Divergent Token Metrics: Measuring degradation to
prune away LLLM components — and optimize quantization

Anonymous ACL submission

Abstract

Large Language Models (LLMs) have reshaped
natural language processing with their impres-
sive capabilities. Their ever-increasing size,
however, have raised concerns about their ef-
fective deployment and the need for LLM com-
pression. This study introduces the Divergent
Token Metrics (DTMs), a novel approach for
assessing compressed LLMs, addressing the
limitations of traditional perplexity or accu-
racy measures that fail to accurately reflect text
generation quality. DTMs focus on token di-
vergence, that allow deeper insights into the
subtleties of model compression, in particular
when evaluating components’ impacts individu-
ally. Utilizing the First Divergent Token Metric
(FDTM) in model sparsification reveals that
25% of all attention components can be pruned
beyond 90% on the Llama-2 model family, still
keeping SOTA performance. For quantization
FDTM suggests that over 80% of parameters
can naively be transformed to int8 without spe-
cial outlier management. These evaluations
indicate the necessity of choosing appropriate
compressions for parameters individually—and
that FDTM can identify those—while standard
metrics result in deteriorated outcomes.

1 Introduction

Cutting-edge Large Language Models (LLMs)
based on the transformer architecture (Vaswani
et al., 2017) have revolutionized Natural Language
Processing with their exceptional performance, no-
tably exemplified by the GPT-series (Radford et al.,
2018, 2019; Brown et al., 2020; Bubeck et al.,
2023) in text generation. However, these models
have grown massive, even exceeding half a trillion
parameters (Chowdhery et al., 2023). While the
large number of parameters aid early training con-
vergence, their practical utility and true necessity
remain unclear.

Compression strategies like sparsification and
quantization can enhance parameter efficiency. Cur-

rent metrics, however, either average too coarsely,
such as perplexity, or are by design too specific,
such as standard NLP benchmarks. Both fail to
capture the diverging performance nuances intro-
duced early on by the compression because they
ignore the actual discontinous text generation pro-
cess. This however is the main use of the final
model, and so we argue that they are therefore
insufficient measures for the performance of the
compressed model. This misalignment can lead to
unwanted subtle discrepancies in generation, such
as grammatical errors or a mismatch in numbers as
we will see, even when overall metrics, such as per-
plexity, appear satisfactory (cf. Prop. 3.2, Sec. 4).
An example is depicted in Fig. 1.

To meet these challenges, we introduce the fam-
ily of Divergent Token Metrics (DTMs). These met-
rics are tailored to measure the model divergence
of LLMs throughout the compression process and
in relation to the actual generation procedure. We
demonstrate that the First Divergent Token Metric
(FDTM) and the Share of Divergent Tokens Met-
ric (SDTM) offer a more nuanced evaluation com-
pared to perplexity. They also enable individual
component evaluation to rank parts of the model
best suited for compression, thus enabling meaning-
ful compression while preserving text generation
quality. Specifically, sparsification enhanced by
FDTM indicates significant differences in compo-
nent utilization across layers. For the first time,
we show that 25% percent of the models’ atten-
tion components can be pruned beyond 90%, and
several even entirely removed, while preserving
a single-digit perplexity. Consequently, one can
employ a sparse matrix format to accelerate com-
putational efficiency. Likewise, for precision reduc-
tion we show that sorting components by FDTM
coincidentally correlates to sorting by their induced
number of outliers when being naively converted
to int8. FDTM identifies the optimal 80% of com-
ponents that keep overall performance without spe-

Baseline

Compressed Albert Einstein was|born on March

5

prefix co;npletion

Albert Einstein was|born on March

PPL 6.420
PPL 6.420

14, §1879, in Ulm, Germany.
21, J1879, in Vienna, Austria.

FDT 6

Figure 1: Illustration of a diverging generation process. Given the 3-token prefix as prompt, a baseline and its
compressed model generate 8 subsequent tokens. Our proposed metric points to the first divergent token (FDT). The
FDT may cause further divergence during the iterative generation process. Note how both models score the same
perplexity value, as it does not reflect the actual sampling process (c.f. Fig. 2, Sec. 4 for an empirical exploration).

cific outlier-handling. The observed decline in per-
formance with more outliers, and the significant
influence of specific components on those, sug-
gests re-evaluating the applied normalization meth-
ods throughout the model. We demonstrate that
this level of precision goes beyond what standard
perplexity and conventional NLP benchmarks can
achieve. The proposed Divergent Token Metrics
closely reflect the generation process and so can
be a measure to foster confidence in the deployed
compressed models.

2 Compression Principles

Model compression aims to reduce the hardware
resources needed to operate the model. However,
doing so may sacrifice model accuracy. To keep
the loss as small as possible, a corrective measure
is typically used. Here, we discuss the most com-
monly used concepts and state-of-the-art methods
for sparsification and quantization of LLMs.

Outlier and Hessians. Most model compres-
sion methods rely either on the separation of out-
liers (Dettmers et al., 2022; Sun et al., 2023) or
the computation of a Hessian matrix (Frantar et al.,
2023; Frantar and Alistarh, 2023). Outliers usually
refer to significantly larger values in magnitude oc-
curring either in the weight matrix directly or in the
activations during a forward pass. As most com-
putations are linear matrix multiplications, such
outliers strongly influence the remaining entropy
contained in consecutive computations. In the
case of sparsification, outliers should be left intact,
and the values with the least magnitude—which
are consequently the least influential—should be
masked instead (Han et al., 2015). On the other
hand, Hessian matrices can be applied to correct
errors (Frantar et al., 2023). They can effectively
be approximated by computing backpropagation
gradients for a small number of samples and repre-
sent a second-order approximation to reconstruct
the original model.

Sparsification. The goal of sparsification is
a reduction of the overall number of weights and,
hence, a distillation of the relevant computation.
Typically, this method is divided into “structured”
and “unstructured” pruning. Structured-pruning
aims to locate dynamics, such as the irrelevance of
an entire layer or dimension for a given use case
and prunes these entirely. Unstructured-pruning
usually refers to the masking of weights, i.e., set-
ting the irrelevant weights to 0. High levels of
sparse matrix computations could result in more
efficient kernels and computations. In scenarios
where masks exceed a 90% threshold, the imple-
mentation of a specialized sparse matrix format be-
comes feasible. This format predominantly stores
the indices of non-zero weights. While it necessi-
tates some additional storage for these indices, the
overall requirement is reduced due to the exclusion
of zero values. Moreover, this approach substan-
tially improves computational performance.

Magnitude pruning selects the masking of
weights based only on their magnitudes. This is
fast to compute but significantly degrades model
performance when pruning large amounts simulta-
neously. To resolve this issue, wanda (Sun et al.,
2023) proposes to sample a small amount of data
and incorporate activations during the forward pass.
It was shown that this generates more effective
one-shot pruning masks. SparseGPT (Frantar and
Alistarh, 2023) computes iterative Hessian approx-
imations to select the lowest impact weights and
correct the remaining.

Note that the incorporation of activations can to
some extent be interpreted as a form of training.
Moreover, despite these efforts, one-shot pruning
has not yet produced directly usable models with-
out further final fine-tunings. This is in particular
the case for the high sparsity levels beyond 70%
that we target. Finally, there has not yet been any
investigation of the individual components.

