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Abstract

People have diverse privacy requirements. This is best modeled using a personal-
ized local differential privacy model where each user privatizes their data using
a possibly different privacy parameter. While the model of personalized local
differential privacy is a natural and important one, prior work has failed to give
meaningful error bounds. In this paper, we study the foundational sum/mean
estimation problem under this model. We present two novel protocols that achieve
strong error guarantees. The first gives a guarantee based on the radius of the data,
suiting inputs that are centered around zero. The second extends the guarantee to
the diameter of the data, capturing the case when the points are situated arbitrarily.
Experimental results on both synthetic and real data show that our protocols signif-
icantly outperform existing methods in terms of accuracy while providing a strong
level of privacy.

1 Introduction

Sum/mean estimation under differential privacy (DP) is a fundamental building block in privacy-
preserving machine learning [1, 5], statistical analysis [14], and query processing [19, 22]. Among
the various models of DP, the local model (LDP) has attracted much attention, as it makes no trust
assumptions and is easy to implement in a distributed setting. In this model, each user privatizes
their own data, usually by adding some noise, and sends the noisy result to an untrusted analyst.
However, existing work on LDP assumes that all users adopt the same privacy parameter (ε or ρ)
when privatizing their data, which is an overly simplistic assumption. In practice, people have diverse
privacy requirements: Conservative users might be unwilling to share data, while more liberal ones
are happy to contribute. Indeed, many apps give users the option of sharing or not sharing their data,
which can be considered the most coarse-grained personalized privacy.

In this paper, we consider a fine-grained and more quantitative personalized LDP model where each
user u is allowed to set their privacy parameter Φ(u) to any positive real number, with smaller values
corresponding to higher privacy requirement. In particular, we adopt zero-concentrated DP, where
Φ(u) corresponds to the parameter ρ (the formal definition is given in Section 3). We study the sum
estimation problem under such a setting: Let U = {u1, ..., un} be the set of users. We model the
given instance as a function I : U → [B]d, where [B] := {0, . . . , B} and ∥I(u)∥2 ≤ B for all u,
i.e., each user u holds a d-dimensional non-negative integer-valued vector I(u) in a ball of radius B.
This is without much loss of generality: real-valued vectors can be translated, scaled, and rounded
with negligible precision loss as long as B is sufficiently large, say, 232. In this paper, we focus on
estimating the core function of Sum(I) =

∑
u∈U I(u); mean estimation results follow easily.
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In an LDP protocol, each user privatizes their own data by themselves using a local randomizer, so it
automatically translates to this personalized setting. For instance, each user can apply the Gaussian
mechanism to I(u), which adds a Gaussian noise with scale O

(
B√
Φ(u)

)
to each coordinate [10, 38, 35].

However, this simple solution may fail miserably. First, as B is an a priori upper bound on the norm, it
must be set conservatively large, resulting in excessive noise. Meanwhile, the norms of data in typical
instances are much smaller than B, so some instance-specific error, e.g., one that is proportional to
the radius rad(I) = maxu∈U ∥I(u)∥2 or the diameter ω(I) = maxui,uj∈U ∥I(ui)− I(uj)∥2, would
be more desirable. Second, this solution is susceptible to highly conservative users with very small
Φ(u), who may just as well be removed from the analysis.

An effective approach to addressing both issues is to truncate/clip the data before adding noise. Given
a threshold τ , we truncate the data on the ℓ2 norm, i.e., set Ī(u, τ) = min(∥I(u)∥2, τ) I(u)

∥I(u)∥2
. Then

adding a Gaussian noise with scale O
(

τ√
Φ(u)

)
satisfies the LDP requirement for u. However, it is

not clear how to select a good τ in the personalized LDP model. More critically, even if a best τ
could be found, applying the same τ to all users would still yield sub-optimal results. Consider the
following 1D example.
Example 1.1. Suppose user i has (scalar) data I(ui) = i with privacy parameter Φ(ui) = (n+ 1−
i)2/n, for i = 1, . . . , n, representing a typical case where users with larger data values also have
stronger privacy requirements. Directly applying the Gaussian mechanism corresponds to τ = B, and
incurs a total error of O

(
B
√∑

i(1/Φ(ui))
)
= O(B

√
n). More generally, the truncation mechanism

above returns min(I(u), τ) +N (0, τ2

Φ(u) ). Using the notation (x)+ := max(x, 0), the total error is∑n
i=1(I(ui)− τ)+ +

√∑n
i=1

τ2

Φ(ui)
, (1)

where the first term is the truncation bias and the second is the total error of the noise. Even with the
optimal τ = n−

√
n (which is not clear how to obtain without knowledge of the users’ private data),

both the bias and the noise term are O(n3/2).

In Section 4, we present a protocol that achieves an ℓ2 error of1

mins∈R≥0

(∥∥∥∥∑u

(
∥I(u)∥2 − s

√
Φ(u)

)+
I(u)

∥I(u)∥2

∥∥∥∥
2

+ Õ
(
s
√
nd
))

(2)

in d dimensions. It has a similar form to (1), but with two key differences: First, instead of a
uniform truncation threshold τ for all users u, we make it proportional to

√
Φ(u). Intuitively, this

allows us to obtain more information about more liberal users. It truncates more aggressively on
conservative users (such as un in Example 1.1), but this also reduces the noise they introduce to
the final estimate. Second, our protocol automatically selects the optimal scaling factor s, in one
round and in a DP fashion. These two improvements allow us to reduce the error significantly. When
applied to the instance in Example 1.1, (2) is Õ(n4/3), achieved by s = n5/6. Also, note that in
the uniform-privacy LDP setting where Φ(·) ≡ ρ, (2) degenerates into Õ

(
rad(I)

√
nd/ρ

)
, achieved

by s = ∥I∥(
√

nd/ρ)

2 /
√
ρ, where ∥I∥(k)2 denotes the k-th largest ℓ2 norm in I. This matches the

radius-dependent bound of the LDP protocol in [18]. In addition to the ℓ2 error, our protocol also
achieves a similar error guarantees in terms of ℓ∞, which allows us to solve some related problems
like frequency estimation, range counting, and quantiles in the personalized LDP model.
Example 1.2. Next, consider a variant of Example 1.1 where the users’ data are clustered away from
the origin: I(ui) = B/2 + i for i = 1, . . . , n (assuming B ≫ n). On this instance, the error bound
(2) becomes Õ(B

√
n), no better than the naive Gaussian mechanism.

In Section 5 we present another protocol that achieves the following diameter-dependent error bound:

Õ

(
mins∈R≥0

(
ω(I)

√∑
u 1
(
s
√
Φ(u)/2 < ω(I)

)
+ s
√
nd

))
. (3)

Since ω(I) ≤ 2 · rad(I) on any instance I, while ω(I) could much smaller than rad(I), such a
diameter-dependent bound is more preferable, especially for datasets that are clustered away from

1The Õ notation hides logarithmic factors.
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the origin. For the instance in Example 1.2, we have ω(I) = n while rad(I) = B + n, and (3)
is Õ(n4/3), matching what we can achieve on the instance in Example 1.1. Furthermore, in the
uniform-privacy LDP setting, (3) degenerates into Õ

(
ω(I)

√
nd/ρ

)
, achieved by s = ω(I)

√
2/ρ ,

matching the diameter-dependent bound of the LDP protocol in [18].

