
Under review as a conference paper at ICLR 2023

COUNTERFACTUAL EXPLANATION VIA SEARCH IN
GAUSSIAN MIXTURE DISTRIBUTED LATENT SPACE

Anonymous authors
Paper under double-blind review

ABSTRACT

Counterfactual Explanations (CEs) are an important tool in Algorithmic Recourse
for addressing two questions: 1. What are the crucial factors that led to an auto-
mated prediction/decision? 2. How can these factors be changed to achieve a more
favorable outcome from a user’s perspective? Thus, guiding the user’s interaction
with AI systems by proposing easy-to-understand explanations and easy-to-attain
actionable changes is essential for the trustworthy adoption and long-term accep-
tance of AI systems. In the literature, various methods have been proposed to gen-
erate CEs, and different quality measures have been suggested to evaluate these
methods. However, the generation of CEs is usually computationally expensive,
and the resulting suggestions are unrealistic and thus non-actionable. In this pa-
per, we introduce a new method to generate CEs for a pre-trained binary classifier
by first shaping the latent space of an autoencoder to be a mixture of Gaussian dis-
tributions. CEs are then generated in latent space by linear interpolation between
the query sample and the centroid of the target class. We show that our method
maintains the characteristics of the input sample during the counterfactual search.
In various experiments, we show that the proposed method is competitive based
on different quality measures on image and tabular datasets – efficiently returns
results that are closer to the original data manifold compared to three state-of-the-
art methods, which are essential for realistic high-dimensional machine learning
applications.

1 INTRODUCTION

Machine learning models have recently become ubiquitous in our society, and the demand for ex-
plainability is rising, especially in high-stake applications like healthcare, finance, and employment.
Explainability of the model’s behavior is the prerequisite for establishing trust in machine learning-
based decision systems. Researchers have developed various techniques to explain the relationships
between the input and output of a model. While models with relatively simple design (e.g., logistic
regression, decision trees, rule fit algorithm) can be interpreted straightforwardly, more complex
models are analyzed based on simpler surrogate models. These surrogate models emulate the more
complex model in a post-hoc fashion locally and provide explanations in terms of local feature
importance (i.e., for a given input). For example, LIME (Ribeiro et al., 2016) perturbs the input
features and measures the effects of the perturbation through a local linear approximation of the
complex model to assess the importance of the input features. On the other hand, SHAP (Lundberg
& Lee, 2017) applies a game-theoretic approach to evaluate the contribution of input features to the
output. While LIME and SHAP have their specific advantages and disadvantages, they have a shared
objective: estimate the effect of each input feature on a given prediction.

Another important line of research aims to answer the following question in a binary classification
setting – ”How can the input be changed to achieve a prediction representing the favored class
instead of the unfavored one?”. The exploration of outcomes in alternative similar yet non-occurring
worlds is called counterfactual analysis (Menzies & Beebee, 2020). With a pre-trained and fixed
model, the only way for the model to produce a different output is by altering the input. To this
end, counterfactual explanations (CEs) provide prescriptive suggestions on the features of the query
sample (i.e., input) that have to change (and also by how much they need to change) to achieve
the desired outcome. We require this change to be minimal (i.e., associated with low costs) and
actionable (i.e., realistic and feasible). With a clear semantic implication and a common logical

1

Under review as a conference paper at ICLR 2023

grounding, CEs are generally easy to understand by end-users (Fernandez et al., 2020). In fact, in
literature, the most direct possible usage of CEs is the guidance to the end-users.

However, CEs have their downsides. High-dimensional input spaces lead to high-dimensional CEs
with limited utility for the potential users of the explanation (less intuitive and less feasible) In ad-
dition, searching through the high-dimensional space for CEs is computationally expensive. Other
than the problem caused by the dimensionality, without proper constraints, it is possible to generate
out-of-sample CEs close to the original data distribution. Out-of-sample CEs can result in explana-
tions/suggestions that are not actionable (i.e., unlikely to be achieved since they do not correspond
to the training data distribution). Adversarial samples (Goodfellow et al., 2015) which resemble the
original sample but have changed imperceptibly to fool the classifier, might be a good example to
illustrate this situation even though they are designed for a different purpose(deceive human percep-
tion and pre-trained classifiers). We show in Section 4 that a search in the original space for CEs
might cause this situation. An actionable CE should stay close to the data manifold and suggest
meaningful (i.e., realistic and easily achievable) changes to a query sample. Various requirements
are proposed in the literature for generating useful CEs: actionable, sparse, valid, proximate, and
computationally efficient to generate (Verma et al., 2020). It is also clear that there might be a
trade-off between these requirements.