Quantization. Model quantization refers to
the reduction of the precision of the numeric for-

mat used. Usually, LLMs are trained in 16-bit
floating-point (fp16) and converted to 8-bit inte-
ger (int8) representations. The naive conversion
of float matrices to integers is AbsMax rounding.
This divides a number by the maximum value oc-
curring in the matrix and multiplies by the largest
available integer—as such, it spans a uniform repre-
sentation grid. The largest float value is stored and
multiplied for dequantization. The most prominent
methods to mitigate the introduced rounding errors
are LLM.int8() and GPTQ.

Dettmers et al. (2022) introduced LLM.int8(),
which identifies vectors containing outliers and re-
tains them in their original fp16 form during the
matrix multiplication of a forward pass. The vec-
tors lacking outliers are quantized fully. The int8
weights and activations during the forward pass
are subsequently multiplied and dequantized af-
terward. This allows them to be integrated with
the fp16 representation of the outliers. Through
empirical investigation optimizing the trade-off be-
tween degradation in perplexity and the number of
outliers preserved in fp16, they fixed an absolute
outlier threshold.

The GPTQ framework offers a more robust quan-
tization approach, in particular, to different integer
bit-precisions. It does not rely on any outlier detec-
tion mechanism or mixed precision computations—
matrix multiplications with the weights are fully
performed using integers. Frantar et al. (2023)
introduce an efficient Hessian approximation and
iteratively quantize the weights of the matrices
while performing error corrections on the remain-
ing weights.

3 Model Divergence Metrics

Perplexity fails to identify minor variations in
model degradation at an early stage. This behav-
ior is depicted in Fig. 1 and 2 and discussed in
Sec. 3.5 and 4 in more detail. To assess model
divergence and enhance the model compression
process, we introduce token-based metrics specifi-
cally designed to detect those nuances occurring in
early compression stages. We start by establishing
our notation and presenting the perplexity metric
(PPL). Subsequently, we introduce an enhanced
variant of PPL and propose the Share of Diver-
gent Tokens Metric (SDTM) and First Divergent
Token Metric (FDTM). We conclude by discussing
the advantages of each metric compared to tradi-
tional perplexity-based measures when assessing

1000 1

600

3

Wins

400

200 ¢

.ol
re eee = »+I+ -

SE
R

0

FDT SDT DPPL PPL

Figure 2: Pruning lowest weights, and random weights.
FDT is able to discriminate the cases. PPL exactly
performs on the level of guessing. C.f. Sec. 4.2.

the degradation of the generative performance of
compressed models.

3.1 Basic notation

Let F denote an auto-regressive model
over a vocabulary V ={0,1,...,|V| -1},
y = (y1,..,yn) € VY an arbitrary token sequence
and F(y) = F(y);; € RV*IVI the model logits,
with ¢ denoting the sequence and j the respective
vocabulary positions. Given a prefix length n < N,
we denote the token prefix y., = (y1, ..., yn) and
the greedily decoded completion up to index /N by
G(F,y.n, N). It is defined recursively as follows:
G(F, Y, N)y = ym,and forn <i < N —1

g(F7 y:naN)H-l
= argmax; F'(G(F,ymn, N).i)ij-

3.2 Perplexity (PPL)

Given a ground truth sequence y and model F, the
negative log-likelihood of y given F' is

NLL(y, Fn)

Nf
= SN Mog Pyt |yi, -, y1),s

with P(yit1|yi, ., y1) = (softmax F(y))iy;.,-
Then the perplexity (PPL) is given by

PPL(y, F,n) = exp(NLL(y, F,n)).

A common practice in the literature, e.g. (Dettmers
et al., 2022), is to measure model degradation as
the increase in average perplexity over a given test
dataset D, e.g. randomly sampled from C4 (Raf-
fel et al., 2020). Usually, this metric is computed
disregarding the prefix, i.e., with PPL(y, F') :=
PPL(y, F,1).

3.3 Context aware model comparison

First, we argue that standard evaluation does not re-
flect the typical generative model usage, i.e., there
are no empty prompts, and as such, those positions
should not be taken into account when evaluat-
ing the generative performance. Moreover, when
comparing a compressed model F’ to the original
model F’, one is interested to what extent the origi-
nal behavior is kept. Therefore, we propose to use
the outputs of the original model F' as a ground
truth to assess the performance of the compressed
model F’. This leads to the definition of the diver-
gent perplexity (DPPL) metric as

MpppL(FE', yon, N) (D
= PPL(g(F, Yens N), F,, n) .

Finally, let D be an arbitrary test dataset containing
documents of potentially varying length. For a
fixed prompt length n and completion length NV, we
define the aggregated divergent perplexity metric
as the complete evaluation on the dataset:

MDPPL(Fa Flana N) = (2)
1 2yen MorrL(E, F, yin, N).

The DPPL already substantially improves dis-
criminative capabilities over PPL, as we will
demonstrate in the empirical evaluation.

3.4 Divergent Token Metrics

SDT. To further improve on the expressiveness and
interpretability of model divergence, we propose
the share of divergent tokens (SDT) as follows:

SDT(y,F,n)
=[{i > n: argmax; F(y)ij # vi+1},

SDT(y, F,n) can be interpreted as the number of
times the model would need to be corrected during
decoding to match the ground truth after consum-
ing the prefix. This measure provides a more direct
interpretation of the errors occurring during actual
token generation, as opposed to estimating predic-
tion certainties as PPL does.

FDT. In addition to SDT, we introduce the first
divergent token (FDT) as

FDT(y, Fin) 3)
=min{i > n: argmax; F(y)i; # yit1} — n,
with the convention that the minimum is equal to
N if the set on the right-hand side is empty. Analo-

gously to Eq. 1 and Eq. 2, we define Mspt, MrpT,
Mgspt and Mgpr in the same fashion.

As an illustrative example, consider computing
Mpp1(F, F',y.,, N). We first perform a greedy
decoding of N — n tokens with the base model F'
given the prefix y.,. We then feed the sequence
G(F, Y., N) into the compressed model F’ and
find the first index greater than or equal to n, where
the logit argmax of F’ differs from what F' gen-
erated. This computation can be done in a single
forward pass similar to perplexity, and so is more
efficient than accuracy based evaluations. Trivially,
0 < Mypr(F, F',y.n, N) < N — n, where the
upper bound is reached if and only if F' and F’
would generate the exact same sequence up to po-
sition IV given the prefix y.,. Further note that
Mppr is symmetric, i.e. Mppr(F, F',y.n, N) =
Myppr(F', F,y.n, N), in contrast to PPL.

In the following, we will ease notation and omit
M, or the words aggregated and metric, when they
are clear from the context.

3.5 Token vs. Perplexity Metrics

It turns out that divergent token metrics offer a
superior criterion for analyzing model performance
degradation compared to perplexity-based metrics,
especially in the context of greedy decoding. The
main reason is that the greedy decoding operation
G is a discontinuous function of the logits. To
formalize this, let us discard the model itself and
focus notation solely on the concept of logits.

Definition 3.1. The operators and metrics from pre-
vious sections defined for models F, F' are defined
for logits 11" € RNXIVI by replacing all occur-
rences of F, F' with 1.

For example, G(I,y.n, N)iy1 = argmax; l;;, for
n<i<N.

Proposition 3.2. Given any y, N and £ > 0 there
exist logits 1,1 € RN*IVI such that

Mspr(l,1',y1,N) = N.

