
1

Listwise Generative Retrieval Models via a Sequential
Learning Process

YUBAO TANG, RUQING ZHANG∗, and JIAFENG GUO†, Institute of Computing Technology,
Chinese Academy of Sciences; University of Chinese Academy of Sciences, China
MAARTEN DE RIJKE, University of Amsterdam, The Netherlands
WEI CHEN and XUEQI CHENG, Institute of Computing Technology, Chinese Academy of Sciences;
University of Chinese Academy of Sciences, China

Recently, a novel generative retrieval (GR) paradigm has been proposed, where a single sequence-to-sequence
model is learned to directly generate a list of relevant document identifiers (docids) given a query. Existing GR
models commonly employ maximum likelihood estimation (MLE) for optimization: this involves maximizing
the likelihood of a single relevant docid given an input query, with the assumption that the likelihood for each
docid is independent of the other docids in the list. We refer to these models as the pointwise approach in this
paper. While the pointwise approach has been shown to be effective in the context of GR, it is considered
sub-optimal due to its disregard for the fundamental principle that ranking involves making predictions about
lists. In this paper, we address this limitation by introducing an alternative listwise approach, which empowers
the GR model to optimize the relevance at the docid list level. Specifically, we view the generation of a ranked
docid list as a sequence learning process: at each step we learn a subset of parameters that maximizes the
corresponding generation likelihood of the 𝑖-th docid given the (preceding) top 𝑖 − 1 docids. To formalize the
sequence learning process, we design a positional conditional probability for GR. To alleviate the potential
impact of beam search on the generation quality during inference, we perform relevance calibration on
the generation likelihood of model-generated docids according to relevance grades. We conduct extensive
experiments on representative binary and multi-graded relevance datasets. Our empirical results demonstrate
that our method outperforms state-of-the-art GR baselines in terms of retrieval performance.
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1 INTRODUCTION
Document retrieval plays a critical role in many information retrieval (IR) related tasks, e.g., web
search [19, 70] and question answering [33, 80]. It aims to return an initial set of potentially
relevant documents from a large-scale document repository when given a query. Recently, a new
retrieval paradigm called generative retrieval (GR) [69] for document retrieval has been proposed.
The key idea is to fully parameterize different components of indexing and retrieval within a single
consolidated model, in which the information of all the documents in a corpus is encoded into the
model parameters. In essence, this paradigm formalizes the document retrieval task as a sequence-
to-sequence (Seq2Seq) problem that directly maps string queries to relevant document identifiers
(docids). Following the initial publication by Metzler et al. [69], many subsequent investigations
[10, 15, 22, 84, 87, 105] have showcased the potential of this novel paradigm. In comparison to
traditional dense retrieval [9, 63, 71, 99], GR has several advantages:

(i) During training, such a consolidated model can be optimized directly in an end-to-end manner
towards a global objective. By generating docids token-by-token in an autoregressive fashion
and conditioning them on the query, we can capture fine-grained interactions between the
query and the document.

(ii) During inference, the need for a complicated explicit index structure is eliminated. Instead,
docid generation is performed using a vocabulary with tens of thousands of words, aligned
with identifiers of all the documents in the corpus. Such autoregressive decoding significantly
reduces the memory space and computational costs.

The majority of existing GR models relies on the standard Seq2Seq objective, i.e., maximum
likelihood estimation (MLE) [31, 51] with teacher forcing for learning. That is, during training, a
number of queries are provided; each query is associated with a perfect ranked list of docids (in
descending order of relevance scores); GR models operate in a pointwise manner. For example, as
shown in Figure 1 (Top), existing works mainly focus on maximizing the likelihood of individual
docids at a time. The final ranking is achieved by simply sorting the list based on the generated
likelihood scores of these docids. In essence, the score assigned to each docid is independent of
the other docids for a given query. This approach suffers from several issues: First, the learning
objective under the MLE criterion is formalized as minimizing errors in generation of docids,
rather than minimizing errors in rankings of docids, making it inconsistent with evaluation metrics
like nDCG [38]. Second, given a query, the assumption that the query-docid pairs are generated
independently and identically distributed (i.i.d.) is a strong assumption. Thirdly, the number of
query-docid pairs can vary greatly from one query to another, leading to a GR model that is biased
towards queries with a larger number of docid pairs [11].

In this paper, we design a novel listwise approach to GR, in which docid lists instead of individual
docids are used as instances in learning, as shown in Figure 1 (Bottom). Inspired by listwise learning-
to-rank [11, 48, 91], it is crucial to effectively capture the difference between a ranked list of docids
produced by a GR model and the ranked list given as the ground truth. To formalize the listwise loss
function for GR, our key idea is to view the problem of generating a ranked list of relevant docids
as a sequential learning process: in each step we target to maximize the corresponding stepwise
probability distribution. Specifically, at step 1, we aim to maximize the probability distribution that
the top-1 docid is generated. At step 𝑖 > 1, we maximize the 𝑖-th probability distribution given the
top 𝑖 − 1 docids. Leveraging the characteristics of GR, we define the probability distribution as the
output sequence likelihood of generating each docid, token-by-token in an autoregressive fashion,
and conditioned on the given query. To solve the sequential learning problem, we transform it into
a single-objective optimization problem via linear scalarization, in which the position importance
in ranking is highlighted [48]. By assigning appropriate weights to different ranking positions, the
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Fig. 1. Optimization objectives. Assume that the following are given: a query 𝑞 and two ground-truth docids,
𝑑𝑜𝑐𝑖𝑑1 and 𝑑𝑜𝑐𝑖𝑑2, where 𝑑𝑜𝑐𝑖𝑑1 is more relevant than 𝑑𝑜𝑐𝑖𝑑2 to 𝑞. Top: Most existing GR work relies on
maximum likelihood estimation, by maximizing the likelihood of the target docid for each query-docid pair.
All relevant docids 𝑑𝑜𝑐𝑖𝑑1 and 𝑑𝑜𝑐𝑖𝑑2 are treated equally, sharing similar likelihood values. Bottom: A listwise
objective (yellow rectangle) is designed for GR, directly modeling the ranked docid lists and incorporating
positional information between 𝑑𝑜𝑐𝑖𝑑1 and 𝑑𝑜𝑐𝑖𝑑2 (𝑑𝑜𝑐𝑖𝑑1 with darker green has a larger positional weight),
resulting in a positional weighted likelihood.

final listwise loss function can effectively emphasize the significance of each position and optimize
the overall objective accordingly. The comparison between previous pointwise approaches and our
proposed listwise approach for GR is illustrated in Figure 1. We refer to the GR model using the
listwise loss function as ListGR.
At inference time, the trained ListGR model uses beam search to generate a ranked list of

potentially-relevant docids, which are based on possibly erroneous previous steps. However, in the
proposed listwise loss function, the predictive probability of each reference docid is maximized
given the gold sub-sequence before it. To solve this decoding inconsistency problem, we propose
to perform relevance calibration to re-train the model with a relevance calibration objective. This
objective aims to calibrate the likelihood of generated candidate docids to better align with ground-
truth ranked lists according to their relevance grades to the query.

Our main contributions are the following:
(i) To the best of our knowledge, this is the first proposal for a listwise approach specifically

designed for GR.
(ii) We formulate a listwise learning objective for GR, by directly minimizing the expected loss

defined on the predicted docid list and the ground-truth list, and taking into account position
information.

(iii) Our experimental results on five representative retrieval datasets demonstrate the effec-
tiveness of our method, particularly on datasets with multi-graded relevance. Compared to
the current state-of-the-art pointwise GR method, NCI, our approach achieves a significant
improvement of 15.8% in terms of nDCG@5 on the ClueWeb 200K dataset.
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Table 1. Important notation.

𝐷 Document set
𝑑 Document in 𝐷
𝐼𝐷 Docid set corresponding to 𝐷
𝑖𝑑 Docid in the docid set 𝐼𝐷
𝑖𝑑 (𝑖 ) 𝑖-th ranked docid in a ranked docid list
𝜋𝑞 Ground-truth docid list of 𝑞
𝜋𝑄 Set of ground-truth docid lists of 𝑄
𝑄 Query set
𝑞 Query
𝑔𝜃 GR model parameters
𝑤𝑡 Token in the docid 𝑖𝑑
𝑥 Document set to be further ranked for a query
𝜋𝑦 Ground-truth permutation of documents 𝑥 for a query
𝑦𝑖 Ranking position of document 𝑑𝑖 in 𝜋𝑦

𝑦−1 (𝑖) Index identifier of documents in the 𝑖-th position of 𝜋𝑦
ℎ𝜓 Learning to rank function

The remainder of the paper is structured as follows. Section 2 introduces preliminary concepts
necessary for understanding the proposed method. Section 3 outlines the details of our proposed
method. Section 4 describes the experimental setup. Section 5 presents the experimental results and
analysis, highlighting the performance of our method compared to existing approaches. Section 6
presents an overview of related work in the field. Finally, Section 7 provides a summary of the
paper and discusses limitations and potential future research directions.

2 PRELIMINARIES
We first recall the basic idea of the GR paradigm and of listwise algorithms that have been widely
adopted in learning-to-rank; Table 1 lists the most important notations used in the paper.

2.1 Generative retrieval
Generative retrieval (GR) aims to directly generate a ranked list of docids for a given query using a
text-to-text model. In the following, we summarize the model architecture, training, and inference
process of GR.

2.1.1 Model architecture. In existing approaches, the GR model, represented as 𝑔𝜃 , usually
makes use of a transformer-based encoder-decoder architecture to answer queries. The encoder is
responsible for processing the input sequence, i.e., query or document, and extracting meaningful
representations to capture the essential topics. Based on the representation produced by the encoder,
the decoder is responsible for generating the target docid.

2.1.2 Document identifiers (docids). Tay et al. [84] propose two primary document identifiers
to represent documents:

(i) Arbitrary unique integers without explicit semantic connections to the corresponding docu-
ments [84].

(ii) Structured semantic numbers that carry semantic associations with the documents, often
obtained through techniques like hierarchical k-means clustering [84, 87].

ACM Trans. Inf. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2024.
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Incorporating semantic associations between docids and documents improves the retrieval process
[10, 22, 84, 87]. In this work, we adopt the structured semantic numbers for docid representation
and we leave a detail discussion of the docid generation process to Section 4.5. Recently, alternative
forms of docids such as n-grams and titles have been proposed. A comprehensive explanation of
these docids can be found in Section 6.

