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Abstract. Traditional deep learning segmentation models require de-
signing network structures and loss functions specific to different tasks,
followed by training dedicated models, which leads to a significant amount
of repetitive work. The Segment Anything Model (SAM) provides a uni-
fied framework for handling segmentation tasks. However, the current
SAM model is mainly applicable to natural images and may require sub-
stantial computational resources during inference, posing challenges for
widespread clinical implementation. In this work, we utilize RepViT as
the Image Encoder to develop a lightweight SAM structure. The training
phase consists of two main parts: knowledge distillation and fine-tuning.
During the inference phase, reparameterization is employed to optimize
inference speed. The proposed method achieves an average DSC of 0.8688
and an average NSD of 0.8746 on the validation set, and it improves in-
ference speed while increasing the number of parameters compared to
the baseline.

Keywords: Segment Anything Model · Medical image · Lightweight ·
Knowledge distillation.

1 Introduction

Medical image segmentation is a crucial component in clinical practice, where the
accuracy of segmentation results is essential for ensuring the safety and efficacy
of medical diagnosis and treatment. Existing methods typically design network
structures and loss functions tailored to specific tasks and train dedicated mod-
els, resulting in poor generalization performance across different segmentation
tasks and modalities.

Recently, various foundational models have garnered significant attention
from researchers in the field of computer science due to their outstanding per-
formance. In natural images, the Segment Anything Model (SAM) [1] performs
interactive segmentation using prompts such as points, boxes, masks, and text.
The introduction of such prompt engineering enables SAM to adapt to nearly
all downstream segmentation tasks, achieving impressive results comparable to
models specifically trained for particular tasks. However, unlike natural images,
medical images comprise multiple modalities with significant differences between
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them. Therefore, the performance of the foundational SAM model in medical
image segmentation is quite limited. Works like MedSAM [3] have successfully
transferred SAM to the medical image segmentation domain, achieving excellent
performance. Nonetheless, these models generally require substantial computa-
tional resources during inference, and their inference speed does not meet the
real-time requirements of clinical applications. Hence, developing a lightweight
SAM for efficient deployment in medical image segmentation is a meaningful and
promising research area.

Currently, many lightweight SAM models have emerged in natural images
to enable these applications to run on resource-constrained terminal devices.
Mobile-SAM [6] replaces SAM’s image encoder with a lighter structure and com-
pletes training within a day using a decoupled distillation approach. Compared to
SAM, MobileSAM achieves comparable performance with 60 times fewer param-
eters and can run stably on a CPU. EfficientViT-SAM [6] proposes a pre-training
framework called SAMI with masked images, which significantly enhances the
performance of image mask pre-training methods and extends well to various
tasks such as image classification, object detection, and semantic segmentation.
Compared to the original SAM, EfficientSAM reduces the number of parameters
by 20 times, accelerates the running speed by 20 times, and surpasses models like
MobileSAM and FastSAM [7] in performance. RepViT [4], which incorporates
re-parameterized convolutions into the MobileNetV3 [2] architecture, forms a
lightweight CNN resembling a ViT structure. When used as the image encoder
and combined with SAM, it achieves faster and better results than MobileSAM.

In this paper, we build upon RepViT and SAM, implementing several minor
architectural and preprocessing adjustments to significantly reduce the overall
model parameters and computational load. The model undergoes training in
two stages: distillation of the image encoder and overall fine-tuning. During the
inference phase, we leverage structural re-parameterization to further reduce the
number of parameters and enhance speed, all while maintaining accuracy.

2 Method

We propose a lightweight foundational model for medical image segmentation
based on SAM and RepViT. The details of the proposed method are described
as follows.

2.1 Preprocessing

We primarily follow the baseline data processing approach for three-channel 2D
data. The inference phase consists of the following steps:

– Resize the longest edge to 256 while maintaining the aspect ratio of the
image.

– Normalize the image pixel value to the [0, 1] range using Max-Min Normal-
ization.
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– Pad the image to [256, 256].
– Align the coordinates of the box with the resized image.

For 3D data preprocessing during the inference phase, we perform slice-by-
slice operations for each box. Each slice is expanded to three channels, and the
data preprocessing method then follows the same procedure as described above
for 2D data.

During the training phase, to avoid excessive disk usage, we directly read
npz files for training. For 3D data, one random slice in the stack is read per
iteration. To utilize more slices in the same stack, one 3D data is read multiple
times during each training epoch.

2.2 Proposed Method

The overall architecture of the proposed method is identical to MedSAM, as
illustrated in Figure 1. It mainly consists of three parts: the Image Encoder, the
Mask Decoder, and the Prompt Encoder. For each box, the method predicts the
corresponding mask individually.

Fig. 1. The network architecture of MedSAM.

