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Abstract

Large Language Models (LLMs) have reshaped001
natural language processing with their impres-002
sive capabilities. Their ever-increasing size,003
however, have raised concerns about their ef-004
fective deployment and the need for LLM com-005
pression. This study introduces the Divergent006
Token Metrics (DTMs), a novel approach for007
assessing compressed LLMs, addressing the008
limitations of traditional perplexity or accu-009
racy measures that fail to accurately reflect text010
generation quality. DTMs focus on token di-011
vergence, that allow deeper insights into the012
subtleties of model compression, in particular013
when evaluating components’ impacts individu-014
ally. Utilizing the First Divergent Token Metric015
(FDTM) in model sparsification reveals that016
25% of all attention components can be pruned017
beyond 90% on the Llama-2 model family, still018
keeping SOTA performance. For quantization019
FDTM suggests that over 80% of parameters020
can naively be transformed to int8 without spe-021
cial outlier management. These evaluations022
indicate the necessity of choosing appropriate023
compressions for parameters individually—and024
that FDTM can identify those—while standard025
metrics result in deteriorated outcomes.026

1 Introduction027

Cutting-edge Large Language Models (LLMs)028

based on the transformer architecture (Vaswani029

et al., 2017) have revolutionized Natural Language030

Processing with their exceptional performance, no-031

tably exemplified by the GPT-series (Radford et al.,032

2018, 2019; Brown et al., 2020; Bubeck et al.,033

2023) in text generation. However, these models034

have grown massive, even exceeding half a trillion035

parameters (Chowdhery et al., 2023). While the036

large number of parameters aid early training con-037

vergence, their practical utility and true necessity038

remain unclear.039

Compression strategies like sparsification and040

quantization can enhance parameter efficiency. Cur-041

rent metrics, however, either average too coarsely, 042

such as perplexity, or are by design too specific, 043

such as standard NLP benchmarks. Both fail to 044

capture the diverging performance nuances intro- 045

duced early on by the compression because they 046

ignore the actual discontinous text generation pro- 047

cess. This however is the main use of the final 048

model, and so we argue that they are therefore 049

insufficient measures for the performance of the 050

compressed model. This misalignment can lead to 051

unwanted subtle discrepancies in generation, such 052

as grammatical errors or a mismatch in numbers as 053

we will see, even when overall metrics, such as per- 054

plexity, appear satisfactory (cf. Prop. 3.2, Sec. 4). 055

An example is depicted in Fig. 1. 056

To meet these challenges, we introduce the fam- 057

ily of Divergent Token Metrics (DTMs). These met- 058

rics are tailored to measure the model divergence 059

of LLMs throughout the compression process and 060

in relation to the actual generation procedure. We 061

demonstrate that the First Divergent Token Metric 062

(FDTM) and the Share of Divergent Tokens Met- 063

ric (SDTM) offer a more nuanced evaluation com- 064

pared to perplexity. They also enable individual 065

component evaluation to rank parts of the model 066

best suited for compression, thus enabling meaning- 067

ful compression while preserving text generation 068

quality. Specifically, sparsification enhanced by 069

FDTM indicates significant differences in compo- 070

nent utilization across layers. For the first time, 071

we show that 25% percent of the models’ atten- 072

tion components can be pruned beyond 90%, and 073

several even entirely removed, while preserving 074

a single-digit perplexity. Consequently, one can 075

employ a sparse matrix format to accelerate com- 076

putational efficiency. Likewise, for precision reduc- 077

tion we show that sorting components by FDTM 078

coincidentally correlates to sorting by their induced 079

number of outliers when being naively converted 080

to int8. FDTM identifies the optimal 80% of com- 081

ponents that keep overall performance without spe- 082
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Figure 1: Illustration of a diverging generation process. Given the 3-token prefix as prompt, a baseline and its
compressed model generate 8 subsequent tokens. Our proposed metric points to the first divergent token (FDT). The
FDT may cause further divergence during the iterative generation process. Note how both models score the same
perplexity value, as it does not reflect the actual sampling process (c.f. Fig. 2, Sec. 4 for an empirical exploration).