2 Related Work

Providing personalized privacy protection is a well motivated problem due to the diversity of users.
In fact, this issue was studied even before DP became the primary privacy model. For example, Xiao
and Tao [34] defined a notion of personalized privacy in the context of k-anonymity, which was later
extended to other related privacy models [37, 17, 30]. However, these models do not provide privacy
protection as rigorous as differential privacy [26, 39].

The model of personalized differential privacy (also known as heterogeneous differential privacy)
was initialized under the central model of DP by Jorgensen et al. [20], where a trusted central data
curator holds and analyzes users’ data. They designed a general-propose sampling mechanism and
extended the inverse sensitivity-based exponential mechanism [27, 11, 6] to PDP, but without formal
guarantees on the utility. Recent work by Sun et al. [31] provides the first result on sum estimation
and private query answering with rigorous utility guarantees. Some baseline ML problems such as
support vector machine and linear regression have been studied in [24]. Additionally, [15] studies
how to track the privacy consumption of each user over multiple queries.

Personalized differential privacy under the local model has also been studied for federated learning
[25, 36], point-of-interest recommendation [7], mean estimation [35], and statistical histograms [38].
However, these works simply use the naive Gaussian mechanism that adds a noise with scale B√

Φ(u)

for each I(u). For this to succeed, they have to use a small B and assume that the norms of all data
are not much smaller than B.

There are also some other interesting papers that do not study the PDP model directly, but nevertheless
have a “personalized” flavor. For example, [33, 28] consider a personalized privacy setting where
each user determines which part of its data is public or private, and then provide (standard) DP
protection only on the private part. Zhang et al. [40] points to another interesting direction called
multi-analyst DP. Recent work by Seeman et al. [29] studies the notion called per-record DP, where
each user has a different privacy level depending on the content of his record.

3 Preliminaries

We consider the local model of differential privacy where each user u retains their data I(u), and
only sendsM(I(u)) to the analyzer, whereM(·) is called a local randomizer, which must satisfy
(local) DP. Each user u has a possibly different privacy parameter Φ(u), where Φ : U → R+

is called the privacy specification, known to the analyzer. Define ρmin := minu∈U Φ(u) and
ρmax := maxu∈U Φ(u).

There are several versions of DP. In this paper, we adopt zero-Concentrated Differential Privacy
(CDP) [9], which is more suitable for high-dimensional data. It naturally fits the personalized setting:
Definition 3.1 (Personalized local zCDP (PLCDP)). For a given privacy specification Φ, a local
randomizerM satisfies Φ-PLCDP if for any user u, any I(u), I′(u), and any α > 1,

Dα (M(I(u))∥M(I′(u))) ≤ α · Φ(u),
where Dα (·∥·) denotes the α-Rényi divergence between the distributions of the two random variables.

It is known that the privacy guarantee provided by CDP is sandwiched between that of pure DP and
approximate DP, with their parameters roughly related as ε = Θ̃(

√
ρ) [9]. The canonical mechanism

for achieving PLCDP adds Gaussian noise with proper scale to each coordinate of the data:
Lemma 3.1 (Gaussian Mechanism [9]). Under the constraint that ∥I(u)∥2 ≤ B for all u, the

randomizerM that outputsM(I(u)) = I(u) +N
(
0, B2

2Φ(u) · 1d×d

)
satisfies Φ-PLCDP.

In a one-round protocol, the analyzerA collectsM(I(u)) for all u ∈ U and outputsA((M(I(u)))u).
It is also possible for a protocol to run over multiple rounds, in which case the privacy consumption
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accumulates. For simplicity, we only state and prove (in Appendix A.1) a 2-round version; extension
to more rounds is straightforward.
Lemma 3.2 (Adaptive composition). Let M1(·) and M2(·, y) be local randomizers such that
M1(·) satisfies Φ1-PLCDP andM2(·, y) satisfies Φ2-PLCDP for any y. Then the 2-round protocol
that collects (M1(I(u)))u in the first round and (M2(I(u), y(u)))u in the second round satisfies
(Φ1 +Φ2)-PLCDP, where y(u) may depend on (M1(I(u)))u.

Note that if M2(·, y) does not depend on y, then the composition is non-adaptive, and the two
randomizers can be run in the same round.

We also need the following tail bound of the Gaussian distribution for utility analysis:

Lemma 3.3 (Gaussian tail). If X ∼ N (0, σ2), then Pr
[
|X| > σ

√
2 ln 2

β

]
≤ β for any 0 < β < 1.

4 Radius-Dependent Protocol

In this section, we present a one-round PLCDP protocol that achieves the following error guarantee:
Theorem 4.1. For any Φ, the local randomizer defined in Algorithm 1 satisfies Φ-PLCDP. For any β,
the analyzer can run Algorithm 2 to obtain an estimate of Sum(I) with an ℓ2 error at most

min
s∈R≥0

(∥∥∥∥∥∑
u

(
∥I(u)∥2 − s

√
2Φ(u)

)+ I(u)

∥I(u)∥2

∥∥∥∥∥
2

+ 4s

√
2ndtln

2td

β

)
(4)

and an ℓ∞ error at most

min
s∈R≥0

(∥∥∥∥∥∑
u

(
∥I(u)∥2 − s

√
2Φ(u)

)+ I(u)

∥I(u)∥2

∥∥∥∥∥
∞

+ 4s

√
2ntln

2td

β

)
(5)

with probability at least 1− β, where t = log
(
B
√

ρmax

ρmin

)
.

Below, we describe our randomizer and analyzer, while giving some intuition why they can achieve
the error bounds in Theorem 4.1, with the formal proof in Appendix A.2.

Our local randomizer invokes the truncation mechanism on user u with a truncation threshold
τ(u) = s

√
2Φ(u). In order to find an optimal s up to a constant factor, we try a logarithmic

number of possible values from smin = 1√
2ρmax

to smax = B√
2ρmin

. More precisely, letting t =

log smax

smin
= log

(
B
√

ρmax

ρmin

)
, we try si = 2i · smin for i = 0, 1, ..., t, i.e., invoke t instances of the

truncation mechanism concurrently with τi(u) = 2i
√

Φ(u)
ρmax

, while splitting the privacy budget using
the non-adaptive version of Lemma 3.2. The details are given in Algorithm 1.