We replace the Image Encoder with the lightweight RepViT model, the over-
all structure of which is shown in Figure 2. This structure comprises multiple
stacked RepViTBlocks.

The structure of a single RepViTBlock is shown in Figure 3. Figure 3(a)
depicts the structure of the MobileNet Block. The RepViT Block is an improved
version based on this structure. Its architecture during training and inference is
illustrated in Figure 3(b).

Additionally, the training of RepSAM is divided into two stages. The first
stage involves knowledge distillation for the Image Encoder. In this stage, instead
of using a larger parameter Image Encoder as the teacher model, we directly use
the pre-trained TinyViT. Despite the smaller parameter count of the teacher
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Fig. 2. The network architecture of RepViT.

Fig. 3. The structure of a single RepViT Block

model, the RepViT obtained by distillation learning achieves better results com-
pared to training from scratch. The second stage involves fine-tuning the overall
structure of RepSAM.

Loss function: We employ KLDivLoss as the loss function for the first stage
of knowledge distillation. During the fine-tuning stage, the loss function is a
combination of DiceLoss, BCELoss, and MSELoss.

2.3 Post-processing

We maintain the same approach as the baseline by post-processing the predicted
masks through cropping and resizing to align the results with the input images.

3 Experiments

3.1 Dataset and evaluation measures

We use the dataset provided by the challenge, along with an additional public
dataset, ToothSeg, for model training. Furthermore, during the distillation stage
of the Image Encoder, we also include the validation set provided by the challenge
in the training process. Throughout training, we maintain the data format as
.npz. For 3D data, a random slice is read in each iteration, and during each
epoch, each 3D dataset is traversed multiple times to read and train on multiple
slices from the same data.
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The evaluation metrics include two accuracy measures—Dice Similarity Co-
efficient (DSC) and Normalized Surface Dice (NSD)—alongside one efficiency
measure—running time. These metrics collectively contribute to the ranking
computation.

3.2 Implementation details

Environment settings The development environments and requirements are
presented in Table 1.

Table 1. Development environments and requirements. (mandatory table)

System Ubuntu 18.04.6 LTS
CPU Intel(R) Core(TM) i9-10900K CPU @ 3.70GHz
RAM 64GB
GPU (number and type) One NVIDIA GeForce RTX 3090 24G
CUDA version 11.8
Programming language Python 3.9
Deep learning framework PyTorch(torch 2.1.2, torchvision 0.16.2)
Code

Training protocols The training process is divided into two stages. The first
stage involves the distillation learning of the Image Encoder. The training pro-
tocol for this stage is shown in Table 2. In this stage, RepViT learns relevant
knowledge from the pre-trained TinyViT and encodes the images. We use KLD-
Loss as the loss function. Through knowledge distillation, RepViT can quickly
converge within 10 epochs, and we select the best distillation model based on
the loss value.

Table 2. Training protocols. (mandatory table)

Pre-trained Model MedSAM [3]
Batch size 4
Patch size 256×256×3
Total epochs 10
Optimizer AdamW
Initial learning rate (lr) 1e-4
Lr decay schedule CosineAnnealingLR
Loss function KLDivLoss

The second stage involves fine-tuning the entire RepSAM. First, we load
the pre-trained weights for the three components: the Image Encoder loads the
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weights from the knowledge-distilled RepViT, and the Prompt Encoder and
Mask Decoder directly load the provided baseline weights. The remaining train-
ing protocol details are shown in Table 3, with model parameters and compu-
tational load only calculated for the Image Encoder. During the training phase,
we apply a random jitter of 5 pixels to the input boxes and randomly flip the
images for augmentation. Additionally, we employ the EMA (Exponential Mov-
ing Average) strategy to enhance the model’s robustness. The data is split into
training and validation sets in a 4:1 ratio. The optimal model is selected based
on the dice metric evaluated on the validation set.

Table 3. Training protocols. (mandatory table)

Pre-trained Model MedSAM [3] RepViT [4]
Batch size 4
Patch size 256×256×3
Total epochs 30
Optimizer AdamW
Initial learning rate (lr) 2e-5
Lr decay schedule CosineAnnealingLR
Training time 61 hours
Loss function DiceLoss + BCELoss + MSELoss
Number of model parameters 23.16M1 23.04M(inference)
Number of flops 7.23G2 7.08G(inference)
CO2eq 16.8Kg3

4 Results and discussion

4.1 Quantitative results on validation set

We compare our method with the baseline, MedSAM, and other models. The
quantitative evaluation results are shown in Table 4.1, listing the DSC and NSD
for nine modalities, along with the average DSC and NSD across all modali-
ties. Our proposed method achieves an average Dice of 0.8688 and an average
NSD of 0.8746 on the validation set. Additionally, we compare our method with
RepMedSAM trained from scratch. The table shows that RepMedSAM trained
from scratch already achieves results surpassing both the baseline and the larger
MedSAM. Moreover, incorporating knowledge distillation in the initial phase
significantly enhances the final segmentation results.

