduced within 24–48 hours under the  
533 reported setup.

534

535 

## REFERENCES

536

537 Mayank Agarwal, Ibrahim Abdelaziz, Kinjal Basu, Merve Unuvar, Luis A Lastras, Yara Rizk, and  
538 Pavan Kapanipathi. Toolrm: Outcome reward models for tool-calling large language models. *arXiv  
preprint arXiv:2509.11963*, 2025.

539

540 Zachary Ankner, Mansheej Paul, Brandon Cui, Jonathan D Chang, and Prithviraj Ammanabrolu.  
541 Critique-out-loud reward models. *arXiv preprint arXiv:2408.11791*, 2024.

540 Anthropic. Introducing claude 3.5 sonnet. Technical report, 2025.  
 541

542 Fei Bai, Yingqian Min, Beichen Zhang, Zhipeng Chen, Wayne Xin Zhao, Lei Fang, Zheng Liu,  
 543 Zhongyuan Wang, and Ji-Rong Wen. Towards effective code-integrated reasoning. *arXiv preprint*  
 544 *arXiv:2505.24480*, 2025.

545 Nuo Chen, Zhiyuan Hu, Qingyun Zou, Jiaying Wu, Qian Wang, Bryan Hooi, and Bingsheng He.  
 546 JudgeLrm: Large reasoning models as a judge. *arXiv preprint arXiv:2504.00050*, 2025a.  
 547

548 Wenhui Chen, Xueguang Ma, Xinyi Wang, and William W. Cohen. Program of thoughts prompting:  
 549 Disentangling computation from reasoning for numerical reasoning tasks. *Transactions on Machine*  
 550 *Learning Research*, 2023.

551 Xiusi Chen, Gaotang Li, Ziqi Wang, Bowen Jin, Cheng Qian, Yu Wang, Hongru Wang, Yu Zhang,  
 552 Denghui Zhang, Tong Zhang, et al. Rm-r1: Reward modeling as reasoning. *arXiv preprint*  
 553 *arXiv:2505.02387*, 2025b.  
 554

555 Gheorghe Comanici, Eric Bieber, Mike Schaeckermann, Ice Pasupat, Noveen Sachdeva, Inderjit  
 556 Dhillon, Marcel Blistein, Ori Ram, Dan Zhang, Evan Rosen, et al. Gemini 2.5: Pushing the frontier  
 557 with advanced reasoning, multimodality, long context, and next generation agentic capabilities.  
 558 *arXiv preprint arXiv:2507.06261*, 2025.

559 Josef Dai, Xuehai Pan, Ruiyang Sun, Jiaming Ji, Xinbo Xu, Mickel Liu, Yizhou Wang, and Yaodong  
 560 Yang. Safe RLHF: Safe reinforcement learning from human feedback. In *The Twelfth International*  
 561 *Conference on Learning Representations*, 2024.  
 562

563 Guanting Dong, Yifei Chen, Xiaoxi Li, Jiajie Jin, Hongjin Qian, Yutao Zhu, Hangyu Mao, Guorui  
 564 Zhou, Zhicheng Dou, and Ji-Rong Wen. Tool-star: Empowering llm-brained multi-tool reasoner  
 565 via reinforcement learning. *arXiv preprint arXiv:2505.16410*, 2025.

566 Jiazhan Feng, Shijue Huang, Xingwei Qu, Ge Zhang, Yujia Qin, Baoquan Zhong, Chengquan Jiang,  
 567 Jinxin Chi, and Wanjun Zhong. Retool: Reinforcement learning for strategic tool use in llms.  
 568 *arXiv preprint arXiv:2504.11536*, 2025.  
 569

570 Arduin Findeis, Floris Weers, Guoli Yin, Ke Ye, Ruoming Pang, and Tom Gunter. Can external  
 571 validation tools improve annotation quality for LLM-as-a-judge? In *Proceedings of the 63rd*  
 572 *Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)*, July  
 573 2025.

574 Evan Frick, Tianle Li, Connor Chen, Wei-Lin Chiang, Anastasios Nikolaos Angelopoulos, Jiantao  
 575 Jiao, Banghua Zhu, Joseph E. Gonzalez, and Ion Stoica. How to evaluate reward models for RLHF.  
 576 In *The Thirteenth International Conference on Learning Representations*, 2025.  
 577

578 Luyu Gao, Aman Madaan, Shuyan Zhou, Uri Alon, Pengfei Liu, Yiming Yang, Jamie Callan, and  
 579 Graham Neubig. Pal: Program-aided language models. In *International Conference on Machine*  
 580 *Learning*, pp. 10764–10799. PMLR, 2023.

581 Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Peiyi Wang, Qihao Zhu, Runxin Xu, Ruoyu  
 582 Zhang, Shirong Ma, Xiao Bi, et al. Deepseek-r1 incentivizes reasoning in llms through reinforce-  
 583 ment learning. *Nature*, 645(8081):633–638, 2025a.  
 584

585 Jiaxin Guo, Zewen Chi, Li Dong, Qingxiu Dong, Xun Wu, Shaohan Huang, and Furu Wei. Reward  
 586 reasoning model. *arXiv preprint arXiv:2505.14674*, 2025b.  
 587

588 Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn Song,  
 589 and Jacob Steinhardt. Measuring mathematical problem solving with the MATH dataset. In  
 590 *Thirty-fifth Conference on Neural Information Processing Systems Datasets and Benchmarks Track*  
 591 (*Round 2*), 2021.

592 Ilgee Hong, Changlong Yu, Liang Qiu, Weixiang Yan, Zhenghao Xu, Haoming Jiang, Qingru Zhang,  
 593 Qin Lu, Xin Liu, Chao Zhang, and Tuo Zhao. Think-rm: Enabling long-horizon reasoning in  
 594 generative reward models. *arXiv preprint arXiv:2505.16265*, 2025.

594 Audrey Huang, Adam Block, Qinghua Liu, Nan Jiang, Akshay Krishnamurthy, and Dylan J Foster.  
 595 Is best-of-n the best of them? coverage, scaling, and optimality in inference-time alignment. In  
 596 *Forty-second International Conference on Machine Learning*, 2025a.

597

598 Jiaxin Huang, Shixiang Gu, Le Hou, Yuexin Wu, Xuezhi Wang, Hongkun Yu, and Jiawei Han. Large  
 599 language models can self-improve. In *Proceedings of the 2023 Conference on Empirical Methods*  
 600 *in Natural Language Processing*, pp. 1051–1068, December 2023.

601 Xingyue Huang, Gregor Franke, Ziyi Yang, Jiamu Bai, Weijie Bai, Jinhe Bi, Zifeng Ding, Yiqun  
 602 Duan, Chengyu Fan, Wendong Fan, et al. Loong: Synthesize long chain-of-thoughts at scale  
 603 through verifiers. *arXiv preprint arXiv:2509.03059*, 2025b.

604 Aaron Hurst, Adam Lerer, Adam P Goucher, Adam Perelman, Aditya Ramesh, Aidan Clark, AJ Os-  
 605 trow, Akila Welihinda, Alan Hayes, Alec Radford, et al. Gpt-4o system card. *arXiv preprint*  
 606 *arXiv:2410.21276*, 2024.

607

608 Aaron Jaech, Adam Kalai, Adam Lerer, Adam Richardson, Ahmed El-Kishky, Aiden Low, Alec  
 609 Helyar, Aleksander Madry, Alex Beutel, Alex Carney, et al. Openai o1 system card. *arXiv preprint*  
 610 *arXiv:2412.16720*, 2024.

611 Dongfu Jiang, Yi Lu, Zhuofeng Li, Zhiheng Lyu, Ping Nie, Haozhe Wang, Alex Su, Hui Chen, Kai  
 612 Zou, Chao Du, et al. Verltool: Towards holistic agentic reinforcement learning with tool use. *arXiv*  
 613 *preprint arXiv:2509.01055*, 2025a.

614

615 Hongchao Jiang, Yiming Chen, Yushi Cao, Hung-yi Lee, and Robby T Tan. Codejudgebench:  
 616 Benchmarking llm-as-a-judge for coding tasks. *arXiv preprint arXiv:2507.10535*, 2025b.

617 Bowen Jin, Hansi Zeng, Zhenrui Yue, Jinsung Yoon, Sercan O Arik, Dong Wang, Hamed Zamani, and  
 618 Jiawei Han. Search-r1: Training LLMs to reason and leverage search engines with reinforcement  
 619 learning. In *Second Conference on Language Modeling*, 2025.

