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ABSTRACT

The binding between proteins and ligands plays a crucial role in the realm of drug
discovery. Previous deep learning approaches have shown promising results over
traditional computationally intensive methods, but resulting in poor generalization
due to limited supervised data. In this paper, we propose to learn protein-ligand
binding representation in a self-supervised learning manner. Different from ex-
isting pre-training approaches which treat proteins and ligands individually, we
emphasize to discern the intricate binding patterns from fine-grained interactions.
Specifically, this self-supervised learning problem is formulated as a prediction
of the conclusive binding complex structure given a pocket and ligand with a
Transformer based interaction module, which naturally emulates the binding pro-
cess. To ensure the representation of rich binding information, we introduce two
pre-training tasks, i.e. atomic pairwise distance map prediction and mask ligand
reconstruction, which comprehensively model the fine-grained interactions from
both structure and feature space. Extensive experiments have demonstrated the
superiority of our method across various binding tasks, including protein-ligand
affinity prediction, virtual screening and protein-ligand docking.

1 INTRODUCTION

Understanding the interaction between proteins and ligands is a crucial task in drug discovery, which
involves predicting whether the proteins and ligands can bind together or determining the binding
affinity and pose of a protein-ligand pair. Deep learning methodologies (Öztürk et al., 2018; Abbasi
et al., 2020; Monteiro et al., 2022; Wallach et al., 2015; Ragoza et al., 2017; Li et al., 2021b) have
become prominent contenders for this direction due to recent and rapid advancements in machine
learning. However, the performance of these data-driven methods heavily relies on limited training
data and may be susceptible to noise introduced by experimental errors. Therefore, the overall
generalizability of these supervised methods is constrained (Shen et al., 2021).

Inspired by the remarkable success of self-supervised learning in computer vision and natural lan-
guage processing, recent works aim to apply it to protein-ligand interactions by utilizing large
amount of unlabeled data. The majority of pre-training approaches available today, including
ELECTRA-DTA (Wang et al., 2022a), SMT-DTA (Pei et al., 2022) and Uni-Mol (Zhou et al., 2023),
rely on a two-tower architecture with individual molecular and protein encoders for pre-training. A
simple interaction module is then introduced to fine-tune the encoders for downstream binding re-
lated tasks.

However, the binding mechanism of protein-ligand complex is exceedingly intricate, involving
a broad range of non-covalent interactions between inter-molecular atom pairs, including π-
stacking, π-cation, salt bridge, water bridge, hydrogen bond, hydrophobic interaction and halogen
bond(de Freitas & Schapira, 2017). Previous studies (Adhav & Saikrishnan, 2023; Ding et al., 2022)
have shown the crucial role of these interactions in determining binding affinity and docking con-
formation. Furthermore, certain supervised learning methods, for example MONN (Li et al., 2020),
OnionNet (Zheng et al., 2019) and PIGNet (Moon et al., 2022), have demonstrated notable per-
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formance improvement by explicitly incorporating these inter-molecular atom-wise interactions in
their methodologies.

Clearly, the current self-supervised learning methods focus on enhancing the representation of indi-
vidual molecule or protein, but the interaction module trained in the later fine-tuning stage falls short
in capturing these highly intricate interaction patterns. Therefore, how to develop an interaction-
aware representation that directly benefits downstream protein-ligand interaction-related tasks re-
mains an unresolved challenge. To our best understanding, CoSP (Gao et al., 2022) represents a sig-
nificant step forward in this direction by leveraging contrastive learning to obtain pocket and ligand
representations. While the contrastive learning approach does have the capability to align positive
ligand and pocket pairs, it fails to adequately capture the inter-molecular atomic interactions through
the global matching manner.

To address this issue, we propose to learn protein-ligand binding representations from fine-grained
interactions, named BindNet. Specifically, our self-supervised learning problem involves predicting
the conclusive binding complex structure given a primary pocket and ligand, which is in line with
the protein-ligand interaction process. To emphasize learning fundamental interactions, we employ
a specific Transformer-based interaction module that utilizes individual pocket and ligand encoders
in the modeling process. To ensure that the model learns interaction-aware protein and ligand repre-
sentations, we use two distinct strategies in the pre-training process. The first pre-training objective
is Atomic pairwise Distance map Prediction (ADP), where interaction distance map between atoms
in the protein and ligand is employed to provide detailed supervision signals regarding their interac-
tions. The other pre-training objective is Mask Ligand Reconstruction (MLR), in which the ligand
representation extracted by a 3D pre-trained encoder is masked for reconstruction. By employing
feature space masking and reconstruction instead of simply token or atom type masking, the model
is more likely to capture richer semantic information, such as chemical and shape information, dur-
ing the pre-training process, as has been demonstrated in prior works in the fields of computer vision
and natural language processing (Baevski et al., 2023; Assran et al., 2023).