We introduce a method for generating CEs by using interpolation within the latent representations
of the input data to achieve the requirements mentioned above. We perform experiments with an
image dataset – MNIST and two tabular datasets – the Adult income and Lending Club loan default.
Our main contributions are: (1) a model agnostic framework for finding feasible and actionable CEs
that are prominent in scalability in data with a low computational expense, (2) a novel strategy for
manipulating the latent space for the counterfactual search, (3) a comparison of methods across the
image and tabular datasets.

The remainder of this paper is structured as follows: First, we briefly review the existing meth-
ods of counterfactual explanation (Section 2). Then, in Section 3, we propose a CE method via
autoencoder-aided search in Gaussian Mixture (GM) distributed latent space. In Section 4, we
present the evaluation results of our method against three state-of-the-art methods. Finally, Section
5 concludes the paper.

2 BACKGROUND AND RELATED WORK

2.1 GENERATING COUNTERFACTUALS BY PERTURBING THE ORIGINAL INPUT SPACE

One large branch of the literature generates counterfactuals by perturbing the input feature space. In-
verse classification (Lash et al., 2017) maintains sparsity by partitioning the features into immutable
and mutable features and imposing budgetary constraints on the mutable features. A sampling ap-
proach is proposed by Laugel et al. (2017) with the growing spheres method to traverse the input
space for CEs. Gradient descent is utilized in input space to find contrastive explanations (Dhurand-
har et al., 2018), which are separated into pertinent positives and pertinent negatives. They included
an autoencoder loss to keep the explanations in sample. Gradient descent methods are improved
with the introduction of prototypes, guiding the gradient descent towards the average value of the
target class by averaging the training sets representation in the latent space (Van Looveren & Klaise,
2020). GRACE (Le et al., 2020) is designed for neural networks on tabular data that combines the
concepts of contrastive explanations with interventions by performing constrained gradient descent
adding an additional loss that is a measure of information gain to keep the resulting explanations
sparse. Several methods mentioned above already include generative models to maintain in sample.
The criteria of the XAI for CEs are included in the methods either as constraints or backbone of the
loss design, which might lead to difficult optimization especially when the input is high dimensional.

2.2 GENERATING COUNTERFACTUALS BY PERTURBING THE LATENT SPACE

Input feature perturbation methods without proper regularization can generate counterfactuals un-
convincing (Goyal et al., 2019) and infeasible, resembling adversarial samples. To address this
problem, latent space perturbations methods could be a solution since they utilize generative and
probabilistic models in the algorithm design to ensure counterfactuals have a high probability under

2

Under review as a conference paper at ICLR 2023

 Encoder

 Decoder

Input x z Reconstruction x’

Linear Interpolation
zs=(1-ɑ)zq+µ1

y

Counterfactual

 Training:

Generating: Decoder

Gaussian Mixture
Distribution

 Encoderu
 zu

Adversarial
Classifier

 Zu,q

Figure 1: Diagram of the data flow in the algorithm. During Training: an input sample x from the
training dataset is embedded in a latent space with a Gaussian mixture distribution by the Encoder. x
is also embedded into a latent space to get zu learned by the Encoderu with an Adversarial Classifier
that helps remove the information related to the classification label ŷ of x under the pre-trained
classifier f . z and zu are then combined to get reconstruction x′. During Generating: xq is a certain
query sample we need to explain with CE. zq is Encoder(xq) and µ1 is the mean of target class in
latent space z. A linear search is performed in the latent space of z to get a searched potential zs.
Then zs and zu,q are projected back to the original space by the Decoder until the decision boundary
of the classifier is crossed.

the data distribution p(X). One example is StylEx (Lang et al., 2021), which includes the classi-
fier in the generative model and manipulates the latent space to visualize the counterfactual search.
Moreover, ExplainGAN (Samangouei et al., 2018) is a method for finding counterfactual expla-
nations for images by training multiple autoencoders and using the signal from the classifier and
discriminators to inform the learned representations. Growing sphere search is performed in the
latent space of a conditional variational autoencoder to generate counterfactuals (Pawelczyk et al.,
2020). Gradient descent in the latent space of a variational autoencoder is applied with regulariza-
tion terms (Balasubramanian et al., 2021). Sharpshooter (Barr et al., 2021) searchs counterfactuals
by linear interpolation in the latent space with aid from two separate autoencoders.