Proof. See App. A. O

This means that even if the average perplexity
of a compressed model matches the perplexity of
the original model, the compressed model can pro-
duce a very different (and potentially worse) output
when performing greedy decoding. Hence leading
to a false positive. In practice, this is a severe is-
sue since even a single diverging token can lead
to a completely different subsequent output. It is
illustrated in Fig. 1 and 2 and discussed in Sec. 4.2.

As described before, another option is to com-
pute the perplexity with respect to the generated
completions of the original model. This metric
relates more reasonably to the share of divergent
tokens (SDT):

Proposition 3.3. The following upper bound holds:

Mspr (1,1, ym, N) < X=21og Mpppr (1,1, Yo, N).

log 2
Proof. See App. A. O

However, a comparable lower bound does not
generally hold. In fact, in the case [= I’ we triv-
ially have Mspr(l,1,y.n, N) = 0. Further, the
value of Mpppr,(l,1,y.n, N) can still be as high
as the maximal value, which occurs when [is a
perfectly flat distribution at any sequence index.
This could lead to a false negative signal for the
generation process.

In conclusion, perplexity-based metrics suffer
from false positives or false negatives when evalu-
ating degradation of generative performance. The
case for FDT and SDT is quite straightforward
in that they both directly measure the difference
between model outputs in a what-you-see-is-what-
you-get manner.

Note that additional token-based metrics, such as
the measurement of the distance between erroneous
predictions, can be readily formulated. These met-
rics may prove especially valuable when assessing
potential benefits, for instance, in the context of
correction-based inference strategies like specula-
tive decoding (Leviathan et al., 2023). We now
empirically demonstrate the improvements of well-
known compression methods using our metrics.

4 Token Metrics Improve Model
Compression

We will demonstrate in the following how the pro-
posed metrics provide novel insights into the effi-
ciency of the architecture of LLMs and establish
benchmarks for model compression. Throughout
all experiments we outperform standard PPL as a
ranking metric.

More precisely, we apply component-wise prob-
ing on sparsification to determine individual spar-
sity rates. Interestingly, the model tends to entirely
remove components of the attention mechanism on
certain layers. In total 40 out of 160 attention com-
ponents are sparsed beyond 90% and 15 removed
completely. For quantization, on the other hand,
we show how component selection significantly in-
fluences the overall number of model outliers. For

the first time, almost 10% of model components
can be converted to 4-bit integer representations
without significant model degradation.

4.1 Experimental Protocol

Let us start by clarifying the experimental setup.

Test environment. All experiments were per-
formed on the public Llama2-7B and 13B mod-
els (Touvron et al., 2023). Note, however, that we
observed similar behavior amongst other decoder
transformer models. It remains, in particular, with
upscaled sizes, and smaller variations on the archi-
tecture or the training procedure.

For all experiments, we follow best practices
of compression evaluations (Sun et al., 2023) and
randomly sample data from the C4 dataset (Raf-
fel et al., 2020) for training iterations. The final
model evaluation is done comparing loss on the
Wikitext2 dataset (Merity et al., 2017) and standard
NLP benchmarks (Gao et al., 2021).

Metrics. We apply our proposed metrics for
performance evaluation as well as selection criteria.

We employ FDT, SDT, DPPL and PPL as met-
rics to assess the overall model divergence. When it
comes to model compression, we demonstrate that
both PPL and our variant DPPL typically struggle
to measure minor changes adequately (cf. Sec. 3.5,
4.2 and Fig. 2). On the other hand, FDT is particu-
larly suited to characterize errors for subtle model
changes. Consequently, we apply FDT for model
compression. In the following paragraph, we de-
scribe the selected parameters for using FDT in
more detail.

Divergent Token Parameters. We empirically
selected hyperparameters as follows. Through pre-
liminary sparsification experiments, we observed
that the most variance is present in the 75%-
quantile of FDT, as defined in Eq. 3. We denote
this value by FDT75. In the following it is our
compare-to value.

Next, we swept over the given context prefix
length n of FDT and sparsification steps as depicted
in Fig. 3 on the y- and x-axis respectively. ‘The
heatmap shows the overall variance of FDT75 on 5k
probes. For simplicity, we fixed the prefix length to
100 tokens, as it is most discriminative on average.

We observed that most sparsification steps intro-
duce an error in FDT75 within a range of 500 com-
pletion tokens. Therefore, we selected N = 500.
Finally, to determine the number of probes |D|, we
compared the mean deviation against a baseline
of 5000 probes. As the deviation of 1000 to 5000

FDTs std
0.07

0.06

0.05

0.04

0.03

Prefix length

0.02

0.01

. 0.00
0.1 1.0 4.0
Sparsification step (%)

Figure 3: Hyperparameter selection of FDT. Visualized
is the std in FDT75 over all components when varying
prefix length (y-axis) and applying different choices for
sparsity-step increases (x-axis), c.f. Sec. 4.1 and 4.2.

probes only differs on average by a value 4 in mean
FDT75, we selected |D| = 1000.

Pruning of LLMs. In Sec. 4.2, we will show
that FDT improves sparsification procedures to
achieve high compression rates on LLama2-13B.
To this end, we iterate small unstructured sparsifi-
cation with continued training steps for the model
to attune to the remaining weights and recover
performance. Specifically, we apply eight itera-
tions to increase the average model sparsity by
20, 15,10, 10,5, 5,5, and 5 percent, resulting in a
final model with 25% total parameters remaining.

We run this experiment in two configurations,
uniform and FDT-selective. Uniform sparsifica-
tion applies the target increase of the current round
to each component uniformly, pruning the lowest
weights. For FDT, we determine individual compo-
nent sparsification values to evenly distribute the
induced error. Based on the previous sparsed model
F" and for the current target increase step, we probe
each component c¢; separately with an additional
step £ step/2 percent of lowest weights pruned,
denoted by F7$, to determine its FDT75 value.
We further add the constant extrema, i.e., step spar-
sity 0 and 100% with FDT75 values of 500 and
0. Given these four data points, we segment-wise
interpolate linearly to achieve the highest value of
FDT75 possible throughout all components, but on
average yielding the target sparsity. Specifically,
we find the set of component-sparsities {s;} that
optimize for

arg maxy,,y min; Mepr,, (F, F“7%),

such that) . 5; = step using §; to represent the
normalized sparsity of s; relative to the individual
parameters of component ¢;.

We further follow the findings of AC/DC (Peste
et al., 2021) and alternate compressed and decom-
pressed iterations as follows: Each round we train

w
o
|
©
o

)

Uniform i
FDT (our) ===

N
n
]

N
o
]

)
N
IS)

0 500 1000 1500 2000 2500 3000 3500 4000
Training Step

Training Loss (-)
5
parsity (%

(a) Comparison of uniform and component-wise pruning using

FDT as a metric for comparison.
100 Comp. Type
N —— A. Query
YA o Akey
“\ A. Value
A. Dense
—— MLP Up
—-==- MLP Down
MLP Gate

90
80

70

Sparsity (%)

60
50

40

(b) Converged component config with 75% average sparsity.
Layers (x-axis), Component-sparsity (y-axis).

Figure 4: Depiction of the proposed sparsification pro-
cess that converged to a 75% sparse Llama-2-13B. a)
Model training performance throughout all rounds. Our
FDT-based sparsification clearly outperforms uniform
magnitude pruning. b) Converged sparsity values per
component. One quarter of attention components are
pruned beyond 90% sparsity. Significant outliers appear
in first and last layers.

a total of 500 steps, from which the first 450 are
with sparsification mask applied, and the following
50 without any masks. We found this alternation to
produce smaller spikes in training loss after sparsi-
fication steps. This yields a total of 4000 training
steps. During training, we apply a weight decay of
0.01, batch size 256, and sequence length 2048.