The primary contribution of this paper can be summarized in four distinct aspects. Firstly, the prob-
lem of self-supervised learning of protein-ligand binding representations has been formalized as the
prediction of the final complex structure given the primary pocket and ligand structure, which nat-
urally mimic the binding process. Secondly, a new architecture has been designed to incorporate
a Transformer-based interaction module on protein and ligand encoders, emphasizing the encod-
ing of intricate interaction representations rather than individual protein and ligand representations.
Thirdly, two novel pre-training objectives have been proposed to ensure learning of complex binding
patterns for the interaction module. Lastly, extensive experiments have been conducted on a wide
range of binding-related tasks, including predicting protein-ligand affinity, virtual screening, and
protein-ligand docking, all of which demonstrate the promising results achieved by BindNet.

2 RELATED WORK

Several pre-training methods have been proposed for proteins and ligands representation learn-
ing. DeepAffinity (Karimi et al., 2019) utilizes an RNN-based architecture to conduct unsuper-
vised learning based on compound SMILES and protein SPS. Both SMT-DTA (Pei et al., 2022)
and ELECTRA-DTA (Wang et al., 2022a) employ Masked Language Modeling (MLM) to train a
molecule encoder based on SMILES and a protein encoder based on amino acid sequences. The
distinction between these two methods is that SMT-DTA trains the MLM and the affinity predic-
tion task concurrently in a multi-task fashion, whereas ELECTRA-DTA utilizes a pre-training and
fine-tuning approach.

Aside from sequence-based methods, there are efforts to incorporate the 3D structure of ligands
and pockets for modeling. Uni-Mol, for instance, employs denoising and MLM strategies to train
a 3D-based molecular encoder and pocket encoder, which are then fine-tuned for prediction. While
CoSP (Gao et al., 2022) leverages a contrastive learning framework on pocket-ligand pairs within
unlabeled complex data, to pre-train a dual-branch encoder for pockets and ligands.

3 BINDNET

3.1 PROBLEM FORMALIZATION AND MODEL ARCHITECTURE

In order to capture the complicated protein-ligand interaction patterns, we have formulated the pre-
training problem as directly predicting the final complex structure given the structures of both the
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Figure 1: Illustrations of BindNet consisting of three components. Left: To generate an input
for the model, the protein-ligand complex is first disassembled, yielding the individual pocket and
ligand structures. Then the primary ligand structure is approximated via RDKit and perturbation
techniques, and this structure is treated as one of the inputs for the model. Middle: Pocket and
ligand encoders are employed to extract their embeddings, with the weights remaining frozen during
both training and testing phases. Right: Two novel pre-training objectives, i.e. ADP and MLR, are
introduced to learn binding representations.

pocket and ligand. In this formulation, the provided protein structure remains the same as that in the
complex, while the given ligand structure represents its primary state, rather than its torsion state
after binding. This formulation is more appropriate than using the torsion state as the input structure
because it is commonly acknowledged that proteins tend to be relatively rigid, whereas molecules
are generally more flexible in the binding process (Stärk et al., 2022; Corso et al., 2022).

Specifically, a structured chemical compound is denoted as G = (V,X ), where vi ∈ V represents
the atom type of node i, and xi ∈ X represents the 3D position of the i-th atom. Then the full atom-
level representation of a protein-ligand complex is denoted as GC = (VC ,XC). The pocket and
ligand parts are denoted separately as GP = (VP ,XP ) and GL = (VL,XL), respectively. To ensure
the primary molecular structure is used, RDKit is utilized to generate a stable conformation based
on the ligand’s chemical information. In case of any failures, we propose perturbing the torsion state
to approximate the primary structure by introducing Gaussian noise to the dihedral angles or the
coordinates of the molecular conformation. The resulted ligand structure is GL̂ = (VL̂,XL̂).

The architecture of BindNet is illustrated in Figure 1. Given a protein pocket and molecular ligand,
two pre-trained encoders, designated as θP and θL, are employed to secure preliminary represen-
tations for the pocket and ligand, denoted as h

(0)
P and h

(0)
L , respectively. It is worth noting that

the framework is versatile, and a variety of pre-existing encoders for pockets and ligands can be
utilized. This paper uses the Uni-Mol encoders. It is important to understand that all pre-training
and fine-tuning processes are conducted in the resulting representation space while keeping the two
pre-trained encoders fixed, to emphasize the learning of the subsequent interaction module. More
precisely, the interaction module, represented by θI , is an N-layer 3D-invariant Transformer that
takes both atom-wise and pairwise representations as input and generates pocket and ligand repre-
sentations h(N)

P and h
(N)
L , as well as pairwise binding representations h(N)

PL . These representations
will be subsequently used in the fine-tuning process to perform various downstream tasks.

3.2 PRE-TRAINING OBJECTIVES

To facilitate the pre-training process and accurately capture the intricate binding process between
proteins and ligands, two objectives have been proposed.

3.2.1 ATOMIC PAIRWISE DISTANCE MAP PREDICTION

According to previous biological and chemical studies (Ponder & Case, 2003; Alford et al., 2017),
the energy that arises from various non-bond interactions between proteins and ligands is closely
associated with their inter-molecular distances. Therefore, several score functions and deep learning
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methods (Ballester & Mitchell, 2010; Zhu et al., 2020; Zheng et al., 2019; Moon et al., 2022) have
utilized inter-molecular distance map to model the binding process, which has yielded significant
improvements in binding related tasks.