cific outlier-handling. The observed decline in per-083

formance with more outliers, and the significant084

influence of specific components on those, sug-085

gests re-evaluating the applied normalization meth-086

ods throughout the model. We demonstrate that087

this level of precision goes beyond what standard088

perplexity and conventional NLP benchmarks can089

achieve. The proposed Divergent Token Metrics090

closely reflect the generation process and so can091

be a measure to foster confidence in the deployed092

compressed models.093

2 Compression Principles094

Model compression aims to reduce the hardware095

resources needed to operate the model. However,096

doing so may sacrifice model accuracy. To keep097

the loss as small as possible, a corrective measure098

is typically used. Here, we discuss the most com-099

monly used concepts and state-of-the-art methods100

for sparsification and quantization of LLMs.101

Outlier and Hessians. Most model compres-102

sion methods rely either on the separation of out-103

liers (Dettmers et al., 2022; Sun et al., 2023) or104

the computation of a Hessian matrix (Frantar et al.,105

2023; Frantar and Alistarh, 2023). Outliers usually106

refer to significantly larger values in magnitude oc-107

curring either in the weight matrix directly or in the108

activations during a forward pass. As most com-109

putations are linear matrix multiplications, such110

outliers strongly influence the remaining entropy111

contained in consecutive computations. In the112

case of sparsification, outliers should be left intact,113

and the values with the least magnitude—which114

are consequently the least influential—should be115

masked instead (Han et al., 2015). On the other116

hand, Hessian matrices can be applied to correct117

errors (Frantar et al., 2023). They can effectively118

be approximated by computing backpropagation119

gradients for a small number of samples and repre-120

sent a second-order approximation to reconstruct121

the original model.122

Sparsification. The goal of sparsification is 123

a reduction of the overall number of weights and, 124

hence, a distillation of the relevant computation. 125

Typically, this method is divided into “structured” 126

and “unstructured” pruning. Structured-pruning 127

aims to locate dynamics, such as the irrelevance of 128

an entire layer or dimension for a given use case 129

and prunes these entirely. Unstructured-pruning 130

usually refers to the masking of weights, i.e., set- 131

ting the irrelevant weights to 0. High levels of 132

sparse matrix computations could result in more 133

efficient kernels and computations. In scenarios 134

where masks exceed a 90% threshold, the imple- 135

mentation of a specialized sparse matrix format be- 136

comes feasible. This format predominantly stores 137

the indices of non-zero weights. While it necessi- 138

tates some additional storage for these indices, the 139

overall requirement is reduced due to the exclusion 140

of zero values. Moreover, this approach substan- 141

tially improves computational performance. 142

Magnitude pruning selects the masking of 143

weights based only on their magnitudes. This is 144

fast to compute but significantly degrades model 145

performance when pruning large amounts simulta- 146

neously. To resolve this issue, wanda (Sun et al., 147

2023) proposes to sample a small amount of data 148

and incorporate activations during the forward pass. 149

It was shown that this generates more effective 150

one-shot pruning masks. SparseGPT (Frantar and 151

Alistarh, 2023) computes iterative Hessian approx- 152

imations to select the lowest impact weights and 153

correct the remaining. 154

Note that the incorporation of activations can to 155

some extent be interpreted as a form of training. 156

Moreover, despite these efforts, one-shot pruning 157

has not yet produced directly usable models with- 158

out further final fine-tunings. This is in particular 159

the case for the high sparsity levels beyond 70% 160

that we target. Finally, there has not yet been any 161

investigation of the individual components. 162

Quantization. Model quantization refers to 163

the reduction of the precision of the numeric for- 164
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mat used. Usually, LLMs are trained in 16-bit165

floating-point (fp16) and converted to 8-bit inte-166

ger (int8) representations. The naive conversion167

of float matrices to integers is AbsMax rounding.168

This divides a number by the maximum value oc-169

curring in the matrix and multiplies by the largest170

available integer—as such, it spans a uniform repre-171

sentation grid. The largest float value is stored and172

multiplied for dequantization. The most prominent173

methods to mitigate the introduced rounding errors174

are LLM.int8() and GPTQ.175

Dettmers et al. (2022) introduced LLM.int8(),176

which identifies vectors containing outliers and re-177

tains them in their original fp16 form during the178

matrix multiplication of a forward pass. The vec-179

tors lacking outliers are quantized fully. The int8180

weights and activations during the forward pass181

are subsequently multiplied and dequantized af-182

terward. This allows them to be integrated with183

the fp16 representation of the outliers. Through184

empirical investigation optimizing the trade-off be-185

tween degradation in perplexity and the number of186

outliers preserved in fp16, they fixed an absolute187

outlier threshold.188

The GPTQ framework offers a more robust quan-189

tization approach, in particular, to different integer190

bit-precisions. It does not rely on any outlier detec-191

tion mechanism or mixed precision computations—192

matrix multiplications with the weights are fully193

performed using integers. Frantar et al. (2023)194

introduce an efficient Hessian approximation and195

iteratively quantize the weights of the matrices196

while performing error corrections on the remain-197

ing weights.198

3 Model Divergence Metrics199

Perplexity fails to identify minor variations in200

model degradation at an early stage. This behav-201

ior is depicted in Fig. 1 and 2 and discussed in202

Sec. 3.5 and 4 in more detail. To assess model203

divergence and enhance the model compression204

process, we introduce token-based metrics specifi-205

cally designed to detect those nuances occurring in206

early compression stages. We start by establishing207

our notation and presenting the perplexity metric208

(PPL). Subsequently, we introduce an enhanced209

variant of PPL and propose the Share of Diver-210

gent Tokens Metric (SDTM) and First Divergent211

Token Metric (FDTM). We conclude by discussing212

the advantages of each metric compared to tradi-213

tional perplexity-based measures when assessing214
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Figure 2: Pruning lowest weights, and random weights.
FDT is able to discriminate the cases. PPL exactly
performs on the level of guessing. C.f. Sec. 4.2.