After receiving the t noisy truncated vectors from all users, the analyzer adds them up respectively. It
remains for the analyzer to pick one out of the t noisy truncated sums that achieves a near-optimal
error. For this, we use a “subtract-max” technique [13]: For each dimension, we subtract a term
proportional to the noise scale from each noisy sum and take the maximum. The details are given in
Algorithm 2. The intuition that this can find an optimal s is as follows. We know that that the optimal
s should balance the bias and noise. A small s introduces a large bias but small noise, so it is unlikely
to be the maximum. A large s has small bias but large noise, so subtracting a term proportional to the
noise scale turns it into an underestimate. Between these two extremes, the underestimate where the
bias matches the noise has the best chance to become the maximum.

Remark. As stated, the randomizer in Algorithm 1 sends out a message of size Õ(d). Using the
lossless compression technique in [16], this can be compressed to Õ(1) with negligible loss in the
privacy and utility. On the other hand, instead of reporting a value for all si, each user may sample
only one scale and send the corresponding truncated value. This will not affect the asymptotic
accuracy of the algorithm but can reduce communication by a factor of log

√
ρmax

ρmin
B.

Below, we discuss two applications of our radius-dependent protocol, which will also be useful in our
diameter-dependent protocol in Section 5.
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Algorithm 1: LocalSum-R (Randomizer)
Input: I(u), Φ, B, d

1 t← log
(√

ρmax

ρmin
B
)

;

2 for i← 0, 1, . . . , t do
3 Let si ← 2i√

2ρmax
, τi(u)← si

√
2Φ(u);

4 Define Ii(u) = min(∥I(u)∥2, τi(u)) I(u)
∥I(u)∥2

;

5 Ĩi(u)← Ii(u) +N
(
0, s2i · t · 1d×d

)
;

6 end
7 return {Ĩi(u)}ti=0;

Algorithm 2: LocalSum-A (Analyzer)

Input: {Ĩi}ti=0, Φ, B, β, d

1 t← log
(√

ρmax

ρmin
B
)

;

2 for i← 0, 1, . . . , t do
3 si ← 2i√

2ρmax
;

4 S̃umi(I)← Sum(̃Ii)− si

√
2ntln 2td

β · 1;

5 end
6 return S̃um(I) such that S̃um(I)[j]← max{maxi S̃umi(I)[j], 0}, where S̃umi(I)[j] is the jth

coordinate of S̃umi(I);

Histogram (frequency estimation). In the histogram problem, each user holds an element I(u) ∈
[B], and the goal is to obtain a private histogram from which we can estimate the number of
occurrences of any i ∈ [B]. By taking I(u) as a one-hot vector in B dimensions, the histogram
problem becomes a sum estimation problem, and the ℓ∞ error bound (5) provides a guarantee on the
maximum error on the estimated frequency of any i ∈ [B]. For this special case, (5) can be further
simplified as:
Corollary 4.2. Given Φ, β, B, I(u) ∈ [B], Algorithms 1 and 2 return a private histogram such that
for all i ∈ [B], the frequency of i can be estimated with error at most

O

k

√
n log

ρmax

ρmin
log

logB log ρmax

ρmin

β

 ,

where k is the smallest index such that
∑k

i=1

√
Φ(ui) ≥ 1, assuming the users are ranked in the

non-decreasing order of Φ(ui).

Note that when Φi(u) ≡ ρ, we have k = 1/
√
ρ, and the error degenerates to Õ(

√
n/ρ), matching

the error bound in the standard LDP model [23].

Range counting and quantiles. The range counting problem has the same setup as above, but we
are interested in counting the number of elements in any range [L,R] ⊆ [B]. Note that the histogram
problem is the special case where L = R. The range counting problem can be reduced to logB
instances of the histogram problem by decomposing the universe [B] in a hierarchical fashion. The
following theorem summarizes the result, with details given in Appendix A.3, A.4.
Theorem 4.3. Given Φ, β, B, I(u) ∈ [B], with probability at least 1− β, all range counting queries
over [B] can be answered with error

O

k

√
n log

ρmax

ρmin
log

logB log ρmax

ρmin

β
log2 B

 (6)

under Φ-PLCDP, where k is as defined in Corollary 4.2.
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Finally, using range counting queries in the form of [1, x], we can do a binary search on [B] to find
any quantile (e.g., the median) approximately. Then (6) becomes the rank error of the returned
quantile (e.g., the returned median is ranked at n

2± (6)).

5 Diameter-Dependent Protocol

The protocol above achieves an error that scales with the radius, i.e., the maximum ℓ2 norm, which
only works well for datasets that are around the origin. For the general case, it is more desirable to
achieve an error that scales with the diameter ω(I) rather than rad(I). In this section, we design such
a PLCDP protocol, although it requires two rounds.

Our solution is to first shift the dataset towards the origin such that the radius of the shifted dataset is
roughly the diameter of the original dataset. That is, the shifted dataset should be concentrated around
the origin, and it preserves the diameter of the original dataset. Then we can apply the previous
(radius) sum algorithm to the shifted dataset and shift the result back.

To achieve this goal, we need to find an interior point (in our case, the median) on each dimension
independently, using the PLCDP quantile selection algorithm described above. Since this is done
on all the d dimensions, privacy parameters need to be further divided into d parts. Below is the
guarantee that follows directly from Theorem 4.3:

Corollary 5.1. Given β,Φ, I(u) ∈ [B]d, if n ≥ cd log ρmax

ρmin
log

d logB log ρmax
ρmin

β k2 log4 B for some
constant c, with probability at least 1 − β, we can find an interior point in each dimension while
preserving Φ-PLCDP.

However, in high dimensions, doing such a shift in each dimension may ‘expand’ the dataset and
result in a radius of O(

√
dω(I)). Consider the following example.

Example 5.1. Consider a dataset consisting d unit vectors in d-dimensional space, the diameter is√
2. Obviously, in every single dimension 1 is an interior point, but shifting with (1, 1, ..., 1) results

in a radius of
√
d− 1.

The reason is that the values in each dimension may be skewed. In order to preserve the diameter of
I in high dimensions, we perform a random rotation to ‘balance’ the values before estimating the
median. The rotation is done by Î(u) := HDI(u), where H is the d× d Hadamard matrix, and D is
a d× d diagonal matrix whose diagonal entry is independently and uniformly drawn from {−1,+1}.
This process can be done via public randomness and does not need additional communication. The
following Lemma [3] says the rotated data is likely to be more ‘balanced’:
Lemma 5.2 ([3]). Let H and D be defined as above. Then, for any x ∈ Rd and any β > 0,

Pr

[
∥HDx∥∞ ≥ ∥x∥2 ·

√
2 log

4d

β

]
≤ β.

For any pair of users u1, u2, by setting x = I(u1)−I(u2), the above lemma says with high probability,
the maximum distance between their rotated data on each dimension

∥∥∥Î(u1)− Î(u2)
∥∥∥
∞

is no greater

than
√
2 log 4d

β ∥I(u1)− I(u2)∥2. To make this hold simultaneously for all pairs of points, we apply

a union bound and the distance bound will become O(
√

log nd
β ω(I)), thus the radius of the shifted

data Îs is Õ(
√
dω(I)). After estimating the sum of the rotated data, we should rotate this result back

by multiplying (HD)
−1, which decreases the ℓ2 norm by a factor of 1√

d
so the additional

√
d factor

here will be eliminated finally.