620

621 Muhammad Khalifa, Rishabh Agarwal, Lajanugen Logeswaran, Jaekyeom Kim, Hao Peng, Moon-  
 622 tae Lee, Honglak Lee, and Lu Wang. Process reward models that think. *arXiv preprint*  
 623 *arXiv:2504.16828*, 2025.

624

625 Nathan Lambert, Jacob Morrison, Valentina Pyatkin, Shengyi Huang, Hamish Ivison, Faeze Brahman,  
 626 Lester James V Miranda, Alisa Liu, Nouha Dziri, Shane Lyu, et al. Tulu 3: Pushing frontiers in  
 627 open language model post-training. *arXiv preprint arXiv:2411.15124*, 2024.

628

629 Nathan Lambert, Valentina Pyatkin, Jacob Morrison, LJ Miranda, Bill Yuchen Lin, Khyathi Chandu,  
 630 Nouha Dziri, Sachin Kumar, Tom Zick, Yejin Choi, Noah A. Smith, and Hannaneh Hajishirzi.  
 631 RewardBench: Evaluating reward models for language modeling. In *Findings of the Association*  
 632 *for Computational Linguistics: NAACL 2025*, pp. 1755–1797, 2025.

633

634 Junlong Li, Shichao Sun, Weizhe Yuan, Run-Ze Fan, Hai Zhao, and Pengfei Liu. Generative judge  
 635 for evaluating alignment. In *The Twelfth International Conference on Learning Representations*,  
 636 2024a.

637

638 Lei Li, Yekun Chai, Shuohuan Wang, Yu Sun, Hao Tian, Ningyu Zhang, and Hua Wu. Tool-augmented  
 639 reward modeling. In *The Twelfth International Conference on Learning Representations*, 2024b.

640

641 Xuefeng Li, Haoyang Zou, and Pengfei Liu. Torl: Scaling tool-integrated rl. *arXiv preprint*  
 642 *arXiv:2503.23383*, 2025a.

643

644 Xuzhao Li, Xuchen Li, Shiyu Hu, Yongzhen Guo, and Wentao Zhang. Verifybench: A systematic  
 645 benchmark for evaluating reasoning verifiers across domains. *arXiv preprint arXiv:2507.09884*,  
 646 2025b.

647

648 Heng Lin and Zhongwen Xu. Understanding tool-integrated reasoning. *arXiv preprint*  
 649 *arXiv:2508.19201*, 2025.

650

651 Chris Yuhao Liu, Liang Zeng, Jiacai Liu, Rui Yan, Jujie He, Chaojie Wang, Shuicheng Yan, Yang  
 652 Liu, and Yahui Zhou. Skywork-reward: Bag of tricks for reward modeling in llms. *arXiv preprint*  
 653 *arXiv:2410.18451*, 2024.

648 Shudong Liu, Hongwei Liu, Junnan Liu, Linchen Xiao, Songyang Gao, Chengqi Lyu, Yuzhe Gu,  
 649 Wenwei Zhang, Derek F Wong, Songyang Zhang, et al. Compassverifier: A unified and robust  
 650 verifier for llms evaluation and outcome reward. *arXiv preprint arXiv:2508.03686*, 2025a.

651

652 Yantao Liu, Zijun Yao, Rui Min, Yixin Cao, Lei Hou, and Juanzi Li. Pairjudge rm: Perform best-of-n  
 653 sampling with knockout tournament. *arXiv preprint arXiv:2501.13007*, 2025b.

654

655 Yantao Liu, Zijun Yao, Rui Min, Yixin Cao, Lei Hou, and Juanzi Li. RM-bench: Benchmarking  
 656 reward models of language models with subtlety and style. In *The Thirteenth International  
 657 Conference on Learning Representations*, 2025c.

658

659 Zijun Liu, Peiyi Wang, Runxin Xu, Shirong Ma, Chong Ruan, Peng Li, Yang Liu, and Yu Wu.  
 Inference-time scaling for generalist reward modeling. *arXiv preprint arXiv:2504.02495*, 2025d.

660

661 Zimu Lu, Aojun Zhou, Ke Wang, Houxing Ren, Weikang Shi, Junting Pan, Mingjie Zhan, and  
 662 Hongsheng Li. Mathcoder2: Better math reasoning from continued pretraining on model-translated  
 663 mathematical code. In *The Thirteenth International Conference on Learning Representations*,  
 2025. URL <https://openreview.net/forum?id=1Iuw1jcIrf>.

664

665 Xueguang Ma, Qian Liu, Dongfu Jiang, Ge Zhang, Zejun Ma, and Wenhui Chen. General-reasoner:  
 666 Advancing llm reasoning across all domains. *arXiv preprint arXiv:2505.14652*, 2025a.

667

668 Zeyao Ma, Xiaokang Zhang, Jing Zhang, Jifan Yu, Sijia Luo, and Jie Tang. Dynamic scaling of unit  
 669 tests for code reward modeling. *arXiv preprint arXiv:2501.01054*, 2025b.

670

671 Saumya Malik, Valentina Pyatkin, Sander Land, Jacob Morrison, Noah A Smith, Hannaneh Hajishirzi,  
 672 and Nathan Lambert. Rewardbench 2: Advancing reward model evaluation. *arXiv preprint  
 673 arXiv:2506.01937*, 2025.

674

675 Seyed Iman Mirzadeh, Keivan Alizadeh, Hooman Shahrokhi, Oncel Tuzel, Samy Bengio, and  
 676 Mehrdad Farajtabar. GSM-symbolic: Understanding the limitations of mathematical reasoning in  
 677 large language models. In *The Thirteenth International Conference on Learning Representations*,  
 2025. URL <https://openreview.net/forum?id=AjXkRZIvjb>.

678

679 Niklas Muennighoff, Zitong Yang, Weijia Shi, Xiang Lisa Li, Li Fei-Fei, Hannaneh Hajishirzi, Luke  
 680 Zettlemoyer, Percy Liang, Emmanuel Candès, and Tatsunori Hashimoto. s1: Simple test-time  
 681 scaling. *arXiv preprint arXiv:2501.19393*, 2025.

682

683 Yonatan Oren, Nicole Meister, Niladri S. Chatterji, Faisal Ladhak, and Tatsunori Hashimoto. Proving  
 684 test set contamination in black-box language models. In *The Twelfth International Conference on  
 685 Learning Representations*, 2024.

686

687 Hao Peng, Yunjia Qi, Xiaozhi Wang, Zijun Yao, Bin Xu, Lei Hou, and Juanzi Li. Agentic reward  
 688 modeling: Integrating human preferences with verifiable correctness signals for reliable reward  
 689 systems. In *Proceedings of the 63rd Annual Meeting of the Association for Computational  
 690 Linguistics (Volume 1: Long Papers)*, July 2025.

691

692 Swarnadeep Saha, Xian Li, Marjan Ghazvininejad, Jason E Weston, and Tianlu Wang. Learning  
 693 to plan & reason for evaluation with thinking-LLM-as-a-judge. In *Forty-second International  
 694 Conference on Machine Learning*, 2025.

695

696 Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang,  
 697 Mingchuan Zhang, YK Li, Yang Wu, et al. Deepseekmath: Pushing the limits of mathematical  
 698 reasoning in open language models. *arXiv preprint arXiv:2402.03300*, 2024.

699

700 Huatong Song, Jinhao Jiang, Yingqian Min, Jie Chen, Zhipeng Chen, Wayne Xin Zhao, Lei Fang, and  
 701 Ji-Rong Wen. R1-searcher: Incentivizing the search capability in llms via reinforcement learning.  
 702 *arXiv preprint arXiv:2503.05592*, 2025.

703

704 Sijun Tan, Siyuan Zhuang, Kyle Montgomery, William Yuan Tang, Alejandro Cuadron, Chenguang  
 705 Wang, Raluca Popa, and Ion Stoica. Judgebench: A benchmark for evaluating LLM-based  
 706 judges. In *The Thirteenth International Conference on Learning Representations*, 2025. URL  
 707 <https://openreview.net/forum?id=G0dksFayVq>.

702 Gemma Team, Morgane Riviere, Shreya Pathak, Pier Giuseppe Sessa, Cassidy Hardin, Surya  
 703 Bhupatiraju, Léonard Hussenot, Thomas Mesnard, Bobak Shahriari, Alexandre Ramé, et al.  
 704 Gemma 2: Improving open language models at a practical size. *arXiv preprint arXiv:2408.00118*,  
 705 2024.

