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Abstract
Knowing which features of a multivariate time
series to measure and at what time is a key task in
medicine, wearables, and robotics. Better acqui-
sition policies can reduce costs while maintain-
ing or even improving the performance of down-
stream predictors. Inspired by the maximization
of conditional mutual information, we propose an
approach to train acquirers end-to-end using only
the downstream loss. We show that our method
outperforms random acquisition policy, is close to
the performance of a model with an unrestrained
budget, but can’t match a static acquisition strat-
egy (likely due to the simplicity of its architec-
ture). We highlight the assumptions and outline
avenues for future work.

1. Introduction
In the medical setting, clinicians often need to monitor pa-
tients over time during their hospital stay, especially in
Intensive Care Units (ICUs; Hyland et al., 2020). They
try to improve the patient’s state by administering drugs
while relying on continuous measurements of vital signs
(e.g., heart rate) and occasional lab tests (e.g., blood test,
X-ray). While the continuous measurements are automatic
and practically free, performing lab tests takes the clinical
staff’s time and incurs additional costs. We aim to develop
a method for recommending which lab tests to perform, in
order to best monitor the patient’s state, while decreasing
workload and costs.

More formally, the hospital stay of a patient i can be repre-
sented as a multivariate (or even multi-modal) time series
xxxi = {xi

t,f} with the features f at time t being the values
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of either vital signs, lab tests, or administered drugs. Usu-
ally, these data are used for time series classification (e.g.,
predict hospital readmission in the next five years, based on
the entire stay) (Hyland et al., 2020), early event prediction
(e.g., at each moment of the stay, predict kidney failure in
the next 8 hours) (Yèche et al., 2023; Kuznetsova et al.,
2023), or intervention recommendation (Liu et al., 2020).

We consider the dynamic feature acquisition (DFA) task
— based on the observed patient state {xi

t,f}t≤τ at time
τ , recommend which feature(s) f should be measured at
some future time τ ′ at known cost cτ,f (see Figure 1). The
aim is to reduce the total measurement cost

∑
t,f ct,f while

keeping the performance of the downstream predictor the
same or even improving it.

Note that DFA is also relevant for other application domains.
For example, in wearable devices, activating sensors con-
sumes battery power. Consequently, DFA can improve the
battery life of these devices (Possas et al., 2018; Merrill
et al., 2023). Similarly, DFA applies to active perception
(Bajcsy et al., 2018) and computationally efficient video
classification (Yang et al., 2022) problems.
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Figure 1. Sketch of DFA on a regular time series in medicine2.

While dynamic feature acquisition has been considered for
static data (Ma et al., 2019; Covert et al., 2023; Yu et al.,
2023), to the best of our knowledge, there is only one pre-
vious work that considered it on time series (Kossen et al.,
2023). Unlike Kossen et al. (2023), we do not use reinforce-
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ment learning. Instead, we greedily select the next features
using conditional mutual information (CMI; Covert et al.,
2023). This allows for end-to-end training, using only the
loss from the downstream task. Additionally, our method
is recurrent, allowing for clinically relevant downstream
tasks, including time series classification and early event
prediction.

Our contributions are:

• We propose a novel CMI-based approach for dynamic
feature acquisition. It is compatible with clinically-
relevant downstream prediction tasks, does not use
reinforcement learning, and can be trained end-to-end.

• We test on benchmark time series classification datasets
with fake features and show that our method outper-
forms random, but falls short behind static selection
methods.

2. Problem Setting
Let us assume that the time series are regular, indexed with
t ∈ {0, . . . , T i}, where T i is the length of the series xxxi.
We consider the case when an acquisition recommendation
is made for features that will become available at the next
time step (“next-step” assumption): τ ′ = τ + 1. This is the
case when the time it takes to measure requested features
is smaller than the time step. Both the regularity and the
“next-step” assumptions are plausible for ICU when a bigger
resolution (e.g., one hour) is chosen (Hyland et al., 2020).

For simplicity, we assume that the measurement cost is con-
stant over time and features: ∀t, f ↪→ ct,f =: c. Without
loss of generality, we set c = 1. Similarly to Kossen et al.
(2023), we assume that the data are fully observed. Both
of these assumptions do not hold for medical data, and we
leave generalization to future work.

The cost of performed acquisitions should be below a given
budget. For static data, it is enough to know a budget per
sample, but for time series, we could also consider a budget
per time step b(xxxt, t). In a general setting, the budget per
time step should be predicted by the acquirer. In our experi-
ments, we consider a simplified setting, where the time step
budget is constant and given a priori: b(xxxt, t) = b.

The acquisition and prediction cycle under these assump-
tions is shown in Figure 1 and Algorithm 1.