Note that throughout this experiment series, we
only apply pure magnitude pruning per iteration.
The probing strategy can be applied to other meth-
ods, such as Wanda, as well.

Quantization of LLLMs. For model quantiza-
tion, we compare the performance of the proposed
metrics on the task of sorting the model’s com-
ponents by their lowest introduced error. To this
end, we build a search tree to find the best model
configuration as follows: We construct a parallel
depth-first search tree with a branching width of 10.
This means that, at each level of the tree, we simul-
taneously explore all possible successor configs for
the currently top-10 performing nodes, with one
more component naively quantized using AbsMax.
From this newly identified set of nodes, we again
select the best-performing 10 nodes for the next

le7

] -1257

0.025- — FDT — PPL
— DPPL — LLM.Int8()
0.020- /i -1.00

w
2
! 1 -0.75 g
e 0.015 =
v 0.010- -0.50 %
£
0.005- S025 5
0.000- -0.00 g
0 50 100 150 200 =
No. Quantized Components
(a) Performance of FDT vs PPL

30 Component Type
20 MLP Gate
— MLP Down

10 — MLP Up
A. Query

0 50 100 150 200 — A Key

A. Value
— A. Dense

Quantized Modules
N oW
> © & o

=)

0 50 100 150 200
Number of Quantized Components

(b) Selected Components FDT vs PPL

Figure 5: Evaluation of the Tree Search as described in
text. a) Comparison of Tree Search based component-
wise quantization. Different numbers of components
(x-axis) lead to different token divergence scores (y-axis,
normalized to [0, 1]), and in particular correlates early
on to introduced outliers (second y-axis). Throughout
the entire search, FDT is able to rank components by
their potential errors and, coincidentally, outliers. b)
Selected components at respective depth. A.Key and
A.Value induce most error.

iteration. Starting with the unquantized base model
Llama2-7B, each node contains exactly the number
of quantized components respective to its depth,
while the final node is a fully AbsMax quantized
model. We further apply deduplication to prevent
redundant computations.

4.2 Sparsification reveals:
Attention is not all you need!

We applied step-wise uniform magnitude pruning,
and our balanced component-wise pruning using
FDT, to achieve 75% model sparsity. A summary
of the results is shown in Fig. 4.

Attention almost erased. Fig. 4b visualizes
the converged sparsity values when applying our
balanced pruning using FDT. Notably, the model
favors pruning attention over MLP. In total 40 out
of 160 attention components are sparsed beyond
90% and 15 even completely removed. In general
the second half of the model appears to be more
prunable than the first half. The value matrices
are overall least pruned of the attention matrices.
Finally, significant outliers appear at the first and

Sparsification

Model FDT 1 PPL | | NLP 1
Llama2-13B - 4.884 | 53.59

T TR 60% sparse (unif.) | T T 47 [T 9.244 [4632
~ 60% sparse (our) 7.9 6.242 | 48.89

T TR 75% sparse (unif.) | 3.5 [13.512 [41.67
~ 75% sparse (our) 5.5 8.101 | 46.32

T T~ 80% sparse (our) | 5.2 [T 9.531 [45.66

Quantization

Model FDT 1 PPL | | NLP 1
Llama2-7B - 5472 | 50.79

T TLLMAnt80an | 36.1 | 5505 | 50.81
® AbsMax PPL;50 46.3 5.500 | 50.72
.2 AbsMax DPPL;50 54.1 5.490 | 50.75
AbsMax FDT;5¢ (our) 71.7 5.489 | 50.75

T TGPTQuny CO1LT | 5665 [4834
<+ GPTQPPL4g 45.0 5.511 | 4991
.£ GPTQ DPPL6 137.0 5476 | 50.02
GPTQ FDT16 (our) 205.0 5475 | 50.13

Table 1: Evaluations of Compressed Models. Even
when evaluating the final model, standard NLP bench-
marks don’t reflect the actual model degradation, as
observed in AbsMax quantization. FDT, PPL are eval-
uated on Wikitext2. Subscript refers to best found &
quantized components. Bold denote best values.

last layers. This finding indicates that attention is
not efficiently utilized throughout the entire model.
In fact, only layers 3 to 20 and layer 40 appear
to be of significant relevance for the model’s final
prediction. This observation might be attributed to
an evolving shift in distributions, and with that the
concepts processed in embeddings.

Notably, in the first layer Attention Value and
MLP Down remain significantly dense, while all
others are comparably sparse. This observation
indicates an incomplete shift of token-embeddings.

General Observations. As shown in Fig. 4a,
FDT based balanced pruning significantly lowers
the introduced error between sparsification rounds.
Uniform pruning, on the other hand, substantially
diverged, and in particular does not regain perfor-
mance with the given amount of compute. Gener-
ally speaking, what is lost can hardly be recovered.

The standard evaluation of FDT and PPL on
Wikitext2, is found in Tab. 1. The 75% compressed
13B model, with several components pruned away,
scored PPL 8.1, compared to PPL 4.8 of the base
model. Note that no other model sparsed beyond
70% has yet been reported in particular achieving
single-digit PPL. Uniform pruning achieved 13.5.
Further note, that we almost doubled the mean
FDT value when compared to uniform pruning.
However, as the generally low FDT value suggests,
it still diverged from the base model.

5

=}

0

it

o
s}

3

FDT
o
S

2

o
S

1

o
s}

0
A. Query A. Key

Component

(a) Quantization methods evaluated on Components.

I GPTQ (8bit)
[GPTQ (4bit)

A.Value A.Dense MLPUp MLP Gate MLP Down

44 4
Method 500 ¢ ¢ ¢t : : ¢ : : : Criteria
[AbsMax 400 % s $; N + N ¢+ [o7
B LLM.int8() [DPPL
3 R

— 300
[a)

Y- 200
1
0
4 8 16 32 64 96 128 160 192

No. Quantized Components

(b) Selected GPTQ(4bit) components.

o
S}

Figure 6: Evaluation of FDT performance. a) evaluates components separately on all quantization methods. Clear
outliers in performance are A.Value and MLP.up. GPTQ(8bit) is able to evenly amortize the induced error. b)
Selecting top-k components of GPTQ(4bit). FDT is suited to rank components one-shot.

FDT is more discriminative. In practice, FDT
is better able to discriminate subtle changes than
than PPL. We demonstrate this with a test as fol-
lows: On each component of the model, we prune
0.1% of the weights either randomly or from the
lowest weights. The resulting model is probed for
1000 trials with all discussed metrics used to dis-
tinguish the cases. The results in Fig. 2 clearly
indicate that FDT is able to distinguish the cases,
while they remain indifferent for PPL-based com-
parison. We therefore omit using PPL as a metric
to determine step-sizes for the described sparsifica-
tion experiment.

4.3 Quantization: Outliers can be prevented

Finally, we demonstrate the impact of selecting the
right components for quantization. We compare the
proposed metrics PPL, DPPL, and FDT as ranking
criteria to showcase their discrimation capabilities.

