
PricingLogic: Evaluating LLMs Reasoning on Complex Tourism Pricing
Tasks

Anonymous ACL submission

Abstract001

We present PricingLogic, the first benchmark002
that probes whether Large Language Models003
(LLMs) can reliably automate tourism-booking004
prices when multiple, overlapping fare rules005
apply. Travel agencies are eager to offload006
this error-prone task to AI systems; however,007
deploying LLMs without verified reliability008
could result in significant financial losses and009
erode customer trust. PricingLogic comprises010
300 natural-language booking requests derived011
from 42 real-world pricing policies, spanning012
two levels of difficulty: (i) basic customer-type013
pricing and (ii) bundled-tour calculations in-014
volving interacting discounts. Evaluations of a015
line of LLMs reveal a steep performance drop016
on the harder tier, exposing systematic failures017
in rule interpretation and arithmetic reasoning.018
These results highlight that, despite their gen-019
eral capabilities, today’s LLMs remain unreli-020
able for revenue-critical applications without021
further safeguards or domain adaptation. 1022

1 Introduction023

Recent advances in Large Language Models024

(LLMs) have demonstrated remarkable capabili-025

ties across diverse domains, such as code gener-026

ation (Chen et al., 2021, 2022; Hui et al., 2024),027

mathematical problem-solving (Hendrycks et al.,028

2021; Ahn et al., 2024) and general-purpose human029

instruction following (Zhou et al., 2023; Chen et al.,030

2024; Chiang et al., 2024). However, real-world031

deployment remains challenging, as practical appli-032

cations require domain-specific knowledge, navi-033

gation of conflicting rules, and high reliability with034

minimal error tolerance, which are not fully cap-035

tured by existing benchmarks (Zhou et al., 2024).036

In this paper, we focus on a specific yet repre-037

sentative real-world task: automating pricing cal-038

culations for tourism bookings, in collaboration039

with travel agencies interested in using LLM-based040

1Code and dataset will be released upon acceptance.

systems to process booking requests expressed in 041

natural language (Figure 1 left). These requests of- 042

ten involve multiple destinations, varied fare types, 043

and dynamic price policies, making manual pro- 044

cessing labor-intensive and error-prone. For LLMs, 045

the task is also non-trivial, as it requires reasoning 046

over complex constraints (Jiang et al., 2023). 047

To systematically evaluate LLMs on this prob- 048

lem, we introduce PricingLogic, a benchmark 049

specifically designed to evaluate the capabilities 050

of LLMs in handling realistic booking scenarios. 051

We collected 42 real-world pricing policy docu- 052

ments and 300 booking requests. These requests 053

cover two main tasks: basic customer-type pricing 054

and more advanced bundled-tour calculations, pre- 055

sented in increasing levels of difficulty. Notably, 056

in addition to standard prompting approaches, we 057

also investigate code-assisted reasoning, which has 058

been shown to enhance LLM performance on com- 059

putational and logical tasks (Chen et al., 2022; Gao 060

et al., 2023; Lyu et al., 2023, i.a.). In our approach, 061

LLMs are first prompted to translate pricing poli- 062

cies into executable Python code. For each incom- 063

ing booking request written in natural language, the 064

model extracts relevant information and converts it 065

into input arguments for the generated code, which 066

then calculates the price. We find that this method 067

significantly improves accuracy; nevertheless, chal- 068

lenges remain for complex booking requests (See 069

Section 4). Our contributions are: (1) The first 070

comprehensive benchmark for evaluating LLMs 071

on real-world tourism pricing; (2) Two tasks with 072

gradient difficulty that test LLMs’ ability to han- 073

dle overlapping discount rules; (3) A code-assisted 074

reasoning approach that improves performance by 075

separating rule interpretation from computation. 076

2 PricingLogic Construction 077

In this section we introduce PricingLogic for eval- 078

uating LLMs’ reasoning abilities in tourism pricing 079

1

scenarios. We created two tasks with 300 questions080

distributed across three difficulty levels as shown in081

Table 1, enabling comprehensive evaluation from082

basic price lookups to complex calculations.083

The difficulty levels test increasing reasoning084

complexity: Simple questions involve single cus-085

tomer types with basic pricing rules. Medium ques-086

tions incorporate multiple variables (10+ visitors,087

mixed demographics, accommodation status) and088

2-3 service combinations. Challenging questions089

present complex scenarios with large groups (25-090

55 visitors), diverse demographic compositions,091

region-specific pricing, multiple attractions, and092

overlapping discount structures.093

Category Count

Data Collection
Individual attractions 33
Bundled attractions 9

Difficulty Distribution (per task)
Simple questions 60
Medium questions 50
Challenging questions 40

Table 1: PricingLogic data statistics.