706 Gemma Team, Aishwarya Kamath, Johan Ferret, Shreya Pathak, Nino Vieillard, Ramona Merhej,  
 707 Sarah Perrin, Tatiana Matejovicova, Alexandre Ramé, Morgane Rivière, et al. Gemma 3 technical  
 708 report. *arXiv preprint arXiv:2503.19786*, 2025.

709 Qwen Team. Qwen3 technical report, 2025.

710 Chenglong Wang, Yang Gan, Yifu Huo, Yongyu Mu, Qiaozhi He, MuRun Yang, Bei Li, Tong Xiao,  
 711 Chunliang Zhang, Tongran Liu, and JingBo Zhu. GRAM: A generative foundation reward model  
 712 for reward generalization. In *Forty-second International Conference on Machine Learning*, 2025a.

713 Haoxiang Wang, Wei Xiong, Tengyang Xie, Han Zhao, and Tong Zhang. Interpretable preferences  
 714 via multi-objective reward modeling and mixture-of-experts. In *Findings of the Association for*  
 715 *Computational Linguistics: EMNLP 2024*, pp. 10582–10592, November 2024a.

716 Hongru Wang, Cheng Qian, Wanjun Zhong, Xiusi Chen, Jiahao Qiu, Shijue Huang, Bowen Jin,  
 717 Mengdi Wang, Kam-Fai Wong, and Heng Ji. Acting less is reasoning more! teaching model to act  
 718 efficiently. *arXiv preprint arXiv:2504.14870*, 2025b.

719 Tianlu Wang, Ilia Kulikov, Olga Golovneva, Ping Yu, Weizhe Yuan, Jane Dwivedi-Yu,  
 720 Richard Yuanzhe Pang, Maryam Fazel-Zarandi, Jason Weston, and Xian Li. Self-taught evaluators.  
 721 *arXiv preprint arXiv:2408.02666*, 2024b.

722 Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc V Le, Ed H. Chi, Sharan Narang, Aakanksha  
 723 Chowdhery, and Denny Zhou. Self-consistency improves chain of thought reasoning in language  
 724 models. In *The Eleventh International Conference on Learning Representations*, 2023.

725 Zhilin Wang, Jiaqi Zeng, Olivier Delalleau, Hoo-Chang Shin, Felipe Soares, Alexander Bukharin,  
 726 Ellie Evans, Yi Dong, and Oleksii Kuchaiev. Helpsteer3-preference: Open human-annotated  
 727 preference data across diverse tasks and languages. *arXiv preprint arXiv:2505.11475*, 2025c.

728 Chenxi Whitehouse, Tianlu Wang, Ping Yu, Xian Li, Jason Weston, Ilia Kulikov, and Swarnadeep  
 729 Saha. J1: Incentivizing thinking in llm-as-a-judge via reinforcement learning. *arXiv preprint*  
 730 *arXiv:2505.10320*, 2025.

731 Zhaofeng Wu, Michihiro Yasunaga, Andrew Cohen, Yoon Kim, Asli Celikyilmaz, and Marjan  
 732 Ghazvininejad. rewordbench: Benchmarking and improving the robustness of reward models with  
 733 transformed inputs. *arXiv preprint arXiv:2503.11751*, 2025.

734 Wei Xiong, Chengshuai Shi, Jiaming Shen, Aviv Rosenberg, Zhen Qin, Daniele Calandriello, Misha  
 735 Khalman, Rishabh Joshi, Bilal Piot, Mohammad Saleh, Chi Jin, Tong Zhang, and Tianqi Liu.  
 736 Building math agents with multi-turn iterative preference learning. In *The Thirteenth International*  
 737 *Conference on Learning Representations*, 2025.

738 Yuchen Yan, Jin Jiang, Zhenbang Ren, Yijun Li, Xudong Cai, Yang Liu, Xin Xu, Mengdi Zhang,  
 739 Jian Shao, Yongliang Shen, et al. Verifybench: Benchmarking reference-based reward systems for  
 740 large language models. *arXiv preprint arXiv:2505.15801*, 2025.

741 Qiyi Yu, Zheng Zhang, Ruofei Zhu, Yufeng Yuan, Xiaochen Zuo, Yu Yue, Weinan Dai, Tiantian  
 742 Fan, Gaohong Liu, Lingjun Liu, et al. Dapo: An open-source llm reinforcement learning system at  
 743 scale. *arXiv preprint arXiv:2503.14476*, 2025a.

744 Yue Yu, Zhengxing Chen, Aston Zhang, Liang Tan, Chenguang Zhu, Richard Yuanzhe Pang, Yundi  
 745 Qian, Xuewei Wang, Suchin Gururangan, Chao Zhang, Melanie Kambadur, Dhruv Mahajan, and  
 746 Rui Hou. Self-generated critiques boost reward modeling for language models. In *Proceedings of*  
 747 *the 2025 Conference of the Nations of the Americas Chapter of the Association for Computational*  
 748 *Linguistics: Human Language Technologies (Volume 1: Long Papers)*, April 2025b.

756 Zhuohao Yu, Jiali Zeng, Weizheng Gu, Yidong Wang, Jindong Wang, Fandong Meng, Jie Zhou, Yue  
 757 Zhang, Shikun Zhang, and Wei Ye. Rewardanything: Generalizable principle-following reward  
 758 models. *arXiv preprint arXiv:2506.03637*, 2025c.

759

760 Lifan Yuan, Ganqu Cui, Hanbin Wang, Ning Ding, Xingyao Wang, Boji Shan, Zeyuan Liu, Jia Deng,  
 761 Huimin Chen, Ruobing Xie, Yankai Lin, Zhenghao Liu, Bowen Zhou, Hao Peng, Zhiyuan Liu,  
 762 and Maosong Sun. Advancing LLM reasoning generalists with preference trees. In *The Thirteenth  
 763 International Conference on Learning Representations*, 2025.

764 Weizhe Yuan, Richard Yuanzhe Pang, Kyunghyun Cho, Xian Li, Sainbayar Sukhbaatar, Jing Xu,  
 765 and Jason E Weston. Self-rewarding language models. In *Forty-first International Conference on  
 766 Machine Learning*, 2024.

767 Eric Zelikman, Yuhuai Wu, Jesse Mu, and Noah Goodman. STar: Bootstrapping reasoning with  
 768 reasoning. In *Advances in Neural Information Processing Systems*, 2022.

769

770 Lunjun Zhang, Arian Hosseini, Hritik Bansal, Mehran Kazemi, Aviral Kumar, and Rishabh Agarwal.  
 771 Generative verifiers: Reward modeling as next-token prediction. In *The Thirteenth International  
 772 Conference on Learning Representations*, 2025.

773 Jian Zhao, Runze Liu, Kaiyan Zhang, Zhimu Zhou, Junqi Gao, Dong Li, Jiafei Lyu, Zhouyi Qian,  
 774 Biqing Qi, Xiu Li, et al. Genprm: Scaling test-time compute of process reward models via  
 775 generative reasoning. *arXiv preprint arXiv:2504.00891*, 2025.

776

777 Jeffrey Zhou, Tianjian Lu, Swaroop Mishra, Siddhartha Brahma, Sujoy Basu, Yi Luan, Denny  
 778 Zhou, and Le Hou. Instruction-following evaluation for large language models. *arXiv preprint  
 779 arXiv:2311.07911*, 2023.

780 Yilun Zhou, Austin Xu, Peifeng Wang, Caiming Xiong, and Shafiq Joty. Evaluating judges as  
 781 evaluators: The jetts benchmark of llm-as-judges as test-time scaling evaluators. *arXiv preprint  
 782 arXiv:2504.15253*, 2025.

783

784 Mingchen Zhuge, Changsheng Zhao, Dylan R Ashley, Wenyi Wang, Dmitrii Khizbulin, Yunyang  
 785 Xiong, Zechun Liu, Ernie Chang, Raghuraman Krishnamoorthi, Yuandong Tian, et al. Agent-  
 786 as-a-judge: Evaluate agents with agents. In *Forty-second International Conference on Machine  
 787 Learning*, 2025.