Quantization without outlier-handling. Fig. 5
shows the average performance of the top 10 nodes
occuring in the respective search tree depth (x-axis).
FDT constantly outperforms the other metrics on
the Share of Divergent Token Metric (y-axis). No-
tably, this is on par with the total number of outliers
occurring for the respective configs (second y-axis).
Certain components appear to significantly influ-
ence the decline observed in both measures. While
DPPL enhances some aspects of performance, nei-
ther variant of PPL effectively distinguishes these
components and tends to select those prematurely.

With FDT, we can cast 80%, i.e. 150, of
the model’s components directly to int8 using
only naive AbsMax—and without further outlier
handling—still outperforming full LLM.int8() con-
version in model performance. Selecting those 150
components with DPPL and FDT leads to close per-
plexity scores 5.490 and 5.489 on Wikitext2, c.f.
Tab. 1. However the resulting mean FDT improves
by almost 50% when also selecting the compo-

nents by this metric. The larger generation of the
same sequences suggests a model closer to the orig-
inal when choosing FDT as a selection criterion.
Fig. 5b) shows the selected components to each
depth respective of a). Most outliers occur when
selecting Attention Key early on. Notably, we ob-
served in Sec. 4.2, that this is one of the matrices
most suitable to sparsify.

16 components in 4-bit. Figure 6a) presents
a comprehensive assessment of the quantization
techniques discussed. First, it is noticeable that the
LLM.int8() method slightly lowers the lower quan-
tile scores of FDT in comparison to AbsMax. Yet,
GPTQ-8bit demonstrates superior performance,
outshining both plain AbsMax and LLM.int8().
This method achieves a more balanced error dis-
tribution across all components (c.f. App. Fig. 17).
Conversely, GPTQ-4bit shows noticeable devia-
tions in the generation process, with only a lim-
ited number of components achieving FDT scores
above 300. Despite this, the discriminative power
of FDT enabled us to identify and merge the top
16 components that minimally compromised the
model’s integrity, as illustrated in Fig. 6b).

5 Conclusion

We introduced the Divergent Token Metrics
(DTMs), a tailored approach to evaluate the perfor-
mance differences of compressed generative mod-
els. In particular, DTMs respect the usually applied
greedy sampling procedure to generate predictions.
We proved that DTMs achieve appropriate metric
bounds and are not affected from catastrophic arte-
facts that perplexity-based metrics encounter. Im-
portantly, using DTMs, we achieved an outperform-
ing 75% sparse version of the Llama2-13B model
and successfully converted 80% of the LLama2-7B
components naively to int8.

Limitations

With the proposed DTMs, compression processes
can be tailored to use cases—and we can measure
their performance degeneration. We hinted with
the sparsification experiments, that MLP and Atten-
tion can be ascribed varying levels of significance
throughout the layers. These variations should be
further exploited to optimize model architectures.
In particular, variations of specific datasets to probe
or finetune on could lead to interesting variations.

As a pruning strategy, we achieved outperform-
ing results using only naive magnitude pruning.
DTMs should be directly applicable to other mask-
ing strategies, such as Wanda (Sun et al., 2023),
which may further improve results. Finally, the
generalizability of the metrics to other sampling
strategies should be investigated.

References

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss,
Gretchen Krueger, Tom Henighan, Rewon Child,
Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu,
Clemens Winter, Christopher Hesse, Mark Chen, Eric
Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess,
Jack Clark, Christopher Berner, Sam McCandlish,
Alec Radford, Ilya Sutskever, and Dario Amodei.
2020. Language models are few-shot learners. In
Advances in Neural Information Processing Systems.

Sébastien Bubeck, Varun Chandrasekaran, Ronen Eldan,
Johannes Gehrke, Eric Horvitz, Ece Kamar, Peter
Lee, Yin Tat Lee, Yuanzhi Li, Scott M. Lundberg,
Harsha Nori, Hamid Palangi, Marco Tulio Ribeiro,
and Yi Zhang. 2023. Sparks of artificial general
intelligence: Early experiments with GPT-4. CoRR,
abs/2303.12712.

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin,
Maarten Bosma, Gaurav Mishra, Adam Roberts,
Paul Barham, Hyung Won Chung, Charles Sutton,
Sebastian Gehrmann, Parker Schuh, Kensen Shi,
Sasha Tsvyashchenko, Joshua Maynez, Abhishek
Rao, Parker Barnes, Yi Tay, Noam Shazeer, Vin-
odkumar Prabhakaran, Emily Reif, Nan Du, Ben
Hutchinson, Reiner Pope, James Bradbury, Jacob
Austin, Michael Isard, Guy Gur-Ari, Pengcheng Yin,
Toju Duke, Anselm Levskaya, Sanjay Ghemawat,
Sunipa Dev, Henryk Michalewski, Xavier Garcia,
Vedant Misra, Kevin Robinson, Liam Fedus, Denny
Zhou, Daphne Ippolito, David Luan, Hyeontaek Lim,
Barret Zoph, Alexander Spiridonov, Ryan Sepassi,
David Dohan, Shivani Agrawal, Mark Omernick, An-
drew M. Dai, Thanumalayan Sankaranarayana Pil-
lai, Marie Pellat, Aitor Lewkowycz, Erica Moreira,
Rewon Child, Oleksandr Polozov, Katherine Lee,

Zongwei Zhou, Xuezhi Wang, Brennan Saeta, Mark
Diaz, Orhan Firat, Michele Catasta, Jason Wei, Kathy
Meier-Hellstern, Douglas Eck, Jeff Dean, Slav Petrov,
and Noah Fiedel. 2023. Palm: Scaling language mod-
eling with pathways. Journal of Machine Learning
Research, 24:240:1-240:113.

Tim Dettmers, Mike Lewis, Younes Belkada, and
Luke Zettlemoyer. 2022. Llm.int8(): 8-bit ma-
trix multiplication for transformers at scale. CoRR,
abs/2208.07339.

Elias Frantar and Dan Alistarh. 2023. Sparsegpt: Mas-
sive language models can be accurately pruned in

one-shot. In International Conference on Machine
Learning, volume 202, pages 10323-10337.

Elias Frantar, Saleh Ashkboos, Torsten Hoefler, and
Dan Alistarh. 2023. OPTQ: accurate quantization for
generative pre-trained transformers. In International
Conference on Learning Representations.

Leo Gao, Jonathan Tow, Stella Biderman, Sid Black,
Anthony DiPofi, Charles Foster, Laurence Golding,
Jeffrey Hsu, Kyle McDonell, Niklas Muennighoff,
Jason Phang, Laria Reynolds, Eric Tang, Anish Thite,
Ben Wang, Kevin Wang, and Andy Zou. 2021. A
framework for few-shot language model evaluation.

Song Han, Jeff Pool, John Tran, and William J. Dally.
2015. Learning both weights and connections for
efficient neural network. In Advances in Neural In-
formation Processing Systems, pages 1135-1143.

Yaniv Leviathan, Matan Kalman, and Yossi Matias.
2023. Fast inference from transformers via spec-
ulative decoding. In International Conference on
Machine Learning, volume 202, pages 19274-19286.

Stephen Merity, Caiming Xiong, James Bradbury, and
Richard Socher. 2017. Pointer sentinel mixture mod-
els. In International Conference on Learning Repre-
sentations.

Alexandra Peste, Eugenia lofinova, Adrian Vladu,
and Dan Alistarh. 2021. AC/DC: alternating com-
pressed/decompressed training of deep neural net-
works. In Advances in Neural Information Process-
ing Systems, pages 8557-8570.