2.1 Collection and Organization of Tourism094

Products and Discount Policies095

We collected PricingLogic through partnerships096

with travel agencies serving 7 scenic areas with 33097

distinct activities. We documented pricing policies098

for nine customer types (regular visitors, contracted099

groups, seniors, students, etc.), capturing specific100

pricing structures, discount thresholds, and special101

conditions (accommodation benefits, combination102

incentives). This process revealed the complex con-103

ditional rules where prices vary based on customer104

categories and qualifications. We classified policies105

by location, activity type, client type, and condi-106

tions to generate realistic benchmarking questions.107

2.2 Dataset and Task Setups108

PricingLogic includes two tasks of increasing com-109

plexity, described as follows.110

Task 1: Price policies for different customer111

types. Task 1 evaluates LLMs’ ability to compute112

the total cost of tourism bookings using 33 pricing113

documents. Bundled packages are excluded from114

this task. We created 150 scenarios with clearly115

defined parameters: visitor classification (regular,116

contract, etc.), demographic thresholds (at least 117

80% students or at least 70% seniors), group size 118

requirements (10 or more for group rates), and 119

regional pricing variations, etc. 120

Task 2: Price policies for different customer 121

types with bundled-tour discounts. Task 2 122

builds upon Task 1 by introducing bundled-tour 123

discounts, which increase the problem’s complex- 124

ity. Multiple feasible pricing options (regular and 125

preferential) can now exist for the same booking 126

requests. This setup mirrors real-world tourism 127

dynamics, where specific combinations of attrac- 128

tions receive preferential rates (lower total price 129

than booking each attraction separately). 130

3 Methods 131

We apply two common reasoning approaches to 132

solve the tasks defined in PricingLogic, and pro- 133

vide baseline performance. outlined below are the 134

two methods. 135

End-to-end prompting (E2E). Our E2E ap- 136

proach processes pricing in a single inference pass. 137

We index and normalize pricing policies, then 138

consolidate relevant documents into a comprehen- 139

sive context when processing orders. The prompt 140

guides LLMs through two stages: (1) identifying 141

project details, visitor counts, and special condi- 142

tions, and (2) calculating prices based on applicable 143

policies, including accommodation exemptions and 144

combination requirements. 145

Code-assisted reasoning (CaR). We propose a 146

two-stage approach for price calculation. First, 147

LLMs generate specialized calculator functions for 148

each tourism product using pricing policies as con- 149

text, encapsulating conditional logic for customer 150

types and discount rules. Second, our framework 151

processes orders by: (1) identifying relevant items, 152

(2) retrieving corresponding functions, (3) extract- 153

ing parameter values, and (4) executing these func- 154

tions to determine the final price. 155

4 Experiments 156

4.1 Experimental Setups 157

Models. We benchmark a line of recent LLMs 158

including both proprietary ones and open-weight 159

ones. Specifically, we have included GPT-4o (Ope- 160

nAI, 2024), DeepSeek-V3/R1 (DeepSeek-AI et al., 161

2025b,a), and Qwen2.5-7B/32B/Max (Qwen et al., 162

2

Method1:End-to-End

Mehtod2:Code-assisted reasoning (CaR)

Step1:

Pricing
Policies LLMs

Code Library

Step2:

Booking
Information

Pricing
Policies

LLMs

code
arguments

OK! Let me check and
analysis,I will give a final

quotation to you...

User

Assistant

After my analyze and
calculation, this is the

final Quotation.
...

 I obtained: $130

Assistant

Booking Information：
20 students plan to

experience the Silverbrook
River and visit the following

attractions on May 20.
...

May I ask what the total
price of the tour is?

Selected
Code

Output
Quotation

Booking
Information

Output
Quotation

Code Library

mapping

mapping

LLMs

Figure 1: Automatic quotation use case (left) and its two LLM-based realizations (right).