788 Terry Yue Zhuo, Vu Minh Chien, Jenny Chim, Han Hu, Wenhao Yu, Ratnadira Widyasari, Imam  
 789 Nur Bani Yusuf, Haolan Zhan, Junda He, et al. Bigcodebench: Benchmarking code generation  
 790 with diverse function calls and complex instructions. In *The Thirteenth International Conference  
 791 on Learning Representations*, 2025.

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810 A USAGE OF LLMs IN THE SUBMISSION  
811812 We leveraged LLMs solely as a writing aid for paper preparation. Its application was restricted  
813 to editorial tasks such as improving the coherence and flow of existing text, suggesting minor  
814 grammatical corrections, and enhancing overall readability. The authors are exclusively responsible  
815 for all aspects of the research design, experimental results, and the core intellectual content and  
816 conclusions presented in this work.  
817818 B PROMPT TEMPLATE  
819820 We provide the detailed prompt template used in TIR-Judge in the following.  
821822 You are an expert judge for evaluating whether a model-generated response correctly answer  
823 the user’s instruction. Please carefully read both the Instruction and the Response below.  
824 Your goal is to assess whether the response accurately and completely follows the instruction,  
825 focusing strictly on correctness and fidelity. Do not consider writing style, tone, or fluency  
826 unless they affect instruction compliance.  
827828 You may use Python code to assist your evaluation, by writing the code between the ““python  
829 and ““ tags following with ““output. Each program between ““python and ““ tags are indepen-  
830 dent program. This is especially helpful for verifying complex requirements, such as checking  
831 capitalization, counting words, letters, keywords, or placeholders, checking the correctness of  
832 calculation steps for reasoning problems, as well as running test cases on the coding responses.  
833834 Instruction: {prompt}  
835836 Response: {response}  
837838 Guidelines: In the end of your response, please give a score in range 1 to 10 in the format such as  
839 <score>10</score> to indicate the quality of the response. A score of 10 indicates that the  
840 response fully adheres to the instruction and provides a correct answer. A score of 1 indicates  
841 that the response is irrelevant, evasive, or fails to address key aspects of the instruction.  
842843  
844 Figure 7: Prompt for response generation with tools on pointwise evaluation.  
845846 You are an expert judge for evaluating whether a model-generated response correctly answer  
847 the user’s instruction. Please carefully read Instruction, Response A and Response B below.  
848 Your goal is to assess which response accurately and completely follows the instruction,  
849 focusing strictly on correctness and fidelity. Do not consider writing style, tone, or fluency  
850 unless they affect instruction compliance.  
851852 You may use Python code to assist your evaluation, by writing the code between the ““python  
853 and ““ tags following with ““output. Each program between ““python and ““ tags are indepen-  
854 dent program. This is especially helpful for verifying complex requirements, such as checking  
855 capitalization, counting words, letters, keywords, or placeholders, checking the correctness of  
856 calculation steps for reasoning problems, as well as running test cases on the coding responses.  
857858 Instruction: {prompt}  
859860 Response A: {response A}  
861862 Response B: {response B}  
863864 Guidelines: In the end of your response, please give a preference in the format such as  
865 <preference>A</preference> to indicate the better response.  
866867  
868 Figure 8: Prompt for response generation with tools on pairwise evaluation.  
869

864  
865  
866  
867  
868  
869

You are an expert judge for evaluating whether a model-generated response correctly answer the user’s instruction. Please carefully read Instruction and all responses below. Your goal is to assess which response accurately and completely follows the instruction, focusing strictly on correctness and fidelity. Do not consider writing style, tone, or fluency unless they affect instruction compliance.

870  
871  
872  
873  
874

You may use Python code to assist your evaluation, by writing the code between ““python and ““ tags following with ““output. Each program between ““python and ““ tags are independent program. This is especially helpful for verifying complex requirements, such as checking capitalization, counting words, letters, keywords, or placeholders, checking the correctness of calculation steps for reasoning problems, as well as running test cases on the coding responses.

875  
876  
877  
878  
879  
880  
881  
882

Instruction: {prompt}

Response A: {response A}

Response B: {response B}

Response C: {response C}

Response D: {response D}

...

Guidelines: In the end of your response, please give a preference in the format such as <preference>A</preference> to indicate the better response.

883

Figure 9: Prompt for response generation with tools on listwise evaluation.

884  
885  
886  
887  
888  
889  
890  
891  
892  
893  
894  
895  
896  
897  
898  
899  
900  
901  
902

You are an expert judge for evaluating whether a model-generated response correctly answers the user’s instruction while being harmless. Please carefully read both the Instruction and the Response below. Your goal is to assess whether the response accurately and completely follows the instruction, focusing strictly on correctness and fidelity. Do not consider writing style, tone, or fluency unless they affect instruction compliance.

Instruction: {prompt}

Response: {response}

Guidelines: Please first generate a textual reasoning step before making final predictions. In the end of your response, please give a score in range 1 to 10 in the format such as <score>10</score> to indicate the quality of the response. A score of 10 indicates that the response fully adheres to the instruction and provides a correct answer. A score of 1 indicates that the response is irrelevant, evasive, or fails to address key aspects of the instruction.

916  
917

Figure 10: Prompt for response generation without tools on pointwise evaluation.

918  
919  
920  
921  
922

You are an expert judge for evaluating whether a model-generated response correctly answers the user’s instruction while being harmless. Please carefully read the instructions and all responses below. Your goal is to assess which response accurately and completely follows the instruction, focusing strictly on correctness and fidelity.

923  
924  
925  
926

Instruction: {prompt}

Response A: {response A}

Response B: {response B}

927  
928  
929  
930  
931

Guidelines: Please first generate a textual reasoning step before making final predictions. In the end of your response, please give a preference in the format such as <preference>A</preference> to indicate the better response.

932  
933  
934

Figure 11: Prompt for response generation without tools on pairwise evaluation.

935  
936  
937  
938  
939

You are an expert judge for evaluating whether a model-generated response correctly answers the user’s instruction while being harmless. Please carefully read the instructions and all responses below. Your goal is to assess which response accurately and completely follows the instruction, focusing strictly on correctness and fidelity.

940  
941  
942  
943  
944  
945  
946  
947

Instruction: {prompt}

Response A: {response A}

Response B: {response B}

Response C: {response C}

Response D: {response D}

...

948  
949  
950

Guidelines: Please first generate a textual reasoning step before making final predictions. In the end of your response, please give a preference in the format such as <preference>A</preference> to indicate the better response.

951  
952  
953

Figure 12: Prompt for response generation without tools on listwise evaluation.

954  
955  
956

## C FULL PERFORMANCE ON SEVERAL BENCHMARKS

957  
958  
959  
960  
961

Table 5 shows the full results of TIR-Judge and key baselines on RewardBench, RMBench, and JudgeBench. Sometimes we observe that the performance of Gemini-2.5-flash declines when additional tools are introduced. This issue arises from a maximum-turn limit on tool calls: the model sometimes generates excessive tool invocations and, in certain cases, fails to terminate properly.

962  
963

## D DETAILS ON TRAINING DATA COMPOSITION

964  
965  
966  
967

Our training mixture spans reasoning, code evaluation, and safety alignment tasks for reinforcement learning. Table 6 summarizes dataset statistics across three supervision formats: pointwise, pairwise, and listwise.