Here, the acquirer is a model that outputs the acquisition
vector mmmτ at each time step τ . It is a binary vector with
ones indicating which features should be acquired at the

2Icons: Rockicon, Dilich, Lorc, CC BY 3.0
https://creativecommons.org/licenses/by/3.0, via Wikimedia
Commons.

Algorithm 1 Next-step DFA on regular time series

Input: time series xxx of length T , time step budget func-
tion b, acquirer, classifier
t = 0
mmm0 = acquirer.init() // initial acquisition request
while t < T do
xxx′
t =mmmt · xxxt // measure requested features

classifier.step(xxx′
t,mmmt, t)

mmmt+1 = acquirer.step (xxx′
t,mmmt, b(xxxt, t), t)

t = t+ 1
end while
ypred = classifier.predict() // make the prediction
C =

∑T
t=0mmmt // calculate the cost

next time step τ + 1. Since the data are fully observed, we
imitate the measurement procedure with an element-wise
product. The measured data are then passed to the classifier.

If the classifier receives new data at each time step, it can
be used for both time series classification and early event
prediction. Note that this does not limit the architecture of
the classifier to only recurrent models. Indeed, the classifier
may store the values of the features it receives and then
apply any architecture that is suitable for variable-length
data (e.g., a transformer from Vaswani et al. (2017)).

Note that the acquirer and classifier may have access to each
other’s internal state. For example, if they are implemented
with recurrent neural networks, they could receive each
other’s hidden states as input. We do not specify this in
Algorithm 1 to avoid notation clutter. From this point on,
for simplicity, we consider only classification objectives.

3. Method
DFA usually follows one of two approaches: use the cost
estimate as a penalty function to train the acquisition model
using reinforcement learning (Kossen et al., 2023; Yu et al.,
2023), or use some acquisition function to rank and select
the most meaningful features (Ma et al., 2019; Covert et al.,
2023). The latter approach often uses CMI. Estimating CMI
directly (e.g., using a partial variational autoencoder) can
be challenging (Ma et al., 2019), so instead, CMI can be
approximated (Covert et al., 2023).

In Covert et al. (2023), the authors use a neural network and
Categorical distribution to sequentially predict the feature
with the largest CMI, and perform (greedy) selection on
static data.

Similarly, we use the acquirer neural network to predict
logits of the approximate CMI at each time step of the
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Figure 2. Proposed acquisition + classification mechanism.

time series (see Figure 2). We then iteratively (until the
budget b is reached) sample a one-hot vector indicating
the selected feature using the Gumbel-Softmax (GS; Jang
et al., 2016). To avoid selecting the same feature twice,
we subtract a penalty vector from the acquirer prediction.
Further details are available in Appendix B.1. This approach
is differentiable and therefore can be trained end-to-end with
the classifier using backpropagation.

4. Experiments
4.1. Setup

We test the proposed method on the FordA and SpokenAra-
bicDigits datasets from the UCR and UEA time series clas-
sification archives (Dau et al., 2018; Bagnall et al., 2018).
The datasets’ summary and samples are shown in Table A.1
and Figure A.1.

For both datasets, we consider balanced classification tasks
(binary and multiclass respectively) and use accuracy as the
performance metric. By default, no features are considered
observed; they all have to be explicitly acquired.

The FordA dataset is univariate, so, to imitate a multivariate
dataset, we take m = 10 consecutive time steps from FordA
and set them as one time step with m features of a new m-
FordA dataset (short for multivariate or multi-step FordA).
In contrast, SpokenArabicDigits is multivariate and variable
length by design.

We use a much simpler training procedure compared to
Covert et al. (2023): the temperature in the Gumbel distri-
bution is fixed, and we do not pre-train the classifiers.

We implement the acquirer using a fully connected neural
network, concatenating the previous observation, acquisi-
tion mask, and current time step into one vector. Note that
we do not pass the internal classifier state to the acquirer.
The classifiers are implemented using long short-term mem-
ory networks (LSTMs; Hochreiter & Schmidhuber, 1997).

We train using the Adam optimizer (Kingma & Ba, 2014)
with cross-entropy loss in PyTorch (Paszke et al., 2017). Ad-
ditionally, we use scikit-learn for generating samples from
a Gaussian process and training a random forest (Pedregosa
et al., 2011).

4.2. Fake features

The features in the datasets we consider are quite similar
(e.g., the same univariate feature for FordA, and different
audio frequencies measured by the same device in Spoke-
nArabicDigits). Therefore, due to correlations, it might be
hard to tell whether a specific feature is more informative
than another.

In order to reliably test whether our model learns to dy-
namically acquire reasonable features, we add fake features
(see Figure 3a). Since the added features do not hold any
information about the class label, a proper acquisition policy
will ignore them.

Time

Real 
features

Fake 
features

(a) Normal

Time

Real 
features

Fake 
features

(b) Shifted

Figure 3. Addition of fake features to the data.