Infer. setting Model
Question types

simple medium challenging

E2E
Qwen2.5-7B 63.33 12.00 0.00
Qwen2.5-32B 86.67 40.00 50.00
Qwen2.5-Max 90.00 54.00 32.50
DeepSeek-V3 83.33 70.00 40.00
DeepSeek-R1 78.33 72.00 45.00
GPT-4o 81.67 58.00 52.50

CaR
Qwen2.5-7B 66.663.3↑ 28.0016.0↑ 5.005.0↑

Qwen2.5-32B 93.336.7↑ 68.0028.0↑ 35.0015.0↓

Qwen2.5-Max 92.002.0↑ 78.0024.0↑ 55.0022.5↑

DeepSeek-V3 90.006.7↑ 70.000.0↑ 50.0010.0↑

DeepSeek-R1 93.3315.0↑ 74.002.0↑ 57.5012.5↑

GPT-4o 96.6715.0↑ 72.0014.0↑ 55.002.5↑

CaR-Oracle
Qwen2.5-7B 15.0051.7↓ 6.0022.0↓ 0.005.0↓

Qwen2.5-32B 96.673.3↑ 92.0024.0↑ 30.005.0↓

Qwen2.5-Max 100.008.0↑ 82.504.5↑ 55.000.0↑

DeepSeek-V3 100.0010.0↑ 85.0015.0↑ 52.502.5↑

DeepSeek-R1 100.006.7↑ 92.5018.5↑ 55.002.5↑

GPT-4o 97.500.8↑ 85.0013.0↑ 50.000.0↑

Table 2: Main Task 1 results. Superscripts denote perfor-
mance changes between successive evaluation settings
(E2E → CaR, CaR → CaR-Oracle).

2025).2163

Inference settings. As outlined in Section 3,164

we evaluate LLMs using both E2E and CaR ap-165

proaches. CaR has two potential failure modes: (1)166

generating incorrect calculation code and (2) invok-167

ing code with incorrect parameters. To isolate error168

sources, we introduced CaR-Oracle, where we169

manually implemented verified Python code for all170

pricing policies. In this control condition, LLMs171

only need to pass correct parameters to human-172

verified code, enabling precise diagnosis of model173

limitations by controlling for code quality. We set174

the temperature to 0.0 across all models for deter-175

2Model versions: GPT-4o-0129, Qwen-Max-1015 and
DeepSeek-V3-0324.

ministic outputs. 176

Metrics. We use exact match to compare the 177

model predictions with the correct answer, and re- 178

port the accuracy. 179

4.2 Results on Task 1 180

Table 2 presents the model performance on Task 1. 181

For simple questions, all LLMs, except Qwen2.5- 182

7B, are able to provide correct answers 78% of 183

the time using direct prompting (E2E). However, 184

performance drops as question complexity in- 185

creases. Upon inspection, we find that models often 186

misidentify customer categories and/or overlook 187

pricing conditions. For challenging questions, all 188

LLMs struggle to answer more than half correctly. 189

Compared to E2E, the CaR approach improves 190

accuracy in most cases, demonstrating the effective- 191

ness of this two-stage inference framework. The 192

greatest improvement is observed in the Qwen2.5- 193

Max model, suggesting that while it may struggle 194

with end-to-end reasoning, it performs well when 195

tasked with code generation. Nonetheless, even 196

with CaR, no LLM achieves more than 60% accu- 197

racy on challenging questions. A notable outlier 198

is Qwen2.5-32B, where CaR underperforms E2E 199

by 15%. Further analysis shows that this model 200

often makes mistakes when converting booking 201

information into correct function calls. 202

Results from CaR-Oracle confirm that using 203

human-verified code leads to further improvements 204

in accuracy. Strong models like DeepSeek-V3 205

can fully solve simple tasks with human-written 206

code, achieving a 10% gain compared to using self- 207

3

Infer. setting Model
Question types

simple medium challenging

E2E

Qwen2.5-7B 68.33 28.00 0.00
Qwen2.5-32B 76.67 46.00 27.50
Qwen2.5-Max 85.00 48.00 22.50
DeepSeek-V3 83.33 45.00 27.50
DeepSeek-R1 88.33 40.00 30.00
GPT-4o 90.00 54.00 27.50