3 OUR METHOD

3.1 PROBLEM SETTING

Our method requires access to the dataset and a previously trained classifier that we want to explain
with counterfactual explanations. We only consider a binary classification in this paper. In the
problem setting of counterfactual explanation, there is usually a base class where instances belong
that class wants to seek actionable counterfactual explanation toward the target class. The dataset is
composed D = (xi, yi)

K
i=1 where we can split x into two classes where xi belongs to the base class

has ŷi = 0 and xi belongs to the target class has ŷi = 1 under the classifier ŷ = f(x). xq is a query
sample with an output 0 from the classifier f . 1 is the desired target output. Hence, CEs are needed
for the query sample xq under the classifier f .

3.2 DESIDERATA FOR CE SEARCH

Our approach is driven by the following main desiderata:

3

Under review as a conference paper at ICLR 2023

Desideratum 1 Intrinsic and label-irrelevant characteristics of the input query should be retained
during the search process, i.e., the target label should be reached based on intrinsic properties of the
input and with low effort.

Desideratum 2 The generating step, should return highly realistic, i.e., feasible/actionable CEs.

Desideratum 3 The CEs should be retrieved efficiently in high-dimensional settings to ensure prac-
tical application to real-life settings.

3.3 LEARNING COMPONENTS

We design a CE generation method based on two main steps: a Training Step in which we use the
same training dataset used in training the classifier to learn an autoencoder with its latent space
shaped by enforcing a Gaussian-mixture distribution on the embeddings and a Generating Step in
which we use interpolation in the latent space to find a relatively less computational expensive
counterfactual explanation. The algorithm flow is shown in Figure 1. It only requires access to the
training dataset and prediction of the pre-trained classifier f that we aim to explain through appro-
priate CEs. For our Training Step, we form a new training dataset Dt = (xi, ŷi)

K
i=1 by replacing

original y in D with ŷ.

In the following part of this subsection, we will describe each component of the Training Step in
Figure 1. The details of Generating Step are described in Section 3.4.

Label Relevant Branch: Gaussian Mixture Distribution Gaussian Mixture models are usually
used in a supervised way, but in our usage, it is supervised by the classification label produced
by the pre-trained classifier. Our goal for generating a CE is to cross the decision boundary of
the pre-trained classifier by taking advantage of Gaussian mixture distribution in the latent space,
in which case, we could generate a CE without having a process of optimization for each query
sample. Intuitively, in the latent space, data points with the same class label should cluster closer
to each other. Inspired by GM loss (Wan et al., 2018), we could use a classification constraint
and likelihood constraints to ’push’ the latent space to a Gaussian mixture distribution for further
manipulation. After proper training, we could ’force’ the extracted embedding z on the training set
following a Gaussian mixture distribution expressed in Equation 1, in whichµc and σc are the mean
and covariance of class c in the latent space, and p(c) is the prior probability of class c. In the binary
classification setting, c ∈ [0, 1].

p(z) =
∑
c

p(z | c)p(c) =
∑
c

N (z;µc,Σc)p(c) (1)

If the latent space follows a Gaussian mixture distribution, the conditional probability distribution
of a latent embedding z given its class label c can be expressed in Equation 2. The corresponding
posterior probability distribution can be expressed in Equation 3.

p(z | c) = N (z;µc,Σc)p(c) (2)

p(c | z) = N (z;µc,Σc)p(µc)∑C
c=1N (z;µc,Σc)

(3)

A classification loss Lcls is then calculated as the cross-entropy between the posterior probability
distribution and the class label as is shown in Equation 4.

Lcls = −
1

N

N∑
i=1

log
N (zi;µŷ,Σŷ)p(µŷ)∑C
c=1N (zi;µc,Σc)

(4)

Applying the classification loss only cannot reach our goal of forcing the latent space to be a Gaus-
sian mixture distribution. There will be situations where a zi can be far away from the corresponding
target class centroid µc and still be correctly classified since it is relatively closer to µc than to the
means of the other classes in multiple classifications–which could be an outlier. To fix this prob-
lem, we then use a likelihood to measure the extent to of the training data fits the Gaussian mixture

4

Under review as a conference paper at ICLR 2023

distribution. The likelihood for {z, c} is expressed in Equation 5. The likelihood could serve as a
constraint to the original classification loss.