Drawing inspiration from these findings, we propose utilizing the inter-molecular atom-wise dis-
tance map in a self-supervised manner to capture the intricate details of the interaction pattern. The
inter-molecular distance matrix, denoted as D, is initially derived from the original crystal structure
of the complex. Each element, dij ∈ D, represents the distance between the i-th atom in the pocket
and the j-th atom in the ligand. Subsequently, we utilize the primary ligand GL̂ and pocket GP as
inputs to predict the distance matrix D through regression. The specific objective function is:

argmin
θI

E(GP ,G
L̂
)

[
Lreg

(
MLP

(
h
(N)

PL̂

)
,D

)]
, (1)

where h(N)

PL̂
represents the pair-wise embedding of GP and GL̂, Lreg denotes the L2 regression loss.

Please note that our reason for using the primary ligand rather than the resultant ligand conformation
in the complex data is to emphasize learning on the intricate interactions. Specifically, if we use the
latter, this task focuses solely on learning the translation and rotation of the ligand to recover D,
thereby neglecting the crucial aspects of interaction information about inner changes in the ligand,
such as variations in torsion angles when it binds to the target pocket.

3.2.2 MASK LIGAND RECONSTRUCTION

While the aforementioned ADP objective measures the binding of the original protein and ligand to
form the final complex structure, the following MLR objective is designed to reflect the conditional
dependency relations between protein and ligand representations in the binding process. More pre-
cisely, we randomly mask the representation of the torsion ligand state and reconstruct it from the
representation of the entire pocket and the remaining atoms of the primary ligand.

To be specific, we replace the atom embeddings, denoted as hi in h
(0)

L̂
of the primary ligand with

a learnable embedding hm. Simultaneously, we mask the same corresponding set of atom embed-
dings in h

(0)
L of the torsion state ligand. These operations result in masked atom embeddings of

torsion state ligand, as denoted as h
(0)
Lm, which serves as the reconstruction target, along with the

surrounding unmasked embeddings from the primary state ligand, denoted as h(0)

L̂\m
. Consequently,

the objective of masked ligand reconstruction can be expressed as follows:

argmax
θI

E(GP ,G
L̂
)

[
P
(
h
(0)
Lm|h(0)

L̂\m
,h

(0)
P

)]
≃ argmin

θI

E(GP ,G
L̂
)

[
Lreg

(
h
(0)
Lm, h̃

(0)
Lm

)]
, (2)

where we employ L2 regression loss for reconstructing the target embeddings, h̃(0)
Lm denotes the

corresponding atom embeddings predicted by θI .

Our masking strategy differs from traditional approaches in two ways. Firstly, the proposed mask
and reconstruction methodology is carried out in the representation space, rather than at the atom
token level in most previous work (Hu et al., 2019; Zhang et al., 2021; Li et al., 2021a). This is
because atom types are usually limited in molecular applications, which makes the task trivial and
the model easy to fit as demonstrated in Mole-BERT (Xia et al., 2022). While conducting mask and
reconstruction in the representation space helps to capture the intricate interaction patterns between
pocket and ligand. These patterns are not solely dependent on ligand atom types but also involve
atom positions and contextual information, which have already been well captured in pre-trained
molecular representations. Secondly, the remaining primary ligand representation is used to recover
the masked torsion molecular representation, which captures both the conditional dependencies be-
tween protein and molecular features and the change in conformation during the binding process.

4 EXPERIMENTS

BindNet is pre-trained on BioLip (Yang et al., 2012), where we solely use the entries for regular
ligands. For each complex, we extract the pocket-ligand segment by selecting residues within 8Å
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distance from the ligand as the pocket. The complex is removed from our pre-training dataset if no
residues are present within 8Å distance from the ligand or if only hydrogen atoms are present in the
ligand. Finally, we obtain a dataset with 458,252 pocket-ligand complexes. The model optimization
is carried out using the Adam optimizer with a learning rate of 1e-4 and a weight decay of 1e-4. The
mask ratio of MLR is set to 0.8, and ADP and MLR losses are treated equally. The model is trained
for 30 epochs with a batch size of 32 batch size, which is completed on a machine equipped with
8-A100 GPUs. This section demonstrates our experiments on various binding related downstream
tasks, including protein-ligand binding affinity prediction, virtual screening, and molecular docking.

4.1 PROTEIN-LIGAND BINDING AFFINITY PREDICTION

Protein-ligand binding affinity prediction seeks to anticipate the degree of interaction strength be-
tween proteins and ligands. We assess the performance of BindNet on two binding affinity prediction
related tasks, LBA and LEP, as originally proposed in Atom3D (Townshend et al., 2020).