2.1.3 Training and optimization. Maximum likelihood estimation (MLE) is widely employed in
current GR methods to optimize two main tasks, i.e., the indexing task and the retrieval task, via
maximizing the likelihood estimation of the target docid, given a document or query.
Indexing task. To memorize the corpus, the GR model 𝑔𝜃 takes the document 𝑑 in the document
set 𝐷 as the input, and outputs its corresponding docid 𝑖𝑑 in the docid set 𝐼𝐷 with MLE optimization
algorithm, defined as,

LIndexing (𝐷, 𝐼𝐷 ;𝑔𝜃 ) = −
∑︁
𝑑∈𝐷

log 𝑃 (𝑖𝑑 | 𝑑 ;𝑔𝜃 ), (1)

where 𝑃 (𝑖𝑑 | 𝑑 ;𝑔𝜃 ) is the likelihood of generation docid 𝑖𝑑 ,

𝑃 (𝑖𝑑 | 𝑑 ;𝑔𝜃 ) =
∏

𝑡 ∈[1, |𝑖𝑑 | ]
𝑃 (𝑤𝑡 | 𝑑,𝑤<𝑡 ;𝑔𝜃 ), (2)

where 𝑤𝑡 is the 𝑖-th ground-truth token in the 𝑖𝑑 , and 𝑤<𝑡 represents the tokens before the 𝑖-th
one in the 𝑖𝑑 .
Retrieval task. A query 𝑞 in the query set 𝑄 can have one or multiple associated docids, and
these docids may possess varying degrees of relevance. For 𝑞, it has a ground-truth docid list,
𝜋𝑞 = [𝑖𝑑 (1) , 𝑖𝑑 (2) , . . .], in descending order of relevance, where 𝑖𝑑 (1) is the docid ranked at the
first position, and 𝑖𝑑 (2) is the docid ranked at the second position, and so on. We denote the set
of relevant docids for all the queries 𝑄 as 𝜋𝑄 . Relevance grades for documents are non-negative
integers. A relevance grade of 0 indicates that the document is irrelevant to the query. The higher
the integer value, the greater the relevance of the document to the given query. And 𝑀 (𝑑) denotes
the relevance grade of the document 𝑑 to a query. To achieve the retrieval task effectively, the GR
model also leverages MLE to learn how to map the query 𝑞 in the query set 𝑄 to relevant docids,
defined as,

LRetrieval (𝑄, 𝜋𝑄 ;𝑔𝜃 ) = −
∑︁

𝑞∈𝑄,𝑖𝑑∈𝜋𝑞

log 𝑃 (𝑖𝑑 | 𝑞;𝑔𝜃 ), (3)

where 𝑃 (𝑖𝑑 | 𝑞;𝑔𝜃 ) is similar to Eq. (2), defined as

𝑃 (𝑖𝑑 | 𝑞;𝑔𝜃 ) =
∏

𝑡 ∈[1, |𝑖𝑑 | ]
𝑃 (𝑤𝑡 | 𝑞,𝑤<𝑡 ;𝑔𝜃 ) . (4)

Finally, the total loss incurred during training a GR model is a combination of the indexing loss
and the retrieval loss, i.e.,

LTotal (𝑄, 𝐷, 𝐼𝐷 ) = LIndexing (𝐷, 𝐼𝐷 ;𝑔𝜃 ) + LRetrieval (𝑄, 𝜋𝑄 ;𝑔𝜃 ). (5)

2.1.4 Inference. During inference, given a query, the GR model usually uses beam search [45] to
generate the top-𝑛 ranked docids in an autoregressive manner, in descending order based on the
conditional probability of each output. Note that, when generating the next token, the model relies
on the former generated token, rather than the ground-truth token.
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2.1.5 Discussion. In current GR methods, MLE is primarily used to train query-docid pairs (as
shown in Eq. (3)), which is a pointwise approach. This approach, however, is limited in its ability to
support the model in generating the single most relevant docid even when a query has multiple
relevant docids. During inference, the goal of the retrieval task is to obtain a ranked docid list,
where the docids are ordered based on their relevance to the query. The pointwise approach fails
to guarantee an optimal ordering of docids within the list.

To address this limitation and enhance the capability of the GR model to generate a high-quality
ranked docid list, this work focuses on modeling and optimizing the relevance at the list level. By
shifting the optimization objective from a pointwise perspective to a listwise perspective, we aim
to further improve the overall effectiveness of the GR models.

2.2 ListMLE algorithm
In learning-to-rank (LTR), listwise approaches emphasize optimizing the entire ranked list of items
for overall ranking performance. Listwise approaches recognize that the order in which items are
presented in the list is crucial for accurate ranking. In the following, we describe a related algorithm
for our work, including listMLE and position-aware listMLE.

2.2.1 ListMLE. Formally, suppose 𝑥 = {𝑑1, . . . , 𝑑𝑛} ∈ 𝑋 is the subset of corpus 𝐷 to be further
ranked, obtained from an initial document retrieval step. And 𝜋𝑦 = [𝑦1, . . . , 𝑦𝑛] ∈ 𝑌 is the corre-
sponding ground-truth permutation of these documents, where 𝑦𝑖 is the position of 𝑑𝑖 , and 𝑦−1 (𝑖)
is the index identifier of documents in the 𝑖-th position of 𝜋𝑦 . Listwise LTR aims to learn a ranking
function ℎ𝜓 : 𝑋 → 𝑌 , where𝜓 are the function parameters and 𝐻 is the corresponding function
space (i.e., ℎ ∈ 𝐻 ), that can minimize the expected risk.
ListMLE [91] is a widely-used framework for listwise ranking that introduces a parameterized

exponential probability distribution over all possible permutations, given the ranking function ℎ𝜓 .
And it leverages negative log likelihood of the ground truth list as the loss function, defined as:

L(𝑥, 𝜋𝑦 ;ℎ𝜓 ) = − log 𝑃 (𝜋𝑦 | 𝑥 ;ℎ𝜓 ). (6)

According to the Plackett-Luce model [64, 75], which is a distribution over permutations 𝜋𝑦 ,
𝑃 (𝜋𝑦 | 𝑥 ;ℎ𝜓 ) can be defined as:

𝑃 (𝜋𝑦 | 𝑥 ;ℎ𝜓 ) =
𝑛∏
𝑖=1

exp(ℎ𝜓 (𝑥𝑦−1 (𝑖 ) ))∑𝑛
𝑘=𝑖

exp(ℎ𝜓 (𝑥𝑦−1 (𝑘 ) ))
. (7)

The probability of a list can be deconstructed into the product of stepwise conditional probabilities.
Each 𝑖-th conditional probability represents the likelihood of a document being ranked at the 𝑖-th
position, given that the preceding documents are ranked appropriately up to that point. i.e.,

𝑃 (𝜋𝑦 | 𝑥 ;ℎ𝜓 ) = 𝑃 (𝑦−1 (1), . . . , 𝑦−1 (𝑛) | 𝑥 ;ℎ𝜓 ) (8)

= 𝑃 (𝑦−1 (1) | 𝑥 ;ℎ𝜓 )
𝑛∏
𝑖=2

𝑃 (𝑦−1 (𝑖) | 𝑥,𝑦−1 (1), . . . , 𝑦−1 (𝑖 − 1);ℎ𝜓 ), (9)

where

𝑃 (𝑦−1 (1) | 𝑥 ;ℎ𝜓 ) =
exp(ℎ𝜓 (𝑥𝑦−1 (1) ))∑𝑛
𝑘=1 exp(ℎ𝜓 (𝑥𝑦−1 (𝑘 ) ))

, (10)

𝑃 (𝑦−1 (𝑖) | 𝑥,𝑦−1 (1), 𝑦−1 (2), . . . , 𝑦−1 (𝑖 − 1);ℎ𝜓 ) =
exp(ℎ𝜓 (𝑥𝑦−1 (𝑖 ) ))∑𝑛
𝑘=𝑖

exp(ℎ𝜓 (𝑥𝑦−1 (𝑘 ) ))
,∀𝑖 = 2, . . . , 𝑛. (11)
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Fig. 2. Overview of the two-stage listwise learning methods, which consists of a training stage using listwise
loss and a re-training stage with relevance calibration based on the trained model.

2.2.2 Position-aware ListMLE. ListMLE, despite its effectiveness, ignores the significance of
position importance [48]. Recognizing the impact of item positions for ranking, an advanced listwise
ranking algorithm called position-aware ListMLE [p-ListMLE, 48] has been developed to take into
account position information. p-ListMLE considers the ranking process as a sequential procedure:
it operates by maximizing the probability of correctly ranking the top 1 document with a weight
assigned to the top position. Subsequently, it focuses on maximizing the probability of correctly
ranking the 𝑖-th document, considering the corresponding position weight, assuming that the top
𝑖 − 1 documents have been ranked correctly. This loss function of the process is formally defined as:

L𝑝 (𝑥, 𝜋𝑦 ;ℎ𝜓 ) = − 𝛼 (1) log 𝑃 (𝑦−1 (1) | 𝑥 ;ℎ𝜓 ) −
𝑛∑︁
𝑖=2

𝛼 (𝑖) log 𝑃
(
𝑦−1 (𝑖) | 𝑥,𝑦−1 (1), . . . , 𝑦−1 (𝑖 − 1);ℎ𝜓

)
,

(12)

where 𝛼 (·) is a decreasing function, i.e., 𝛼 (𝑖) > 𝛼 (𝑖 + 1).
To ensure consistency with the target metric, such as normalized discounted cumulative gain

(NDCG), 𝛼 (·) is defined as the gain function 𝛼 (𝑖) = 𝐺𝑎𝑖𝑛(𝑖) = 2𝑛−𝑖 −1, which assigns larger weights
to documents with higher relevance grades. Combining the Plackett-Luce model (7) with the above
loss (12), the optimization objective is to minimize the following likelihood loss function:

L𝑝 (𝑥, 𝜋𝑦 ;ℎ𝜓 ) =
𝑛∑︁
𝑖=1

𝛼 (𝑖)
(
−ℎ𝜓 (𝑥𝑦−1 (𝑖 ) ) + log

(
𝑛∑︁
𝑘=𝑖

exp(ℎ𝜓 (𝑥𝑦−1 (𝑘 ) ))
))
. (13)

3 OUR APPROACH
In this section, we present novel listwise generative retrieval models via a sequential learning
process. We first provide an overview of our method and then describe the training and re-training
stages in detail.