Llkd = −
N∑
i=1

log N (zi;µzi ,Σzi) (5)

Gaussian mixture loss LGM we optimize to update the parameters of Encoder, µc and Σc, during
Step 1, is defined in Equation 6, in which λ is a weighting coefficient.

LGM = Lcls + λlkdLlkd (6)

Label Irrelevant Branch: Encoderu and Adversarial Classifier We notice that generative models
usually try to generate various unseen samples. However, the generation of CEs needs to satisfy
different criteria, as mentioned in Section 1. In our problem setting, to satisfy Desideratum 1, which
requires maintaining the characteristics of the query sample during the search, it is intuitive to adopt
disentanglement methods in the latent space of an autoencoder.

Inspired by a Two-Step Disentanglement Method Hadad et al. (2020), we introduce an Adversarial
Classifier to ensure that the embedding zu captured by the Encoderu is classification label-irrelevant.
It is inspired by GANs, where the discriminator gradually loses the capacity to tell the generated data
from the real data during the training phase. While GANs are usually used to improve the quality
of generated output – telling fake from real, the adversarial component in our design encourages the
Encoderu to dismiss information about the labels, leading to disentanglement. With the Adversarial
Classifier, we could guarantee that the zu and ŷ are disentangled and independent, which prepares for
the interpolation in the Generating Step. ŷ′ is the classification label of zu through the Adversarial
Classifier. The adversarial classification loss is shown in Equation 7 as binary cross entropy loss.

Ladv = −
1

N

N∑
i=1

ŷilogŷi′ + (1− ŷi)log(1− ŷi′) (7)

Autoencoder The reconstruction error of the autoencoder is shown in Equation 8.

Lrec =
1

N

N∑
i=1

||xi − x′i||2 (8)

Summary The configuration of the network in the Training Step is composed of three network
branches: first, in the Label Relevant Branch, the LGM forces z to be Gaussian Mixture Distri-
bution. Second, in the Label Irrelevant Branch, the Adversarial Classifier is trained to minimize
the adversarial classification loss Ladv in Equation 7 – it is trained to classify zu to ŷ. Third, the
autoencoder network is trained to minimize the total loss L, the sum of three terms as shown in
Equation 9: (i) the reconstruction loss Lrec as shown in Equation 8, (ii) likelihood in Equation 5
and (iii) minus the adversarial classification loss Ladv in Equation 7.

L = Lrec + λlkdLadv − λadvLadv (9)

3.4 ALGORITHM

Algorithm 1 and 2 show pseudo code to process our method in addition to Figure 1 which is used to
generate the counterfactual in Section 4.

For the Training Step, we sample a batch from the training dataset to update the parameters of Ad-
versarial Classifier ω, Encoder ψ and mean and covariance µb, µt, and σb, σt – base class and target
class combined as training data. Then we sample another batch to update the Encoder, Encoderu,
and Decoder parameters together(ψ, π, and ϕ). We iterate this procedure until convergence of the
loss functions is reached. During the end of the Training Step: we should get a label relevant latent
space z following Gaussian Mixture distribution (see Figure ?? for PCA of z in Appendix) and a
label irrelevant latent space zu to capture the label irrelevant information of samples. In Generating

5

Under review as a conference paper at ICLR 2023

Algorithm 1 Training Step of our proposed architecture

Require: ψ, π, ϕ and ω the initial parameters of Encoder, Encoderu, Decoder and Adversarial
Classifier; µc and Σc the initial mean and covariance of the Gaussian distribution of z; n the
number of iterations; λlkd and λadv the weights of regularization termsLlkd andLadv; c ∈ [0, 1]

1: while not converged do
2: for i = 0 to n do
3: Sample {x, y} a batch from dataset Dt.
4: ω

+← −▽ω Ladv
5: LGM ← Lcls + λlkdLlkd
6: ψ, µc,Σc

+← −▽ψ,µc,σc
(LGM − λadvLadv)