4.1.1 LIGAND BINDING AFFINITY

Data. Ligand Binding Affinity (LBA) is a regression task that involves predicting the binding affin-
ity value. The protein-ligand complexes and their associated binding strengths are obtained from the
PDBBind dataset (Wang et al., 2005). The dataset is partitioned using a protein sequence identity
threshold, resulting in two distinct splits: LBA 30% (with a protein sequence identity threshold of
30%) and LBA 60% (with a protein sequence identity threshold of 60%). We employ RMSE (Root
Mean Square Error), Pearson correlation coefficient, and Spearman correlation coefficient, to evalu-
ate BindNet. To ensure robustness of evaluation, we conduct three runs with different random seeds
and report the mean values for the aforementioned metrics.

Baselines. We have compared BindNet with a diverse range of supervised methods, including
sequence-based techniques such as DeepDTA, TAPE (Rao et al., 2019), and ProtTrans (Elnaggar
et al., 2021); structure-based techniques, such as various variants of Atom3D, Holoprot (Somnath
et al., 2021), and ProNet (Wang et al., 2022b); as well as semi/self-supervised methods namely
DeepAffinity, SMT-DTA, GeoSSL (Liu et al., 2022) and Uni-Mol.

Fine-Tuning BindNet. Since the LBA dataset has provided precise crystal structural information
on the binding complex, we utilize the binding pocket and ligand from this complex structure as
input to conduct the fine-tuning process. Specifically, we select the embeddings of the CLS tokens
from both pocket and ligand, which correspond to the first element of h(N)

P and h
(N)
L , respectively.

These embeddings are concatenated and passed through a two-layer MLP to predict the binding
affinity. The training process is supervised using a L2 regression loss. Finally, we report the testing
results based on the model that yields the best validation performance on the validation set.

Results. The experimental results are demonstrated in Table 1. Comparing different deep learning
approaches, we observe that structure-based methods generally outperform sequence-based meth-
ods. This finding is rooted in the rich interaction information intrinsic to structural data, which
offers more detailed insights than sequences. Furthermore, comparing pre-training methods to deep
learning methods, recent advancements in pre-training, such as GeoSSL and Uni-Mol, can signif-
icantly outperform deep learning methods. This demonstrates the effectiveness of self-supervised
learning using large amounts of unlabeled data. Importantly, our proposed BindNet achieves the
best results in terms of all metrics for both LBA 30% and LBA 60%, indicating the benefit of
capturing knowledge from fine-grained interactions, as compared to learning individual protein or
ligand representations. Notably, BindNet performs particularly well in LBA 30%, which features
strict data splitting and lower sequence identity between training and testing data. The substantial
improvement underscores its superior generalizability by capturing essential interaction knowledge.

4.1.2 LIGAND EFFICACY PREDICTION

Data. Ligand Efficacy Prediction (LEP) is a task to classify whether a ligand activates a specific
protein when provided with both the active and inactive structural states. We follow the split defined
in Atom3D based on the protein function. Typical classification measures such as the Area Under
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Table 1: Performance comparison of various methods on LBA dataset under different protein
sequence identity split settings. The best and second-best results are highlighted in bold and
underlined, respectively (all tables below are presented in this format).

LBA 30% LBA 60%

Methods Model RMSE↓ Pearson↑ Spearman↑ RMSE↓ Pearson↑ Spearman↑

Sequence
based DL

DeepDTA 1.866 0.472 0.471 1.762 0.666 0.663
TAPE 1.890 0.338 0.286 1.633 0.568 0.571

ProtTrans 1.544 0.438 0.434 1.641 0.595 0.588

Structure
based DL

Atom3D-CNN 1.416 0.550 0.553 1.621 0.608 0.615
Atom3D-ENN 1.568 0.389 0.408 1.620 0.623 0.633
Atom3D-GNN 1.601 0.545 0.533 1.408 0.743 0.743

Holoprot 1.464 0.509 0.500 1.365 0.749 0.742
ProNet 1.463 0.551 0.551 1.343 0.765 0.761

Pre-training
Methods

DeepAffinity 1.893 0.415 0.426 - - -
SMT-DTA 1.574 0.458 0.447 1.347 0.758 0.754
GeoSSL 1.451 0.577 0.572 - - -
Uni-Mol 1.434 0.565 0.540 1.357 0.753 0.750
BindNet 1.340 0.632 0.620 1.230 0.793 0.788

the Receiver Operating Characteristic (AUROC) and the Area Under the Precision-Recall Curve
(AUPRC), are utilized as the evaluation metrics. Similar to LBA, we conduct three separate runs
with varying random seeds and report the average results of the aforementioned metrics.

Baseline Methods. Our baseline methods include supervised techniques such as sequence-based
approach DeepDTA and structure-based methods such as Atom3D-CNN, Atom3D-ENN, and
Atom3D-GNN, along with pre-trained methods such as Uni-Mol and GeoSSL.

Fine-Tuning BindNet. We employ the pocket and ligand information provided by LEP as input,
similar to LBA. Namely, we concatenate four pre-trained embeddings, incorporating the CLS tokens
from the active structure’s pocket and ligand, along with those of the inactive structure’s pocket and
ligand. Subsequently, these merged embeddings undergo a two-layer MLP for the final classification
phase. The training process is supervised using cross-entropy. Finally, we report the testing results
based on the model that yields the best validation performance on the validation set.