3.1 Overview
In this paper, we propose a listwise GR approach (ListGR for short), in which docid lists instead
of individual docids are used as instances in learning. ListGR includes a two-stage optimization
process, i.e., training with position-aware ListMLE and re-training with relevance calibration. The
overall optimization process is illustrated in Figure 2.
To accurately represent listwise relevance, we first establish the position-aware conditional

probability of a docid ranked at a particular position with respect to a given query, and employ
position-aware ListMLE [48] to train the GR model. To address the decoding inconsistency between
the proposed listwise loss function and the beam search decoding, we further retrain the model
with relevance calibration techniques for a generated docid list.

3.2 Training with listwise loss function
Inspired by listwise LTR algorithms [11, 48, 91], our key idea is to view the docid ranking problem
as a sequential learning process, with each step targeting to maximize the corresponding stepwise
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probability distribution. In the following, we firstly define the conditional probability distribution
of each ground-truth docid with each step, and then apply it to model the ranking list.

3.2.1 Positional conditional probability. Given a query and its ground-truth docid list 𝜋𝑞 , for
each docid 𝑖𝑑 (𝑖 ) in the list, we first obtain the estimated log-probability of generating 𝑖𝑑 (𝑖 ) for the
given query (based on Eq. (4)), regardless of the position of 𝑖𝑑 (𝑖 ) , and perform length normalization,
denoted as,

𝑃 (𝑖𝑑 (𝑖 ) | 𝑞;𝑔𝜃 ) =
log

∏
𝑡 ∈[1, |𝑖𝑑 (𝑖 ) | ] 𝑃 (𝑤𝑡 | 𝑞,𝑤<𝑡 ;𝑔𝜃 )

|𝑖𝑑 (𝑖 ) |
, (14)

where𝑤𝑡 is the 𝑖-th ground-truth token in the 𝑖𝑑 (𝑖 ) ,𝑤<𝑡 represents the tokens before the 𝑖-th one
in the 𝑖𝑑 (𝑖 ) . Based on Eq. (14), we further define the positional likelihood, that is, the probability of
generation of 𝑖𝑑 (𝑖 ) being ranked at position 𝑖 . More specifically, it is the conditional probability
distribution of the GR model generating the ground-truth docids from the 𝑖-th to the 𝑛-th, condi-
tioned on the query. It also represents that the preceding 𝑖 − 1 docids are generated at the right
positions. The sequential learning process for docid ranking can be summarized as follows:
Step 1: Maximizing the following top-1 positional conditional probability:

𝑃 (𝑖𝑑 (1) | 𝑞;𝑔𝜃 ) =
exp(𝑃 (𝑖𝑑 (1) | 𝑞;𝑔𝜃 ))∑𝑛
𝑗=1 exp(𝑃 (𝑖𝑑 ( 𝑗 ) | 𝑞;𝑔𝜃 ))

. (15)

Please note that Eq. (14) only considers the generation of 𝑖𝑑 (𝑖 ) conditioned on the query
without considering its ranking position in the list , while Eq. (15) requires 𝑖𝑑 (𝑖 ) to be ranked
at the 𝑖-th position.

Step 𝑖: For 𝑖 = 2, . . . , 𝑛, we maximize the following 𝑖-th positional conditional probability,

𝑃 (𝑖𝑑 (𝑖 ) | 𝑞, 𝑖𝑑 (1) , . . . , 𝑖𝑑 (𝑖−1) ;𝑔𝜃 ) =
exp(𝑃 (𝑖𝑑 (𝑖 ) | 𝑞;𝑔𝜃 ))∑𝑛
𝑗=𝑖 exp(𝑃 (𝑖𝑑 ( 𝑗 ) | 𝑞;𝑔𝜃 ))

. (16)

The learning process ends at step 𝑛 + 1.

3.2.2 Listwise probability with position importance. To transform the above sequential
optimization problem into a single-objective optimization problem, we define the likelihood of the
ground-truth docid list 𝜋𝑞 for a query. The likelihood of generating 𝜋𝑞 is defined as the product of
positional conditional probabilities of different docids. Higher positions are more important and,
therefore, we assign the corresponding positional conditional probabilities with higher weights.
Therefore, for a query 𝑞, the optimization problem is to minimize the probability of generating 𝜋𝑞
with negative log likelihood as follows:

min
𝑔𝜃

− log 𝑃 (𝜋𝑞 | 𝑞;𝑔𝜃 )

= −𝛼 (1) log 𝑃 (𝑖𝑑 (1) | 𝑞;𝑔𝜃 ) −
𝑛∑︁
𝑖=2

𝛼 (𝑖) log 𝑃
(
𝑖𝑑 (𝑖 ) | 𝑞, 𝑖𝑑 (1) , . . . , 𝑖𝑑 (𝑖−1) ;𝑔𝜃

)
,

(17)

where the weight 𝛼 (·) is a decreasing function; following [48], we set 𝛼 (𝑖) = 2𝑛−𝑖 − 1. Incorporat-
ing the probability based on Plackett-Luce model as described in Eq. (15) and 16 into the above
optimization problem, we obtain the final listwise loss function:

LList (𝑞, 𝜋𝑞 ;𝑔𝜃 ) =
𝑛∑︁
𝑖=1

𝛼 (𝑖)
(
−𝑃 (𝑖𝑑 (𝑖 ) | 𝑞;𝑔𝜃 ) + log

(
𝑛∑︁
𝑘=𝑖

exp(𝑃 (𝑖𝑑 (𝑘 ) | 𝑞;𝑔𝜃 ))
))
. (18)
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Listwise Generative Retrieval Models via a Sequential Learning Process 1:9

The total loss function of a query set 𝑄 is LList (𝑄, 𝜋𝑄 ;𝑔𝜃 ) =
∑

𝑞∈𝑄 LList (𝑞, 𝜋𝑞 ;𝑔𝜃 ).
Discussions. For retrieval tasks, our listwise approachLList is different from the pointwise approach
used in existing GR works. (i) The existing pointwise approach aims to maximize the likelihood
probability of generating relevant docids with MLE for a query. Simultaneously, it suppresses
the probability of other irrelevant tokens. When dealing with multi-graded relevance datasets,
this method treats docids of different relevance grades as equally important. (ii) In contrast, our
listwise approach, LList loss (Eq. (18)) maximizes the likelihood probability of the ground-truth
docid list. Additionally, it assigns corresponding positional weights to different docids based on
their relevance grades using p-ListMLE. This enables the model to have better discriminative ability
for fine-grained relevance grades. Therefore, our approach aligns more closely with the goal of GR,
which is to generate a relevant docid list given a query.

3.2.3 Training loss. To model the aforementioned listwise relevance, the GR model also needs to
learn the fundamental indexing task with the loss defined in Eq. (1) and the retrieval task with the
loss defined in Eq. (3). Taken together, the total loss for the training stage is defined as:

LTraining (𝑄,𝐷, 𝐼𝐷 , 𝜋𝑄 ;𝑔𝜃 ) = LList (𝑄, 𝜋𝑄 ;𝑔𝜃 ) + LIndexing (𝐷, 𝐼𝐷 ;𝑔𝜃 ) + LRetrieval (𝑄, 𝜋𝑄 ;𝑔𝜃 ). (19)

3.3 Re-training with relevance calibration
After training with a listwise loss function, the GR model gains a better discriminative ability for
ranked lists of docids than the previous pointwise approach. However, a decoding inconsistency
problem arises [8]. During training, the proposed listwise loss leverages the preceding ground-truth
tokens to generate the subsequent token. During inference, the model relies solely on the preceding
generated tokens without access to ground-truth tokens. This decoding inconsistency may result
in the generated list not being ideal in terms of its ranking according to relevance. Besides, larger
beam sizes would cause shorter lengths and worse generation quality [95, 103].
To further improve the quality of the ranked list, we propose to calibrate the generated list, in

which the key idea is to align candidates’ likelihoods according to their relevance grades to the
query. Specifically, we utilize the model trained with Eq. (19) for re-retraining, denoted as 𝑔𝜃 . And
for a given query 𝑞 ∈ 𝑄 , a ranked docid list is generated with the beam search strategy, denoted
as 𝜋𝑞 = [𝑖𝑑

(1)
, . . . , 𝑖𝑑

(𝑛)
]. We perform both token-level calibration and sequence-level relevance

calibration as follows.

3.3.1 Token-level relevance calibration. For correctly predicted docids, tokens within docids
with higher relevance grades are assigned with higher likelihood weights. For incorrectly predicted
docids, the generation probability of their tokens should approach zero. Formally, we define the
token-level relevance calibration loss as,

LToken (𝑄, 𝜋𝑄 ;𝑔𝜃 ) = −
∑︁
𝑞∈𝑄

∑︁
𝑖𝑑∈𝜋𝑞

∑︁
𝑤𝑡 ∈𝑖𝑑

𝑃true (𝑤𝑡 | 𝑞,𝑤<𝑡 ) log 𝑃 (𝑤𝑡 | 𝑞,𝑤<𝑡 ;𝑔𝜃 ), (20)

where𝑤𝑡 is the 𝑡-th generated token in 𝑖𝑑 ,𝑤<𝑡 represents tokens before the 𝑡-th token, and 𝜋𝑄 is
the generated docid list for all queries in𝑄 . Moreover, 𝑃𝑡𝑟𝑢𝑒 (𝑤𝑡 | 𝑞,𝑤<𝑡 ) is the weight of generating
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token𝑤𝑡 computed as follows, given two different candidate docids in 𝜋𝑞 , 𝑖𝑑
(𝑖 )

and 𝑖𝑑
( 𝑗 )

:

𝑃true (𝑤𝑡 | 𝑞,𝑤<𝑡 ) = 1 − 1(
𝑀

(
𝑖𝑑

(𝑖 ) )
+1

)2 , ∀𝑤𝑡 ∈ 𝑖𝑑
(𝑖 )
, if 𝑖𝑑

(𝑖 )
∈ 𝜋𝑞∑

𝑖𝑑
(𝑖 )