Alec Radford, Karthik Narasimhan, Tim Salimans, Ilya
Sutskever, et al. 2018. Improving language under-
standing by generative pre-training. OpenAl blog.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan,
Dario Amodei, Ilya Sutskever, et al. 2019. Language
models are unsupervised multitask learners. OpenAl
blog.

Colin Raffel, Noam Shazeer, Adam Roberts, Kather-
ine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J. Liu. 2020. Exploring the
limits of transfer learning with a unified text-to-text

transformer. Journal of Machine Learning Research,
21:140:1-140:67.

https://proceedings.neurips.cc/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html
https://doi.org/10.48550/ARXIV.2303.12712
https://doi.org/10.48550/ARXIV.2303.12712
https://doi.org/10.48550/ARXIV.2303.12712
http://jmlr.org/papers/v24/22-1144.html
http://jmlr.org/papers/v24/22-1144.html
http://jmlr.org/papers/v24/22-1144.html
https://doi.org/10.48550/ARXIV.2208.07339
https://doi.org/10.48550/ARXIV.2208.07339
https://doi.org/10.48550/ARXIV.2208.07339
https://proceedings.mlr.press/v202/frantar23a.html
https://proceedings.mlr.press/v202/frantar23a.html
https://proceedings.mlr.press/v202/frantar23a.html
https://proceedings.mlr.press/v202/frantar23a.html
https://proceedings.mlr.press/v202/frantar23a.html
https://openreview.net/pdf?id=tcbBPnfwxS
https://openreview.net/pdf?id=tcbBPnfwxS
https://openreview.net/pdf?id=tcbBPnfwxS
https://doi.org/10.5281/zenodo.5371628
https://doi.org/10.5281/zenodo.5371628
https://doi.org/10.5281/zenodo.5371628
https://proceedings.neurips.cc/paper/2015/hash/ae0eb3eed39d2bcef4622b2499a05fe6-Abstract.html
https://proceedings.neurips.cc/paper/2015/hash/ae0eb3eed39d2bcef4622b2499a05fe6-Abstract.html
https://proceedings.neurips.cc/paper/2015/hash/ae0eb3eed39d2bcef4622b2499a05fe6-Abstract.html
https://proceedings.mlr.press/v202/leviathan23a.html
https://proceedings.mlr.press/v202/leviathan23a.html
https://proceedings.mlr.press/v202/leviathan23a.html
https://openreview.net/forum?id=Byj72udxe
https://openreview.net/forum?id=Byj72udxe
https://openreview.net/forum?id=Byj72udxe
https://proceedings.neurips.cc/paper/2021/hash/48000647b315f6f00f913caa757a70b3-Abstract.html
https://proceedings.neurips.cc/paper/2021/hash/48000647b315f6f00f913caa757a70b3-Abstract.html
https://proceedings.neurips.cc/paper/2021/hash/48000647b315f6f00f913caa757a70b3-Abstract.html
https://proceedings.neurips.cc/paper/2021/hash/48000647b315f6f00f913caa757a70b3-Abstract.html
https://proceedings.neurips.cc/paper/2021/hash/48000647b315f6f00f913caa757a70b3-Abstract.html
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html

Mingjie Sun, Zhuang Liu, Anna Bair, and J. Zico Kolter.
2023. A simple and effective pruning approach for
large language models. CoRR, abs/2306.11695.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al-
bert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti
Bhosale, Dan Bikel, Lukas Blecher, Cristian Canton-
Ferrer, Moya Chen, Guillem Cucurull, David Esiobu,
Jude Fernandes, Jeremy Fu, Wenyin Fu, Brian Fuller,
Cynthia Gao, Vedanuj Goswami, Naman Goyal, An-
thony Hartshorn, Saghar Hosseini, Rui Hou, Hakan
Inan, Marcin Kardas, Viktor Kerkez, Madian Khabsa,
Isabel Kloumann, Artem Korenev, Punit Singh Koura,
Marie-Anne Lachaux, Thibaut Lavril, Jenya Lee, Di-
ana Liskovich, Yinghai Lu, Yuning Mao, Xavier Mar-
tinet, Todor Mihaylov, Pushkar Mishra, Igor Moly-
bog, Yixin Nie, Andrew Poulton, Jeremy Reizen-
stein, Rashi Rungta, Kalyan Saladi, Alan Schelten,
Ruan Silva, Eric Michael Smith, Ranjan Subrama-
nian, Xiaoqing Ellen Tan, Binh Tang, Ross Tay-
lor, Adina Williams, Jian Xiang Kuan, Puxin Xu,
Zheng Yan, Iliyan Zarov, Yuchen Zhang, Angela Fan,
Melanie Kambadur, Sharan Narang, Aurélien Ro-
driguez, Robert Stojnic, Sergey Edunov, and Thomas
Scialom. 2023. Llama 2: Open foundation and fine-
tuned chat models. CoRR, abs/2307.09288.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in Neural Information Pro-
cessing Systems, pages 5998-6008.

https://doi.org/10.48550/ARXIV.2306.11695
https://doi.org/10.48550/ARXIV.2306.11695
https://doi.org/10.48550/ARXIV.2306.11695
https://doi.org/10.48550/ARXIV.2307.09288
https://doi.org/10.48550/ARXIV.2307.09288
https://doi.org/10.48550/ARXIV.2307.09288
https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html

Appendix
A Proof of Propositions

Proof of Proposition 3.2. There are many ways to
construct sequences that satisfy the desired relation.
One is as follows: Let [€ RY*IVI be any logit
sequence with no re-occurring values. Denote by
my(1); the top-k value at position 4, and by a(1);
the top-k vocab index at position %, respectively.
Now we pick any such sequence with the additional
property that max; mq(1); — ma(l); < 0 for some
small §. Define the sequence I’ by

l/

iag

1) = liax(t); + 0,

and lgj l;; for all remaining indices. Then
we have a1(l); # aq(l’); for all i and hence
Mgspr(l,l',y.1, N) = N. On the other hand we
have ||l — I'||cc < 0. Since PPL(y,[,1) is a con-

tinuous function in [, we have | PPL(y,l,1) —

PPL(y,!',1)| < e for any € and small enough
J. O
Proof of Proposition 3.3. Let z = G(l,y., N)

and p; = (softmax ');.,.,. Applying the defi-

nitions and elementary operations, we have

N
Z - logpl = (N - n) log MDPPL<lyl/7y:naN)'

i=n

Let A= {i > n:p; <1/2}. Then

N
> —logpi=Y —logp;+ Y _ —logp;
i=n €A i€ Ac
> —logp; > |Allog2.
I€EA

Here we first used that logp; < 0 and then the
observation that indices contained in A satisfy
—logp; > log2 by the defining property of A.
Finally, we argue that SDT(z,1’, n) < | A|. Indeed,
at any position ¢ where arg max; Il j # z;y1 it must
hold that p; < 1/2, since any softmax-value larger
than 1/2 is automatically the maximum value of
the distribution, and the softmax operation is mono-
tone. Putting everything together we arrive at the

desired inequality. O

B FDT compared to standard model
evaluations

Fig. 10 shows a comparison of standard bench-
marks (middle) to FDT (right) and PPL (left)

11

pruning mip .
penalizes reasoning

1 COPA

I Winogrande

—— No Pruning

== MLP Pruning
= Attn Pruning

Accuracy
=
=~

65 60 55 50 45 40 35 30 25 20
Layer Density (%)
pruning attn
penalizes ‘pointing to facts’

hY

L

"'\
~

1
\va \/\
4 \‘,

Iy
=

S
©

o
oL

1 MLQA English
I MLQA German
—— No Pruning
== MLP Pruning
- Attn Pruning

Relative Performance

o
=

65 60 55 50 45 40 35 30 25 20
Layer Density (%)

Figure 7: Pruning MLP and Attn only indeed compro-
mises remaining model capabilities.

when quantizing parts of a model. Often, stan-
dard evaluations fail to distinguish between com-
pressed models. Sometimes they even depict better
performance—which may be true, when regarding
compression as a fine-tuning method and consid-
ering the short required token predictions. FDT
thoroughly gives discriminative statistics with re-
sprect to the base model, on how much the com-
pressed model equals the original. Note how the
error seems to be upper bounded, which suggests
that errors may average out throughout the model.
Mean zeroshot accuracy denotes the average on the
standard NLP-eval harness.