968  
969  
970  
971

To ensure label reliability, we apply additional quality control. For HelpSteer3, we retain only examples where one response is explicitly annotated as better or significantly better, removing ambiguous preferences. For math and reasoning datasets with synthetic responses, we employ math-verify to automatically check the correctness of responses. For listwise data, we sample 3–5 negatives per instance and enforce that negatives yield different final answers from the positive,

Table 5: Detailed Per-task Experiment Results on RewardBench, RMBench, and JudgeBench.

| Baselines                                                                                                | tTrain | Distill? | RewardBench |           |        |        |      | RMBench |      |      |        |      | JudgeBench |      |           |        |      |
|----------------------------------------------------------------------------------------------------------|--------|----------|-------------|-----------|--------|--------|------|---------|------|------|--------|------|------------|------|-----------|--------|------|
|                                                                                                          |        |          | Chat        | Chat-Hard | Safety | Reason | Avg. | Chat    | Math | Code | Safety | Avg. | Math       | Code | Knowledge | Reason | Avg. |
| <b>LLM-as-a-Judge (Pairwise Evaluation unless specified)</b>                                             |        |          |             |           |        |        |      |         |      |      |        |      |            |      |           |        |      |
| Qwen3-4B-Instruct (Pointwise)                                                                            | —      | —        | 81.0        | 73.9      | 77.0   | 74.3   | 76.5 | 67.8    | 82.1 | 38.4 | 79.2   | 66.9 | 65.5       | 35.4 | 58.2      | 37.6   | 50.8 |
| Qwen3-8B (Pointwise)                                                                                     | —      | —        | 79.1        | 74.2      | 79.9   | 83.4   | 79.2 | 64.1    | 74.7 | 56.6 | 81.7   | 69.3 | 63.6       | 64.6 | 64.4      | 66.5   | 64.9 |
| Gemini-2.5-Flash (Pointwise)                                                                             | —      | —        | 71.8        | 77.0      | 93.0   | 80.9   | 80.7 | 59.5    | 77.3 | 56.0 | 90.6   | 70.8 | 71.4       | 73.8 | 61.0      | 70.4   | 66.9 |
| GPT-4o <sup>†</sup>                                                                                      | —      | —        | 96.1        | 76.1      | 86.6   | 88.1   | 86.7 | 67.2    | 67.5 | 63.6 | 91.7   | 72.5 | 75.0       | 59.5 | 50.7      | 54.1   | 56.6 |
| GPT-0l-mini <sup>†</sup>                                                                                 | —      | —        | 94.4        | 78.7      | 80.9   | 94.2   | 87.1 | —       | —    | —    | —      | —    | 82.1       | 78.5 | 58.4      | 62.2   | 65.7 |
| DeepSeek-R1-671B <sup>†</sup>                                                                            | —      | —        | 95.3        | 83.6      | 86.4   | 97.4   | 90.6 | —       | —    | —    | —      | —    | 80.3       | 92.8 | 59.1      | 82.6   | 73.1 |
| Claude 3.5 <sup>†</sup>                                                                                  | —      | —        | 96.4        | 74.0      | 81.6   | 84.7   | 84.2 | 62.5    | 62.6 | 54.4 | 64.4   | 60.9 | 66.1       | 64.3 | 62.3      | 66.3   | 64.3 |
| Qwen3-4B-Instruct (Pairwise)                                                                             | —      | —        | 93.0        | 80.2      | 80.1   | 90.6   | 86.0 | 75.2    | 81.7 | 67.3 | 77.1   | 75.3 | 69.1       | 70.7 | 56.2      | 70.1   | 63.9 |
| Qwen3-8B (Pairwise)                                                                                      | —      | —        | 94.1        | 79.0      | 85.8   | 89.2   | 87.0 | 78.6    | 82.9 | 61.6 | 88.6   | 77.9 | 75.0       | 66.3 | 65.4      | 67.0   | 67.5 |
| Gemini-2.5-Flash (Pairwise)                                                                              | —      | —        | 95.0        | 87.9      | 97.5   | 92.7   | 93.4 | 78.5    | 75.6 | 80.0 | 93.7   | 81.9 | 85.7       | 88.1 | 70.1      | 72.4   | 75.4 |
| <b>Scalar Reward Models (Pointwise)</b>                                                                  |        |          |             |           |        |        |      |         |      |      |        |      |            |      |           |        |      |
| Armo-RM-8B <sup>†</sup>                                                                                  | 1000k  | ✗        | 96.9        | 76.8      | 90.5   | 97.3   | 90.3 | 67.8    | 57.5 | 53.1 | 92.4   | 67.7 | —          | —    | —         | —      | —    |
| Skywork-Gemma-2-27B <sup>†</sup>                                                                         | 80k    | ✗        | 95.8        | 91.4      | 92.0   | 96.1   | 93.8 | 69.5    | 54.7 | 53.2 | 91.9   | 67.3 | —          | —    | —         | —      | —    |
| Deepseek-BTRM-27B <sup>†</sup>                                                                           | 237k   | ✗        | —           | —         | —      | —      | 81.7 | —       | —    | —    | —      | —    | —          | —    | —         | —      | —    |
| <b>Text-based Reasoning Judges (Pairwise Evaluation unless specified)</b>                                |        |          |             |           |        |        |      |         |      |      |        |      |            |      |           |        |      |
| Deepseek-GRM-27B <sup>†</sup>                                                                            | 237k   | ✗        | 94.1        | 78.3      | 88.0   | 83.8   | 86.1 | —       | —    | —    | —      | —    | —          | —    | —         | —      | —    |
| J1-8B (Pairwise) <sup>†</sup>                                                                            | 22k    | ✗        | 92.9        | 80.3      | 85.6   | 83.9   | 85.7 | —       | —    | —    | —      | —    | 73.4       | —    | —         | —      | 42.0 |
| J1-8B (Pointwise) <sup>†</sup>                                                                           | 22k    | ✗        | —           | —         | —      | —      | 58.5 | —       | —    | —    | —      | —    | —          | —    | —         | —      | —    |
| RRM-7B                                                                                                   | 420k   | ✗        | 87.7        | 70.4      | 80.7   | 90.0   | 82.2 | 58.4    | 81.8 | 56.7 | 84.9   | 70.4 | 83.2       | 61.9 | 64.3      | 64.2   | 67.0 |
| RM-R1-Deepseek-Distill-7B                                                                                | 73k    | ✓        | 88.9        | 66.2      | 78.4   | 87.0   | 80.1 | 64.0    | 83.9 | 56.2 | 85.3   | 72.4 | 82.1       | 71.4 | 64.9      | 62.2   | 67.7 |
| RM-R1-Instruct-7B                                                                                        | 73k    | ✓        | 94.1        | 74.6      | 85.2   | 86.7   | 85.2 | 66.6    | 67.0 | 54.6 | 92.6   | 70.2 | 76.8       | 54.8 | 56.4      | 59.2   | 60.3 |
| Think-RM 7B                                                                                              | 10k    | ✓        | 94.4        | 77.9      | 85.2   | 86.4   | 86.0 | 69.3    | 76.0 | 56.5 | 93.7   | 73.9 | 67.9       | 42.9 | 67.5      | 67.3   | 64.6 |
| <b>Tool-augmented Judges</b>                                                                             |        |          |             |           |        |        |      |         |      |      |        |      |            |      |           |        |      |
| Qwen3-4B-Tool (Pointwise)                                                                                | —      | —        | 81.0        | 74.8      | 77.2   | 80.5   | 78.4 | 68.2    | 82.4 | 58.6 | 79.3   | 72.1 | 63.6       | 42.7 | 57.8      | 57.7   | 56.6 |
| Qwen3-8b-Tool (Pointwise)                                                                                | —      | —        | 77.6        | 75.3      | 80.7   | 78.5   | 78.0 | 63.4    | 71.2 | 55.9 | 81.0   | 67.9 | 59.1       | 57.3 | 56.2      | 65.5   | 59.4 |
| Gemini-2.5-Flash Tool (Pointwise)                                                                        | —      | —        | 75.4        | 73.0      | 93.5   | 83.5   | 81.3 | 62.7    | 75.4 | 49.0 | 86.3   | 71.0 | 73.2       | 78.5 | 59.1      | 69.3   | 66.5 |
| TIR-Judge-Distill 4B (Pointwise)                                                                         | 26k    | ✓        | 79.7        | 66.5      | 82.9   | 77.2   | 76.6 | 61.8    | 81.2 | 56.7 | 87.9   | 71.9 | 71.8       | 70.7 | 60.8      | 71.7   | 66.7 |
| TIR-Judge-Zero 4B (Pointwise)                                                                            | 26k    | ✗        | 79.4        | 69.8      | 77.6   | 82.4   | 77.3 | 62.3    | 88.2 | 59.0 | 81.5   | 72.8 | 76.8       | 66.0 | 73.7      | 70.4   | —    |
| TIR-Judge-Distill 8B (Pointwise)                                                                         | 26k    | ✓        | 78.3        | 73.9      | 84.9   | 87.0   | 81.0 | 65.6    | 85.8 | 65.7 | 89.7   | 76.7 | 78.1       | 75.5 | 64.4      | 65.5   | 68.2 |
| TIR-Judge-Zero 8B (Pointwise)                                                                            | 26k    | ✗        | 83.6        | 74.4      | 85.5   | 81.9   | 81.4 | 66.7    | 88.3 | 60.2 | 90.1   | 76.3 | 70.0       | 74.4 | 62.1      | 71.7   | 67.5 |
| <b>For Reference: Text-based Reasoning Judge Baselines with &gt;10B Parameters (Pairwise Evaluation)</b> |        |          |             |           |        |        |      |         |      |      |        |      |            |      |           |        |      |
| J1 70B <sup>†</sup>                                                                                      | 22k    | ✗        | 96.1        | 90.1      | 91.9   | 94.9   | 93.3 | —       | —    | —    | —      | —    | 82.7       | —    | —         | —      | 60.0 |
| RRM 32B                                                                                                  | 420k   | ✗        | 94.7        | 81.1      | 90.7   | 98.3   | 91.2 | 73.9    | 91.8 | 74.8 | 95.3   | 85.4 | 87.5       | 85.7 | 68.8      | 76.5   | 76.0 |
| RM-R1-Deepseek-Distill-14B                                                                               | 73k    | ✓        | 91.3        | 79.4      | 89.3   | 95.5   | 88.9 | 71.8    | 90.5 | 69.5 | 94.1   | 81.5 | 89.2       | 88.0 | 70.1      | 73.4   | 76.2 |
| RM-R1-Deepseek-Distill-32B                                                                               | 73k    | ✓        | 95.3        | 80.3      | 91.1   | 96.8   | 90.9 | 74.2    | 91.8 | 74.1 | 95.4   | 83.9 | 92.8       | 82.3 | 72.7      | 77.5   | 78.4 |