The whole process of sum estimation can be formulated as follows:

1. Each user does a random rotation on their data using public information H,D, denote the
rotated data as Î(u).

2. Apply the median selection protocol on each dimension using the technique described
in Section 4 with privacy Φ

2d and failure probability β
4d . Note for original data such that

∥I(u)∥2 ≤ B, the rotated data will have ∥Î(u)∥2 ≤ dB and its coordinate will lie in [dB].
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3. Analyzer receives messages from users and returns the estimated median of each dimension;
denote the median vector as m̃ ∈ [dB]d where the jth coordinate m̃[j] represents the
estimated median of dimension j.

4. Each user shifts the rotated data towards the median and splits the shifted data into neg-
ative/positive parts. Let the shifted data be Îs(u) = Î(u) − m̃ and define the nega-
tive part as Î−s (u) = −min(Îs(u), 0) (on each coordinate) whereas the positive part is
Î+s (u) = max(Îs(u), 0) (on each coordinate). This is to ensure each part contains only
non-negative values as required by our sum estimation protocol.

5. Each user applies the sum protocol described in Section 4 on Î−s and Î+s separately, with
privacy budget Φ

4 and failure probability β
4 , sending the results to the analyzer.

6. The analyzer determines the best estimation of negative/positive part, denoted as S̃um(Î−s )

and S̃um(Î+s ). It then combines the information above to give a final sum estimation

S̃um(I) = (HD)
−1
(
S̃um(Î+s )− S̃um(Î−s ) + n · m̃

)
In Appendix A.5, we prove the following error bound of the protocol above:

Theorem 5.3. Given Φ, β, B, d, assume n ≥ cd log ρmax

ρmin
log

d logB log ρmax
ρmin

β k2 log4 B for some large
enough constant c. Then with probability at least 1− β, the ℓ2 error of sum estimation is no greater
than

O

√log
nd

β
min
s∈R≥0

√∑
u

1(s
√
Φ(u)/2 < ω(I))ω(I) +

√
ndtln

td

β
s


where t = ⌈log dB

√
ρmax

ρmin
⌉.

6 Experiments

In this section, we report the experimental results comparing our new protocols against the baseline
method, which adds Gaussian noise of scale τ√

Φ(u)
after truncating each user’s data by a uniform

threshold τ . As there is currently no method for choosing a good τ , we give this baseline method the
unfair advantage of using the optimal τ (selected in a non-private manner). We call this baseline the
Naive Optimal. Note that this baseline is always no worse than the naive method that adds a Gaussian
noise of scale B√

Φ(u)
without truncation, which is used in prior work [25, 36, 7, 35, 38], since the

latter is the special case of the former with τ = B. The corresponding codes and data are provided in
the GitHub repository 2.

6.1 Setup

Datasets. We performed experiments on both synthetic and real-world datasets. Synthetic datasets
are used to demonstrate the scalability of our mechanisms and to examine the effect of different input
distributions, varying numbers of users n, and different data dimensions d. Specifically, for users’
data I(u), we tried two different distributions: In Normal Data, each coordinate of each user’s data is
independently drawn from a normal distribution with mean 1,000 and standard deviation 100. The
sampled values are rounded to the nearest integer. In Uniform Data, each coordinate of each user’s
data is uniformly drawn from {0, 1, ..., 1000}. For both input distributions, we examined various
user counts n = 103, 104, 105, 106, with a default of 105. We also tested different dimensionalities
d ∈ {32, 64, 128, 256, 512}, with a default value of 128. We set B = 1,000,000, which is a
sufficiently large upper bound for all datasets.

The real-world data we used is the MNIST (train) dataset [12], which consists of 60,000 images
of handwritten digits, where each image is represented by a vector of dimension 28 × 28 = 784
and each coordinate is an integer ranging from 0 to 255. We perform sum estimation for each digit
separately and treat each image as an individual’s data. In order to apply the Hadamard matrix, we

2https://github.com/personalizedldp/PLCDP
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add zeros to the end of each vector to pad the dimension to d = 1024 and we set B = 255
√
d =

8,160.

Data Result ℓ2 Norm Technique Relative ℓ2 Error(%) Time(s)

Normal Data 9.04× 108
Naive 51.24 0.02

Radius Sum 9.75 0.93
Diameter Sum 0.140.140.14 16.10

Uniform Data 5.65× 108
Naive 52.67 0.02

Radius Sum 7.39 1.03
Diameter Sum 3.103.103.10 16.50

MNIST Digit 0 4.39× 107
Naive 85.77 0.02

Radius Sum 41.84 0.92
Diameter Sum 6.546.546.54 25.40

Table 1: Summary of results under default setting, where n = 105 and d = 128 for synthetic data.

Privacy Specification. We used a similar privacy specification as in [2, 20], where we randomly
divide the users into two groups: conservative, representing users with high privacy concern; and
liberal, representing users with moderate concern. The fraction of users in the conservative and liberal
groups are set to 0.05 and 0.95, respectively. The privacy level for the users in the conservative and
liberal groups are drawn uniformly at random from the ranges [ 1n , 1] and [1, 100], respectively, which
are reasonable values in the local model of DP according to [8].

Experimental Parameters. All experiments are done on a desktop PC equipped with an M2 Pro
CPU and 16GB memory. We set the probability parameter β = 0.1. Each experiment is repeated
20 times and we record the average running time and relative error compared to the true sum. We
discard the top/lower 10% errors before computing the average error.

Figure 1: Effect of varying number of users on the relative ℓ2 error of different mechanisms.

6.2 Results

Table 1 summarizes the results of different mechanisms under the default setting. Our diameter sum
mechanism achieves the best performance with acceptable relative error in all cases. In contrast, the
naive mechanism always provides poor utility. On the other hand, our diameter sum mechanism
always provides improvements compared to the radius sum mechanism, and this improvement
becomes essential on the MNIST dataset, whereas the radius sum has a more then 40% error thus
loosing utility. Regarding the running time, although there is a large gap between the total running
times of different mechanisms, all of them can be efficiently executed on commodity hardware.