Results. Table 2 presents our experimental results. BindNet exhibits superior performance com-
pared to all supervised learning and pre-training methods, as measured by both AUROC and AUPRC
metrics. Notably, the improvement over the second-ranking method (Uni-Mol) is substantial, with
an AUROC improvement of 0.882 vs. 0.823 and an AUPRC improvement of 0.870 vs. 0.787. These
significant deviations further validate the effectiveness of focusing on learning binding representa-
tions, rather than individual protein and ligand representations.

Table 2: Comparison results on LEP datasets.
Methods Model AUROC↑ AUPRC↑

Sequence based DL DeepDTA 0.696 -

Structure
based DL

Atom3D-CNN 0.589 0.483
Atom3D-ENN 0.663 0.551
Atom3D-GNN 0.681 0.598

GVP-GNN 0.628 -

Pre-training
Methods

GeoSSL 0.776 0.694
Uni-Mol 0.823 0.787
BindNet 0.882 0.870

4.2 VIRTUAL SCREENING

Data. DUD-E (Mysinger et al., 2012) is a widely used benchmark for virtual screening, com-
prising 102 targets across multiple protein families. Each target contains an average of 224 active
compounds and over 10,000 decoy compounds. We employ a 3-fold cross-validation for training
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and evaluation, and our dataset split setting is consistent with AttentionDTI (Yazdani-Jahromi et al.,
2022) and DrugVQA (Zheng et al., 2020), ensuring that similar targets are kept within the same
fold to facilitate a fair comparison. Several widely used measures on DUD-E are employed in our
evaluation, including AUROC and the ROC Enrichment metric (denoted as RE).

Baseline Methods. Various baseline methods are utilized in our experiments, including docking
programs AutoDock Vina (Trott & Olson, 2010) and Smina (Koes et al., 2013), traditional statis-
tical machine learning methods such as RF-score and NNScore (Durrant & McCammon, 2011),
deep learning methods such as 3D-CNN, Graph-CNN (Torng & Altman, 2019), AttentionSiteDTI,
DrugVQA, as well as pre-training methods such as Uni-Mol and CoSP.

Table 3: Performance comparison of different methods on DUD-E.
Methods Model AUC↑ 0.5% RE↑ 1.0% RE↑ 2.0% RE↑ 5.0% RE↑
Docking

based
AutoDock Vina 0.716 9.139 7.321 5.811 4.444

Smina 0.696 - - - -
Scoring function

based ML
RF-score 0.622 5.628 4.274 3.499 2.678
NNScore 0.584 4.166 2.980 2.460 1.891

Supervised
based DL

3D-CNN 0.868 42.559 26.655 19.363 10.710
Graph-CNN 0.886 44.406 29.748 19.408 10.735
DrugVQA 0.972 88.170 58.710 35.060 17.390

AttentionSiteDTI 0.971 101.740 59.920 35.070 16.740

Pre-training
Methods

CoSP 0.901 51.048 35.978 23.681 12.212
Uni-Mol 0.945 82.586 50.206 30.162 14.789
BindNet 0.960 105.277 61.602 35.150 16.185

Fine-Tuning BindNet. For each target, we extract residues within 6 Å distance from the crystal
ligand as the pocket. We utilize cross-entropy based on the output of an MLP, with the CLS token
embeddings of the pocket and ligand serving as inputs. Due to the significant imbalance between
negative pairs (comprising inactive compounds) and positive pairs (comprising active compounds),
we dynamically adjust the sampling weights to ensure that each batch contains an equal number of
negative and positive samples. We report the mean performance of 3-fold cross-validation.

Results. As demonstrated in Table 3, BindNet achieves the highest performance with respect to
three RE metrics and delivers competitive results in terms of the AUC score and the other RE met-
ric. In particular, when compared to the other self-supervised learning methods such as Uni-Mol
and CoSP, BindNet consistently outperforms them by a significant margin across all evaluation met-
rics. However, some supervised learning methods, such as DrugVQA and AttentionSiteDTI, display
more stable and outstanding results. This phenomenon may be caused by the decoy bias hidden in
the DUD-E dataset, as discussed in Gonczarek et al. (2016) and Chen et al. (2019). Specifically, the
selection criteria for inactive compounds within DUD-E involve choosing compounds with similar
physical properties to active compounds but differing topological structures, which may introduce a
bias that emphasizes discrepancies between active and inactive compounds rather than focusing on
protein-ligand interactions. Consequently, supervised learning methods may be more advantageous
as they can directly incorporate and accommodate such biases.

To validate our assumption, we conduct further experiments on the AD dataset (Chen et al., 2019),
which improves upon DUD-E by employing active compounds from other targets as decoys for
the current target and effectively mitigates decoy bias. We evaluate the top four methods from the
DUD-E dataset, and find a significant decrease in performance shown in Table 4, especially for su-
pervised learning methods like DrugVQA and AttentionSiteDTI. This supports our claim that super-
vised methods tend to capture data biases rather than authentic interaction information. Conversely,
Uni-Mol and BindNet perform notably better, with BindNet significantly surpassing Uni-Mol, reaf-
firming the criticality and benefit of learning intricate interaction patterns.