CaR

Qwen2.5-7B 61.676.7↓ 22.006.0↓ 12.5012.5↑

Qwen2.5-32B 76.670.0↑ 42.004.0↓ 22.505.0↓

Qwen2.5-Max 93.338.3↑ 78.0030.0↑ 35.0012.5↑

DeepSeek-V3 91.678.3↑ 68.0023.0↑ 30.002.5↑

DeepSeek-R1 93.335.0↑ 70.0030.0↑ 35.005.0↑

GPT-4o 95.005.0↑ 76.0022.0↑ 37.5010.0↑

Table 3: Main Task 2 results. Superscripts denote performance changes between E2E → CaR evaluation settings.

generated code. These results indicate that, for208

simple tasks, LLM-generated code is generally ac-209

curate, though it still misses some edge cases. For210

medium-difficulty tasks, generated code often con-211

tains significant issues, but strong LLMs may still212

map booking requests to correct code arguments.213

For challenging tasks, even understanding book-214

ings and making correct function calls becomes215

problematic.216

4.3 Results on Task 2217

Table 3 presents the model performance on Task218

2. With E2E prompting, even the strongest models219

(GPT-4o) achieve only 27.5% accuracy on challeng-220

ing questions, demonstrating the difficulty intro-221

duced by having to reason about bundled-discount222

interactions. The CaR approach shows substantial223

improvements for most models across difficulty lev-224

els. Particularly notable are the gains for Qwen2.5-225

Max, DeepSeek-V3, and DeepSeek-R1 on medium226

difficulty questions, with improvements of 30%,227

23%, and 30% respectively.228

The CaR approach’s success demonstrates that229

separating policy interpretation from parameter230

extraction improves handling of complex pricing231

logic. Error analysis reveals that models struggle232

with two specific challenges in Task 2: (1) iden-233

tifying when bundled discounts should override234

other customer type pricing, and (2) calculating the235

optimal combination when multiple valid bundle236

options exist.237

5 Related work238

LLMs in real-world scenarios. Recent research239

has focused on evaluating LLMs in real-world240

applications. Miserendino et al. (2025) bench-241

marked LLMs for freelance software engineering,242

and Huang et al. (2024) assessed their tool utiliza-243

tion in real-world scenarios. Closely related to244

our work is RuleArena (Zhou et al., 2024) that 245

tests LLMs’ rules-following in real-world domains. 246

Unlike RuleArena’s linear difficulty scaling (e.g., 247

increasing bag count) and minimal rule conflicts. 248

Our benchmark evaluates LLMs’ ability to select 249

optimal pricing among multiple overlapping condi- 250

tions across diverse demographics, accommodation 251

status, and service combinations, requiring sophisti- 252

cated comprehension to identify the most favorable 253

option among competing discount rules. 254

Code-assisted reasoning. Assisting LLMs with 255

code improved their reasoning on computation- 256

intensive tasks, (Lyu et al., 2023), through gen- 257

erating programmatic steps executed by external in- 258

terpreters. Methods either employ pure code (Chen 259

et al., 2022; Gao et al., 2023), code-language in- 260

terleaving (Lyu et al., 2023), code with algebraic 261

expressions, (Imani et al., 2023), or code with spe- 262

cialized libraries (Das et al., 2024). While previ- 263

ous work targeted controlled mathematical prob- 264

lems, our approach extends this paradigm to real- 265

world tourism pricing, exceeding textbook problem 266

complexity, through a two-stage pipeline address- 267

ing practical constraints such as diverse customer 268

groups and overlapping discount rules. 269

6 Conclusion 270

We introduced PricingLogic, a benchmark evaluat- 271

ing LLMs on complex tourism pricing tasks. Our 272

experiments show code-assisted reasoning gener- 273

ally outperforms end-to-end approaches, yet even 274

advanced models struggle with challenging pric- 275

ing scenarios involving multiple overlapping rules. 276

These findings highlight the gap between theoreti- 277

cal reasoning capabilities and practical deployment 278

needs in revenue-critical applications, emphasiz- 279

ing the importance of rigorous evaluation before 280

implementing AI in financial contexts. 281

4

Limitations282

We focused only on E2E prompting and CaR meth-283

ods for evaluating LLMs on pricing tasks. While284

fine-tuning LLMs specifically for tourism pricing285

could potentially improve performance, it would286

require substantial training data, more computa-287

tional resources, and retraining whenever pricing288

policies change—making it impractical in dynamic289

business environments. Our methods offer some290

flexibility while still providing meaningful perfor-291

mance benchmarks.292

References293

Janice Ahn, Rishu Verma, Renze Lou, Di Liu, Rui294
Zhang, and Wenpeng Yin. 2024. Large language295
models for mathematical reasoning: Progresses and296
challenges. arXiv preprint arXiv:2402.00157.297