the degradation of the generative performance of 215

compressed models. 216

3.1 Basic notation 217

Let F denote an auto-regressive model 218

over a vocabulary V = {0, 1, ..., |V| − 1}, 219

y = (y1, .., yN ) ∈ VN an arbitrary token sequence 220

and F (y) = F (y)ij ∈ RN×|V| the model logits, 221

with i denoting the sequence and j the respective 222

vocabulary positions. Given a prefix length n < N , 223

we denote the token prefix y:n = (y1, ..., yn) and 224

the greedily decoded completion up to index N by 225

G(F, y:n, N). It is defined recursively as follows: 226

G(F, y:n, N):n = y:n, and for n ≤ i ≤ N − 1 227

G(F, y:n,N)i+1 228

= argmaxj F (G(F, y:n, N):i)ij . 229

3.2 Perplexity (PPL) 230

Given a ground truth sequence y and model F , the 231

negative log-likelihood of y given F is 232

NLL(y, F,n) 233

= − 1
N−n

∑N−1
i=n logP(yi+1|yi, .., y1), 234

with P(yi+1|yi, .., y1) = (softmax F (y))iyi+1 . 235

Then the perplexity (PPL) is given by 236

PPL(y, F, n) = exp(NLL(y, F, n)). 237

A common practice in the literature, e.g. (Dettmers 238

et al., 2022), is to measure model degradation as 239

the increase in average perplexity over a given test 240

dataset D, e.g. randomly sampled from C4 (Raf- 241

fel et al., 2020). Usually, this metric is computed 242

disregarding the prefix, i.e., with PPL(y, F ) := 243

PPL(y, F, 1). 244
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3.3 Context aware model comparison245