We try three different variations of fake features: zeros,
Gaussian noise (with 0 mean and 0.5 standard deviation),
and samples from a Gaussian process (GP) with an RBF
kernel (amplitude coefficient 0.5, length scale 1.5, length
scale bounds [0.1, 10]). The parameters of the Gaussian
distribution and GP are selected so that the fake features
visually resemble the real ones. The examples of modified
data are shown in Figures A.2 and A.3.

We set a constant budget per time step of b = 5 and compare
our method to a random acquisition policy (selects b features
at random at each step) and a “complete” acquisition policy
(selects all features at each step). This means that ours and
the random acquirers obtain 8 times fewer features than the
complete acquirer.

We add 30 fake features of different types and train for a
set number of epochs (500 and 1000 for the two datasets,
respectively). The results for m-FordA and SpokenAra-
bicDigits are presented in Tables 1 and 2.

Our acquirer consistently outperforms the random acquisi-
tion policy, and sometimes even matches the performance of
the complete acquirer. We also notice that in some cases, the
complete acquirer exhibits overfitting, while our acquirer
avoids it (e.g., in the case of noise fake features on m-FordA,
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Acquirer Type of fake features
Zeros Noise GP

Random 0.76± 0.04 0.74± 0.04 0.73± 0.02
Ours 0.86± 0.03 0.86± 0.03 0.84± 0.02
Complete 0.93± 0.00 0.84± 0.02 0.80± 0.03

Table 1. Test classification accuracy (%) on m-FordA with 30 fake
features of various types for different acquirers. Accuracies are
reported as mean ± standard deviation, calculated over 5 different
seeds.

Acquirer Type of fake features
Zeros Noise GP

Random 0.84± 0.06 0.82± 0.05 0.87± 0.02
Ours 0.87± 0.05 0.90± 0.03 0.91± 0.04
Complete 0.90± 0.06 0.91± 0.03 0.90± 0.03

Table 2. Test classification accuracy (%) on Spoken Arabic Dig-
its with 30 fake features of various types for different acquirers.
Accuracies are reported as mean ± standard deviation, calculated
over 4 different seeds.

shown in Figure B.1).

The examples of acquisition patterns are presented in Fig-
ure 4. It is easy to see that our acquirer starts selecting the
real features (notice the horizontal lines). While far from
perfect, it is a promising result, especially accounting for
the simplistic architecture and training setup (e.g., fixed
Gumbel temperature, no classifier pretraining).

4.3. Shifted fake features

Next, we investigate whether the learned policy is truly
dynamic. As a static feature selection baseline, we use a
random forest (RF), as it is often used for feature importance
analysis (e.g., in Hyland et al. (2020) for ICU features).

We modify the fake feature datasets by shifting the real
features so that the acquisition pattern would have to change
over time (see Figure 3b). If the number of the real features
is R and the number of fake features is F , the indices i

of real features will shift to i + R every
⌊

R
R+F

⌋
· T time

steps. For example, for m-FordA with m = 10 with 20 fake
features, the real features will have indices 0 to 10 during
the first third of the time steps, 10 to 20 during the second
third, and 20 to 30 for the rest of the series.

The dynamic policy should be able to learn that shift, while
a static acquirer will only select the same set of features
throughout the time series.

The results and the acquisition patterns are shown in Table 3
and Figure 4. Our acquirer outperforms the random policy,
but is outperformed by the static policy. The acquisition
pattern shows that the model does not manage to capture
the shift in fake features.

Acquirer Accuracy, %
Random 0.708
Static (RF) 0.842
Ours 0.740
Complete 0.897

Table 3. Test accuracy for classifiers trained with various acquirers
on m-FordA with 30 shifted fake features (zeros).
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(b) Static
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(c) Learned
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(d) Learned (shifted features)

Figure 4. Acquisition patterns on m-FordA with 30 fake features
(zeros). In (a), (b) and (c), the real features occupy the top ten rows,
whereas in (d) they are shifted to fill a block diagonal pattern.

We hypothesize that the underperformance of our acquirer
is due to its simplistic architecture. Although time is passed
to the acquirer, it does not use the hidden state of the classi-
fier. A more sophisticated architecture (e.g., an LSTM) that
receives a classifier state as input will likely perform better.

5. Related work
To the best of our knowledge, the only prior work that has
considered dynamic feature acquisition on time series data
is Kossen et al. (2023). They use reinforcement learning
and focus on multimodal data.

Feature acquisition on static data has received wider atten-
tion. Both methods using mutual information (Ma et al.,
2019; Lewis et al., 2021; Covert et al., 2023) and reinforce-
ment learning (Yu et al., 2023) have been developed.