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan,298
Henrique Ponde De Oliveira Pinto, Jared Kaplan,299
Harri Edwards, Yuri Burda, Nicholas Joseph, Greg300
Brockman, and 1 others. 2021. Evaluating large301
language models trained on code. arXiv preprint302
arXiv:2107.03374.303

Wenhu Chen, Xueguang Ma, Xinyi Wang, and304
William W Cohen. 2022. Program of thoughts305
prompting: Disentangling computation from reason-306
ing for numerical reasoning tasks. arXiv preprint307
arXiv:2211.12588.308

Yihan Chen, Benfeng Xu, Quan Wang, Yi Liu, and309
Zhendong Mao. 2024. Benchmarking large language310
models on controllable generation under diversified311
instructions. In Proceedings of the AAAI Conference312
on Artificial Intelligence, volume 38, pages 17808–313
17816.314

Wei-Lin Chiang, Lianmin Zheng, Ying Sheng, Anasta-315
sios Nikolas Angelopoulos, Tianle Li, Dacheng Li,316
Hao Zhang, Banghua Zhu, Michael Jordan, Joseph E.317
Gonzalez, and Ion Stoica. 2024. Chatbot arena: An318
open platform for evaluating llms by human prefer-319
ence. Preprint, arXiv:2403.04132.320

Debrup Das, Debopriyo Banerjee, Somak Aditya,321
and Ashish Kulkarni. 2024. Mathsensei: A tool-322
augmented large language model for mathematical323
reasoning. arXiv preprint arXiv:2402.17231.324

DeepSeek-AI, Daya Guo, Dejian Yang, Haowei Zhang,325
Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,326
Shirong Ma, Peiyi Wang, Xiao Bi, Xiaokang Zhang,327
Xingkai Yu, Yu Wu, Z. F. Wu, Zhibin Gou, Zhi-328
hong Shao, Zhuoshu Li, Ziyi Gao, and 181 others.329
2025a. Deepseek-r1: Incentivizing reasoning capa-330
bility in llms via reinforcement learning. Preprint,331
arXiv:2501.12948.332

DeepSeek-AI, Aixin Liu, Bei Feng, Bing Xue, Bingx- 333
uan Wang, Bochao Wu, Chengda Lu, Chenggang 334
Zhao, Chengqi Deng, Chenyu Zhang, Chong Ruan, 335
Damai Dai, Daya Guo, Dejian Yang, Deli Chen, 336
Dongjie Ji, Erhang Li, Fangyun Lin, Fucong Dai, 337
and 181 others. 2025b. Deepseek-v3 technical report. 338
Preprint, arXiv:2412.19437. 339

Luyu Gao, Aman Madaan, Shuyan Zhou, Uri Alon, 340
Pengfei Liu, Yiming Yang, Jamie Callan, and Gra- 341
ham Neubig. 2023. Pal: Program-aided language 342
models. In International Conference on Machine 343
Learning, pages 10764–10799. PMLR. 344

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul 345
Arora, Steven Basart, Eric Tang, Dawn Song, and Ja- 346
cob Steinhardt. 2021. Measuring mathematical prob- 347
lem solving with the math dataset. arXiv preprint 348
arXiv:2103.03874. 349

Shijue Huang, Wanjun Zhong, Jianqiao Lu, Qi Zhu, 350
Jiahui Gao, Weiwen Liu, Yutai Hou, Xingshan Zeng, 351
Yasheng Wang, Lifeng Shang, and 1 others. 2024. 352
Planning, creation, usage: Benchmarking llms for 353
comprehensive tool utilization in real-world complex 354
scenarios. arXiv preprint arXiv:2401.17167. 355