First, we argue that standard evaluation does not re-246

flect the typical generative model usage, i.e., there247

are no empty prompts, and as such, those positions248

should not be taken into account when evaluat-249

ing the generative performance. Moreover, when250

comparing a compressed model F ′ to the original251

model F , one is interested to what extent the origi-252

nal behavior is kept. Therefore, we propose to use253

the outputs of the original model F as a ground254

truth to assess the performance of the compressed255

model F ′. This leads to the definition of the diver-256

gent perplexity (DPPL) metric as257

MDPPL(F,F
′, y:n, N) (1)258

= PPL(G(F, y:n, N), F ′, n) .259

Finally, let D be an arbitrary test dataset containing260

documents of potentially varying length. For a261

fixed prompt length n and completion length N , we262

define the aggregated divergent perplexity metric263

as the complete evaluation on the dataset:264

MDPPL(F, F
′, n,N) = (2)265

1
|D|

∑
y∈D MDPPL(F, F

′, y:n, N).266

The DPPL already substantially improves dis-267

criminative capabilities over PPL, as we will268

demonstrate in the empirical evaluation.269

3.4 Divergent Token Metrics270

SDT. To further improve on the expressiveness and271

interpretability of model divergence, we propose272

the share of divergent tokens (SDT) as follows:273

SDT(y,F, n)274

= |{i ≥ n : argmaxj F (y)ij ̸= yi+1}|,275

SDT(y, F, n) can be interpreted as the number of276

times the model would need to be corrected during277

decoding to match the ground truth after consum-278

ing the prefix. This measure provides a more direct279

interpretation of the errors occurring during actual280

token generation, as opposed to estimating predic-281

tion certainties as PPL does.282

FDT. In addition to SDT, we introduce the first283

divergent token (FDT) as284

FDT(y, F, n) (3)285

= min{i ≥ n : argmaxj F (y)i,j ̸= yi+1} − n,286

with the convention that the minimum is equal to287

N if the set on the right-hand side is empty. Analo-288

gously to Eq. 1 and Eq. 2, we define MSDT,MFDT,289

MSDT and MFDT in the same fashion.290

As an illustrative example, consider computing 291

MFDT(F, F
′, y:n, N). We first perform a greedy 292

decoding of N − n tokens with the base model F 293

given the prefix y:n. We then feed the sequence 294

G(F, y:n, N) into the compressed model F ′ and 295

find the first index greater than or equal to n, where 296

the logit argmax of F ′ differs from what F gen- 297

erated. This computation can be done in a single 298

forward pass similar to perplexity, and so is more 299

efficient than accuracy based evaluations. Trivially, 300

0 ≤ MFDT(F, F
′, y:n, N) ≤ N − n, where the 301

upper bound is reached if and only if F and F ′ 302

would generate the exact same sequence up to po- 303

sition N given the prefix y:n. Further note that 304

MFDT is symmetric, i.e. MFDT(F, F
′, y:n, N) = 305

MFDT(F
′, F, y:n, N), in contrast to PPL. 306

In the following, we will ease notation and omit 307

M, or the words aggregated and metric, when they 308

are clear from the context. 309

3.5 Token vs. Perplexity Metrics 310

It turns out that divergent token metrics offer a 311

superior criterion for analyzing model performance 312

degradation compared to perplexity-based metrics, 313

especially in the context of greedy decoding. The 314

main reason is that the greedy decoding operation 315

G is a discontinuous function of the logits. To 316

formalize this, let us discard the model itself and 317

focus notation solely on the concept of logits. 318

Definition 3.1. The operators and metrics from pre- 319

vious sections defined for models F, F ′ are defined 320

for logits l, l′ ∈ RN×|V| by replacing all occur- 321

rences of F, F ′ with l, l′. 322

For example, G(l, y:n, N)i+1 = argmaxj lij , for 323

n ≤ i ≤ N . 324

Proposition 3.2. Given any y, N and ε > 0 there 325

exist logits l, l′ ∈ RN×|V| such that 326

|PPL(y, l, 1)− PPL(y, l′, 1)| < ε, 327

MSDT(l, l
′, y:1, N) = N. 328

Proof. See App. A. 329

This means that even if the average perplexity 330

of a compressed model matches the perplexity of 331

the original model, the compressed model can pro- 332

duce a very different (and potentially worse) output 333

when performing greedy decoding. Hence leading 334

to a false positive. In practice, this is a severe is- 335

sue since even a single diverging token can lead 336

to a completely different subsequent output. It is 337

illustrated in Fig. 1 and 2 and discussed in Sec. 4.2. 338
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As described before, another option is to com-339

pute the perplexity with respect to the generated340

completions of the original model. This metric341

relates more reasonably to the share of divergent342

tokens (SDT):343

Proposition 3.3. The following upper bound holds:344

MSDT(l, l
′, y:n, N) ≤ N−n

log 2 logMDPPL(l, l
′, y:n, N).345

Proof. See App. A.346

However, a comparable lower bound does not347

generally hold. In fact, in the case l = l′ we triv-348

ially have MSDT(l, l, y:n, N) = 0. Further, the349

value of MDPPL(l, l, y:n, N) can still be as high350

as the maximal value, which occurs when l is a351

perfectly flat distribution at any sequence index.352

This could lead to a false negative signal for the353

generation process.354

In conclusion, perplexity-based metrics suffer355

from false positives or false negatives when evalu-356

ating degradation of generative performance. The357

case for FDT and SDT is quite straightforward358

in that they both directly measure the difference359

between model outputs in a what-you-see-is-what-360

you-get manner.361

Note that additional token-based metrics, such as362

the measurement of the distance between erroneous363

predictions, can be readily formulated. These met-364

rics may prove especially valuable when assessing365

potential benefits, for instance, in the context of366

correction-based inference strategies like specula-367

tive decoding (Leviathan et al., 2023). We now368

empirically demonstrate the improvements of well-369

known compression methods using our metrics.370

4 Token Metrics Improve Model371

Compression372

We will demonstrate in the following how the pro-373

posed metrics provide novel insights into the effi-374

ciency of the architecture of LLMs and establish375

benchmarks for model compression. Throughout376

all experiments we outperform standard PPL as a377

ranking metric.378

More precisely, we apply component-wise prob-379

ing on sparsification to determine individual spar-380

sity rates. Interestingly, the model tends to entirely381

remove components of the attention mechanism on382

certain layers. In total 40 out of 160 attention com-383

ponents are sparsed beyond 90% and 15 removed384

completely. For quantization, on the other hand,385

we show how component selection significantly in-386

fluences the overall number of model outliers. For387

the first time, almost 10% of model components 388

can be converted to 4-bit integer representations 389

without significant model degradation. 390

4.1 Experimental Protocol 391

Let us start by clarifying the experimental setup. 392

Test environment. All experiments were per- 393

formed on the public Llama2-7B and 13B mod- 394

els (Touvron et al., 2023). Note, however, that we 395

observed similar behavior amongst other decoder 396

transformer models. It remains, in particular, with 397

upscaled sizes, and smaller variations on the archi- 398

tecture or the training procedure. 399

For all experiments, we follow best practices 400

of compression evaluations (Sun et al., 2023) and 401

randomly sample data from the C4 dataset (Raf- 402

fel et al., 2020) for training iterations. The final 403

model evaluation is done comparing loss on the 404

Wikitext2 dataset (Merity et al., 2017) and standard 405

NLP benchmarks (Gao et al., 2021). 406

Metrics. We apply our proposed metrics for 407

performance evaluation as well as selection criteria. 408

We employ FDT, SDT, DPPL and PPL as met- 409

rics to assess the overall model divergence. When it 410

comes to model compression, we demonstrate that 411

both PPL and our variant DPPL typically struggle 412

to measure minor changes adequately (cf. Sec. 3.5, 413

4.2 and Fig. 2). On the other hand, FDT is particu- 414

larly suited to characterize errors for subtle model 415

changes. Consequently, we apply FDT for model 416

compression. In the following paragraph, we de- 417

scribe the selected parameters for using FDT in 418

more detail. 419

Divergent Token Parameters. We empirically 420

selected hyperparameters as follows. Through pre- 421

liminary sparsification experiments, we observed 422

that the most variance is present in the 75%- 423

quantile of FDT, as defined in Eq. 3. We denote 424

this value by FDT75. In the following it is our 425

compare-to value. 426

Next, we swept over the given context prefix 427

length n of FDT and sparsification steps as depicted 428

in Fig. 3 on the y- and x-axis respectively. ‘The 429

heatmap shows the overall variance of FDT75 on 5k 430

probes. For simplicity, we fixed the prefix length to 431

100 tokens, as it is most discriminative on average. 432

We observed that most sparsification steps intro- 433

duce an error in FDT75 within a range of 500 com- 434

pletion tokens. Therefore, we selected N = 500. 435

Finally, to determine the number of probes |D|, we 436

compared the mean deviation against a baseline 437

of 5000 probes. As the deviation of 1000 to 5000 438
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Figure 3: Hyperparameter selection of FDT. Visualized
is the std in FDT75 over all components when varying
prefix length (y-axis) and applying different choices for
sparsity-step increases (x-axis), c.f. Sec. 4.1 and 4.2.