Synthetic Data. Figure 1 shows the results on the synthetic data varying number of users n. As
n grows up, the relative error of our radius/diameter sum mechanism decreases roughly linearly in√
n. This is because for a fixed input distribution and privacy specification, the optimal noise scale

s chosen by our algorithms roughly remains unchanged. So the error stated in Theorem 4.1 and
Theorem 5.3 roughly grows at the rate of

√
n. Since the ℓ2 norm of Sum(I) is proportional to n,

thus the relative error will decrease proportional to
√
n. Meanwhile, the relative error of the naive

mechanism roughly remains as a constant when n changes. This is because as n grows up, the portion
of users with small privacy parameter (thus high error) is fixed. So the total error also grows linearly
in n and the relative error remains unchanged.
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Figure 2 shows the effect of varying data dimension d. We can see as d increases, the error of all
mechanisms also increase. The intuition is that the optimal noise scale s is proportional to

√
d. Since

the noise vector has d dimensions, the ℓ2 norm of each noise vector is proportional to d. As the ℓ2
norm of Sum(I) is proportional to

√
d, the relative error roughly increases at the rate of

√
d.

Figure 2: Effect of varying input dimension d on the relative ℓ2 error of different mechanisms.

MNIST. Figure 3 shows the accuracy and running time of different mechanisms on the MNIST
dataset. Similar to before, the naive mechanism provides the worst performance with almost 100%
relative error which makes it meaningless. However, this time our radius sum mechanism also
provides poor utility. This is because each digit in the MNIST dataset has its own pattern, thus an
error that scales with the radius of the dataset indeed significantly overestimates the sensitivity of
each digit and leads to an undesirable error. Fortunately, our diameter sum algorithm is capable of
automatically finding the intrinsic pattern of each digit, which is the median vector m̃ we find in step
3 of the algorithm. Thus it can provide a small error that only scales the diameter of each digit (the
variety within the same class). The result on different digits varies slightly, but the diameter sum
mechanism provides high accuracy in general. All these mechanisms can be executed efficiently.

Figure 3: MNIST dataset, different digits.

7 Limitations and Future Directions

In this paper, we have considered a personalized LDP model where the privacy parameter, i.e., Φ(u)
is known to the analyst. In situations where there is a direct relationship between the user’s data and
their privacy requirement, such as income data, revealing Φ(u) would breach privacy. There have
been some recent proposals [4, 29] on how to model such a setting where both the data and privacy
parameters are to be protected, and it would be interesting to see if our techniques can be extended to
this case.

Another interesting direction is to provide a confidence interval (confidence regions in high dimen-
sions), instead of just a sum estimate, which would allow the analyst to make decisions with more
statistical reliability. Note that the confidence interval itself must also be differentially private. For
the naive Gaussian method, this is easy since the analyst knows precisely the distribution of the noise.
However, this is more challenging for our method, and any truncation based approach, because the
truncation bias depends on the private data.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: In Section 7, we discuss the limitations of this paper and possible future
directions.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [Yes]
Justification: All theorems inside this paper clearly state their assumptions and the complete
proofs can be found in the Appendix.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: In Section 6, we clearly state the experiment settings to improve reproducibility.
In the meanwhile, all the experimental results align with our theoretical analysis, thus
supporting our claims.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.
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5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: Data, code, and instructions are provided at
https://github.com/personalizedldp/PLCDP.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: This paper does not involve training models, but the experimental settings are
clearly described in Section 6.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: We demonstrate the statistical significance of our results using standard metrics
in the area of differential privacy.
To be specific, for the sum estimation problem, we do not treat the data as random samples
drawn from some underlying distribution, so the only randomness comes from the DP
mechanism. Our algorithms allow a failure probability (denoted by the parameter β), which
is set to 0.1 in our experiments. Meaning that with at most 10% probability, the real
error may exceed our theoretical bound. We repeat each experiment 20 times, discard the
top/lower 10% errors, and then compute the average of remaining errors.
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Meanwhile, how to provide differentially private confidence intervals is an interesting
research problem [32, 21] and it is not clear how to provide CI in our personalized LDP
setting. This may be our future work.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: The required information are provided in Section 6.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: This paper conforms with the NeurIPS Code of Ethics. We use publicly
available datasets properly.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts
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Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification: This is a theoretical paper that aims to design mechanisms to protect users’
privacy under various privacy demands. On the other hand, these mechanisms cannot be
maliciously used to have negative social impacts.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: This paper does not involve models and does not face the risk of misuse.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: We use several public datasets and cite them properly.
Guidelines:
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• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: The codes used in this paper are provided and documented.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
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• The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.
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• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
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A Appendix A: Proofs

A.1 Proof of Lemma 3.2

According to Lemma 2.2 in [9], suppose P and Q are distributions on Ω×Θ. Let P ′ and Q′ denote
the marginal distributions on Ω induced by P and Q respectively. For x ∈ Ω, let P ′

x and Q′
x denote

the conditional distributions on Θ induced by P and Q respectively, where x specifies the first
coordinate. Then

Dα (P ′∥Q′) + min
x∈Ω

Dα (P ′
x∥Q′

x) ≤ Dα(P∥Q) ≤ Dα (P ′∥Q′) + max
x∈Ω

Dα (P ′
x∥Q′

x)

In our case, let P be the distribution ofM2(I(u), y(u)) and Q be the distribution ofM2(I
′(u), y′(u)).

Here y′(u) denotes the information obtained from (M1(I(u)))u except for changing user u’s output
fromM1(I(u)) toM1(I

′(u)). Then we have

Dα(P∥Q) ≤ Dα(M2(I(u)),M2(I
′(u))) + max

I(u)
Dα(y(u), y

′(u))

≤ Φ2(u) + Dα(M1(I(u)),M1(I
′(u)))

= Φ1(u) + Φ2(u)

Here the second line follows from the post-processing property in Lemma 2.2 of [9], where y(u) can
be viewed as a post-processing of (M1(I(u)))u.

A.2 Proof of Theorem 4.1

Privacy is straightforward. According to Lemma 3.1, each iteration of the for-loop in Algorithm 1
preserves Φ(u)

t -CDP. Since this holds for any u, according to the definition of PLCDP, each iteration
will be Φ(·)

t -PLCDP. Then the whole process will be Φ-PLCDP according to basic composition.

Next we prove the utility. We first show that with high probability, the S̃umi(I) we obtain in each
round under-estimates Sum(I). Conditioned on this, taking max for S̃um(I) can only reduce the
error.

We should note that the truncated sum is always smaller than the true sum, that is:

Sum(Īi)− Sum(I) =
∑
u

min

(
0,

si
√

2Φ(u)

∥I(u)∥2
− 1

)
I(u) ⪯ 0.

The noisy sum Sum(̃Ii) consists of n i.i.d. Gaussian noises N (0, ts2i · 1d×d), which can be viewed
as a single Gaussian N (0, nts2i · 1d×d). According to the Gaussian tail bound in Lemma 3.3, with
probability at least 1−β, the magnitude of noise added on any coordinate of Sum(̃Ii) in any round i is

no greater than si

√
2nt ln 2td

β , which is the amount subtracted by the server in line 4 of Algorithm 2.
Conditioned on this, we have for any iteration i:

0 ⪯ S̃umi(I) ⪯ Sum(Īi) ⪯ Sum(I).

Here a ⪯ b means a[j] ≤ b[j] for each coordinate j. That is, each coordinate of any S̃umi(I) is an
underestimation of the real sum at that coordinate.