C True positives can be predicted

Fig. 8 shows several metrics applied to the token-
distributions, in order to estimate on whether the
compressed and original model predictions are
equal. Notably, L1 and L2 errors on the entire

distribution seem to somewhat capture the discrim-
inative capabilities of false predictions. The proba-
bility scores themselves are only marginally usable.
Using top-2 uncertainty, i.e. the difference between
the top-2 tokens as a measure, we obtain a reliable
prediction of true positives. True negatives how-
ever still remain with a significant overlap.

D MLP is for knowledge,
Attention for relation

Finally, we observed that when pruning only at-
tention, prompt-extraction capabilities degenerate
severely. When only pruning MLP components, on
the other hand, it influences mostly world knowl-
edge QA benchmarks, c.f. Fig. 7.

E Details on Search Tree, Sec. 4.3

Fig. 9 shows the layers (y-axis) of which compo-
nents are selected at each round (x-axis). While
there seems to be a pattern on when using FDT as
a criteria (top), selection by PPL (bottom) looks
more random.

Fig. 15 shows the comparison of search tree as
described to greedy search on a single evaluation
of all components. Until 150 components, FDT
proves more stable over the PPL variants as seen
in Fig. 15a.

F Details on Quantization Sec. 4.3

Fig. 17 shows detailed component-wise evaluations
aggregated in Fig. 6a.

Fig. 16 shows the final configurations as com-
pared in Tab. 1.

Fig. 11 shows the detailed nlp-eval scores of
Tab. 1.

Fig. 12 shows greedy search trees over various
context lengths.

In total the entire search evaluation required 16
GPU-days with A100s to complete all metrics.

G Details on Sparsification, Sec. 4.2

Fig. 18 shows a different aggregated perspective
of Fig. 4b, to point out more direct the occuring
variances.

Fig. 19 shows the rank of lowest influence (mea-
sured by FDT) of components (x-axis) throughout
various sparsity levels (y-axis). L.e. starting with a
uniformly pruned model in 5% steps, we measured
the rank when adding an additional 2.5% only to a
single component. Interestingly, components seem

12

to retain their importance throughout the various
levels of sparsity.

Fig. 13 shows the detailed nlp-eval scores of
Tab. 1.

Note that, despite being often close in relative
sparsity, the total number of parameters pruned
for MLP is significantly larger than for Attention
matrices (ratio 3:1).

In total one sparsification training required 32
GPU-days with A100s for our experiment, and 29
GPU-days for uniform pruning.

L1 error

L2 error

Probability difference

for token predicted by baseline

Top-2 uncertainty

|

|

l
!

LA

f
i

Lo

L L

|

Al

Same
prediction

Different
prediction

All

Same Different
prediction prediction

All Same Different

prediction prediction

Same Different
prediction prediction

All

Figure 8: Top-2 uncertainty is discriminative enough to give clear true-positives estimates on compressed models.

30 ! 10
c 25 bt e
a v ,
o 20 1 ¥
[a)
-5
5 15 :
>
T 10 |
5 : -0
30 M) ' a'
m] A 1 10 Selection Criteria
c 25 '] ' e = Llama2-7b
a wi 1 mmm AbsMax FDTyso
@ 20 . ' " | == AbsMax DPPLyse
a ! 1l -5 0.6 AbsMax PPLyso
< 15 I z LLM.int8()
5 . i : g
10 ! ' il Soa
L] I.' : L i ; ' g
5 KR " "l -0 02
0 20 40 60 80 100 120 140 160 180 200 220 00 Il m
Number of Quantized Components per Config g a9 2 LW oL WO 0nO o
35 N o O E °
CE83025058g2k8£835E
9 H®08a537 = g o
. . = 8503 £ G
Figure 9: Layers selected in each round of the search g < T ¢ F 5
. . T 1] =
tree. Top, when applying FDT, bottom, when applying 9 = & =
. . < =
PPL as a ranking metric. =

(a) 8-bit Quantization NLP benchmarks

Selection Criteria

0.8 == [Lama2-7b
mmm GPTQ FDTy6
>0.6 mmm GPTQ DPPLys
E GPTQ PPLys
S04 GPTQa
<
600 - -11.3 02
’ ¢ * + Accuracy Metric 00 n m
[G o> o w o ul o) [}
500 - . = % 4 -9.4 = PPL mmggmgr\lmééui—égogu
C‘“SO;<OE:¢—§¢«:;.&§C
oW 20 umasSod = 9] I
5 400~ -76 > T 9 8s0=s2 2 = 5
] 3 < 0 < < c = °]
3 : 5 o< TJ1a g £
3 300- . -5.7 8 Q = IS} s
< < -4
5 ¢ ‘ i < =
2 200- -38 & <
100- -19 (b) 4-bit Quantization NLP benchmarks
0- -0.0

Figure 11: Detailed view on aggregated values of Tab. 1
when selecting Llama2-7B components to quantize by
metrics.

Best Worst First Half Second Half
Quantized Component

Baseline

Figure 10: Comparison of the discrimination capabili-
ties of FDT and PPL for different configurations when
applying LLM.int8() conversion on Llama2-7B. Best
and Worst mark a single component being converted,
with most and least mean influence. First and Second
half consecutively convert half of the model each. While
significant changes can be observed using FDT, all con-
figurations appear indifferent for PPL.

13

— FDT

— DPPL

— PPL
— LLM.Int8()

50

100
No. Quantized Components

150

200

(a) Context size of 10 tokens.

— FDT
— DPPL

PL
= LLM.Int8()

No. LLM.int8() Outliers (---)

0.00-

50

100
No. Quantized Components

150

200

(c¢) Context size of 50 tokens.

— FDT

— DPPL

— PPL

= LLM.Int8()

No. LLM.int8() Outliers (---)

o
o

Accuracy
o
=

o
~

o

.0

COPA
Hellaswag
LAMBADA

BoolQ
LAMBADA CLOZE

ARC-Challenge
ARC-Easy

(e) Context size of 300 tokens.

50

Rc

Multi
OpenBookQA

100
No. Quantized Components

150

No. LLM.int8() Outliers (---)

— FDT
— DPPL

— PPL
— LLM.Int8()

0 50 100 150 200
No. Quantized Components

(b) Context size of 25 tokens.

— FDT — PPL
— DPPL — LLM.Int8()

0.03-

0.02-

0.01-

0.00-

0 50 100 150 200
No. Quantized Components

(d) Context size of 200 tokens.