Binyuan Hui, Jian Yang, Zeyu Cui, Jiaxi Yang, Day- 356
iheng Liu, Lei Zhang, Tianyu Liu, Jiajun Zhang, 357
Bowen Yu, Keming Lu, Kai Dang, Yang Fan, 358
Yichang Zhang, An Yang, Rui Men, Fei Huang, 359
Bo Zheng, Yibo Miao, Shanghaoran Quan, and 5 oth- 360
ers. 2024. Qwen2.5-coder technical report. Preprint, 361
arXiv:2409.12186. 362

Shima Imani, Liang Du, and Harsh Shrivastava. 2023. 363
Mathprompter: Mathematical reasoning using large 364
language models. arXiv preprint arXiv:2303.05398. 365

Yuxin Jiang, Yufei Wang, Xingshan Zeng, Wanjun 366
Zhong, Liangyou Li, Fei Mi, Lifeng Shang, Xin 367
Jiang, Qun Liu, and Wei Wang. 2023. Follow- 368
bench: A multi-level fine-grained constraints follow- 369
ing benchmark for large language models. arXiv 370
preprint arXiv:2310.20410. 371

Qing Lyu, Shreya Havaldar, Adam Stein, Li Zhang, 372
Delip Rao, Eric Wong, Marianna Apidianaki, and 373
Chris Callison-Burch. 2023. Faithful chain-of- 374
thought reasoning. arXiv preprint arXiv:2301.13379. 375

Samuel Miserendino, Michele Wang, Tejal Patward- 376
han, and Johannes Heidecke. 2025. Swe-lancer: 377
Can frontier llms earn $1 million from real-world 378
freelance software engineering? arXiv preprint 379
arXiv:2502.12115. 380

OpenAI. 2024. Gpt-4o system card. Preprint, 381
arXiv:2410.21276. 382

Qwen, :, An Yang, Baosong Yang, Beichen Zhang, 383
Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan 384
Li, Dayiheng Liu, Fei Huang, Haoran Wei, Huan 385
Lin, Jian Yang, Jianhong Tu, Jianwei Zhang, Jianxin 386
Yang, Jiaxi Yang, Jingren Zhou, and 25 oth- 387
ers. 2025. Qwen2.5 technical report. Preprint, 388
arXiv:2412.15115. 389

5

https://arxiv.org/abs/2403.04132
https://arxiv.org/abs/2403.04132
https://arxiv.org/abs/2403.04132
https://arxiv.org/abs/2403.04132
https://arxiv.org/abs/2403.04132
https://arxiv.org/abs/2402.17231
https://arxiv.org/abs/2402.17231
https://arxiv.org/abs/2402.17231
https://arxiv.org/abs/2402.17231
https://arxiv.org/abs/2402.17231
https://arxiv.org/abs/2501.12948
https://arxiv.org/abs/2501.12948
https://arxiv.org/abs/2501.12948
https://arxiv.org/abs/2412.19437
https://arxiv.org/abs/2211.10435
https://arxiv.org/abs/2211.10435
https://arxiv.org/abs/2211.10435
https://arxiv.org/abs/2401.17167
https://arxiv.org/abs/2401.17167
https://arxiv.org/abs/2401.17167
https://arxiv.org/abs/2401.17167
https://arxiv.org/abs/2401.17167
https://arxiv.org/abs/2409.12186
https://arxiv.org/abs/2303.05398
https://arxiv.org/abs/2303.05398
https://arxiv.org/abs/2303.05398
https://arxiv.org/abs/2301.13379
https://arxiv.org/abs/2301.13379
https://arxiv.org/abs/2301.13379
https://arxiv.org/abs/2502.12115
https://arxiv.org/abs/2502.12115
https://arxiv.org/abs/2502.12115
https://arxiv.org/abs/2502.12115
https://arxiv.org/abs/2502.12115
https://arxiv.org/abs/2410.21276
https://arxiv.org/abs/2412.15115

Jeffrey Zhou, Tianjian Lu, Swaroop Mishra, Siddhartha390
Brahma, Sujoy Basu, Yi Luan, Denny Zhou, and391
Le Hou. 2023. Instruction-following evaluation for392
large language models. Preprint, arXiv:2311.07911.393

Ruiwen Zhou, Wenyue Hua, Liangming Pan, Sitao394
Cheng, Xiaobao Wu, En Yu, and William Yang Wang.395
2024. Rulearena: A benchmark for rule-guided rea-396
soning with llms in real-world scenarios. CoRR,397
abs/2412.08972.398