Table 6: Dataset statistics for pointwise, pairwise, and listwise data.

| Dataset                                       | Domain      | Pointwise | Pairwise | Listwise | Total  |
|-----------------------------------------------|-------------|-----------|----------|----------|--------|
| Tulu-3 Synthetic Pairs (Lambert et al., 2024) | IF          | 1,500     | 1,500    | 263      | 3,263  |
| MATH (Hendrycks et al., 2021)                 | Math        | 1,000     | 1,000    | 254      | 2,254  |
| dapo_bignum (Yu et al., 2025a)                | Math        | 2,500     | 2,500    | 282      | 5,282  |
| s1 (Muennighoff et al., 2025)                 | Math        | 250       | 250      | 0        | 500    |
| UltraInteract (Yuan et al., 2025)             | Code        | 2,000     | 2,000    | 0        | 4,000  |
| CodeRM (Ma et al., 2025b)                     | Code        | 1,000     | 1,000    | 472      | 2,472  |
| WebInstruct (Ma et al., 2025a)                | Reasoning   | 1,000     | 1,000    | 91       | 2,091  |
| Loong (Huang et al., 2025b)                   | Reasoning   | 700       | 700      | 99       | 1,499  |
| HelpSteer3 (Wang et al., 2025c)               | Helpfulness | 2,000     | 2,000    | 0        | 4,000  |
| SafeRLHF (Dai et al., 2024)                   | Safety      | 500       | 500      | 0        | 1,000  |
| <b>Total</b>                                  |             | 12,450    | 12,450   | 1,461    | 26,361 |

preventing trivial shortcut solutions. Finally, we address potential biases such as stylistic artifacts in evaluation datasets (Wu et al., 2025), reducing the risk of overfitting to surface-level patterns.

## E ADDITIONAL IMPLEMENTATION DETAILS FOR EVALUATION

**Implementation of different evaluation protocols.** We list the implementation for different types of judging tasks as follows.

- Pointwise: For pointwise evaluation, we follow the protocol of RewardBench2 (Malik et al., 2025), assigning partial credit of 0.5 when two responses are scored as a tie. Both TIR-Judge and pointwise baselines are evaluated under this rule.
- Pairwise: For pairwise evaluation, we adopt the setup of (Guo et al., 2025b) to report the accuracy over a single random ordering of paired responses across all judgment benchmarks.

1026  
1027  
1028  
1029  
1030  
1031  
1032

- Listwise: For listwise evaluation in RewardBench2, we follow the best-of- $k$  setting in (Malik et al., 2025). For example, in best-of-4, the model is provided with a prompt and four candidate completions, and identify the best response among them.

1033  
1034  
1035  
1036  
1037  
1038  
1039  
1040  
1041  
1042  
1043  
1044  
1045  
1046  
1047  
1048  
1049  
1050  
1051  
1052  
1053  
1054  
1055  
1056  
1057  
1058  
1059  
1060  
1061  
1062  
1063  
1064  
1065  
1066  
1067  
1068  
1069  
1070  
1071  
1072  
1073  
1074  
1075  
1076  
1077  
1078  
1079

**Implementation details for baselines.** Apart from our backbone models (Qwen-3), we run the following baselines models on our end during evaluation that are publicly available while within our compute budget:

- RM-R1 (Chen et al., 2025b): All the models are available at the HuggingFace platform: <https://huggingface.co/collections/gaotang/rm-r1-681128cdab932701cad844c8>.
- RRM (Guo et al., 2025b): All the models are available at the HuggingFace platform: <https://huggingface.co/Reward-Reasoning>.
- Think-RM (Hong et al., 2025): The models at the HuggingFace platform: <https://huggingface.co/ilgee/Binary-Think-RM-8B>. We chose the *binary* version due to its reported better performance.
- AgentRM (Peng et al., 2025): The codebase of AgentRM is publicly available at <https://github.com/THU-KEG/Agentic-Reward-Modeling>.
- Gemini-2.5-Flash (Comanici et al., 2025): We follow the guideline at <https://ai.google.dev/gemini-api/docs/code-execution> for running experiments with code execution service.

For RM-R1, RRM, and Think-RM, they are all designed for pairwise ranking only, and we use the *same* pairwise judging prompt reported in the paper to ensure fair comparison. For other baselines, as some of the works (Whitehouse et al., 2025) are not publicly available, we only use the reported results in the original paper for comparison.

## F DETAILED RESULTS FOR BEST-OF-N EXPERIMENTS

**Experiment Setup.** Here, we implement three types of the best-of- $N$  selection task. We select AIME-2024, AIME-2025, BigCodeBench and IFEval for evaluation. For AIME-2024 and AIME-2025, each containing 30 problems, we evaluate four backbone models: Gemma-3-27B-It, Qwen-2.5-32B, Qwen-3-32B-Think, and R1-Distill-0528-8B. For each backbone, we allow a maximum generation length of 16k tokens and sample 16 valid responses per problem. For BigCodeBench and IFEval, we reuse model outputs from the JETTS dataset (Zhou et al., 2025). On BigCodeBench, we consider Qwen-2.5-32B, DeepSeek-Coder-v2, and Qwen-2.5-Coder-7B as backbones. For IFEval, we select Qwen-2.5-72B and Qwen-2.5-32B as backbones, and use the original benchmark generations for evaluation.

For pointwise judging task, we use the judge to give the rating for each response, and select the response with the highest score (if there are multiple responses, we use majority voting over the answer to obtain the final answer). For listwise and pairwise judge task, we follow (Guo et al., 2025b; Liu et al., 2025b) to adopt a knockout tournament style in ( $O(n)$ ) comparisons for promoting efficiency.

**Detailed Experiment Results.** Table 7 reports detailed per-dataset and per-model results, showing the number of solutions passed across four benchmarks under different Best-of- $N$  judging settings.

From Table 7, we observe that TIR-Judge consistently delivers strong performance across model scales and judging formats, highlighting its robust generalization ability. These results demonstrate that TIR-Judge is not only effective but also readily transferable to diverse target tasks.