probes only differs on average by a value 4 in mean439

FDT75, we selected |D| = 1000.440

Pruning of LLMs. In Sec. 4.2, we will show441

that FDT improves sparsification procedures to442

achieve high compression rates on LLama2-13B.443

To this end, we iterate small unstructured sparsifi-444

cation with continued training steps for the model445

to attune to the remaining weights and recover446

performance. Specifically, we apply eight itera-447

tions to increase the average model sparsity by448

20, 15, 10, 10, 5, 5, 5, and 5 percent, resulting in a449

final model with 25% total parameters remaining.450

We run this experiment in two configurations,451

uniform and FDT-selective. Uniform sparsifica-452

tion applies the target increase of the current round453

to each component uniformly, pruning the lowest454

weights. For FDT, we determine individual compo-455

nent sparsification values to evenly distribute the456

induced error. Based on the previous sparsed model457

F and for the current target increase step, we probe458

each component ci separately with an additional459

step ± step/2 percent of lowest weights pruned,460

denoted by F ci+s, to determine its FDT75 value.461

We further add the constant extrema, i.e., step spar-462

sity 0 and 100% with FDT75 values of 500 and463

0. Given these four data points, we segment-wise464

interpolate linearly to achieve the highest value of465

FDT75 possible throughout all components, but on466

average yielding the target sparsity. Specifically,467

we find the set of component-sparsities {si} that468

optimize for469

argmax{si}miniMFDT75(F, F
ci+si),470

such that
∑

i s̃i = step using s̃i to represent the471

normalized sparsity of si relative to the individual472

parameters of component ci.473

We further follow the findings of AC/DC (Peste474

et al., 2021) and alternate compressed and decom-475

pressed iterations as follows: Each round we train476
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Figure 4: Depiction of the proposed sparsification pro-
cess that converged to a 75% sparse Llama-2-13B. a)
Model training performance throughout all rounds. Our
FDT-based sparsification clearly outperforms uniform
magnitude pruning. b) Converged sparsity values per
component. One quarter of attention components are
pruned beyond 90% sparsity. Significant outliers appear
in first and last layers.

a total of 500 steps, from which the first 450 are 477

with sparsification mask applied, and the following 478

50 without any masks. We found this alternation to 479

produce smaller spikes in training loss after sparsi- 480

fication steps. This yields a total of 4000 training 481

steps. During training, we apply a weight decay of 482

0.01, batch size 256, and sequence length 2048. 483

Note that throughout this experiment series, we 484

only apply pure magnitude pruning per iteration. 485

The probing strategy can be applied to other meth- 486

ods, such as Wanda, as well. 487

Quantization of LLMs. For model quantiza- 488

tion, we compare the performance of the proposed 489

metrics on the task of sorting the model’s com- 490

ponents by their lowest introduced error. To this 491

end, we build a search tree to find the best model 492

configuration as follows: We construct a parallel 493

depth-first search tree with a branching width of 10. 494

This means that, at each level of the tree, we simul- 495

taneously explore all possible successor configs for 496

the currently top-10 performing nodes, with one 497

more component naively quantized using AbsMax. 498

From this newly identified set of nodes, we again 499

select the best-performing 10 nodes for the next 500
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Figure 5: Evaluation of the Tree Search as described in
text. a) Comparison of Tree Search based component-
wise quantization. Different numbers of components
(x-axis) lead to different token divergence scores (y-axis,
normalized to [0, 1]), and in particular correlates early
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their potential errors and, coincidentally, outliers. b)
Selected components at respective depth. A.Key and
A.Value induce most error.

iteration. Starting with the unquantized base model501

Llama2-7B, each node contains exactly the number502

of quantized components respective to its depth,503

while the final node is a fully AbsMax quantized504

model. We further apply deduplication to prevent505

redundant computations.506

4.2 Sparsification reveals:507

Attention is not all you need!508

We applied step-wise uniform magnitude pruning,509

and our balanced component-wise pruning using510

FDT, to achieve 75% model sparsity. A summary511

of the results is shown in Fig. 4.512

Attention almost erased. Fig. 4b visualizes513

the converged sparsity values when applying our514

balanced pruning using FDT. Notably, the model515

favors pruning attention over MLP. In total 40 out516

of 160 attention components are sparsed beyond517

90% and 15 even completely removed. In general518

the second half of the model appears to be more519

prunable than the first half. The value matrices520

are overall least pruned of the attention matrices.521

Finally, significant outliers appear at the first and522

Sparsification
Model FDT ↑ PPL ↓ NLP ↑
Llama2-13B - 4.884 53.59
∼ 60% sparse (unif.) 4.7 9.244 46.32
∼ 60% sparse (our) 7.9 6.242 48.89
∼ 75% sparse (unif.) 3.5 13.512 41.67
∼ 75% sparse (our) 5.5 8.101 46.32
∼ 80% sparse (our) 5.2 9.531 45.66