7: Sample {x, y} a batch from dataset Dt.
8: L ← Lrec + λlkdLlkd − λadvLadv
9: ψ, π, ϕ

+← −▽ψ,π,ϕ L
10: end for
11: end while

Algorithm 2 Generating Step of our proposed architecture

Require: S samples α = αSs=1 in (0, 1]; xq the query sample; xs potential CE; f classifier; tol
tolerance; T probability of target counterfactual class (0.5 for decision boundary); µ1 the mean
of target class in latent space of the label relevant branch

1: zq ← Encoder(xq)
2: zu,q ← Encoderu(xq)
3: for αs in α do
4: zs = (1− α)zq + αµ1

5: xs ← Decoder(zs, zu,q)
6: if |f(xs)− T | < tol then
7: xcf = xs
8: end if
9: end for

10: return xcf

Step, where we generate a CE of a query sample xq , We first pass xq from the base class through the
Encoder and the Encoderu to obtain the sample’s embeddings zq and zu,q . Then we get the searched
potential zs by linear interpolation in latent space: zs = (1 − α)zq + αµ1 (α in (0, 1]), where µ1

is the mean of target class in latent space of the label relevant branch. zs and zu,q combined are de-
coded through the Decoder to get xs, and the pre-trained classifier f assesses its classification score.
The counterfactual search stops if it crosses the decision boundary and is within a user (end-user or
developer of the algorithm) specified tolerance tol, which is the desired maximum distance from T
for the generated counterfactual’s classification score. For the experiments in Section 4, the decision
boundary T is set to be 0.5. The search is performed by sampling along the line with a finite number
of α.

4 EXPERIMENTS AND EVALUATION

We compare our method to three other counterfactual methods introduced in Section 2: Gradient
Descent Method improved with Prototypes (Prototype) (Van Looveren & Klaise, 2020), CE Gen-
eration with Reinforcement Learning (RL) (Samoilescu et al., 2021) and Gradient Descent in the
Latent Space of a VAE (GDL) (Balasubramanian et al., 2021) on three datasets: MNIST (LeCun
et al., 1998) (image), Adult Dataset (Kohavi & Becker, 1996) (tabular) and Lending Club (Yash,
2020) (tabular). The reason why we choose Prototype and RL is that they are both designed not
only for image datasets but also for tabular datasets. Besides, they both use autoencoders to learn
the representation to remain close to the data distribution, similar to our design, while they use other
constraints to ensure desiderata like sparsity. We use the package ALIBI Klaise et al. (2021) for
Prototype and RL to stay close to the original design. GDL is a relatively simple baseline, but it is

6

Under review as a conference paper at ICLR 2023

Figure 2: Original and counterfactual samples for MNIST showing from top to bottom: original
query images and CEs found via Our Method, GDL, Prototype and RL. Note Our Method exhibits
more combination of the characteristics of the original query samples (e.g., tilt and thickness of the
strokes) and the target label than the other methods. Our Method and GDL remain (perturbation in
latent space) more realistic than the Prototype and RL (perturbation in original space).

similar to our method because both operate in latent space. We implement GDL from scratch since
the source code is not available. Our networks are trained on an Intel(r) Core(TM) i7-8700 CPU.

4.1 MEASURES FOR COMPARISON

We evaluate the quality of CEs by the measures taken from literature (Verma et al., 2020; Barr et al.,
2021; Wachter et al., 2018): (i) counterfactual generation time, time required to find a CE for
a given query sample (ii) validity, the percentage success in generating CEs that the target labels
requested by the users are reached (iii) proximity, distance(L2 norm) from query samples to CEs in
original space (iv) sparsity, L1 norm of the change vector in original space (v) reconstruction loss
– a measure of the CE being in sample. We pass a CE through the autoencoder and measure its loss.
A smaller loss indicates closer to the original data distribution because the autoencoder is trained on
the same training dataset as the pre-trained classifier. Further details about the metrics used in the
experiments can be found in the appendix.