Table 4: Performance comparison on AD dataset.
Methods AUC↑ 0.5% RE↑ 1.0% RE↑ 2.0% RE↑ 5.0% RE↑

DrugVQA 0.48 3.00 2.44 2.15 1.79
AttentionSiteDTI 0.47 2.79 2.32 2.24 1.63

Uni-Mol 0.56 4.92 3.70 2.82 2.00
BindNet 0.64 6.98 4.45 3.21 2.97
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4.3 MOLECULAR DOCKING

Data. We employ the same dataset as Uni-Mol to evaluate BindNet’s performance in protein-
ligand docking. The dataset includes the general set from PDBbind v2020 as the training set, with
CASF-2016 as the test set, with data overlap removed for fair comparison. BindNet has learned
the structural complex information in the pre-training stage, hence, we retrain it with the overlap
removed data. Our evaluation metric involves calculating the Root Mean Square Deviation (RMSD)
between predicted and actual positions, presenting the percentage of values falling below a threshold.

Baselines. Our baselines consist of a pre-training method Uni-Mol and various score-based meth-
ods, including AutoDock Vina, Vinardo (Quiroga & Villarreal, 2016), Smina, and AutoDock4 (Mor-
ris et al., 2009). These results are obtained directly from the original Uni-Mol paper.

Fine-Tuning BindNet. During the fine-tuning process, we initially predict the distance map of
the docking complex, by using the pairwise representations h(N)

PL . Subsequently, we employ a post-
processing approach to acquire the docked pose, by using gradient descent optimization, which is a
common technique utilized in several typical docking methods (Lu et al., 2022).

Table 5: Performance comparison on docking pose prediction.
Methods 1.0 Å↑ 1.5 Å↑ 2.0 Å↑ 3.0 Å↑ 5.0 Å↑

Autodock Vina 44.21 57.54 64.56 73.68 84.56
Vinardo 41.75 57.54 62.81 69.82 76.84
Smina 47.37 59.65 65.26 74.39 82.11

Autodock4 21.75 31.58 35.44 47.02 64.56
Uni-Mol 43.16 68.42 80.35 87.02 94.04
BindNet 45.26 69.82 80.35 89.12 94.38

Results. As depicted in Table 5, BindNet surpasses all other baseline methods. While Uni-Mol
also outperforms all other score-based methods, it struggles to perform as effectively in the setting
at the percentage under the 1.0Å threshold, compared to Smina and Autodock Vina. However,
BindNet effectively manages to combat this issue by enhancing the percentage of results from Uni-
Mol’s 43.16% to BindNet’s 45.26%. This indicates that BindNet’s representations capture more
precise interactions between ligands and proteins, leading to more accurate docking poses.

5 ABLATION STUDY

5.1 EFFECTS OF VARYING PRE-TRAINING OBJECTIVES

As BindNet incorporates two pre-training objectives, we conduct an ablation study to validate the
impact of each loss using the LBA dataset, shown in Figure 2. It is evident that both ADP and MLR
play crucial roles in BindNet’s performance. The model trained solely on ADP or MLR outperforms
the one without pre-training. Moreover, the best results are obtained by combining both strategies
and training the model in a multi-task manner, demonstrating the complementary nature of these
two strategies: ADP focuses on extracting binding knowledge from complexes, while MLR learns
how to construct a ligand to form a stable binding pattern given a pocket target. The combination of
these strategies results in a more comprehensive and robust interaction-aware representation.

Figure 2: Ablation study on pre-training objectives, where the scatter represents the mean value of
each metric and the error bar shows the standard deviation.
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5.2 OUT-OF-DISTRIBUTION EVALUATION ON VARYING COMPLEX STRUCTURE

While 3D structure based deep learning methods often generate prediction results that are compa-
rable to those of pre-training methods, they are usually evaluated in the in-distribution settings. In
LBA, LEP and DUD-E, crystal structure, docking conformations and RDKit generated structures are
used for both training and testing, respectively. As a result, it is unclear whether these deep learn-
ing models are capable of out-of-distribution generalization, a crucial issue in machine learning,
particularly for robust and trustworthy learning in scientific fields.

We evaluate out-of-distribution capability with three new settings in LBA, with varying complex
structure: CD (crystal conformations for training and docking complex conformations for testing),
DD (docking complex conformations for training and testing), and RR (RDKit generated conforma-
tions for training and testing). The original setting CC uses crystal complex conformations for both
training and testing. We utilize Atom3D-CNN and Atom3D-GNN as representative examples of 3D
structure based supervised learning methods, exhibiting high performance on LBA (Table 1). As for
pre-training methods, we evaluate Uni-Mol and BinNet. It should be noted that Atom3D-CNN and
Atom3D-GNN are not evaluated in the RR setting as they only accept complex structure as input.

Figure 3: Performance of various methods across different settings with varying complex structure.