The proposed method achieves good segmentation results across various
modalities, including CT, MR, US, X-Ray, Dermatology, Endoscopy, and Fun-
dus. However, its performance is relatively poorer on PET and Microscopy, pos-
sibly due to the data quality and the inherent difficulty of these segmentation
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tasks. Additionally, there is nearly a 10% difference in the DSC metric for US
segmentation between RepMedSAM and the baseline, which we suspect is due
to differences in the training data. Furthermore, incorporating the ToothSeg
dataset into the training process significantly improves the segmentation results
for X-Ray in the validation set.

Table 4. Quantitative evaluation results.

Target Baseline MedSAM RepMedSAM RepMedSAM(distill)
DSC(%) NSD(%) DSC(%) NSD(%) DSC(%) NSD(%) DSC(%) NSD(%)

CT 89.10 91.03 90.40 92.09 86.30 89.19 93.88 96.36
MR 83.28 86.09 84.51 86.68 80.38 83.41 87.86 91.73
PET 55.10 29.12 62.42 47.64 67.06 50.25 64.41 41.30
US 94.77 96.81 91.92 95.55 84.39 89.36 84.46 89.46

X-Ray 75.82 80.38 78.28 84.01 85.06 90.37 85.92 91.19
Dermotology 92.47 93.86 91.37 92.81 94.55 96.02 94.70 96.15
Endoscopy 96.04 98.11 96.83 98.86 94.80 97.35 96.50 98.66

Fundus 94.81 96.42 95.01 96.64 95.38 96.96 94.54 96.22
Microscopy 61.63 65.39 67.90 74.65 75.52 82.29 79.65 86.08

Average 82.56 81.91 84.30 85.44 84.83 86.13 86.88 87.46

4.2 Qualitative results on validation set

Figure 4 shows the visual comparison of the proposed method and the baseline
on selected data. It can be observed that RepMedSAM, trained in two stages
of knowledge distillation and fine-tuning, achieves the best segmentation results
on these datasets.

Figure 5 illustrates the segmentation results of the proposed method across
various modalities. It is evident from the figure that the segmentation results in
the left four columns are outstanding, while those in the right two columns are
relatively mediocre.

4.3 Segmentation efficiency results on validation set

Table 5 presents the runtime comparison between the proposed method and the
baseline on selected validation sets. All times are measured from tests conducted
on a local machine CPU. Additionally, we compare the runtime before and after
re-parameterization.

4.4 Results on final testing set

4.5 Limitation and future work

During this training process, to reduce the training time, we only included an
additional X-Ray dataset for training to improve the segmentation accuracy
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Fig. 4. Comparison between segmentation results of different methods.

Fig. 5. Segmentation Results for Specific Modalities.
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Table 5. Quantitative evaluation of segmentation efficiency in terms of running time
(s).

Case ID Size Num. Objects Baseline w/o rep RepMedSAM
3DBox_CT_0566 (287, 512, 512) 6 296.77 241.14 170.87
3DBox_CT_0888 (237, 512, 512) 6 79.30 64.61 45.88
3DBox_CT_0860 (246, 512, 512) 1 10.95 8.98 6.48
3DBox_MR_0621 (115, 400, 400) 6 124.53 101.81 72.35
3DBox_MR_0121 (64, 290, 320) 6 80.05 65.18 45.53
3DBox_MR_0179 (84, 512, 512) 1 10.62 8.80 6.28
3DBox_PET_0001 (264, 200, 200) 1 6.69 5.48 3.98
2DBox_US_0525 (256, 256, 3) 1 0.54 0.44 0.32
2DBox_X-Ray_0053 (320, 640, 3) 34 1.47 1.32 1.17
2DBox_Dermoscopy_0003 (3024, 4032, 3) 1 0.80 0.70 0.52
2DBox_Endoscopy_0086 (480, 560, 3) 1 0.55 0.44 0.32
2DBox_Fundus_0003 (2048, 2048, 3) 1 0.60 0.48 0.36
2DBox_Microscope_0008 (1536, 2040, 3) 19 1.15 1.04 0.90
2DBox_Microscope_0016 (1920, 2560, 3) 241 8.55 8.44 8.39

on the validation set. Including more datasets for training could enhance the
model’s generalization ability further. Additionally, we attempted to use the
ONNX engine for inference, but the runtime did not show significant reduction.
Further work on deployment could focus on reducing the required inference time.

5 Conclusion

We combine the lightweight CNN structure, RepViT, with SAM and apply it to
medical image segmentation. Through training in two stages, knowledge distil-
lation and fine-tuning, RepMedSAM achieves higher segmentation accuracy and
faster segmentation speed compared to the baseline.
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