4.2 DATASETS, TRAINING AND EVALUATION

MNIST The MNIST database is a large database of handwritten digits. For MNIST, we adjust the
problem as a binary classification problem of predicting ones (our base class) and sevens (our target
class) while the original problem setting is multi-calcification. MNIST provides a naturally intuitive
visualization of the result of a gradual change from the base class to the target class crossing the
decision boundary given a query sample. The counterfactual generated shown in Figure 3 exhibits
a combination of characteristics from the query sample (e.g., the tilt of long-stroke) and from the
target class (e.g., longer leveled stroke in sevens). Our Desideratum 1 – generating a CE while
keeping the characteristics of the query sample which are not related to the classification prediction is

7

Under review as a conference paper at ICLR 2023

reached. In our problem setting with MNIST, the tilt and length of long strokes of query sample ones
are kept during the interpolation process. Table 1 (mean±SD) shows the quality of counterfactual
explanations as measured by the above metrics. Our method outperforms the other methods in
time, reconstruction, and validity but not in proximity and sparsity (very close to GDL in proximity,
though). Our method outperforms Prototype and RL in the time dimension since it searches through
the latent space with lower dimensions. It is also more substantial than GDL because it performs
interpolation instead of optimization for a single query sample. It indicates that our method is
suitable for high-dimensional applications which require intensive computation.

For MNIST, we use a CNN-based network, and we train the model for 20 epochs by stochastic
gradient descent using the Adam optimizer and a batch size of 100 on the training dataset. Our
model uses two hyperparameters, λadv and λlkd, for regularizing the loss functions for the network.
We varied λadv and λlkd between 0.01 and 1 during training. During the training process, we want
the three loss terms Ladv , Llkd and Lcls to remain approximately on the same scale. We found
λadv = 0.05 and λlkd = 0.1 to give us a numerical balance among the three loss terms by checking
the testing dataset. We use these values to report our results. The details of the hyper-parameters of
the Discriminator are shown in the Appendix.

Figure 3: the gradual changes and classification scores for query samples along the interpolation
path. Along the paths, the label irrelevant characteristics (e.g., tilt and thickness of the strokes) stay.

Table 1: Summary of metrics for MNIST

Method time(s) reconstruction sparsity validity(%) proximity
Our Method 0.007±0.001 0.012±0.003 2.119 ±0.857 89.5 0.193 ±0.075
GDL 1.568 ±0.047 0.247 ±0.048 2.121 ±0.085 70.9 0.172±0.068
Prototype 1.345 ±0.095 0.926 ±0.175 0.014±0.005 58.7 1.075±0.055
RL 0.085 ±0.012 0.857±0.058 0.015±0.026 60.5 0.834±0.047

ADULT The Adult dataset was drawn from the 1994 United States Census Bureau data. It used
personal information such as education level and working hours per week to predict whether an
individual earns more or less than $50,000 per year (Kohavi, 1996). We train a classifier with age,
years of education, capital gain, capital loss, hours-per-week as continuous features, and education
level as a categorical feature for simplicity (considering mutable and immutable features are not the
focus of this paper). The dataset is imbalanced – the instances made less than $50,000 constitute 25%
of the dataset, and the instances made more than $50,000 constitute 75% of the dataset. To avoid the
situation that the accuracy of the classifier for an imbalanced dataset only reflects the distribution
of the training dataset, we train a classifier with re-weighting according to the proportion of base
and target class. For tabular datasets, more prepossessing is performed compared to image datasets.
We normalize the continuous features and use one-hot encoding to deal with the categorical features
for the input of the autoencoder. We train the model for 100 epochs by stochastic gradient descent
using the Adam optimizer and a batch size of 100. λadv and λlkd are set at 0.05 and 0.5. For
tabular datasets, we use a multi-layer perceptron-based network. The details of the architectures of
the networks for the Adult income dataset are shown in the appendix. Based on the comparison
results shown in Table 2, our method outperforms in time and reconstruction dimensions, while

8

Under review as a conference paper at ICLR 2023

RL is stronger in sparsity and proximity. Intuitively, perturbation in original space without much
guidance could quickly end up as adversarial samples (Goodfellow et al., 2015), which provide non-
actionable CEs. In contrast, operations in latent space (our method and GDL) could be closer to the
original datasets.