Figure 3 shows that pre-training methods exhibit superior out-of-domain generalization ability than
supervised learning methods. Specifically, both Atom3D-CNN and Atom3D-GNN perform well
under in-distribution settings CC and DD, but their out-of-distribution performance decreases sig-
nificantly, as evidenced by the increase from 1.601 to 12.475 in RMSE when transitioning from
CC to CD for Atom3D-GNN. Hence, one can infer that these 3D structure based supervised learn-
ing methods merely learn a data-fitting function, without truly capturing protein-ligand interaction
patterns. Conversely, Uni-Mol and BindNet perform consistently well across all settings, even
with randomly initialized conformations as input, demonstrating pre-training approach’s efficacy
in acquiring intrinsic data representations. Moreover, BindNet consistently outperforms Uni-Mol
in both in-distribution and out-of-distribution evaluations, emphasizing the superiority of learning
interaction-aware representations over individual protein and ligand representations.

6 CONCLUSION

This paper proposed a novel self-supervised pre-training method called BindNet for the purpose of
learning protein-ligand binding representations. Unlike previous pre-training approaches that focus
on individual protein and ligand representations, BindNet places greater emphasis on learning the
binding representations using a Transformer-based interaction module, with fixed protein and lig-
and encoders as input. We proposed two new objective functions, i.e. ADP and MLR, to facilitate
the pre-training from fine-grained interaction signals. Our analysis indicates that these objectives
are crucial for learning comprehensive and robust interaction-aware representations, as they play
complementary roles. By applying BindNet to various downstream binding related tasks, such as
protein-ligand binding affinity prediction, virtual screening, and protein-ligand docking, we demon-
strate that our approach significantly outperforms existing supervised and pre-training methods. Be-
sides, our ablation study shows that BindNet successfully learns meaningful, robust representations
that are capable of dealing with varying complex structures in out-of-distribution settings.

Although our primary focus is on the protein-ligand binding domain, the BindNet framework, as
a powerful tool for learning binding representations, has great potential for extension to other bio-
related binding tasks, such as protein-protein interactions and antigen-antibody recognition.
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A VISUALIZATION OF INTERACTION PATTERN LEARNED BY BINDNET

To elucidate the interaction pattern learned by BindNet, we select four protein-ligand complexes as
illustrative examples to demonstrate the information captured by our interaction module in Figure 4.

Figure 4: Visualization of the interaction patterns learned by BindNet.

The left part of each sub-figure illustrates interactions computed using Ligand Interaction Diagram
Panel of Schrödinger (Schrödinger, LLC, 2023), depicting three common interactions: hydrogen
interaction represented by the magenta line, π-π interaction denoted by the green line, and salt
bridge visualized as a gradient color line transitioning from red to blue.

The right part of each sub-figure represents the attention heatmap between pocket and ligand from
BindNet. The original attention in BindNet is atom-atom level, which is too long to present here
due to the significant number of atoms in the pocket, so we aggregate the attention of same residue
in pocket to form an atom-residue level attention heatmap for a clearer visual representation. From
these examples, we can easily find that BindNet pays more attention to the residue which can form
non-covalent interactions with ligand, sometimes even the specific ligand atom-residue pair. This
indicates BindNet might have the ability to capture the interaction force information between the
pocket and ligand, which is crucial for tasks such as ligand binding affinity prediction and virtual
screening.

B FLEXIBLE OF BINDNET

In this paper, we use molecular and pocket encoders pre-trained by Uni-Mol. However, our frame-
work is flexible and allows for the integration of various pre-existing encoders for proteins and lig-
ands. In this section, we make modifications, specifically by replacing both the molecular encoder
and pocket encoder. This change aims to demonstrate the adaptability of our proposed framework
to a variety of pre-existing encoders.

On the molecular side, we substitute the molecular encoder from Uni-Mol to incorporate the pre-
trained encoders from Frad (Feng et al., 2023) and Coord (Zaidi et al., 2022), which are molecular
pre-training models with a focus on quantum-related tasks. Notably, Frad and Coord’s backbone is
built on TorchMD-NET, a Graph Neural Network (GNN) that differs from Uni-Mol by not providing
pair representations. The integration of Frad and Coord into our framework proved to be seamless,
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as we can simply use the concatenation of corresponding node-level embeddings as pairwise repre-
sentations. We reevaluate the performance of LBA. Furthermore, we present results for a scenario
in which the interaction module remains unpretrained, as shown in Table 6.

On the protein side, we replace the pocket encoder with ESM2 (Lin et al., 2022) and ProFSA (Gao
et al., 2023). In the case of ESM2, we adapt the protein input for the pocket structure to the protein
sequence. Additionally, we provide results for the scenario in which the interaction module is not
pre-trained based on ESM2 and ProFSA, as detailed in Table 6.