Quantization
Model FDT ↑ PPL ↓ NLP ↑
Llama2-7B - 5.472 50.79

in
t8

LLM.int8()all 36.1 5.505 50.81
AbsMax PPL150 46.3 5.500 50.72
AbsMax DPPL150 54.1 5.490 50.75
AbsMax FDT150 (our) 71.7 5.489 50.75

in
t4

GPTQall 11.1 5.665 48.34
GPTQ PPL16 45.0 5.511 49.91
GPTQ DPPL16 137.0 5.476 50.02
GPTQ FDT16 (our) 205.0 5.475 50.13

Table 1: Evaluations of Compressed Models. Even
when evaluating the final model, standard NLP bench-
marks don’t reflect the actual model degradation, as
observed in AbsMax quantization. FDT, PPL are eval-
uated on Wikitext2. Subscript refers to best found k
quantized components. Bold denote best values.

last layers. This finding indicates that attention is 523

not efficiently utilized throughout the entire model. 524

In fact, only layers 3 to 20 and layer 40 appear 525

to be of significant relevance for the model’s final 526

prediction. This observation might be attributed to 527

an evolving shift in distributions, and with that the 528

concepts processed in embeddings. 529

Notably, in the first layer Attention Value and 530

MLP Down remain significantly dense, while all 531

others are comparably sparse. This observation 532

indicates an incomplete shift of token-embeddings. 533

General Observations. As shown in Fig. 4a, 534

FDT based balanced pruning significantly lowers 535

the introduced error between sparsification rounds. 536

Uniform pruning, on the other hand, substantially 537

diverged, and in particular does not regain perfor- 538

mance with the given amount of compute. Gener- 539

ally speaking, what is lost can hardly be recovered. 540

The standard evaluation of FDT and PPL on 541

Wikitext2, is found in Tab. 1. The 75% compressed 542

13B model, with several components pruned away, 543

scored PPL 8.1, compared to PPL 4.8 of the base 544

model. Note that no other model sparsed beyond 545

70% has yet been reported in particular achieving 546

single-digit PPL. Uniform pruning achieved 13.5. 547

Further note, that we almost doubled the mean 548

FDT value when compared to uniform pruning. 549

However, as the generally low FDT value suggests, 550

it still diverged from the base model. 551
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(a) Quantization methods evaluated on Components.
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No. Quantized Components
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FD
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Selection Criteria: FDT DPPL  

 Criteria
FDT 
DPPL

(b) Selected GPTQ(4bit) components.

Figure 6: Evaluation of FDT performance. a) evaluates components separately on all quantization methods. Clear
outliers in performance are A.Value and MLP.up. GPTQ(8bit) is able to evenly amortize the induced error. b)
Selecting top-k components of GPTQ(4bit). FDT is suited to rank components one-shot.