Table 2: Summary of metrics for Adult income

Method time(s) reconstruction sparsity validity(%) proximity
Our Method 0.008±0.002 0.012±0.005 0.343±0.127 90.3 0.193±0.045
GDL 1.568±0.224 0.520±0.135 0.090±0.002 84.2 2.170±0.835
Prototype 7.345±0.784 4.463±0.563 0.014±0.005 75.3 1.075±0.235
RL 1.804±0.112 5.453±0.673 0.012±0.008 65.3 0.875±0.132

Lending Club Lending Club is a peer-to-peer lending company that allows individuals to lend
to other individuals (Lending Club). This tabular dataset includes whether a borrower defaulted
on their loan size, annual income, debt-to-income ratio, FICO score, loan length, etc. We train a
classifier to predict default using five continuous and one categorical feature. Since this dataset is
also imbalanced – the default class constitutes around 15% of the population, we adjust the loss
functions of the classifier and the autoencoder to re-weighted versions based on the proportion of
each class. From Table 3, we find that similar to the Adult income dataset, our method is much
faster at generating CEs and excels at realism which means it could provide more actionable CEs
as suggestions. The training details of this dataset are similar to ADULT. Furthermore, more details
are included in the Appendix.

Table 3: Summary of metrics for Lendidng Club default loan

Method time(s) reconstruction sparsity validity(%) proximity
Our Method 0.007±0.001 0.132±0.081 1.713±0.627 92.1 3.532±0.258
GDL 3.569 ±0.087 0.142 ±0.046 1.731 ±0.068 66.3 1.652±0.668
Prototype 3.137 ±0.915 0.546 ±0.235 1.016±0.035 75.7 1.975±1.045
RL 0.035 ±0.042 0.673±0.124 1.017±0.076 67.5 1.034±0.127

5 CONCLUSION

This paper presents a novel model-agnostic algorithm for finding CEs via linear interpolation in
latent space. Our method implements a framework that first disentangles the label relevant and
label irrelevant dimensions and then searches in a Gaussian mixture distributed latent space of the
label relevant latent dimensions for CEs given a query sample. We demonstrated our method’s
advantages and disadvantages by comparing it to three similar methods (GDL, Prototype and RL)
on three different datasets (MNIST, ADULT income, and Lending Club default loan). We show that
our method is faster and provides more valid CEs which are closer to the original dataset (in the
dimensions of time, validity and reconstruction). Based on the presented comparison, we suggest
that our work could evolve around improving latent representation.

REFERENCES

Rachana Balasubramanian, Samuel Sharpe, Brian Barr, Jason Wittenbach, and C. Bayan Bruss.
Latent-CF: A Simple Baseline for Reverse Counterfactual Explanations. arXiv:2012.09301 [cs],
June 2021.

Brian Barr, Matthew R. Harrington, Samuel Sharpe, and C. Bayan Bruss. Counterfactual Explana-
tions via Latent Space Projection and Interpolation. arXiv:2112.00890 [cs], December 2021.

Amit Dhurandhar, Pin-Yu Chen, Ronny Luss, Chun-Chen Tu, Paishun Ting, Karthikeyan Shan-
mugam, and Payel Das. Explanations based on the missing: Towards contrastive explanations
with pertinent negatives. In Proceedings of the 32nd International Conference on Neural In-
formation Processing Systems, NIPS’18, pp. 590–601, Red Hook, NY, USA, December 2018.
Curran Associates Inc.

9

Under review as a conference paper at ICLR 2023

Carlos Fernandez, Foster Provost, and Xintian Han. Full Text: Explaining Data-Driven Decisions
made by AI Systems: The Counterfactual Approach. https://onikle.com/articles/48299, January
2020.

Ian J. Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and Harnessing Adversarial
Examples. arXiv:1412.6572 [cs, stat], March 2015.

Yash Goyal, Ziyan Wu, Jan Ernst, Dhruv Batra, Devi Parikh, and Stefan Lee. Counterfactual Visual
Explanations. arXiv:1904.07451 [cs, stat], June 2019.

Naama Hadad, Lior Wolf, and Moni Shahar. A Two-Step Disentanglement Method.
arXiv:1709.00199 [cs, stat], January 2020.

Janis Klaise, Arnaud Van Looveren, Giovanni Vacanti, and Alexandru Coca. Alibi Explain: Algo-
rithms for Explaining Machine Learning Models, June 2021.

Ron Kohavi. Scaling up the accuracy of Naive-Bayes classifiers: A decision-tree hybrid. In Proceed-
ings of the Second International Conference on Knowledge Discovery and Data Mining, KDD’96,
pp. 202–207, Portland, Oregon, August 1996. AAAI Press.