A Prompts399

The E2E prompt is shown in Figure 3. The CaR400

prompt is shown in Figures 4 to 6. The Benchmark401

information is shown in Figure 2402

B annotation process403

The PricingLogic dataset was manually collected404

and annotated by the authors over a four-day period.405

We first established clear definitions for various406

customer types and documented their correspond-407

ing pricing structures for each tourism attraction.408

Table 4 illustrates an example of the pricing pol-409

icy for a specific attraction, showing how prices410

vary across different customer categories. Table 5411

provides detailed definitions of these customer cate-412

gories, explaining the qualifications and conditions413

for each pricing tier.414

C computing infra415

Experiments in this work were conducted on a416

mixed infrastructure setup, with some models run417

locally and others accessed via API endpoints. For418

open-source models, experiments were conducted419

with different GPU configurations. Qwen2.5-7B420

was run on a single Nvidia A800 GPU card (80GB),421

while Qwen2.5-32B required 4 A800 GPUs for422

inference. The server was equipped with In-423

tel(R) Xeon(R) Platinum 8378A CPU @ 3.00GHz424

processors. Batch processing was implemented425

to optimize throughput across all experimental426

runs. For larger proprietary models (Qwen2.5-Max,427

DeepSeek-V3, DeepSeek-R1, and GPT-4o), we uti-428

lized their respective API endpoints. The API calls429

were managed through a queuing system to handle430

rate limits and ensure reliable data collection. All431

API requests were executed with temperature set432

to 0.0 to ensure deterministic outputs.433

Type Price
Regular retail price 80
Contracted group price 50
Contracted non-group price 50
Non-contracted group price 64
Non-contracted non-group price 72
Senior/Student group price 40
Long-distance and new market price 30
Accommodation package price 50
Travel employee price 50
Free admission with hotel stay 0

Table 4: Example Customer Type Price of one Attrac-
tion

Customer Type Definition
Regular retail price Standard price for individual

visitors
Group price Applies when the number of

visitors is ≥ 10 people
Contracted group
price

Discounted rate for customers
with a signed contract

Contracted
non-group price

Price for contracted customers
who don’t meet group size
requirement

Non-contracted
group price

Group rate for customers without
a contract (requires tour guide
certificate)

Non-contracted
non-group price

Standard price for customers
without a contract

Senior group price Applies when seniors (55+)
constitute > 70% of the group

Student group price Applies when students constitute
> 80% of the group

Long-distance
market price

Special price for visitors from
outside Somerset, Hampshire,
and London

Accommodation
package price

Preferential prices for contracted
groups staying at designated
hotels in Clayton Castle

Travel employee
price

Special price for travel employees
and companions; applies to entire
group when led by an employee

Free admission with
hotel stay

Visitors at designated Clayton
Castle hotels receive free
admission to select attractions

Table 5: Customer Type Definitions

6

https://arxiv.org/abs/2311.07911
https://arxiv.org/abs/2311.07911
https://arxiv.org/abs/2311.07911
https://doi.org/10.48550/ARXIV.2412.08972
https://doi.org/10.48550/ARXIV.2412.08972
https://doi.org/10.48550/ARXIV.2412.08972

Benchmark Information

simple questions:
3 non-contract customers plan to experience the Harrenstadt Bay tour route. What is the total

price for the Harrenstadt Bay tour route?

challenging questions:
25 tourists (contract customers, including 12 students and 6 seniors, staying at a designated

hotel in Clayton Castle) are visiting Brighton Cave, St. Elvi Ancient Village, and Montfiel
Monastery. They plan to experience the Brighton Cave entrance ticket, Brighton Cave boat ride,

Brighton Cave magic carpet ascent, St. Elvi Ancient Village entrance ticket, and Montfiel
Monastery entrance ticket. What is the total price for the Brighton Cave entrance ticket,

Brighton Cave boat ride, Brighton Cave magic carpet ascent, St. Elvi Ancient Village entrance
ticket, and Montfiel Monastery entrance ticket?

medium questions:
12 tourists (non-contract customers from Essex) are visiting Brighton Cave and St. Elvi Ancient
Village. They plan to experience the Brighton Cave entrance ticket and St. Elvi Ancient Village

entrance ticket. What is the total price for the Brighton Cave entrance ticket and St. Elvi
Ancient Village entrance ticket?