Then we show for any choice of s ∈ R≥0, our error is no greater than the value stated in equation (4)
for that s. First note we only need to consider s ≤ B√

ρmin
since a larger s will increase the noise

without reducing the truncation error.

When s = 0, the value in Equation (4) is ∥Sum(I)∥2, and clearly

∥S̃um(I)− Sum(I)∥2 ≤ ∥Sum(I)∥2.
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For any other s, we can always find an i such that si/2 < s ≤ si. Then

0 ⪰ Sum(Īi)− Sum(I) =
∑
u

min

(
0,

si
√
2Φ(u)

∥I(u)∥2
− 1

)
I(u)

⪰
∑
u

min

(
0,

s
√
2Φ(u)

∥I(u)∥2
− 1

)
I(u)

meaning the truncation error for Sum(Īi) is smaller compared to using s as the truncation threshold.
This further implies

∥Sum(Īi)− Sum(I)∥2 ≤

∥∥∥∥∥∑
u

min(0,
s
√

2Φ(u)

∥I(u)∥2
− 1)I(u)

∥∥∥∥∥
2

Thus with probability at least 1− β we have:

∥S̃umi(I)− Sum(I)∥2 =

∥∥∥∥∥Sum(Īi) +N
(
0, nts2i · 1d×d

)
− si

√
2nt ln

2td

β
· 1− Sum(I)

∥∥∥∥∥
2

≤
∥∥Sum(Īi)− Sum(I)

∥∥
2
+ 2si

√
2ndt ln

2td

β

≤

∥∥∥∥∥∑
u

min

(
0,

s
√
2Φ(u)

∥I(u)∥2
− 1

)
I(u)

∥∥∥∥∥
2

+ 4s

√
2ndt ln

2td

β

Additionally, since S̃um(I) is obtained by taking the maximum on each coordinate of under-estimates,
we have

∥S̃um(I)− Sum(I)∥2 ≤ ∥S̃umi(I)− Sum(I)∥2

The above inequality holds for any s, so the actual error of Algorithm 2 should be no greater than the
minimum of them. The ℓ∞ bound can be obtained similarly, by observing that

∥S̃umi(I)− Sum(I)∥∞ =

∥∥∥∥∥Sum(Īi) +N
(
0, nts2i · 1d×d

)
− si

√
2nt ln

2td

β
· 1− Sum(I)

∥∥∥∥∥
∞

≤
∥∥Sum(Īi)− Sum(I)

∥∥
∞ + 2si

√
2nt ln

2td

β

≤

∥∥∥∥∥∑
u

min

(
0,

s
√
2Φ(u)

∥I(u)∥2
− 1

)
I(u)

∥∥∥∥∥
∞

+ 4s

√
2nt ln

2td

β

A.3 Answering All Range Queries using Hierarchical Histograms

Here we describe in detail how to adopt the hierarchical histogram approach in [23] together with
our PLCDP randomizer/analyzer described in Section 4 to answer all range counting queries. We
consider the single-dimension setting, where users’ values are integers in [B]. Our target is to
construct a (private) hierarchical structure that can answer arbitrary range counting queries efficiently
and accurately. For clarity, let us assume B+1 is a power of 2; otherwise we can just use ⌈log(B+1)⌉
in place of each log(B + 1) in the following discussion.

Figure 4 provides a graphical illustration of the hierarchical structure when privacy is not involved.
In the hth level of the hierarchical structure (0 is the highest level and log(B + 1) is the lowest level),
the range [0, B] is divided into 2h disjoint bins, each with length 2log(B+1)−h. Each user encodes
his/her value I(u) into a frequency vector Hh(u) ∈ {0, 1}2

h

indicating which interval his value
belongs to. Say,

Hh(u)[j] =

{
1, if I(u) ∈ [j · 2log(B+1)−h, (j + 1) · 2log(B+1)−h − 1];

0, otherwise .
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Figure 4: An example with B = 3. In the hth level, the frequency vector Hh(u) has dimension 2h.
Summing up all the Hh(u)s for all users will give a histogram of that level.

It is easy to see a user’s data at any level in the hierarchy is one-hot. Under such construction,
summing all the Hh(u)’s in each level for all users will give a histogram for that level.

To make the whole process preserve Φ-PLCDP, we invoke Algorithm 1, 2 to obtain a private sum
for each level h = 0, 1, ..., log(B + 1). On the user side, we invoke the LocalSum-r Algorithm
with specially designed inputs Hh(u), Φ′, B′

h, β′, d′h. Here Hh(u) is constructed as above, with
dimension d′h = 2h for the hth level; Φ′(u) = Φ(u)

log(B+1) ; β′ = β
log(B+1) as the privacy/failure

probability allocated for each level; and β for the failure probability for the whole process. For the
value of B′

h, since the ℓ2 norm of Hh(u) is exactly 1, we set B′
h ≡ 1.

For each level h, LocalSum-r(Hh(u),Φ
′, B′

h, β
′, d′i) returns a set of t′ vectors, where t′ =

⌈log
(√

ρmax

ρmin
B′

h

)
⌉ = ⌈log

√
ρmax

ρmin
⌉ is invariant across different levels. We denote the result returned

by LocalSum-r(Hh(u),Φ
′, B′

h, β
′, d′h) as {H̃hi(u)}t

′

i=0, which corresponds to truncated noisy values

at different noise scales. And then
{
{H̃hi(u)}t

′

i=0

}log(B+1)

h=0
contains all the required information to

build the whole noisy hierarchical histogram, where the inner index i represents different noise scales
in that level and the outer index h represents different levels of the hierarchical structure. Details are
shown in Algorithm 3.

On the server side, as described in Algorithm 4, we invoke LocalSum-a({H̃hi(u)}t
′

i=0,Φ
′, B′

h, β
′, d′h)

for each level with {H̃hi(u)}t
′

i=0 obtained from the user side and parameters Φ′, B′
h, β′, d′h defined

the same as above.

The above procedure will provide us a noisy histogram for each level. Then in order to select the
desired quantile, we should use binary search to find the smallest m such that the (noised) frequency
of [0,m] is greater than n

2 . Note any interval [0,m] can be covered with at most log(B + 1) bins
inside the hierarchical structure (to be more specific, at most one bin from each level). Thus the noisy
frequency of [0,m] is at most log(B + 1) times of the maximum error for each bin. Below is the
detailed algorithm.

The median selection process can be done in one round with a single message, which is divided
into segments where each segment corresponds to a noisy frequency vector. For each level, the user
should send t′ = O(log ρmax

ρmin
) message segments and thus O(logB log ρmax

ρmin
) message segments in

total. The average length of these message segments will be O(B).