In Ma et al. (2019), CMI is estimated by training a partial
variational autoencoder (P-VAE). This allows the model to
perform imputation from any subset of observed features
and select the features associated with high-value informa-
tion. In Lewis et al. (2021), this approach has been devel-
oped further with the use of transformers for processing
sets of observed features. The main challenge with using
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Figure 5. Comparison of active learning, active and dynamic feature acquisition tasks on static data.

the P-VAE is its training. Training generative models can
be challenging, especially for more complex data such as
images (Covert et al., 2023).

An alternative approach presented in Covert et al. (2023)
aims to approximate CMI instead of estimating it precisely.
They propose using a Categorical distribution and greedily
select the feature with the largest CMI at each step. Unlike
Ma et al. (2019), they use only simple (dense) architectures.
However, their approach accepts set-based models as well.

For static ICU data, deep reinforcement learning has been
used for DFA training (Yu et al., 2023). The authors took
into account that medical tests are usually done in panels
(i.e., provide multiple features at the same time) and dif-
fer in cost. They also produce the accuracy-cost Pareto
fronts, which help analyze the trade-off made when setting
a specific acquisition budget.

Dynamic feature acquisition using CMI is closely related to
active learning and active feature acquisition (see Figure 5).
Recent works show that Bayesian models can perform well
in active learning (Sharma et al., 2023). It has been shown
that Bayesian acquisition functions such as Bayesian active
learning by disagreement (BALD) are connected to CMI
(Ma et al., 2019). Perhaps other Bayesian acquisition func-
tions, such as expected predictive information gain (EPIG;
Smith et al., 2023), could be adapted for use in dynamic
feature acquisition.

For ICU time series data, feature importance has been stud-
ied using random forests (Hyland et al., 2020). In Hyland
et al. (2020); Yèche et al. (2023) authors showed that deep
learning architectures can achieve state-of-the-art perfor-
mance in early event prediction. Tokenization of observed
ICU features has been shown to improve the performance of
such models (Kuznetsova et al., 2023). Tokenization of ob-
served features is a natural part of the set-based approaches
(Ma et al., 2019), and could be applied in DFA.

6. Conclusion
Dynamic feature acquisition is a challenging problem
that arises for temporal data across various applications:
medicine, wearable sensors, active perception, etc. It has
seen little attention, with previous work considering only
reinforcement learning approaches.

In this work, we propose using approximated CMI to dynam-
ically select the most informative features. We show that
the acquirer trained using our approach learns to distinguish
fake features from real ones for time series classification. Al-
though our model outperformed a random acquisition policy,
it did not surpass the static acquisition. This performance
gap is likely due to the simplicity of the used architectures.

We hope that this work will be continued, as a wide many
questions are still open. Future work may consider more
advanced architectures, compare the performance of our
training approach to reinforcement learning (Kossen et al.,
2023), and loosen the assumptions we adopted: fixed time
step budget, fully observed training data, and equal feature
acquisition cost.
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A. Datasets

Dataset Task Classses Domain Train size Test size Number of features Length Class balance
FordA Classification 2 Sensor 3601 1320 1 500 Balanced
m-FordA (m=10) Classification 2 Sensor 3601 1320 10 (m) 50 Balanced
SpokenArabicDigits Classification 10 Speach recognition 6600 2200 13 4-93 Balanced

Table A.1. Summary of the datasets.
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(a) FordA
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(b) m-FordA

0 6 12 18 24 30 36 42 48 54 60 66 72 78 84 90

time

0
2

4
6

8
10

12
fe

at
ur

e 
id

4

2

0

2

4

6

8

fe
at

ur
e 

va
lu

e

(c) SpokenArabicDigits

Figure A.1. Samples from the datasets.
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(a) Zeros
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(b) Gaussian noise
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(c) Samples from a GP

Figure A.2. A sample from the m-FordA dataset with 30 fake features of different kinds.
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(a) Zeros
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(b) Gaussian noise
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(c) Samples from a GP

Figure A.3. A sample from the SpokenArabicDigits dataset with 30 fake features of different kinds.
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Figure A.4. A sample from the m-FordA dataset with 30 shifted fake features (zeros).

B. Experiments
B.1. Setup details

The classifiers are LSTMs with 16 hidden units, 2 layers for m-FordA and 3 for SpokenArabicDigits, and a linear dimension
of 8, followed by one linear layer outputting class logits.

The acquirers are fully connected neural networks with 1 hidden layer. All the inputs are simply concatenated. We use 4
hidden units for m-FordA, and 8 for SpokenArabicDigits.

For logits vector l, the penalty function R is
R(lll) = 100 ·mmmt · |lll|,

where the absolute value is taken elementwise.

The batch size is 1000, and the learning rate is 0.001 in all experiments.

We use a random forest (static feature selector) with 1000 esimators, leaving the other parameters as defaults provided by
scikit-learn (Pedregosa et al., 2011).

B.2. Additional results

(a) Complete acquirer (b) Our acquirer

Figure B.1. Training curves on m-FordA with 30 fake features (zeros).
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