FDT is more discriminative. In practice, FDT552

is better able to discriminate subtle changes than553

than PPL. We demonstrate this with a test as fol-554

lows: On each component of the model, we prune555

0.1% of the weights either randomly or from the556

lowest weights. The resulting model is probed for557

1000 trials with all discussed metrics used to dis-558

tinguish the cases. The results in Fig. 2 clearly559

indicate that FDT is able to distinguish the cases,560

while they remain indifferent for PPL-based com-561

parison. We therefore omit using PPL as a metric562

to determine step-sizes for the described sparsifica-563

tion experiment.564

4.3 Quantization: Outliers can be prevented565

Finally, we demonstrate the impact of selecting the566

right components for quantization. We compare the567

proposed metrics PPL, DPPL, and FDT as ranking568

criteria to showcase their discrimation capabilities.569

Quantization without outlier-handling. Fig. 5570

shows the average performance of the top 10 nodes571

occuring in the respective search tree depth (x-axis).572

FDT constantly outperforms the other metrics on573

the Share of Divergent Token Metric (y-axis). No-574

tably, this is on par with the total number of outliers575

occurring for the respective configs (second y-axis).576

Certain components appear to significantly influ-577

ence the decline observed in both measures. While578

DPPL enhances some aspects of performance, nei-579

ther variant of PPL effectively distinguishes these580

components and tends to select those prematurely.581

With FDT, we can cast 80%, i.e. 150, of582

the model’s components directly to int8 using583

only naive AbsMax—and without further outlier584

handling—still outperforming full LLM.int8() con-585

version in model performance. Selecting those 150586

components with DPPL and FDT leads to close per-587

plexity scores 5.490 and 5.489 on Wikitext2, c.f.588

Tab. 1. However the resulting mean FDT improves589

by almost 50% when also selecting the compo-590

nents by this metric. The larger generation of the 591

same sequences suggests a model closer to the orig- 592

inal when choosing FDT as a selection criterion. 593

Fig. 5b) shows the selected components to each 594

depth respective of a). Most outliers occur when 595

selecting Attention Key early on. Notably, we ob- 596

served in Sec. 4.2, that this is one of the matrices 597

most suitable to sparsify. 598

16 components in 4-bit. Figure 6a) presents 599

a comprehensive assessment of the quantization 600

techniques discussed. First, it is noticeable that the 601

LLM.int8() method slightly lowers the lower quan- 602

tile scores of FDT in comparison to AbsMax. Yet, 603

GPTQ-8bit demonstrates superior performance, 604

outshining both plain AbsMax and LLM.int8(). 605

This method achieves a more balanced error dis- 606

tribution across all components (c.f. App. Fig. 17). 607

Conversely, GPTQ-4bit shows noticeable devia- 608

tions in the generation process, with only a lim- 609

ited number of components achieving FDT scores 610

above 300. Despite this, the discriminative power 611

of FDT enabled us to identify and merge the top 612

16 components that minimally compromised the 613

model’s integrity, as illustrated in Fig. 6b). 614

5 Conclusion 615

We introduced the Divergent Token Metrics 616

(DTMs), a tailored approach to evaluate the perfor- 617

mance differences of compressed generative mod- 618

els. In particular, DTMs respect the usually applied 619

greedy sampling procedure to generate predictions. 620

We proved that DTMs achieve appropriate metric 621

bounds and are not affected from catastrophic arte- 622

facts that perplexity-based metrics encounter. Im- 623

portantly, using DTMs, we achieved an outperform- 624

ing 75% sparse version of the Llama2-13B model 625

and successfully converted 80% of the LLama2-7B 626

components naively to int8. 627

8



Limitations628

With the proposed DTMs, compression processes629

can be tailored to use cases—and we can measure630

their performance degeneration. We hinted with631

the sparsification experiments, that MLP and Atten-632

tion can be ascribed varying levels of significance633

throughout the layers. These variations should be634

further exploited to optimize model architectures.635

In particular, variations of specific datasets to probe636

or finetune on could lead to interesting variations.637

As a pruning strategy, we achieved outperform-638

ing results using only naive magnitude pruning.639

DTMs should be directly applicable to other mask-640

ing strategies, such as Wanda (Sun et al., 2023),641

which may further improve results. Finally, the642

generalizability of the metrics to other sampling643

strategies should be investigated.644
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Appendix768

A Proof of Propositions769

Proof of Proposition 3.2. There are many ways to770

construct sequences that satisfy the desired relation.771

One is as follows: Let l ∈ RN×|V| be any logit772

sequence with no re-occurring values. Denote by773

mk(l)i the top-k value at position i, and by ak(l)i774

the top-k vocab index at position i, respectively.775

Now we pick any such sequence with the additional776

property that maxim1(l)i −m2(l)i < δ for some777

small δ. Define the sequence l′ by778

l′ia2(l)i = lia2(l)i + δ,779

and l′ij = lij for all remaining indices. Then780

we have a1(l)i ̸= a1(l
′)i for all i and hence781

MSDT(l, l
′, y:1, N) = N . On the other hand we782

have ||l − l′||∞ ≤ δ. Since PPL(y, l, 1) is a con-783

tinuous function in l, we have |PPL(y, l, 1) −784

PPL(y, l′, 1)| < ε for any ε and small enough785

δ.786

Proof of Proposition 3.3. Let z = G(l, y:n, N)787

and pi = (softmax l′)izi+1 . Applying the defi-788

nitions and elementary operations, we have789

N∑
i=n

− log pi = (N − n) logMDPPL(l, l
′, y:n, N).790

Let A = {i ≥ n : pi ≤ 1/2}. Then791

N∑
i=n

− log pi =
∑
i∈A

− log pi +
∑
i∈Ac

− log pi792

≥
∑
i∈A

− log pi ≥ |A| log 2.793

Here we first used that log pi ≤ 0 and then the794

observation that indices contained in A satisfy795

− log pi ≥ log 2 by the defining property of A.796

Finally, we argue that SDT(z, l′, n) ≤ |A|. Indeed,797

at any position i where argmaxj l
′
ij ̸= zi+1 it must798

hold that pi ≤ 1/2, since any softmax-value larger799

than 1/2 is automatically the maximum value of800

the distribution, and the softmax operation is mono-801

tone. Putting everything together we arrive at the802

desired inequality.803

B FDT compared to standard model804

evaluations805

Fig. 10 shows a comparison of standard bench-806

marks (middle) to FDT (right) and PPL (left)807

Figure 7: Pruning MLP and Attn only indeed compro-
mises remaining model capabilities.