Table 6: Results for LBA task with different molecular and protein encoders with BindNet
LBA 30% LBA 60%

Models RMSE↓ Pearson↑ Spearman↑ RMSE↓ Pearson↑ Spearman↑
Replace molecular encoder
BindNet(Coord) wo pretrain 1.447 0.545 0.533 1.515 0.653 0.656

BindNet(Coord) with pretrain 1.414 0.605 0.591 1.268 0.783 0.787
BindNet(Frad) wo pretrain 1.417 0.562 0.543 1.62 0.582 0.571

BindNet(Frad) with pretrain 1.386 0.612 0.597 1.341 0.761 0.762
BindNet(Uni-Mol) wo pretrain 1.434 0.565 0.541 1.357 0.753 0.753

BindNet(Uni-Mol) with pretrain 1.341 0.632 0.622 1.232 0.793 0.788
Replace protein encoder

BindNet(ESM) wo pretrain 1.561 0.444 0.445 1.521 0.664 0.682
BindNet(ESM) with pretrain 1.492 0.522 0.550 1.457 0.726 0.731

BindNet(ProFSA) wo pretrain 1.382 0.589 0.582 1.344 0.756 0.752
BindNet(ProFSA) with pretrain 1.359 0.611 0.596 1.286 0.786 0.786

Upon examining Table 6, it is evident that substituting the molecular or pocket encoder with Frad and
Coord or ESM and ProFSA consistently results in superior performance for the pre-trained version
of BindNet compared to the unpretrained version. Notably, BindNet, leveraging Frad and Coord
as the molecular encoder and ProFSA as the protein encoder, consistently achieves SOTA results
among other baselines, highlighting the inherent flexibility and effectiveness of our framework.

C THE PERFORMANCE IMPACT RESULTING FROM THE OVERLAP BETWEEN
PRE-TRAINING DATA AND DOWNSTREAM TASK DATA.

The BioLip data exhibits overlap with downstream tasks such as LBA and CASF. This overlap has
the potential to influence performance and introduce a degree of bias in comparisons. However,
the impact of this overlap is dependent on the objectives of the downstream tasks. In the case of
the docking task, which aims to predict complex structures and is closely related to the pre-training
target, it is imperative to eliminate the overlap to ensure a fair comparison. Conversely, for tasks
involving binding affinity or virtual screening, where the goal is to predict binding affinity values or
select positive protein-ligand pairs from a vast pool of negatives, the absence of such information as
supervised signals means that the overlap may not significantly influence performance. To validate
our hypothesis, we eliminate the overlap between the pre-training data and the two test datasets,
which include LBA (30%) and the docking task. Subsequently, we conduct re-pre-training on both
versions of the pre-training data and evaluate performance on the corresponding downstream tasks.
The results are presented in the Table 7 and Table 8.

Table 7: Docking performance comparison between with and without overlap removal
Models 1.0 Å 1.5 Å 2.0 Å 3.0 Å 5.0 Å
BindNet 46.68 72.98 80.35 90.87 95.79
BindNet (remove overlap, reported in paper) 45.26 69.82 80.35 89.12 94.38

As depicted in Table 7 and Table 8, the influence of overlap on the docking task performance is
non-negligible, leading us to report the results in the second row (remove overlap version) in our
paper. Conversely, for the binding affinity task, the disparity between the non-overlap and overlap
is relatively marginal. Consequently, we opt to retain the overlap to align with other studies (Gao
et al., 2022; Anonymous, 2023) that also utilized BioLip as pre-training dataset.
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Table 8: Performance of Binding affinity prediction for LBA (30%) comparision with and without
overlap removal

Models RMSE Pearson Spearman
BindNet 1.340 0.632 0.620
BindNet (remove overlap) 1.396 0.625 0.616

D LIGAND PRIMARY STATE GENERATION

We propose a data augmentation strategy employed during the training process, aiming to introduce
random perturbations to the ligand structure. This serves not only to make the ADP task more
challenging and meaningful but also to enhance the diversity of the pretraining data. Initially, we
attempt to utilize RDKit to generate a random stable conformation based on the ligand’s chemical
information. In case of failure, we manually introduce rotations to the dihedral angles by applying
Gaussian noise. Finally, if the ligand lacks rotatable bonds, we introduce Gaussian noise to the
coordinates of the original conformer. The complete pseudocode for this algorithm is detailed in
Algorithm 1.

Algorithm 1 Data Augmentation of ligand conformation
Require:

GL = (VL,XL): Input ligand
σ: Scale of dihedral angle noise
τ : Scale of coordinate noise

1: XL̂ = RDKitGenerate(GL) ▷ Using RDKit to randomly generate a conformer
2: if XL̂ is not None then ▷ Success
3: return GL̂ = (VL,XL̂)
4: else
5: if GL has rotatable dihedral angles denoted as ψ = (ψ1, ..., ψm)m then
6: Add Gaussian noise to each dihedral angles in ψ: ψi = ψ+∆ψ, ∆ψ ∼ N (0, σ2) to get

the new conformation XL̂
7: return GL̂ = (VL,XL̂)
8: else
9: XL̂ = XL +∆X , where ∆X ∼ N (0, τ2I3N ), N is atom number of X

10: return GL̂ = (VL,XL̂)
11: end if
12: end if
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