— FDT — PPL
— DPPL — LLM.Int8()

0 50 100 150 200
No. Quantized Components

(f) Context size of 400 tokens.

Figure 12: Greedy Search Tree results for different context sizes.

PIQA

RACE

w

RT
TriviaQA

WSC
WebQS

WiC

WinoGrande

Selection Criteria
= Llama2-13b
= 60% FDT
= 60% unif.
== 75% FDT
m— 75% unif.
80% FDT

Figure 13: Detailed view on aggregated values of Tab. 1
when selecting Llama2-13B components to sparsify by

metrics.

14

-1.00

-0.50

-0.25

-0.00

No. LLM.int8() Outliers (---) No. LLM.int8() Outliers (---)

No. LLM.int8() Outliers (---)

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, S 0.030-
0.025- — Tree Search FDT — LLM.Int8() / 125 i — Tree Search DPPL — umints) T -125) — Tree Search PPL — LLM.Int8() i
. Greedy Search FDT 7 = 0025- Greedy Search DPPL / = 0.025- Greedy Search PPL -
% -1.00 § -1.00 § -1.00 §
_0.020- s _ o ~ 1]
I / S 7o02- 70020~ ~a E=
4 -0.75 . -0.75 ~ -0.75

—0.015- / - - -
5 > p g & 0.015- == g K 0.015- e g
2 0.010- V4 -050% G r-‘",“"'/ -050% o -0.50 %
o £ 0.010- e £ 0.010- FE7 <
. T -025s i 0255 Zar -025s

0.005 - e [=
= =1 0.005- //x’ =1 0.005- [.* =1
0.000- -0.00 g k -0.00 g - -0.00 g
0 50 100 150 200 = 0 50 100 150 200 = 0 50 100 150 200 =
No. Quantized Components No. Quantized Components No. Quantized Components
(a) FDT tree vs greedy (b) DPPL tree vs greedy (c) PPL tree vs greedy

Figure 14: Comparison of performance when selecting components by the tree-search as described to greedy
selection of once evaluated components for all discussed metrics. Clearly, FDT is most stable until 150 components.

— FDT — PPL — FDT — PPL
— DPPL — LLM.Int8() 1e7 ~ — DPPL — LLM.Int8() 1e7 ~
< -1.25 4
5 -1.00 E
T 0.02- = ’ =
3 — 3
= 3 075 3
8 0.01- cré)’ -0.50 g
= -0.25 =
2 3
0.00- — -0.00 0
0 50 100 150 200 § 0 50 100 150 200 g

No. Quantized Components No. Quantized Components
(a) Mean sorted greedy tree with 50 context tokens. (b) Std=0.25 sorted components with 50 context tokens.
— FDT — PPL — FDT — PPL

—— DPPL = LLM.Int8() —— DPPL = LLM.Int8()

0.03 oo cecmcmcceememees T P e e ———

-1.25~
)
— -1.00.2
| 0.02 =
- -0.750
= =
@ 0.01- ~050¢
C
-0.25 =
0.25 =
0.00- -0.003

S .

No. Quantized Components = No. Quantized Components =

(c) Mean sorted greedy tree with 100 context tokens. (d) Std=0.25 sorted components with 100 context tokens.

Figure 15: Comparing the ranking of the components based on mean or standard deviation.

15

Selection Criteria

A. Dense e ol ol ok ok ol o ok ok ol s ol ok ok o ol Rk o B Wl o B ko Bk Bk Bk e ax » DPPL
* PPL
A. Query B ol e oa ol B ol B e B e o R B e o R B e o B B R B e B s B o % FDT
JGC-; A. Value F4 F4 F4 F4 x = ® * ® e ol B % oax
c
S AkKey B xdh ox B F A SR A * ¥ x & &L A&
€
8 MLP Up & * F g X x x ol o x &
MLP Down Bl e a ofk ok ol B e ok ok B s ok ok ol B o ok R kool Bk Bk B A e
MLP Gate B ok ol e oae ol B ol B R B s o ol o e o Bl B e o B o o B B B B o
0123456 7 8 910111213141516 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
Layer
(a) The 150 selected components selected by metrics for 8-bit AbsMax conversion.
Selection Criteria
A. Dense = DPPL
% PPL
A. Query % X %X % % % % s FDT
EA.Value ® ® x * * % % A
8_ A. Key X2 % % % % % i
€
8 MPUp * 5 M i
MLP Down * i A &
MLP Gate * = » &+

012 3 456 7 8 9 1011121314 151617 18 19 20 21 22 23 24 25 26 27 28 29 30 31
Layer

(b) The 16 selected components selected by metrics for 4-bit GPTQ conversion.

Figure 16: Detailed view of the Llama2-7B components in Tab. 1 selected by metrics for lower precision conversion.

16

Component

Layer: 0 Module: A Dense
Layer. 0 Module! A Key

ayer: 7 Module: A. Key
ayer: 7 Module: A. Quer
ayer: 7 Module: A, Value

ayer: 11 Module: MLP Up
Layer: 12 Module: A Dense
Layer: 12 Module: A Key

ayer. 16 Module: MLP Up
Layer: 17 Module: A Dense
Layer: 17 Module: A Key

Layer: 17 Module: A. Query
Layer; 17 Module: A Value
Layer: 17 Module: MLP Down
Layer: 17 Module: MLP Gate

Layer: 31 Module: MLP Up

FDT
100 200 300 400

FDT
100 200 300

FDT FDT
400 500 0 100 200 300 400 500 O 100 200 300

400 500

I —— |

|

—
R e |
e —

—_—
—_———
N L e — |
- — T

Vemn o var o

e Coumer 8 deew W

D e —]
e |
B —————|
B e —
W
LITRRS

R T T e T T
AP

e om o]
" —

g

AbsMax

LLM.int8()

GPTQ (8bit)

GPTQ (4bit)

Figure 17: Full view of the influence of individual component-wise quantization measured by FDT.

17

Sparsity

"1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39
Layer

Sparsity
o o o
o ~ ©

o
s

1.0 BN First-half
0.9 [Second-half

A.Query A.Key A.Value A Dense MLPUp MLP Down MLP Gate
Component

°
IS

Figure 18: Distribution of 75% average model sparsity.
A. denotes Attention. Top: Aggregated by layers. The
first and last layer have highest variance (MLP most
important, c.f. Fig. 4b). Second half reaches sparsities
close component removal. Bottom: Per component
aggregation. In the second half of layers, the importance
of attention drops drastically. MLP almost remains, with
outliers to larger importance.

| Mwiﬂ@h]@kﬁ

H

H

Figure 19: Trends during sparsification. We plot the
ranking of the components FDT value through various
sparsity levels (y-axis) for all components (x-axis). In-
terestingly, there is a clear trend of components retaining
“their importance”.

18

	Introduction
	Compression Principles
	Model Divergence Metrics
	Basic notation
	Perplexity (PPL)
	Context aware model comparison
	Divergent Token Metrics
	Token vs. Perplexity Metrics

	Token Metrics Improve Model Compression
	Experimental Protocol
	Sparsification reveals: Attention is not all you need!
	Quantization: Outliers can be prevented

	Conclusion
	Proof of Propositions
	FDT compared to standard model evaluations
	True positives can be predicted
	MLP is for knowledge, Attention for relation
	Details on Search Tree, Sec. 4.3
	Details on Quantization Sec. 4.3
	Details on Sparsification, Sec. 4.2