∈𝜋𝑞
𝑃true (𝑤𝑡 | 𝑞,𝑤<𝑡 ) = 𝛽, ∀𝑤𝑡 ∈ 𝑖𝑑

(𝑖 )
, if 𝑖𝑑

(𝑖 )
∉ 𝜋𝑞

𝑃true (𝑤𝑡 | 𝑞,𝑤<𝑡 ) > 𝑃true (𝑤𝑚 | 𝑞,𝑤<𝑚), ∀𝑤𝑡 ∈ 𝑖𝑑
(𝑖 )

∈ 𝜋𝑞,𝑤𝑚 ∈ 𝑖𝑑
( 𝑗 )

∈ 𝜋𝑞,
if𝑀

(
𝑖𝑑

(𝑖 ) )
> 𝑀

(
𝑖𝑑

( 𝑗 ) )
(21)

where 𝛽 is a hyperparameter close to zero, and 𝑀
(
𝑖𝑑

(𝑖 ) )
is the relevance grade of 𝑖𝑑

(𝑖 )
, defined

in Section 2.1.3. Additionally,𝑤𝑚 represents the𝑚-th token of 𝑖𝑑
( 𝑗 )
, and𝑤<𝑚 represents tokens

before the𝑚-th token in 𝑖𝑑
( 𝑗 )

. The effect of each condition of this equation is as follows,

(i) For the first condition, if the generated 𝑖𝑑
(𝑖 )

is in the ground-truth ranking list 𝜋𝑞 , we assign
a higher weight 𝑃𝑡𝑟𝑢𝑒 to this docid, to support its generation. Specifically, this weight is a
value less than 1, directly proportional to the relevance grade of the ground-truth label. The
higher the relevance grade of the docid, the closer this weight is to 1.

(ii) For the second condition, if the predicted 𝑖𝑑
(𝑖 )

does not belong to the ground truth docid
list, we assign a small weight to suppress its generation. Specifically, this weight 𝛽 is a small
value less than 1, approaching 0.

(iii) For the third condition, for any two docids in the candidate docid list, 𝑖𝑑
(𝑖 )

and 𝑖𝑑
( 𝑗 )
, both

belonging to the ground truth ranking list, we adjust their relative weights based on their
ground-truth relevance grades. If the relevance grade of 𝑖𝑑

(𝑖 )
is higher than that of 𝑖𝑑

( 𝑗 )
, then

the tokens of 𝑖𝑑
(𝑖 )

should have higher weights (i.e., 𝑃𝑡𝑟𝑢𝑒 (𝑤𝑡 | 𝑞,𝑤<𝑡 )) compared to weights
(i.e., 𝑃𝑡𝑟𝑢𝑒 (𝑤𝑚 | 𝑞,𝑤<𝑚)) of 𝑖𝑑

( 𝑗 )
.

3.3.2 Sequence-level relevance calibration. Differences in generation probabilities among
distinct docids should correspond to differences in their relevance grades. Docids with higher
relevance grades should be prioritized, resulting in a higher likelihood of being ranked higher and
generated. Therefore, the sequence-level relevance calibration loss is,

LSeq (𝑄, 𝜋𝑄 ;𝑔𝜃 ) =
∑︁
𝑖

∑︁
𝑗>𝑖

max
(
0, 𝑔𝜃 (𝑖𝑑

( 𝑗 )
) − 𝑔𝜃 (𝑖𝑑

(𝑖 )
) + 𝜆𝑖 𝑗

)
, (22)

where 𝑔𝜃 (𝑖𝑑
(𝑖 )
) is 𝑃 (𝑖𝑑

(𝑖 )
| 𝑞;𝑔𝜃 ) normalized by docid length, i.e.,

𝑔𝜃 (𝑖𝑑
(𝑖 )
) = log 𝑃 (𝑖𝑑

(𝑖 )
| 𝑞;𝑔𝜃 )

|𝑖𝑑
(𝑖 )
|𝛼

, (23)

where 𝛼 is the length penalty hyperparameter, ∀𝑖, 𝑗, 1 < 𝑖 < 𝑗 ≤ 𝑛, and 𝜆𝑖 𝑗 is the margin multiplied
by the difference in rank position between the docids, i.e., 𝜆𝑖 𝑗 = ( 𝑗 − 𝑖)𝜆.

3.3.3 Re-training loss. The final loss of the relevance calibration is defined as:

LRe-training (𝑄, 𝜋𝑄 ;𝑔𝜃 ) = LToken (𝑄, 𝜋𝑄 ;𝑔𝜃 ) + 𝛾L𝑆𝑒𝑞 (𝑄, 𝜋𝑄 ;𝑔𝜃 ), (24)

where 𝛾 is the hyperparameter of balancing the two losses.
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In summary, our model is first trained using the listwise loss in Eq. (19) and then used to decode
ranked docid lists for training queries. After re-training themodel using the loss in Eq. (24), inference
is performed according to the approach described in Section 2.1.4.
Adaption to binary relevance data. For binary relevance data, since the relevant docids for a
query have the same relevance grade, a query may have one or multiple ground-truth docid lists,
each containing only one relevant docid, i.e., the top-1 docid. Therefore, in the first training stage,
the corresponding position weight 𝛼 (1) in the listwise loss (Eq. (18)) is set to 0 (𝛼 (𝑖) = 2(𝑛−𝑖 ) − 1).
Consequently, Eq. (19) reduces into Eq. (5). For binary relevance data, this is acceptable since it only
contains docids with the same relevance grade. Our main improvement for the binary relevance
data is the relevance calibration Eq. (24) in the re-training stage. It could further optimize the
generated candidate docid list, according to docids’ relevance grade to the query. In future work,
we will explore designing alternative weight functions to enable list-level enhancement for binary
relevance data in the first stage as well.

4 EXPERIMENTAL SETTINGS
In this section, we present the experimental settings, including datasets, baselines, model variants,
evaluation metrics, and implementation details.

4.1 Datasets
We utilize five widely-used ad-hoc retrieval datasets:

(i) ClueWeb09-B (ClueWeb) [18] is a large-scale web collection containing over 50 million
documents. The topics are gathered from the TREC Web Tracks conducted from 2009 to 2011.

(ii) Gov2 [17] consists of approximately 150 queries and 25 million documents collected from
the .gov domain web pages. The topics are accumulated from the TREC Terabyte Tracks from
2004 to 2006.

(iii) Robust04 [86] comprises 250 queries and 0.5 million news articles. The topics of the queries
are collected from the TREC 2004 Robust Track.

(iv) MSMARCODocument Ranking (MS MARCO) [70] is a comprehensive benchmark dataset
for web document retrieval.

(v) Natural Questions (NQ) [46] includes natural language questions as queries and Wikipedia
articles as documents. Following previous GR studies [10, 84, 87], we perform experiments
on the NQ320K version of the dataset, containing 307,000 query-document pairs.

Dataset preprocessing. For multi-graded relevance datasets, i.e., ClueWeb, Gov2, and Robust04
datasets, they are annotated with multi-graded relevance labels, indicating varying degrees of
matching with the query intent or information need. Akin to [84], we sample subsets of the original
ClueWeb, Gov2, and Robust04 corpora, each of size 200K, for our subsequent experiments. These
sampled subsets are referred to as ClueWeb 200K, Gov 200K, and Robust 200K, respectively.
The sampling process involves selecting annotated documents first and then randomly choosing
additional documents from the remaining corpus, resulting in a total of 200K documents.
For binary relevance datsets, i.e., MS MARCO and NQ datasets, they have documents labeled

with binary relevance, indicating whether a document is relevant or irrelevant to a query. For the
MS MARCO dataset, following [16, 105], we sample a sub-dataset,MSMARCO 100K, consisting of
100K documents, 97K training queries and 3K queries for testing. We sample the training and testing
queries from the original training set and development set, respectively. For the NQ320K dataset,
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following [87], we utilize its open-source preprocessing code.1 It removes special characters from
the documents and performs cleaning and concatenation based on the document structure, such as
titles, abstracts, and body text. Table 2 provides statistics of the datasets used in experiments.

Table 2. Data statistics. #Grades denotes the number of relevance grades, e.g., highly relevant and relevant.
#Avg denotes the average number of multi-graded relevant documents for queries.

Relevance Type Dataset #Queries #Documents #Grades #Avg

Multi-graded Robust 200K 250 0.2M 2 69
Multi-graded Gov 200K 150 0.2M 2 180
Multi-graded ClueWeb 200K 150 0.2M 3 84
Binary MS MARCO 100K 97K 100K 1 1
Binary NQ320K 307K 228K 1 1

4.2 Baselines
We first compare our method with traditional retrieval baselines commonly used for document
retrieval tasks, including sparse retrieval and dense retrieval methods. The sparse retrieval baselines
are:

(i) BM25 [79] is an effective term-based sparse retrieval method, that represents the classical
probabilistic retrieval model.

(ii) DocT5Query [73] generates a set of pseudo-queries for each document by a finetuned T5
[77], and then expand the document with these pseudo-queries.

(iii) SPLADE [26, 27] uses a BERT to encode the document into a sparse lexical representation.
The dense retrieval baselines are:

(i) DPR [41] is a BERT-based dual-encoder model using dense embeddings for text blocks.
(ii) ANCE [93] periodically refreshes the ANN indexer and adpots hard negatives for training a

RoBERTa-based dual-encoder model.
(iii) RepBERT [99] is a BERT-based two-tower model. And it takes the in-batch negative sampling

technique. RepBERT leverages the representation learning capabilities of BERT to represent
the query and document, enhancing dense retrieval performance.

Further, we explore several advanced GR methods that are trained in a pointwise manner:
(i) DSI-Num [84] uses arbitrary unique numbers as docids. And it uses the MLE loss based on

query-docid pairs (Eq. (3)) and document-docid pairs (Eq. (1)).
(ii) DSI-Sem [84] generates docids by concatenating category numbers obtained through a

hierarchical k-means clustering algorithm. This results in similar documents having similar
docids. It shares the same training objective as DSI-Num.