Ronny Kohavi and Barry Becker. UCI Machine Learning Repository: Adult Data Set.
https://archive.ics.uci.edu/ml/datasets/adult, 1996.

Oran Lang, Yossi Gandelsman, Michal Yarom, Yoav Itzhak Wald, Gal Elidan, Avinatan Hassidim,
Bill Freeman, Phillip Isola, Amir Globerson, Michal Irani, and Inbar Mosseri. Explaining in
Style: Training a GAN to explain a classifier in StyleSpace. In Proc. ICCV 2021, 2021.

Michael T. Lash, Qihang Lin, W. Nick Street, and Jennifer G. Robinson. A budget-constrained
inverse classification framework for smooth classifiers. arXiv:1605.09068 [cs, stat], June 2017.

Thibault Laugel, Marie-Jeanne Lesot, Christophe Marsala, Xavier Renard, and Marcin De-
tyniecki. Inverse Classification for Comparison-based Interpretability in Machine Learning.
arXiv:1712.08443 [cs, stat], December 2017.

Thai Le, Suhang Wang, and Dongwon Lee. GRACE: Generating Concise and Informative Con-
trastive Sample to Explain Neural Network Model’s Prediction. arXiv:1911.02042 [cs, stat],
October 2020.

Yann LeCun, Corinna Cortes, and Christopher Burges, J.C. Handwritten Digit Database. http:
//yann.lecun.com/exdb/mnist/, 1998.

Lending Club. Lending Club 2007-2020Q3. https://www.kaggle.com/datasets/
ethon0426/lending-club-20072020q1, 2020.

Scott Lundberg and Su-In Lee. A Unified Approach to Interpreting Model Predictions. In Advances
in Neural Information Processing Systems 30 (NIPS 2017), December 2017.

Peter Menzies and Helen Beebee. Counterfactual Theories of Causation. In Edward N. Zalta (ed.),
The Stanford Encyclopedia of Philosophy. Metaphysics Research Lab, Stanford University, winter
2020 edition, 2020.

Martin Pawelczyk, Johannes Haug, Klaus Broelemann, and Gjergji Kasneci. Learning Model-
Agnostic Counterfactual Explanations for Tabular Data. Proceedings of The Web Conference
2020, pp. 3126–3132, April 2020. doi: 10.1145/3366423.3380087.

Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. ”Why Should I Trust You?”: Explaining
the Predictions of Any Classifier. arXiv:1602.04938 [cs, stat], August 2016.

Pouya Samangouei, Ardavan Saeedi, Liam Nakagawa, and Nathan Silberman. ExplainGAN: Model
Explanation via Decision Boundary Crossing Transformations. In ECCV (10), January 2018.

Robert-Florian Samoilescu, Arnaud Van Looveren, and Janis Klaise. Model-agnostic and Scalable
Counterfactual Explanations via Reinforcement Learning, June 2021.

10

http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/
https://www.kaggle.com/datasets/ethon0426/lending-club-20072020q1
https://www.kaggle.com/datasets/ethon0426/lending-club-20072020q1

Under review as a conference paper at ICLR 2023

Arnaud Van Looveren and Janis Klaise. Interpretable Counterfactual Explanations Guided by Pro-
totypes. arXiv:1907.02584 [cs, stat], February 2020.

Sahil Verma, John Dickerson, and Keegan Hines. Counterfactual Explanations for Machine Learn-
ing: A Review. arXiv:2010.10596 [cs, stat], October 2020.

Sandra Wachter, Brent Mittelstadt, and Chris Russell. Counterfactual Explanations without Opening
the Black Box: Automated Decisions and the GDPR, March 2018.

Weitao Wan, Yuanyi Zhong, Tianpeng Li, and Jiansheng Chen. Rethinking Feature Distribution for
Loss Functions in Image Classification. arXiv:1803.02988 [cs], March 2018.

Yash. Lending Club 2007-2020Q3. https://www.kaggle.com/datasets/ethon0426/lending-club-
20072020q1, 2020.

11

	Introduction
	Background and Related Work
	Generating Counterfactuals by Perturbing the Original Input Space
	Generating Counterfactuals by Perturbing the Latent Space

	Our method
	Problem Setting
	Desiderata for CE Search
	Learning Components
	Algorithm

	Experiments and Evaluation
	Measures for Comparison
	Datasets, Training and Evaluation

	Conclusion