## G ADDITIONAL STUDIES FOR TIR-JUDGE

1080

1081

Table 7: Performance comparison across benchmarks and checkpoints (accuracy in %).

| Benchmark (Size)    | Model                 | Pass@1 | MV@16 | TIR-Judge-Zero<br>4B Pointwise | TIR-Judge-Zero<br>4B Pairwise | TIR-Judge-Zero<br>4B Listwise | TIR-Judge-Zero<br>8B Pointwise | TIR-Judge-Zero<br>8B Pairwise | TIR-Judge-Zero<br>8B Listwise | RRM-7B<br>(Pair) |
|---------------------|-----------------------|--------|-------|--------------------------------|-------------------------------|-------------------------------|--------------------------------|-------------------------------|-------------------------------|------------------|
| AIME 2024 (30)      | Gemma-3-27B           | 16.7   | 30.0  | 33.3                           | 43.3                          | 40.0                          | 36.7                           | 46.7                          | 43.3                          | 36.7             |
|                     | Qwen-2.5-32B          | 10.0   | 13.3  | 13.3                           | 30.0                          | 26.7                          | 10.0                           | 43.3                          | 40.0                          | 26.7             |
|                     | Qwen-3-32B-Think      | 80.0   | 86.7  | 86.7                           | 83.3                          | 80.0                          | 86.7                           | 83.3                          | 80.0                          | 83.3             |
| AIME 2025 (30)      | R1-distill-0528-8B    | 76.7   | 80.0  | 83.3                           | 83.3                          | 80.0                          | 80.0                           | 80.0                          | 80.0                          | 80.0             |
|                     | Gemma-3-27B           | 20.0   | 26.7  | 23.3                           | 30.0                          | 26.7                          | 23.3                           | 36.7                          | 30.0                          | 26.7             |
|                     | Qwen-2.5-32B          | 10.0   | 13.3  | 20.0                           | 40.0                          | 40.0                          | 23.3                           | 46.7                          | 33.3                          | 36.7             |
| AIME 2025 (30)      | Qwen-3-32B-Think      | 73.3   | 80.0  | 83.3                           | 83.3                          | 73.3                          | 83.3                           | 80.0                          | 76.7                          | 80.0             |
|                     | R1-distill-0528-8B    | 70.0   | 73.3  | 73.3                           | 76.7                          | 73.3                          | 73.3                           | 76.7                          | 76.7                          | 76.7             |
|                     | Qwen-3-32B            | 40.3   | 43.5  | 50.0                           | 46.9                          | 45.4                          | 48.3                           | 47.5                          | 45.3                          | 45.2             |
| BigCodeBench (1139) | DeepSpeed-Coder       | 25.0   | 28.8  | 38.2                           | 37.5                          | 35.5                          | 32.6                           | 39.3                          | 35.1                          | 33.3             |
|                     | Qwen-2.5-7B-Coder     | 31.4   | 35.2  | 40.9                           | 41.8                          | 39.2                          | 41.4                           | 41.5                          | 39.2                          | 38.1             |
| IFEval (541)        | Qwen-2.5-32B-Instruct | 78.6   | 80.6  | 82.1                           | 86.0                          | 84.7                          | 81.0                           | 86.0                          | 83.2                          | 80.6             |
|                     | Qwen-2.5-7B-Instruct  | 82.4   | 84.5  | 85.2                           | 88.4                          | 89.1                          | 84.8                           | 88.0                          | 87.2                          | 83.9             |

1089

1090

1091

Table 8: Ablation Study on Reward Formulation (Multiplication vs. Addition).

| Method                      | MMLU-P | MATH | GPQA | MBPP-P | IFEval | Avg. | IFBench | CJBench | RWBench | RMBench | JGBench |
|-----------------------------|--------|------|------|--------|--------|------|---------|---------|---------|---------|---------|
| <i>Pointwise Evaluation</i> |        |      |      |        |        |      |         |         |         |         |         |
| TIR-Judge-Distill 4B (Ours) | 58.7   | 81.9 | 45.8 | 64.1   | 78.9   | 65.9 | 65.8    | 59.9    | 76.6    | 71.9    | 66.7    |
| TIR-Judge-Zero 4B (Ours)    | 62.5   | 87.3 | 54.7 | 64.8   | 79.8   | 69.8 | 65.9    | 61.5    | 77.3    | 72.8    | 70.4    |
| TIR-Judge-Distill 4B (Add.) | 62.5   | 73.4 | 46.9 | 63.5   | 74.2   | 64.1 | 65.5    | 59.3    | 73.7    | 68.6    | 60.6    |
| TIR-Judge-Zero 4B (Add.)    | 63.5   | 89.8 | 48.5 | 62.0   | 68.5   | 66.5 | 63.0    | 61.1    | 76.0    | 63.4    | 68.6    |
| <i>Pairwise Evaluation</i>  |        |      |      |        |        |      |         |         |         |         |         |
| TIR-Judge-Distill 4B (Ours) | 69.0   | 88.7 | 54.8 | 60.6   | 83.6   | 71.3 | 73.7    | 69.8    | 87.7    | 78.0    | 70.5    |
| TIR-Judge-Zero 4B (Ours)    | 75.0   | 93.3 | 61.7 | 67.3   | 84.5   | 76.3 | 70.3    | 70.8    | 86.7    | 80.8    | 73.7    |
| TIR-Judge-Distill 4B (Add.) | 56.5   | 85.4 | 43.9 | 56.5   | 85.5   | 65.6 | 74.5    | 66.3    | 84.6    | 77.4    | 65.3    |
| TIR-Judge-Zero 4B (Add.)    | 69.5   | 91.9 | 52.1 | 63.5   | 81.2   | 71.6 | 72.0    | 68.7    | 85.4    | 80.0    | 72.0    |

1100

1101

1102

Table 9: Position bias analysis. We report performance for A-B order, B-A order, and the average. Results indicate minimal variance for our method compared to baselines.

| Model / Setting             | MMLU-P | MATH | GPQA | MBPP-P | IFEval | PPE   | Avg. | IFBench | CJBench | RWBench | RMBench |
|-----------------------------|--------|------|------|--------|--------|-------|------|---------|---------|---------|---------|
| <i>TIR-Judge-Zero 4B</i>    |        |      |      |        |        |       |      |         |         |         |         |
| A-B                         | 75.0   | 93.3 | 61.7 | 67.3   | 84.5   | 76.36 | 70.3 | 70.8    | 86.7    | 80.8    |         |
| B-A                         | 76.4   | 92.6 | 59.6 | 66.4   | 81.5   | 75.3  | 73.6 | 69.2    | 86.2    | 80.6    |         |
| Avg.                        | 75.7   | 93.0 | 60.6 | 66.9   | 83.0   | 75.8  | 72.0 | 70.0    | 86.4    | 80.7    |         |
| <i>TIR-Judge-Distill 4B</i> |        |      |      |        |        |       |      |         |         |         |         |
| A-B                         | 69.0   | 88.7 | 54.8 | 60.6   | 83.6   | 71.3  | 73.7 | 69.8    | 87.7    | 78.0    |         |
| B-A                         | 68.5   | 89.2 | 53.0 | 59.4   | 84.5   | 71.0  | 71.1 | 69.9    | 86.1    | 76.9    |         |
| Avg.                        | 68.7   | 89.0 | 53.9 | 60.0   | 84.1   | 71.1  | 72.4 | 69.9    | 86.9    | 77.5    |         |
| <i>Qwen3-4B-Tool</i>        |        |      |      |        |        |       |      |         |         |         |         |
| A-B                         | 63.5   | 83.3 | 35.9 | 58.9   | 62.3   | 60.8  | 59.2 | 29.2    | 85.2    | 75.7    |         |
| B-A                         | 63.5   | 83.3 | 37.4 | 57.3   | 63.8   | 61.1  | 61.6 | 28.0    | 86.0    | 66.9    |         |
| Avg.                        | 63.5   | 83.3 | 36.7 | 58.1   | 63.0   | 60.9  | 60.4 | 28.6    | 85.6    | 71.3    |         |
| <i>TIR-Judge-Zero 8B</i>    |        |      |      |        |        |       |      |         |         |         |         |
| A-B                         | 76.6   | 94.0 | 58.5 | 68.8   | 80.8   | 75.7  | 68.9 | 69.3    | 89.1    | 83.7    |         |
| B-A                         | 76.5   | 93.8 | 57.3 | 68.6   | 80.7   | 75.4  | 67.4 | 70.0    | 87.4    | 81.2    |         |
| Avg.                        | 76.6   | 93.9 | 57.9 | 68.7   | 80.8   | 75.6  | 68.1 | 69.6    | 88.3    | 82.4    |         |
| <i>TIR-Judge-Distill 8B</i> |        |      |      |        |        |       |      |         |         |         |         |
| A-B                         | 72.2   | 90.4 | 53.8 | 63.2   | 85.7   | 73.0  | 74.3 | 70.0    | 87.9    | 82.2    |         |
| B-A                         | 72.6   | 90.6 | 52.7 | 61.5   | 84.8   | 72.5  | 74.1 | 72.5    | 88.8    | 80.0    |         |
| Avg.                        | 72.4   | 90.5 | 53.3 | 62.3   | 85.2   | 72.8  | 74.2 | 71.2    | 88.3    | 81.1    |         |
| <i>Qwen3-8B-Tool</i>        |        |      |      |        |        |       |      |         |         |         |         |
| A-B                         | 72.0   | 85.2 | 56.0 | 54.3   | 60.8   | 65.7  | 52.5 | 54.9    | 86.2    | 77.3    |         |
| B-A                         | 71.5   | 83.3 | 52.4 | 54.1   | 60.2   | 64.3  | 57.4 | 55.0    | 85.1    | 71.2    |         |
| Avg.                        | 71.8   | 84.3 | 54.2 | 54.2   | 60.5   | 65.0  | 55.0 | 55.0    | 85.7    | 74.3    |         |

1123

1124

**Different Reward Combinations.** Table 8 shows the comparison of our proposed TIR-Judge (using multiplication reward formulation) against the addition-based reward formulation variant. We report results across both Pointwise and Pairwise settings. The result shows that using the addition form as the reward would lead to slightly worse performance.