(iii) DSI-QG [105] utilizes pairs of pseudo-queries and docids for indexing. The pseudo-queries
are generated conditioned on the document using docT5query [73]. Similar to DSI-Num,
arbitrary unique numbers are used as docids. DSI-QG can be viewed as DSI-Num with data
augmentation techniques.

(iv) NCI [87] replaces the arbitrary unique numbers with semantic structured numbers, similar
to DSI-Sem. It uses pairs of pseudo-queries and docids, as well as pairs of leading contents of
original documents and docids, to train the model. NCI further designs a prefix-aware decoder,

1https://github.com/solidsea98/Neural-Corpus-Indexer-NCI/blob/main/Data_process/NQ_dataset/NQ_dataset_Process.
ipynb
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which can distinguish the different meanings of the same number in different positions. NCI
can be viewed as the DSI-Sem with data augmentation techniques.

(v) GENRE [22] retrieves a Wikipedia article by generating its title, specifically designed for
the NQ dataset. Due to the absence of titles or incomplete titles in other datasets, we did not
experiment with GENRE on those datasets.

(vi) SEAL [10] uses arbitrary n-grams in documents as docids and retrieves documents based on
an FM-index during inference.

The GR baselines all optimize indexing (Eq. (1)) and retrieval (Eq. (3)) tasks with MLE, so they can
all be considered pointwise approaches.

4.3 Model variants
We employ some degraded ListGR models to investigate the effect of our proposed mechanisms:

(i) ListGRpListMLE only trains the model using Eq. (19), and omits the re-training stage.
(ii) ListGRListMLE replaces the position-wise loss in ListGRpListMLE with the ListMLE loss (Eq. (8)),

without considering the position information of docids.
(iii) ListGRRetrain first trains the model using indexing and retrieval loss (Eq. (5)) during the

training stage. Then, we perform relevance calibration (Eq. (24)) over the decoded candidate
docid lists during the re-training stage.

(iv) ListGR𝑡𝑜𝑘
𝑝𝐿𝑖𝑠𝑡𝑀𝐿𝐸

first trains the model using Eq. (19), and then re-trains the model with the
token-level relevance calibration (Eq. (21)).

(v) ListGR𝑠𝑒𝑞
𝑝𝐿𝑖𝑠𝑡𝑀𝐿𝐸

first trains the model using Eq. (19), and then re-trains the model with the
sequence-level relevance calibration (Eq. (22)).

(vi) ListGR−𝑎𝑢𝑔 first trains the model (Eq. (19)) without augmented data, and then perform
relevance calibration (Eq. (24)) during the re-training stage.

4.4 Evaluation metrics
For datasets with multi-graded relevance labels, i.e., ClueWeb 200K, Gov 200K, and Robust 200K,
we perform 5-fold cross-validation to prevent overfitting while maintaining an adequate number
of training instances. The topic titles are used as queries, and the queries are randomly divided
into 5 folds. The model parameters are tuned on 4 out of 5 folds, and the remaining fold is used
for evaluation. This process is repeated 5 times, with each fold serving as the evaluation set once.
The final performance is computed by averaging the results from all tested folds. The evaluation
metrics used in this study are normalized discounted cumulative gain (nDCG@𝐾 ) with 𝐾 = {5, 20},
expected reciprocal rank (ERR@20), and precision at rank 20 (P@20), following [13, 32, 66].
For datasets with binary relevance labels, i.e., MS MARCO 100K and NQ320K, we adopt the

evaluation metrics used in the original DSI model [84] and subsequent studies [10, 87, 105]. Specif-
ically, we use mean reciprocal rank (MRR@𝐾) with 𝐾 = {3, 20} and hit ratio (Hits@𝐾) with
𝐾 = {1, 10}. The performance results are reported on the validation set since the MS MARCO and
NQ leaderboards impose restrictions on submission frequency, following [66, 84].
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4.5 Implementation details

Model architecture. Following existing GR works [84, 87, 105], we utilize the T5-base model2
as the backbone for ListGR and the baseline models, for a fair comparison. This particular T5-
base model is equipped with a hidden size of 768, a feed-forward layer size of 12, a total of 12
self-attention heads, and a configuration consisting of 12 transformer layers.
Baseline implementation. For BM25, we use the Pyserini [59] implementation for this baseline.
For DSI-Num and DSI-Sem, we re-implement these baselines since the source code is unavailable.
For other baselines, we use the publicly available source code for experiments.
Docid generation. For the docids used in our work, we leverage semantic structured numbers
[84, 87]. Specifically, we apply the hierarchical 𝑘-means algorithm introduced in [84] over the
document embeddings, which are generated through a 12-layer BERT model with pre-trained
parameters, following [84, 87]. First, we cluster all documents into 10 clusters. Then, we recursively
apply the clustering algorithm for each cluster that consists of more than 100 documents. The result
obtained at each level is used as input for the next level, ensuring a well-organized and manageable
clustering process. Finally, for each document, all category numbers obtained at each level are
concatenated sequentially as its final docid.
Construction of docid lists. In the five datasets there exist multiple docids at the same relevance
grade with respect to a query. During training, we can construct multiple ground-truth docid lists
for the query using permutations. The length of the list is determined by the highest annotated
relevance grade with respect to the query. Docids within the list are arranged in descending order
of relevance grade.
Hyperparameters. Both ListGR and the reproduced baselines are implemented using HuggingFace
transformers 4.16.2. For multi-graded relevance datasets, during the training process, we employ
the Adam optimizer with a linear warm-up strategy that spans the initial 10% of steps. Our chosen
learning rate is set to 6e-5, with a label smoothing factor of 0.01 and a weight decay rate of 0.01.
Furthermore, the sequence length of documents is fixed at 512. For binary relevance datasets, the
hyperparameter settings are as follows: learning rate is 0.001, batch size is 80, and training steps of
100K. We also adopt Adam optimizer with a linear warm-up strategy that spans the initial 200K
steps, label smoothing factor of 0.001, and weight decay rate of 0.02. For all datasets, the maximum
number of training steps is capped at 100K, and a batch size of 80 is utilized. To facilitate the training
of ListGR, we make use of eight NVIDIA Tesla A100 40GB GPUs, ensuring efficient computation
and faster convergence.
Training, re-training and inference. During the training stage, for multi-graded relevance
datasets, we set relevancemargin 𝜆 and docid length penalty𝛼 (Eq. (22)) as 0.001 and 0.6, respectively.
And during the re-training stage, we set 𝛾 used in Eq. (24) to 100, and 𝛽 used in Eq. (21) to 0.002. For
all datasets, to address the limited availability of supervised data, we employ a data augmentation
technique that is widely used in existing GR work [16, 76, 82, 83, 87]. Furthermore, following
[16, 76, 82, 87], we generate a set of pseudo-queries for all documents to construct additional
query-docid pairs for augmentation. Specifically, for MS MARCO 100K, we directly use a publicly
trained DocT5query model3 on the MS MARCO corpus to generate 20 pseudo-queries for each
document. For other datasets, we fine-tune a DocT5query model with labled query-document pairs
for them to generate 20 pseudo-queries for training, based on the code4 provided in [105]. DSI-QG,
NCI, and our ListGR use same pseudo-queries to enhance the training for a fair comparison. During
2https://huggingface.co/t5-base
3https://github.com/castorini/docTTTTTquery
4https://github.com/ArvinZhuang/DSI-QG
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inference, we construct a decimal trie to constrain the model to decode integers with only 20
beams.

5 EXPERIMENTAL RESULTS
In this section, we report and analyze the experimental results to demonstrate the effectiveness of
the proposed ListGR. We target the following research questions:
(RQ1) How does ListGR perform compared with strong retrieval baselines across different relevance

scenarios?
(RQ2) How do the training and re-training stages of ListGR affect the retrieval performance?
(RQ3) How does ListGR perform in low-resource settings?
(RQ4) How does the number of relevance grades affect the retrieval performance during training?
(RQ5) How do the model size and beam size affect the efficiency of retrieval?
(RQ6) Can we better understand how different models perform via some case studies?

5.1 Baseline comparison
To answer RQ1, we compare ListGR with several representative traditional retrieval methods and
some advanced GR methods, in both multi-graded and binary relevance scenarios.

5.1.1 Results on multi-graded relevance. Table 3 shows the performance of ListGR and base-
lines on multi-graded relevance datasets. We analyze the results in three parts.
The performance of traditional retrieval baselines. (i) On the three multi-graded datasets,
the dense retrieval baseline ANCE outperforms DPR, RepBERT, and sparse retrieval baselines.
The reason may be attributed to its ability to learn rich semantic information, and the strategy
of using negative samples that aids in acquiring stronger discriminative capabilities than sparse
retrieval baselines. (ii) RepBERT exhibits slightly lower performance than BM25 on Gov 200K and
Robust 200K, which aligns with findings reported in previous studies [62, 65, 98]. The sub-optimal
performance of RepBERT in learning effective query and document representations might be
primarily attributed to the limited size of the training set available in Gov 200K and Robust 200K.
The performance of generative retrieval baselines. (i) DSI-Sem surpasses the performance
of DSI-Num, while SEAL exhibits even higher performance than DSI-Sem. DSI-Num, DSI-Sem
and SEAL use random integers, semantic structured clustering numbers, and n-grams from the
documents, respectively. The integration of docids with stronger semantic associations to the
document content can significantly enhance the indexing and retrieval effectiveness of GR. This
observation aligns with findings reported in previous studies such as [10, 22, 84]. (ii) DSI-QG
demonstrates superior performance compared to DSI-Num, DSI-Sem, and SEAL, indicating the
advantages gained by employing data augmentation techniques that generate additional query-docid
pairs. (iii) NCI outperforms DSI-QG due to its use of semantic structured numbers and the presence
of the prefix-aware decoder, which effectively distinguishes the meanings of the same numbers in
distinct positions within the clustering numerals. (iv) NCI and DSI-QG perform slightly better than
ANCE, indicating that using pseudo-queries to enhance learning is crucial for GR models. This has
been validated in [76] as well.
The performance of ListGR. By adopting a listwise approach in which lists of docids are used as
“instances” in learning, ListGR achieves significantly better performance than existing generative
retrieval baselines that work in a pointwise manner. Specifically, on the ClueWeb 200K dataset,
ListGR outperforms NCI by 15.8% in terms of nDCG@5. On the Gov 200K dataset, ListGR surpasses
NCI by 7.4% in terms of ERR@20. On the Robust 200K dataset, ListGR surpasses NCI by 6.8% in
terms of nDCG@5. Furthermore, this outcome suggests that the inclusion of additional relevance
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Table 3. Experimental results on datasets with multi-graded relevance. ∗, †, and ‡ indicate statistically
significant improvements over the best performing sparse retrieval baseline SPLADE, dense retrieval baseline
ANCE, and generative retrieval baseline NCI, respectively (𝑝 ≤ 0.05).