To reduce communication complexity, one may apply the sampling technique as in [23], say, each
user only randomly picks one level in the hierarchical structure to join. This optimization can reduce
the number of message segments by a factor of logB. While this will save privacy it does introduce
additional variance, as the final result needs to be scaled back by multiplying logB. The overall
effect of sampling is to increase the rank error by a factor of

√
logB. This is acceptable for our

setting when n is large, since what we require is any interior point: we don’t really care about the
rank error so long as it remains between the minimum and maximum.
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Algorithm 3: LocalHist-r
Input: I(u), Φ, B, β

1 β′ ← β
log(B+1) ,Φ

′ ← Φ
log(B+1) , t

′ ← ⌈log
√

ρmax

ρmin
⌉;

2 for h← 0, 1, . . . , log(B + 1) do
3 d′h ← 2h;
4 Define Hh(u) ∈ {0, 1}d

′
h such that

Hh(u)[j]←
{
1, if I(u) ∈ [j ∗ 2log(B+1)−h, (j + 1) ∗ 2log(B+1)−h − 1];

0, otherwise .

;
5 {H̃hi(u)}t

′

i=0 = LocalSum− r(Hh(u),Φ
′, 1, β′, d′h);

6 end

7 return
{
{H̃hi(u)}t

′

i=0

}log(B+1)

h=0
;

Algorithm 4: LocalHist-a

Input:
{
{H̃hi(u)}t

′

i=0

}log(B+1)

h=0
, Φ, B, β

1 β′ ← β
log(B+1) ,Φ

′ ← Φ
log(B+1) , t

′ ← ⌈log
√

ρmax

ρmin
⌉;

2 for h← 0, 1, . . . , log(B + 1) do
3 d′h ← 2h;
4 S̃umh ← LocalSum− a({H̃hi(u)}t

′

i=0,Φ
′, 1, β′, d′h);

5 end
6 return {S̃umh}log(B+1)

h=0 ;

In parallel, one may apply the lossless compression technique as in [16], which reduces the size
of each message segment from O(B) to O(logB +

√
ρmax). The intuition is as follows: since DP

definitely induces loss of information, there is no need to send the full information at the beginning.
Instead, we can send a seed s, which has a much smaller size, and expand it via pseudorandom
generators to recover the result. Given an exponentially strong pseudorandom generator and an
algorithm that properly chooses s, it is demonstrated in [16] that one can reduce the message size
significantly while preserving utility. Such reduction requires rejection sampling and thus leads to
additional computational costs at the user side. Note this compression technique can be done in
parallel with sampling, thus if applying both, the communication cost can be reduced to O(log ρmax

ρmin
)

message segments in total, whereas each segment has size O(logB +
√
ρmax).

A.4 Proof of Theorem 4.3

We start by analyzing the ℓ∞ error of the histograms in each level.

Consider the hth level, according to Theorem 4.1, the ℓ∞ error of S̃umh is no greater than

min
s∈R≥0

(
∥
∑
u

min(0,
s
√
2Φ′(u)

∥Hh(u)∥2
− 1)Hh(u)∥∞ + 4

√
2nt′ln

2t′d′h
β′ s

)
(7)

where t′, Hh(u), Φ′, B′
h, β′, d′h are defined as in Algorithm 3.

Notably, in the special case of median selection/histogram construction, we always have ∥Hh(u)∥2 =
1, furthermore, the dimension d′h of the histograms at each level is bounded by B + 1. Then the
guarantee in Equation (7) reduces to

min
s∈R≥0

(∑
u

1(s
√
2Φ′(u) < 1) + 4

√
2nt′ln

2t′(B + 1)

β′ s

)
(8)
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With the increase of s, the noise increases but the bias reduces when it hits 1√
2Φ′(u)

. So the minimum

of Equation (8) must be obtained at s = 1√
2Φ′(u)

for some u. Assume values in Φ are ranked in

non-decreasing order, Equation (8) is equivalent to finding

min
i∈[n]

(
i+

4√
2Φ′(ui)

√
2nt′ln

2t′(B + 1)

β′

)
. (9)

Let k′ be the minimum k such that
∑k

i=1

√
Φ′(ui) ≥ 1. We show mini∈[n]

(
i+ 1√

Φ′(ui)

)
≤ 4k′ in

Lemma A.1. As a result, the ℓ∞ error of the histogram at each level is bounded by O(
√

nt′ln t′B
β′ k

′)

with probability 1− β. By taking a union bound, this leads to an error of

O

(√
nt′ln

t′B logB

β′ k′

)
which holds simultaneously for histograms in all levels.

To move from the error of histograms to the error of range queries, we should note that each range
query can be obtained by summing at most 2 logB entries of the histograms. Thus the error of each
query is bounded by

O

(√
nt′ln

t′B logB

β′ k′ logB

)
Finally, plug in the values of t′ and β′ chosen in the previous subsection. For k′, note that k′ ≤√
logBk, where k is the smallest index such that

∑k
i=1

√
Φ(ui) ≥ 1. The error is therefore bounded

by

O

√n log
ρmax

ρmin
log

logB log ρmax

ρmin

β
k log2 B


Below we complete the proof of Lemma A.1
Lemma A.1. Assume values in Φ are ranked in non-decreasing order and ρmin > 1

n2 . Let k be the
smallest index such that

∑k
i=1

√
Φ(ui) ≥ 1, then

min
i∈[n]

(
i+

1√
Φ(ui)

)
≤ 8k

Proof. Let i∗ = argmini{i+ 1√
Φ(ui)

}, and let M = max{i∗, 1√
Φ(u∗

i )
}.

Consider i′ = ⌊M2 ⌋. We have by definition

i′ +
1√
Φ(u′

i)
≥ i∗ +

1√
Φ(u∗

i )
> M ≥ 2i′

So i′
√
Φ(u′

i) < 1. Since Φ is ordered, all Φ(ui) with i ≤ i′ are no greater than Φ(u′
i). As a result,

we have
i′∑

i=1

√
Φ(ui) ≤ i′

√
Φ(u′

i) < 1

which means k ≥ i′. On the other hand, we have

min
i∈[n]

(
i+

1√
Φ(ui)

)
≤ 2M ≤ 8i′ ≤ 8k

which completes the proof.
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A.5 Omitted details in Section 5

Before going to the proofs, we first briefly introduce the intuition behind the proof. First of all, with
high probability Step 1 can provide a ‘good rotation’ such that for any pair of users’ data, Lemma 5.2
holds. Then with high probability Step 2&3 can find an interior point of the rotated dataset on each
dimension. Conditioned on these two events, with high probability the radius of the shifted data Îs
is Õ(

√
dω(I)). Note that when rotating back by multiplying (HD)

−1 in the last step, the ℓ2 norm
of the result will be decreased by a factor of 1√

d
so the additional

√
d factor here will be eliminated

finally. That is, we can perform the sum algorithm safely.