when quantizing parts of a model. Often, stan- 808

dard evaluations fail to distinguish between com- 809

pressed models. Sometimes they even depict better 810

performance—which may be true, when regarding 811

compression as a fine-tuning method and consid- 812

ering the short required token predictions. FDT 813

thoroughly gives discriminative statistics with re- 814

sprect to the base model, on how much the com- 815

pressed model equals the original. Note how the 816

error seems to be upper bounded, which suggests 817

that errors may average out throughout the model. 818

Mean zeroshot accuracy denotes the average on the 819

standard NLP-eval harness. 820

C True positives can be predicted 821

Fig. 8 shows several metrics applied to the token- 822

distributions, in order to estimate on whether the 823

compressed and original model predictions are 824

equal. Notably, L1 and L2 errors on the entire 825

11



distribution seem to somewhat capture the discrim-826

inative capabilities of false predictions. The proba-827

bility scores themselves are only marginally usable.828

Using top-2 uncertainty, i.e. the difference between829

the top-2 tokens as a measure, we obtain a reliable830

prediction of true positives. True negatives how-831

ever still remain with a significant overlap.832

D MLP is for knowledge,833

Attention for relation834

Finally, we observed that when pruning only at-835

tention, prompt-extraction capabilities degenerate836

severely. When only pruning MLP components, on837

the other hand, it influences mostly world knowl-838

edge QA benchmarks, c.f. Fig. 7.839

E Details on Search Tree, Sec. 4.3840

Fig. 9 shows the layers (y-axis) of which compo-841

nents are selected at each round (x-axis). While842

there seems to be a pattern on when using FDT as843

a criteria (top), selection by PPL (bottom) looks844

more random.845

Fig. 15 shows the comparison of search tree as846

described to greedy search on a single evaluation847

of all components. Until 150 components, FDT848

proves more stable over the PPL variants as seen849

in Fig. 15a.850

F Details on Quantization Sec. 4.3851

Fig. 17 shows detailed component-wise evaluations852

aggregated in Fig. 6a.853

Fig. 16 shows the final configurations as com-854

pared in Tab. 1.855

Fig. 11 shows the detailed nlp-eval scores of856

Tab. 1.857

Fig. 12 shows greedy search trees over various858

context lengths.859

In total the entire search evaluation required 16860

GPU-days with A100s to complete all metrics.861

G Details on Sparsification, Sec. 4.2862

Fig. 18 shows a different aggregated perspective863

of Fig. 4b, to point out more direct the occuring864

variances.865

Fig. 19 shows the rank of lowest influence (mea-866

sured by FDT) of components (x-axis) throughout867

various sparsity levels (y-axis). I.e. starting with a868

uniformly pruned model in 5% steps, we measured869

the rank when adding an additional 2.5% only to a870

single component. Interestingly, components seem871

to retain their importance throughout the various 872

levels of sparsity. 873

Fig. 13 shows the detailed nlp-eval scores of 874

Tab. 1. 875

Note that, despite being often close in relative 876

sparsity, the total number of parameters pruned 877

for MLP is significantly larger than for Attention 878

matrices (ratio 3:1). 879

In total one sparsification training required 32 880

GPU-days with A100s for our experiment, and 29 881

GPU-days for uniform pruning. 882
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Figure 9: Layers selected in each round of the search
tree. Top, when applying FDT, bottom, when applying
PPL as a ranking metric.
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ties of FDT and PPL for different configurations when
applying LLM.int8() conversion on Llama2-7B. Best
and Worst mark a single component being converted,
with most and least mean influence. First and Second
half consecutively convert half of the model each. While
significant changes can be observed using FDT, all con-
figurations appear indifferent for PPL.
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Figure 11: Detailed view on aggregated values of Tab. 1
when selecting Llama2-7B components to quantize by
metrics.
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(a) Context size of 10 tokens.
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(b) Context size of 25 tokens.
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(c) Context size of 50 tokens.
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(d) Context size of 200 tokens.
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(e) Context size of 300 tokens.
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(f) Context size of 400 tokens.

Figure 12: Greedy Search Tree results for different context sizes.
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Figure 13: Detailed view on aggregated values of Tab. 1
when selecting Llama2-13B components to sparsify by
metrics.
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(a) FDT tree vs greedy
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(b) DPPL tree vs greedy
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(c) PPL tree vs greedy

Figure 14: Comparison of performance when selecting components by the tree-search as described to greedy
selection of once evaluated components for all discussed metrics. Clearly, FDT is most stable until 150 components.
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(a) Mean sorted greedy tree with 50 context tokens.
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(b) Std=0.25 sorted components with 50 context tokens.
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(c) Mean sorted greedy tree with 100 context tokens.
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(d) Std=0.25 sorted components with 100 context tokens.

Figure 15: Comparing the ranking of the components based on mean or standard deviation.
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(a) The 150 selected components selected by metrics for 8-bit AbsMax conversion.
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(b) The 16 selected components selected by metrics for 4-bit GPTQ conversion.

Figure 16: Detailed view of the Llama2-7B components in Tab. 1 selected by metrics for lower precision conversion.
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Figure 17: Full view of the influence of individual component-wise quantization measured by FDT.
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Figure 18: Distribution of 75% average model sparsity.
A. denotes Attention. Top: Aggregated by layers. The
first and last layer have highest variance (MLP most
important, c.f. Fig. 4b). Second half reaches sparsities
close component removal. Bottom: Per component
aggregation. In the second half of layers, the importance
of attention drops drastically. MLP almost remains, with
outliers to larger importance.

Figure 19: Trends during sparsification. We plot the
ranking of the components FDT value through various
sparsity levels (y-axis) for all components (x-axis). In-
terestingly, there is a clear trend of components retaining
“their importance”.
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