nDCG P ERR

Method @5 @20 @20 @20

C
lu
eW

eb
20

0K

BM25 0.2397 0.2568 0.3221 0.2278
DocT5query 0.2542 0.2658 0.3363 0.2328
SPLADE 0.2588 0.2697 0.3371 0.2357
DPR 0.2672 0.2986 0.3568 0.2806
ANCE 0.2694 0.3012 0.3587 0.2815
RepBERT 0.2646 0.2963 0.3520 0.2799
DSI-Num 0.1520 0.1857 0.2182 0.1167
DSI-Sem 0.1905 0.2198 0.2563 0.1747
SEAL 0.2241 0.2355 0.2725 0.1831
DSI-QG 0.2765 0.2862 0.3604 0.2825
NCI 0.2885 0.3058 0.3625 0.2863
ListGR 0.3341∗†‡ 0.3442∗†‡ 0.3704∗†‡ 0.2928∗†‡

G
ov

20
0K

BM25 0.3712 0.3787 0.3379 0.2398
DocT5query 0.3824 0.3913 0.3435 0.2419
SPLADE 0.3873 0.3959 0.3486 0.2476
DPR 0.3864 0.3986 0.3584 0.2496
ANCE 0.3921 0.4092 0.3605 0.2501
RepBERT 0.3328 0.3443 0.3076 0.2288
DSI-Num 0.1525 0.1588 0.1477 0.1360
DSI-Sem 0.1780 0.1469 0.1516 0.1444
SEAL 0.2283 0.2053 0.1952 0.1675
DSI-QG 0.3941 0.4087 0.3635 0.2547
NCI 0.3986 0.4161 0.3733 0.2629
ListGR 0.4153∗†‡ 0.4368∗†‡ 0.3978∗†‡ 0.2824∗†‡

R
ob

us
t2

00
K

BM25 0.3743 0.3587 0.3456 0.2283
DocT5query 0.3803 0.3617 0.3549 0.2314
SPLADE 0.3896 0.3685 0.3573 0.2352
DPR 0.3917 0.3693 0.3588 0.2371
ANCE 0.3952 0.3701 0.3592 0.2393
RepBERT 0.3608 0.3374 0.3244 0.2097
DSI-Num 0.1649 0.1574 0.1311 0.1205
DSI-Sem 0.1887 0.1765 0.1508 0.1566
SEAL 0.2209 0.2093 0.1831 0.1769
DSI-QG 0.3979 0.3723 0.3615 0.2401
NCI 0.4012 0.3765 0.3678 0.2435
ListGR 0.4284∗†‡ 0.3919∗†‡ 0.3727∗† 0.2592∗†‡

levels within the annotated data, such as ClueWeb 200K, yields substantial benefits for ListGR.
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Table 4. Experimental results on datasets with binary relevance. ∗, † and ‡ indicate statistically significant
improvements over the best performing sparse retrieval baseline SPLADE, dense retrieval baseline ANCE, and
generative retrieval baseline NCI, respectively (𝑝 ≤ 0.05).

Methods

MS MARCO 100K NQ320K

MRR Hits MRR Hits

@3 @20 @1 @10 @3 @20 @1 @10

BM25 0.3884 0.4157 0.4912 0.5572 0.2849 0.4426 0.2927 0.6015
DocT5query 0.4053 0.4376 0.5029 0.5741 0.3641 0.4825 0.3913 0.6972
SPLADE 0.4164 0.4454 0.5095 0.5813 0.4467 0.7036 0.4982 0.7835

DPR 0.4212 0.4598 0.5214 0.6124 0.4792 0.7583 0.5024 0.8042
ANCE 0.4235 0.4601 0.5327 0.6267 0.4821 0.7622 0.5183 0.8149
RepBERT 0.4202 0.4571 0.5183 0.6052 0.4589 0.7154 0.4835 0.7981

DSI-Num 0.1348 0.1353 0.1264 0.1218 0.1815 0.3785 0.2214 0.4184
DSI-Sem 0.2278 0.2209 0.2123 0.2714 0.2198 0.4248 0.2793 0.5763
GENRE – – – – 0.3543 0.6218 0.3942 0.7061
SEAL 0.3299 0.3771 0.3721 0.5397 0.3672 0.6398 0.4173 0.7289
DSI-QG 0.4276 0.4524 0.5273 0.6285 0.5834 0.7592 0.6349 0.8236
NCI 0.4359 0.4638 0.5362 0.6396 0.5952 0.7641 0.6425 0.8332

ListGR 0.4656∗†‡ 0.4901∗†‡ 0.5576∗†‡ 0.6471∗†‡ 0.6019∗†‡ 0.7723∗†‡ 0.6593∗†‡ 0.8412∗†‡

By incorporating more comprehensive relevance information, ListGR can effectively learn and
accurately assess the relevance order among the docid list.

5.1.2 Results on binary relevance. For the binary relevance datasets, where the positional
weight (𝛼 (𝑖) = 2𝑛−𝑖 − 1) of relevant docids is zero, the training stage only utilizes the indexing and
retrieval loss (Eq. (5)). Based on this, the trained model undergoes relevance calibration. Table 4
shows the performance of ListGR and baselines on binary relevance datasets. We observe the
following: (i) The three dense retrieval baselines outperform sparse retrieval baselines. This could
be attributed to the availability of abundant labeled query-document pairs in these two datasets. It
helps dense models learn dense representations and captures the semantic relationship between
queries and documents. (ii) DSI-Num and DSI-Sem perform worse than dense retrieval baselines,
e.g., RepBERT, DPR and ANCE on both binary relevance datasets. This suggests that learning both
indexing and retrieval tasks simultaneously through these two types of docids and MLE is still
challenging. (iii) SEAL shows better performance than vanilla DSI methods, i.e., DSI-Num and
DSI-Sem. The reason might be that SEAL uses n-grams from the documents as docids. This type of
docid contains more explicit semantics, which helps the model learn better than numeric docids.
(iv) Moreover, both DSI-QG and NCI outperform SEAL, DSI-Num and DSI-Sem, indicating that
data augmentation methods, such as transforming documents into pseudo-queries for learning,
contribute significantly to the improvement. (v) ListGR outperforms the best-performing GR
baseline, NCI, on both binary relevance datasets. Specifically, ListGR achieves improvements of
6.8% in terms of MMR@3 on MS MARCO 100K. This indicates that relevance calibration has the
ability to correct inappropriate ordering of docid lists generated by beam search decoding.

5.2 Ablation study
In this section, to answer RQ2, we conduct an ablation analysis on three multi-graded relevance
datasets to quantitatively assess the impact of each component in ListGR; see Table 5. For the
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Table 5. Ablation analysis of ListGR with its variants on multi-graded relevance datasets. ∗ indicates statisti-
cally significant improvements over all the corresponding variants (𝑝 ≤ 0.05).

nDCG P ERR

Method @5 @20 @20 @20
C
lu
eW

eb
20

0K

ListGRpListMLE 0.3087 0.3205 0.3618 0.2887
ListGRListMLE 0.2947 0.3114 0.3609 0.2874
ListGRRetrain 0.2961 0.3156 0.3686 0.2881
ListGR𝑡𝑜𝑘

𝑝𝐿𝑖𝑠𝑡𝑀𝐿𝐸
0.3224 0.3302 0.3641 0.2894

ListGR𝑠𝑒𝑞
𝑝𝐿𝑖𝑠𝑡𝑀𝐿𝐸

0.3252 0.3331 0.3668 0.2908
ListGR−𝑎𝑢𝑔 0.2713 0.2811 0.3509 0.2746

ListGR 0.3341† 0.3442† 0.3704 0.2928

G
ov

20
0K

ListGRpListMLE 0.3998 0.4214 0.3842 0.2765
ListGRListMLE 0.3991 0.4185 0.3787 0.2685
ListGRRetrain 0.3995 0.4192 0.3818 0.2716
ListGR𝑡𝑜𝑘

𝑝𝐿𝑖𝑠𝑡𝑀𝐿𝐸
0.4062 0.4256 0.3871 0.2782

ListGR𝑠𝑒𝑞
𝑝𝐿𝑖𝑠𝑡𝑀𝐿𝐸

0.4094 0.4288 0.3919 0.2809
ListGR−𝑎𝑢𝑔 0.3551 0.3731 0.3036 0.2204

ListGR 0.4153 0.4368† 0.3978 0.2824

R
ob

us
t2

00
K

ListGRpListMLE 0.4074 0.3798 0.3694 0.2483
ListGRListMLE 0.4057 0.3778 0.3685 0.2456
ListGRRetrain 0.4068 0.3783 0.3689 0.2471
ListGR𝑡𝑜𝑘

𝑝𝐿𝑖𝑠𝑡𝑀𝐿𝐸
0.4145 0.3826 0.3697 0.2498

ListGR𝑠𝑒𝑞
𝑝𝐿𝑖𝑠𝑡𝑀𝐿𝐸

0.4193 0.3851 0.3705 0.2559
ListGR−𝑎𝑢𝑔 0.3528 0.3026 0.2971 0.2066

ListGR 0.4284† 0.3919† 0.3727 0.2592

binary relevance datasets, the training stage lacks listwise loss, so that ListGR and ListGRRetrain
are the same in this setting; therefore, we did not analyze the performance on binary relevance
datasets in this context. We have the following observations:
Listwise loss. (i) ListGRRetrain, only using the re-training stage leads to significantly lower perfor-
mance than ListGR. Additionally, in the training stage, ListGRpListMLE and ListGRListMLE combining
a listwise loss with an indexing and retrieval loss improves the retrieval performance over NCI
(in Table 3). These results indicate that modeling the ranked docid list explicitly is crucial for
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Fig. 3. Training with limited supervision data. The x-axis indicates the number of training queries.

better retrieval performance, as using MLE alone does not capture the relationships between do-
cids. (ii) ListGRpListMLE performs better than ListGRListMLE , highlighting the importance of position
weights in ranking, aligning with the observations in [48]. (iii) ListGR−𝑎𝑢𝑔 significantly outperforms
SEAL (in Table 3). It demonstrates that our listwise approach, even without data augmentation, can
assist the GR model in learning stronger discriminative abilitty for relevance.
Relevance calibration. (i) By removing relevance calibration, ListGRpListMLE and ListGRListMLE
have a significant drop in performance compared to ListGR. This suggests that beam search
decoding has an impact on the inference effectiveness of GR. (ii) Additionally, both ListGR𝑡𝑜𝑘

𝑝𝐿𝑖𝑠𝑡𝑀𝐿𝐸

and ListGR𝑠𝑒𝑞
𝑝𝐿𝑖𝑠𝑡𝑀𝐿𝐸

, built upon ListGRpListMLE , show improved performance. This indicates that
further relevance calibration to candidate docids is essential. (iii) Furthermore, we observe that the
performance of ListGR𝑡𝑜𝑘

𝑝𝐿𝑖𝑠𝑡𝑀𝐿𝐸
and ListGR𝑠𝑒𝑞

𝑝𝐿𝑖𝑠𝑡𝑀𝐿𝐸
is similar, suggesting that both sequence-level

and token-level relevance calibration are crucial for the GR model. These results demonstrate that
adjusting the generation probabilities of docids in the candidate docid list generated by the trained
model contributes to generating more accurate ranking positions in the list.