Figure 2: Benchmark Information.

E2E method prompt

You are a tourism pricing expert. Please complete two tasks based on the
following order information and pricing policies: project identification and
price calculation.
Order Information:
{order_text}
Pricing Policies:
{all_policy_content}
Please complete the following two tasks:
Task 1: Identify Project Information
Please analyze the order text to identify the tourism projects, number of people,
dates, and any special identities or conditions mentioned.
Task 2: Calculate Price
Based on the project information you've identified and the corresponding
pricing policies, calculate the total price of the order.
Please follow the rules in the pricing policies, considering information such as
the number of people, dates, special identities or conditions in the order to
determine the customer type and accurately calculate the price. If the order
meets multiple customer conditions, choose the customer type that results in
the lowest price.
In your response, first clearly list the project information you've identified
(including project name, number of people, etc.), then explain the calculation
process in detail.
Finally, be sure to output the total price on the last line of your answer in the
following fixed format:
Final Price:XXXX yuan
Please ensure this line stands alone without any other text, where XXXX is the
final price number you calculated. This is important for the system to extract
the price.

Figure 3: E2E method prompt.

code generation prompt

Please deeply analyze the pricing policy document and generate a price
calculator module. Please respond in Chinese.
Task Requirements
1. Create a function named calculate_price
2. The function should calculate the total expense based on the number of
people
3. The function should handle various edge cases and special situations
4. If multiple pricing policies apply, choose the one most beneficial to the
customer
5. The code should be concise, efficient, and easy to understand
6. Do not add any additional functions or classes
7. Do not import any unnecessary modules
8. Do not add any other content besides the calculation function
Pricing Policy Document
{document_content}
Calculation Function Requirements
Please determine the parameters needed for the function based on the
content of the pricing policy document, and implement the complete
calculation logic.
The following requirements apply to the function parameters and
calculation logic:
1. The entire code's decision logic should be in a complete if-elif-else
structure
2. The code should be able to calculate the unit price of each item in the
combination policy, as well as the total price of all items in the
combination policy
Please generate complete Python code directly, without any additional
explanations or modules.

Figure 4: CaR method step1 prompt.

7

CaR method prompt1

Please analyze the following tourism order text and identify the projects
needed by the customer.

Order text:
"{order_text}"

Available project list:
{', '.join(available_items)}

Please only return a JSON array containing the identified project names,
for example:
["Project1", "Project2"]

Figure 5: CaR method step2 prompt for booking infor-
mation analysis.

CaR method prompt2

Please parse the following tourism order text and extract all key
information that may affect price calculation.
Order text:
"{order_text}"
Identified projects:
{', '.join(identified_items)}
Corresponding project function code, please carefully analyze the source
code of each calculator function, paying special attention to how
parameters are actually used within the function.
{calculator_code_prompt}
User question:
"{question if question else 'Calculate the total price of the order'}"
Please first provide a detailed explanation of your understanding of this
order, including:
1. The key information you've identified (such as number of people, dates,
customer type, etc.)
2. How you determined which parameters to extract based on the price
calculator code
3. If you feel the information provided in the order is insufficient, you may
refuse to answer and point out where information is lacking
4. Please refer to this supplementary policy document when understanding
the order: {policy_content}
Then, please carefully analyze the order text to extract all factors that may
affect the price, such as number of people, customer type, special identity,
date, etc.
Please carefully understand the price calculation code for specific projects
mentioned in the order information, and extract the corresponding
information according to its parameter requirements.
Finally, please return the results in strict JSON format, without any
comments, and must include the "items" field and all parameters required
by the calculator functions.
Your response should include two parts:
1. Your analysis and understanding of the order (textual explanation)
2. Extracted parameters (JSON format)

Figure 6: CaR method step2 prompt for code arguments
analysis.

8

	Introduction
	PricingLogic Construction
	Collection and Organization of Tourism Products and Discount Policies
	Dataset and Task Setups

	Methods
	Experiments
	Experimental Setups
	Results on Task 1
	Results on Task 2

	Related work
	Conclusion
	Prompts
	annotation process
	computing infra