1125

1126

1127

1128

1129

1130

1131

1132

1133

**Performance of TIR-Judge with different orders.** Table 9 shows that TIR-Judge exhibits small positional discrepancy (typically <1%, at most 2%), while the backbone Qwen3 models can have a relatively higher variance (up to 9%). This confirms that our training procedure effectively mitigates position bias.

1134  
 1135 Table 10: Accuracy Comparison Split by Response Length. We report the judge’s accuracy when  
 1136 the ground-truth chosen response is longer than the rejected one versus when it is shorter (i.e., the  
 1137 rejected response is longer).

| Model                       | Acc. (Chosen > Rejected) | Acc. (Rejected > Chosen) |
|-----------------------------|--------------------------|--------------------------|
| <b>TIR-Judge-Distill 4B</b> | 78.58                    | 76.27                    |
| <b>TIR-Judge-Zero 4B</b>    | 80.67                    | 79.27                    |
| Qwen-3-4B-Tool (Backbone)   | 65.79                    | 71.20                    |
| <b>TIR-Judge-Distill 8B</b> | 80.97                    | 79.18                    |
| <b>TIR-Judge-Zero 8B</b>    | 77.73                    | 77.98                    |
| Qwen-3-8B-Tool (Backbone)   | 72.61                    | 72.25                    |

1146  
 1147 Table 11: Comparison of Training Costs. **Left:** GPU wall-clock time breakdown. **Right:** Estimated  
 1148 financial cost including compute and API fees.

| Stage                       | TIR-Judge-Zero | TIR-Judge-Distill |
|-----------------------------|----------------|-------------------|
| SFT                         | 2.5h           | 1.0h              |
| RS (Rejection Sampling)     | 3.5h           | 1.5h              |
| RL (Reinforcement Learning) | 23.0h          | 8.5h              |
| <b>Total Time</b>           | <b>29.0h</b>   | <b>11.0h</b>      |

| Component             | TIR-Judge-Zero | TIR-Judge-Distill |
|-----------------------|----------------|-------------------|
| Compute Cost (8×H100) | ~ \$690        | ~ \$210           |
| Teacher API Cost      | \$0            | ~ \$130           |
| <b>Total Cost</b>     | <b>~ \$690</b> | <b>~ \$340</b>    |

1156  
 1157 **Performance of TIR-Judge with different response length.** To evaluate the verbosity bias, we  
 1158 report the accuracy separately for cases where the chosen is longer or shorter than the response. The  
 1159 results show minimal difference between the two categories, and in some cases, TIR-Judge further  
 1160 reduces the verbosity gap observed in the Qwen3 backbone. This indicates that verbosity bias is well  
 1161 controlled.

## H COST ANALYSIS OF TIR-JUDGE

1166 We provide a detailed breakdown of the computational and financial costs for training TIR-Judge-  
 1167 8B in Table 11. Experiments were conducted on 8 NVIDIA H100 GPUs. We estimate the total  
 1168 cost based on current market rates for H100 clusters and the official API pricing (Gemini-2.5)  
 1169 for generating the 10k distillation samples. While TIR-Judge-Zero is approximately 2× more  
 1170 expensive (~ \$690 vs. ~ \$340), we argue this trade-off is strategically valuable. It unlocks  
 1171 *autonomous self-improvement* by eliminating the dependency on teacher supervision, making it a  
 1172 critical solution for privacy-sensitive environments where access to frontier models is restricted. In  
 1173 practice, our recommendations are:

- **Use Distill** for domains where there are noticeable gaps (measured by held-out evaluation sets) between the teacher and student model, provided API costs are permitted. It is ideal for injecting specific capabilities—such as safety, IF, correct tool-call formats, and thinking structures—that the base model lacks.
- **Use Zero** when no superior teacher exists (e.g., improving SOTA models) or to avoid API dependencies due to privacy concerns. It is ideal for unlocking latent reasoning capabilities through self-exploration, effectively trading API costs for training compute.

## I MORE CASE STUDIES ON FAILURE CASES

1184 We illustrate a representative failure case of TIR-Judge in Table ???. In this example, the model  
 1185 incorrectly counts the number of list items. The highlighted erroneous code shows that TIR-Judge  
 1186 attempts to match numbered lists beginning with a digit followed by a capital letter, but the actual

1188

1189 Table 12: A case study from IFBench of a failed judgement generated by TIR-Judge-Zero 8B. **Red**  
1190 **text** stands for the incorrect reasoning step.

|      |                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|------|---------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1191 | User Prompt                                 | Hello, how to learn AI using only online courses and tutorials? Please provide the answer with a light-hearted and encouraging tone. Provide a response that contains exactly 150 words, structured in a numbered list with each item beginning with a capital letter and ending with a period, and the word 'AI' should appear at least 3 times.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 1192 | Response                                    | 1. <b>Start with the Basics:</b> Begin with introductory courses on platforms like Coursera, edX, or Udacity to grasp the fundamentals of AI.<br>2. <b>Choose Your Language:</b> Learn Python, the most popular language for AI, through tutorials on Codecademy or freeCodeCamp.<br>3. <b>Dive into Data:</b> Explore data science and machine learning courses, as they are the backbone of AI, on websites like DataCamp or Kaggle.<br>4. <b>Hands-On Practice:</b> Apply your knowledge by participating in AI challenges on Kaggle or building small projects using datasets.<br>5. <b>Join Communities:</b> Engage with AI enthusiasts on forums like Reddit's r/MachineLearning or AI-specific groups on LinkedIn.<br>6. <b>Stay Updated:</b> Follow AI blogs, podcasts, and YouTube channels to keep up with the latest trends and breakthroughs.<br>7. <b>Never Give Up:</b> Remember, learning AI is a marathon, not a sprint. Enjoy the journey and celebrate your progress!<br>Keep pushing forward, AI mastery is within your reach! |
| 1193 | Judge Trajectory by<br>TIR-Judge-Zero<br>8B | To evaluate the response, I will check:<br>1. Whether the response is exactly 150 words.<br>2. Whether it's structured in a numbered list with each item beginning with a capital letter and ending with a period.<br>3. Whether the word 'AI' appears at least 3 times.<br><pre>```python import re # Check word count word_count = len(response.split()) # Check structure: each item starts with capital letter and ends with period items = re.findall(r'^\d+\.\s+[A-Z].*\?\$', response) # Check occurrences of 'AI' ai_count = response.lower().count('ai') print(f"Word count: {word_count}") print(f"Number of AI occurrences: {ai_count}") print(f"Number of list items: {len(items)}") ``` ``` &lt;output&gt; Word count: 147 Number of AI occurrences: 9 Number of list items: 0 ``` &lt;score&gt;1&lt;/score&gt;</pre>                                                                                                                                                                                                                |
| 1194 |                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 1195 |                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 1196 |                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 1197 |                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 1198 |                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 1199 |                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 1200 |                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 1201 |                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 1202 |                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 1203 |                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 1204 |                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 1205 |                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 1206 |                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 1207 |                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 1208 |                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 1209 |                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |

1210 response uses the **\*\*\*** Markdown pattern for list items, which the regex fails to capture. This error  
1211 arises because (1) the model does not robustly enumerate all formatting variants when generating  
1212 code, and (2) although the task can be solved either with or without tool use, the model fails to  
1213 recognize that direct reasoning (i.e., counting the items without code) would have been simpler and  
1214 more reliable.

1215 Additional failure cases include generating incorrect code (e.g., referencing undefined variables) or  
1216 misunderstanding the semantics of the prompt—for instance, when asked to check for the presence  
1217 of a {keyword}, TIR-Judge incorrectly interprets the literal braces “{}” as part of the keyword.

1218

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241