5.3 Low-resource settings
In this section, to answer RQ3, during training, we simulate a low-resource retrieval scenario by
randomly sampling a fixed and limited number of queries from the training set. More specifically,
for the purpose of comparing ListGR and NCI, we randomly sample 15, 30, 45, and 60 queries from
the ClueWeb 200K, Gov 200K, and Robust 200K datasets. For the MS MARCO 100K and NQ320K
datasets, we randomly sample 2K, 4K, 6K, and 8K queries.
Based on Figure 3, we observe the following: (i) On multi-graded relevance datasets, ListGR

outperforms NCI, which suggests that ListGR is capable of modeling the relevance of docid lists
using limited information. (ii) Similarly, on binary relevance datasets, ListGR achieves better
performance than NCI, indicating that the relevance calibration stage can further enhance the
model’s ability to recognize the relevance order of docids within the list, even under the pointwise
training objective. (iii) ListGR exhibits superior performance compared to a strong BM25 baseline on
most datasets. For example, on the ClueWeb 200K dataset, ListGR achieves comparable performance
with 58 queries in terms of nDCG@20, while on the MS MARCO 100K dataset, ListGR performs
well with only 8% queries, i.e., 7.8K queries in terms of MRR@20.

5.4 Analysis of the relevance grades
To answer RQ4, we conduct an analysis by controlling the number of relevance grades employed
in the listwise loss during the training phase. This investigation assesses the influence of different
numbers of relevance grades on the performance of ListGR.
Specifically, we conduct experiments on the ClueWeb 200K dataset using three, two, and one

relevance grades in Eq. (17), respectively. For the case of using two relevance grades, we further
divide it into three scenarios: using 2- and 3-grades, using 1- and 3-grades, and using 1- and 2-grades
for training. Using only one relevance grade data is equivalent to training with MLE alone (Eq. (5)),

ACM Trans. Inf. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2024.



1:20 Tang et al.
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Fig. 4. During the training stage, different numbers of relevance grades in the ClueWeb 200K dataset are
used in the listwise loss (Eq. (17)). The x-axis represents the number of relevance grades used, indicated in
parentheses as the combination of the relevance grades or the corresponding model names.

which has the same effect as ListGRRetrain. During testing, we uniformly use the original testing set
consistently across all the aforementioned scenarios.
Based on Figure 4, we observe the following: (i) On the same dataset, increasing the number

of relevance grades used in the listwise loss (Eq. (17)) during the training stage leads to better
performance. For example, using three relevance grades (blue bar) yields a higher nDCG@20 value
than using two (green bars) or one (orange bar) relevance grades only. This could be because
providing more relevance labels allows the model to learn more comprehensive and fine-grained
differences in relevance. (ii) Among the scenarios using two relevance levels, incorporating 3-graded
data results in better performance. For instance, both scenarios using 2- and 3-grades, and using 1-
and 3-grades have higher nDCG@20 values than the scenario using 1- and 2-grades. This suggests
that docids with higher relevance grades may carry more importance in the list, and learning these
docids contributes to better docid list generation.

5.5 Efficiency analysis
To answer RQ5, we analyze the efficiency using an NVIDIA A100-40GB GPU. It is important to
note that the inference speed of ListGR is influenced by two factors: model capacity and beam
size. In order to provide comprehensive insights, following [87], we have included the latency
and throughput measures for various settings in Table 6. Specifically, latency refers to the time it
takes for a retrieval model to process a query. And throughput represents the speed at which a
retrieval model can process a certain number of queries within a second. Based on the ClueWeb
200K dataset, for latency, we randomly sampled multiple batches of queries, measured the total
time for inference, and then divided it by the number of queries to obtain latency. For throughput,
we also randomly sampled multiple batches of queries, measured the average number of queries
inferenced in 1 second, and obtained the throughput.
In terms of latency and throughput, ListGR demonstrates promising performance for certain near-
real-time applications. The latency of ListGR is comparable to that of DSI [84] when using the same
model size and beam size, as both approaches employ beam search with transformer decoders.
Similar phenomena is observed in [87]. BM25 has higher retrieval efficiency, but due to a lack of
semantic matching, its retrieval performance is lower. RepBERT has lower efficiency because it
performs brute-force search based on dense vectors, making it more time-consuming.
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Table 6. Efficiency analysis. According to two important factors, namely model size and beam size, ListGR
demonstrates encouraging performance in terms of latency and throughput.

Model size Beam size Latency (ms) Throughput (queries/s)

Small 10 76.38 59.73
Base 10 112.56 54.28
Large 10 180.64 45.53
Small 100 218.25 7.81
Base 100 264.07 5.32
Large 100 357.81 4.16

Table 7. An example from the ClueWeb 200K dataset, given the query “horse hooves,” which has relevant
docids with three different grades, ListGR and NCI return the top-5 beams. We also present the corresponding
topics and relevance labels of these predicted docids.

ListGR NCI

#Rank Docid Topic Label Docid Topic Label

1 95573 Taking Care Of Horse’s Hooves 3 716310 Horse Care Products 1
2 582003 The Barefoot Horse 2 777805 Horse Information 1
3 729007 Steel Horseshoes 2 729007 Steel Horseshoes 2
4 729707 All About Horses 2 729707 All About Horses 2
5 716310 Horse Care Products 1 777711 Pap test 0

5.6 Case study
To answer RQ6, we perform case studies from two perspectives. First, we scrutinize the docid lists
generated by various methods for a given query. Second, we employ visualization techniques to
assess the representations of the query and its candidate documents.
Textual analysis. We take a sample from the test set of ClueWeb 200K and compare the top-5
docid lists predicted by ListGR and NCI. Since both models use semantic structured numbers as
docids, we also summarize the topics of the corresponding documents for better understanding and
analysis of the differences; see Table 7. Given the query “horse hooves” (QID: 51), docids predicted
by ListGR align with their respective relevance labels. However, NCI fails to predict any docids
with a relevance level of 3 and struggles to distinguish the relative order of docids with relevance
levels 2 and 1. This indicates that the objective of modeling the docid list in ListGR contributes to
generating accurate and high-quality docid lists in GR.

Fig. 5. t-SNE plots of query and document representations for ListGR and NCI. The representations are the
output of the encoder of ListGR and NCI.
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Visual analysis. To deepen our understanding of ListGR, we employ t-SNE [85] for visualizing
the distributions of query and document representations in the semantic space. Expanding on
the previous query sample, we create a t-SNE plot to compare the representations of the sampled
query and its top-100 candidate documents generated by the encoder output of ListGR and the
best-performing GR baseline, NCI [87].
As shown in Figure 5, for ListGR, documents with higher relevance levels are closer to the

query, while irrelevant documents are located far away. In the case of NCI, 1-grade relevant
documents are closest to the query, while 2- and 3-grade relevant documents are much further
away. This demonstrates that ListGR has the ability to differentiate the relevance of docids in a
more fine-grained manner in the docid list.

6 RELATEDWORK
In this section, we review related work, including the traditional document retrieval, pre-trained
language models, and generative retrieval.

6.1 Traditional document retrieval
Document retrieval has traditionally followed an “index-retrieve” paradigm, where documents are
indexed and then retrieved based on a query. This paradigm has resulted in two main approaches
to document retrieval, namely sparse retrieval and dense retrieval.

6.1.1 Sparse retrieval. Sparse retrieval methods represent queries and documents using sparse
vectors. These methods rely on exact matching to compute similarity scores between queries and
documents. In sparse retrieval, the focus is on identifying the presence or absence of specific
query terms within documents. Two typical methods in this category are BM25 [79] and the query
likelihood model [50]. BM25 takes into account factors such as document length, term frequency,
and inverse document frequency to rank documents based on the occurrence of query terms
within each document. The query likelihood model [50], on the other hand, leverages a generative
model and estimates the probability of generating the query terms given a document. Documents
are then ranked based on their likelihood of generating the query. However, these approaches
solely consider statistical information and do not incorporate semantic information. To overcome
this limitation, several studies [5–7, 20, 28, 104] have utilized word embeddings to reweight the
importance of terms. For example, HDCT [21] focuses on long documents. It first utilizes BERT
to generate contextual term representations, which are then used to estimate passage-level term
weights. Subsequently, these passage-level term weights are aggregated using a weighted sum to
obtain document-level term weights. DeepTR [104] constructs a feature vector for query terms and
employs a regression model to map these feature vectors to the ground truth weights of terms.
Limitations. Sparse retrieval methods offer computational efficiency due to their reliance on
exact matching. They are particularly useful in large-scale retrieval scenarios where the number
of documents is substantial. However, these methods often lack the ability to capture semantic
relationships and contextual information between query terms and documents, which can limit
their retrieval performance.

6.1.2 Dense retrieval. Unlike sparse retrieval methods that rely on exact matching, which
gives rise to the vocabulary mismatch problem [29, 102] dense retrieval focuses on capturing
semantic relationships and contextual information [35, 63, 92, 97, 99]. It represents both queries
and documents as continuous, dense vectors in a high-dimensional semantic space, to calculate
similarity, i.e., using the dot product or cosine similarity as the relevance score.
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To enhance the efficiency of dense retrieval, approximate nearest neighbor search methods
[4, 9] are employed. These methods accelerate the retrieval process by finding approximate nearest
neighbors instead of exact matches. In addition, numerous pre-trained models and techniques
have been leveraged to further improve the performance of dense retrieval [1, 12, 33, 42, 53, 71].
For instance, DC-BERT [71] employs dual BERT encoders. In the lower layers, an online BERT
encoder is responsible for encoding the query once, while an offline BERT encoder pre-encodes
all the documents and stores their term representations in a cache. The obtained contextual term
representations are fed into high-layer transformer interaction, initialized by the last few layers
of the pre-trained BERT. These approaches take advantage of pre-trained models and advanced
techniques to enhance the quality of dense retrieval and can capture more nuanced and subtle
semantic relationships between words and phrases in queries and documents, which are often
challenging for sparse retrieval methods. To enhance performance, the ranking module is also
often leverages [97] . In this work, we focus only on the “index-retrieve” stage, leaving ranking
enhancement for future work. To improve efficiency, approximate nearest neighbor algorithms
[30, 39, 93] and various sampling methods [35, 94] have been proposed.
Limitations.Despite the promising performance of the “index-retrieve” paradigm in dense retrieval,
there are limitations that need to be addressed: (i) During training, a query encoder and a document
encoder are utilized to generate representations for the query and the document, respectively.
However, the independence of these encoders restricts the depth of interactions between the
representations, thus posing a risk of missing information. Furthermore, the discrete modules in
the system cannot be optimized in an end-to-end manner, resulting in sub-optimal performance.
(ii) During inference, the query is required to search for relevant documents across the entire corpus.
Although efficiency-enhancing strategies are available, such as approximate nearest neighbor search,
these methods may sacrifice some semantic information in the process. These limitations highlight
the need for further advancements to explore more efficient methods that can retain important
semantic information during the retrieval process.

6.2 Pre-trained language models
Pre-trained models have revolutionized natural language processing tasks by leveraging large-scale
unsupervised training on vast amounts of text data, with pre-training and fine-tuning techniques
[1, 3, 24, 37, 43, 44, 49, 56, 88, 89]. Usually, these models are trained to learn contextualized represen-
tations of words, sentences, or documents, which capture rich semantic and syntactic information.
Pre-trained models can be broadly classified into two categories, namely discriminative models
and generative models.

6.2.1 Discriminative pre-trained models. Discriminative pre-trained models are primarily
designed for tasks that involve classification, regression, or any other form of prediction. Examples
of discriminative models include BERT [23], RoBERTa [61], and SpanBERT [40]. Further, they
are widely used in IR, for example, BERT is used to re-weight term weights [20, 21, 104] in spare
retrieval. Furthermore, dual BERT architectures are used to learn dense query and document
representations to support fine-grained semantic interaction [1, 33, 42, 53, 71] in dense retrieval.
To bridge the gap between general pre-trained language models and downstream retrieval tasks,
some studies [54, 66–68, 92] have proposed specialized pre-training tasks for the retrieval.

6.2.2 Generative pre-trained models. In addition to discriminative pre-trained models, there
has been a growing focus on generative pre-trainedmodels and techniques [2, 36, 47, 60, 77, 100, 101]
for text generation. Generative models typically use autoregressive modeling techniques, such as
language modeling, where they predict the next word or token in a sequence based on the previous
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context. Examples of generative models include GPT [74], BART [55], T5 [77]. They have also been
researched and applied in IR, for example, T5 is utilized to generate queries for a document. These
synthetic queries are then appended to the original documents, creating an “expanded document”
to enhance document retrieval [73]. And in [72], given a document, the conditional likelihood of
generating queries using GPT serves as the relevance score, which is used for ranking. And dos
Santos et al. [25] propose that, given a query and document, T5 concatenates them as input and
produces either a “True” or “False” token as output; if the query is relevant to the document, it
outputs “True” and proceeds to calculate the generation probability as the relevance score; if the
query is irrelevant, it outputs “False”.
Limitations.While these explorations with generative models have shown some improvements
in information retrieval, some work still revolve around matching queries with documents. This
method faces limitations when it comes to dealing with a substantial volume of documents, and it
incurs a high computational burden.

6.3 Generative retrieval
In order to further develop the capabilities of generative models, a new retrieval paradigm based
on generative models has been proposed, called generative retrieval (GR) [69]. GR aims to directly
generate relevant docids for a qiven query. GR methods parameterize the corpus information,
by replacing the traditional external index by a training process that learns the mapping from
documents to their corresponding document identifiers (docids). Building upon this framework,
researchers have proposed various approaches [10, 14, 15, 22, 52, 57, 78, 82, 84, 87, 96]. GR needs to
learn a Seq2Seq model that address two key tasks simultaneously, namely indexing and retrieval.

6.3.1 Indexing task. In GR this task is aimed at establishing associations between documents
and docids. For the document identifiers, in addition to the two primary approaches described in
Section 2 – arbitrary unique integers and structured semantic numbers –, there are other types of
identifiers. Document titles have garnered considerable attention as they possess inherent semantic
relevance [15]. However, methods that use document titles heavily rely on the availability of specific
document metadata, limiting their applicability. To address this limitation, some approaches have
explored using all n-grams within a passage as its docid [10]. Moreover, the utilization of pseudo-
queries generated from the documents as docids has shown significant improvements in retrieval
performance [83]. This is because such docids can represent key information about the documents
to some extent. Ren et al. [78] leverage tokenized URLs as docids, which may contain key phrases
of documents. To provide a more comprehensive representation of the document’s information, Li
et al. [57] use multiple docids to represent a single document.

To encode the entire corpus, existing approaches primarily employ a Seq2Seq framework, where
the original document is taken as input, and the corresponding docid is generated as the output. In
this way, the index is embedded within the model parameters, and indexing becomes an integral
part of the model training process. Building on [84], we adopt a straightforward input-to-target
approach, explicitly associating document tokens with their corresponding docids.

6.3.2 Retrieval task. In GR this task focuses on mapping queries to relevant docids. Current GR
models typically employ a teacher forcing approach [34, 58, 90], maximizing the likelihood of the
output sequence conditioned on the input query. If a query has multiple relevant docids, it learns
multiple query-docid pairs.
Building upon this blueprint, the first exploration of the GR paradigm was undertaken by

GENRE [22]. GENRE utilized the unique titles of Wikipedia articles as document identifiers and
employed the BART model [55] to directly generate a list of relevant article titles for a given query
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using constrained beam search, with a prefix tree of all article titles. This method surpassed some
traditional pipelined approaches across various tasks based on Wikipedia. Subsequent research
efforts [10, 15, 84, 87, 105] have continued to investigate and enhance the GR paradigm. For example,
Zeng et al. [96] design a multi-stage training strategy to generalize GR frommoderate-scale datasets
[46] to large-scale datasets [70].
Advantages. The GR paradigm offers several advantages: (i) It enables end-to-end optimization,
allowing the model to be trained towards the global objective. This means that the entire retrieval
process, including both document representation and ranking, can be optimized jointly. (ii) During
inference, given a query, the generative model generates docids based on a small-sized vocabulary
with beam search. This approach improves retrieval efficiency by eliminating the need for a heavy
traditional index, where all documents in the corpus need to be matched against the query for
dense retrieval methods.
Limitations. There are several limitations to the GR paradigm. For example, existing work opti-
mizes the model with query-docid pairs by straightforward MLE, which only supports finding the
most relevant docids. For queries with multiple relevant docids with multiple relevance grades, the
relative order of these relevant docids in the ranked list is randomized, resulting in sub-optimal
overall relevance of the ranked list. In this work, we optimize the ranked docid list in a listwise
manner and calibrate the generation probabilities of docids within the ranked docid list generated
by a beam search-based strategy. To the best of our knowledge, this work is the first attempt to
perform listwise optimization in GR.

7 CONCLUSION AND FUTUREWORK
In this paper, to better align with practical retrieval needs of generating a ranked list of results in
response to a query, we propose to directly model ranked docid lists in generative retrieval, so that
docid lists instead of invididual docids are used as instances in learning. Inspired by position-aware
ListMLE in LTR, and considering the characteristics of GR, we maximize the 𝑖-th conditional
likelihood of a Plackett-Luce model given the top 𝑖 − 1 docids. Furthermore, to address the issue of
beam search decoding in GR, we design relevance calibration to optimize the order of docids in the
list. By conducting comprehensive experiments, we have substantiated that our approach exhibits
superior effectiveness compared to existing GR methods.

ListGR has several limitations that give rise to interesting lines of future work:
(i) This work represents our initial exploration of listwise GR, and there are many other listwise

approaches [11, 91] in the LTR literature. In the future, we will continue to explore and
optimize this work from multiple perspectives. For example, we will investigate how to
design position weights in the loss function from a theoretical perspective to make it more
suitable for specific use cases. Additionally, we may generate the entire list using a single
beam instead of multiple beams, in order to alleviate the impact of beam search decoding on
performance.

(ii) In this study, we did not extensively address the design of docids. It is worth noting that the
choice of docids can significantly impact both the learning process and retrieval effectiveness.
Similar to most existing GR approaches, we assumed that docids are unrelated to the retrieval
model and did not optimize them. It is desirable to incorporate the generation and optimization
of docids into the model optimization process, allowing for joint learning of docids that are
well-suited for GR.

(iii) The paper emphasizes modeling relevance at the list level but acknowledges that relevance
should not be the sole focus [81]. LM-based search systems prioritize technology over user-
centric aspects, necessitating further development in user interaction and personalization
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modules. Addressing bias and ensuring controllable and trustworthy search systems are also
important topics, along with traceability and interpretability of retrieval structures.

REPRODUCIBILITY
To facilitate reproducibility in this paper, we have only used open datasets. Detailed experimental
results and settings are available at https://github.com/lightningtyb/ListGR.
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