Since the shifted data involves randomness depending on both random rotation and median selection,
to obtain a deterministic error bound as stated in Theorem 5.3, we aim to characterize the worst case.
This happens when the shifted data is obtained by subtracting the minimum (maximum) value of
each dimension. We denote such datasets as Î+∗

s (Î−∗
s ) respectively. These datasets are the ‘worst’ in

the sense that their positive/negative part has the largest radius and leads to the largest error, which is
proved in Lemma A.2. We further analyze the error on these worst case instances in Lemma A.3.
Finally, combining all the above arguments and adding up the error of positive/negative parts leads to
a complete proof of the main theorem. Below we first present the two lemmas.

For clarity of expression, we denote Err(I) to be the error of Algorithm 1, 2 when invoked on dataset
I with privacy parameter Φ

4 , failure probability β
4 , domain bound B

√
d and dimension d. To be

specific, define

Err(I) = min
s∈R≥0

(∥∥∥∥∥∑
u

(
∥I(u)∥2 − s

√
Φ(u)/2

)+ I(u)

∥I(u)∥2

∥∥∥∥∥
2

+ 4

√
2ndtln

8td

β
s

)
(10)

where t = ⌈log dB
√

ρmax

ρmin
⌉.

Lemma A.2. Given Î, conditioned on the fact that Steps 2–3 correctly find an interior point on each
dimension, we have

Err(Î+s ) ≤ Err(Î+∗
s )

where Î+∗
s is obtained by subtracting the minimum value of each dimension so that all values inside

are non-negative. The same property also holds for Err(Î−s ).

Proof. First of all, it is easy to see Î+s (u) ≤ Î+∗
s (u) (on each coordinate) for any u. This is because,

for each coordinate of Î+∗
s (u), its corresponding value in Î+s (u) is either 0 (moved to negative

part) or smaller (since Î+∗
s subtracts the minimum on each dimension). And this further implies

∥Î+s (u)∥2 ≤ ∥Î+∗
s (u)∥2.

To show Err(Î+s ) ≤ Err(Î+∗
s ), we only need to prove the former has a smaller bias for any s (scale),

that is∥∥∥∥∥∑
u

(
∥Î+s (u)∥2 − s

√
Φ(u)/2

)+ Î+s (u)

∥Î+s (u)∥2

∥∥∥∥∥
2

≤

∥∥∥∥∥∑
u

(
∥Î+∗

s (u)∥2 − s
√

Φ(u)/2
)+ Î+∗

s (u)

∥Î+∗
s (u)∥2

∥∥∥∥∥
2

Indeed we can show a stronger statement:

∑
u

max

(
0, 1−

s
√
Φ(u)/2

∥Î+s (u)∥2

)
Î+s (u) ≤

∑
u

max

(
0, 1−

s
√

Φ(u)/2

∥Î+∗
s (u)∥2

)
Î+∗
s (u)

Because for any u, max

(
0, 1− s

√
Φ(u)/2

∥Î+s (u)∥2

)
≤ max

(
0, 1− s

√
Φ(u)/2

∥Î+∗
s (u)∥2

)
and all items are non-

negative.

For the Î−s counterpart, one may construct Î−∗
s by subtracting the maximum value of each dimension

and then taking absolute so that all values inside are non-negative.
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Lemma A.3. Conditioned on the fact that the rotated data Î satisfies Lemma 5.2 for all pairs of
points,

Err(Î+∗
s ) = O

√d log
nd

β
min
s∈R≥0

√∑
u

1(s
√
Φ(u)/2 < ω(I))ω(I) +

√
ndtln

td

β
s


with probability at least 1− β

4 where t = ⌈log dB
√

ρmax

ρmin
⌉. The same bound also holds for Err(Î−∗

s ).

Proof. We only prove the statement for Err(Î+∗
s ) as the other part follows similarly. According to

the definition in Equation (10), we have

Err(Î+∗
s ) = O

(
min
s∈R≥0

(∥∥∥∥∥∑
u

(
∥Î+∗

s (u)∥2 − s
√

Φ(u)/2
)+ Î+∗

s (u)

∥Î+∗
s (u)∥2

∥∥∥∥∥
2

+

√
ndtln

td

β
s

))
(11)

Considering the truncation error term
∥∥∥∥∑u

(
∥Î+∗

s (u)∥2 − s
√
Φ(u)/2

)+
Î+∗
s (u)

∥Î+∗
s (u)∥2

∥∥∥∥
2

, we have∥∥∥∥∥∑
u

(
∥Î+∗

s (u)∥2 − s
√
Φ(u)/2

)+ Î+∗
s (u)

∥Î+∗
s (u)∥2

∥∥∥∥∥
2

≤
√∑

u

1(s
√

Φ(u)/2 < ∥Î+∗
s (u)∥2)rad(Î+∗

s )

≤

√√√√∑
u

1(s
√
Φ(u)/2 < ω(I)

√
d log

nd

β
)ω(I)

√
d log

nd

β

Here the second line is because when the rotation is ‘good’, the radius of Î+∗
s is no greater than

ω(I)
√

d log nd
β . Plugging it back to Equation (11) and substituting s = s′ ∗

√
d log nd

β gives the
desired result. Note this error expression is only related to the original data I and does not involve the
randomness on rotation and shift.

Below is the complete proof of Theorem 5.3.

Proof. Privacy follows from the composition theorem, so we focus on utility here.

With probability at least 1 − β
4 , the rotation satisfies Lemma 5.2 for all pairs of points. Further,

according to Theorem 4.3, with (another) probability at least 1− β
4 , we can find an interior point in

each dimension. This means that Lemma A.2, A.3 hold together with probability at least 1− β
2 .

∥Sum(I)− S̃um(I)∥2

=∥Sum(I)− (HD)
−1
(
S̃um(Î+s )− S̃um(Î−s ) + n · m̃

)
∥2

=∥ (HD)
−1
(
S̃um(Î+s )− Sum(Î+s )− S̃um(Î−s ) + Sum(Î−s )

)
∥2

≤ 1√
d

(
Err(Î+s ) + Err(Î−s )

)
≤ 1√

d

(
Err(Î+∗

s )) + Err(Î−∗
s )
)

=O

√log
nd

β
min
s∈R≥0

√∑
u

1(s
√
Φ(u)/2 < ω(I))ω(I) +

√
ndtln

td

β
s

 ,
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where the third line is because

Sum(I) = (HD)
−1

Sum(Î)

= (HD)
−1
(
Sum(Îs) + n · m̃

)
= (HD)

−1
(
S̃um(Î+s )− S̃um(Î−s ) + n · m̃

)
The forth line is because multiplying by (HD)

−1 decreases the ℓ2 norm by a factor of 1√
d

And

the last line comes from applying Lemma A.3 twice on both Î+∗
s and Î−∗

s , each consumes failure
probability of β

4 . Combining all arguments together with probability at least 1− β the error bound
holds.

Dividing the above error by n leads to the mean estimation error:

Corollary A.4. Given Φ, β, B, d, I, if n ≥ cd log ρmax

ρmin
log

d logB log ρmax
ρmin

β k2 log4 B, there is a
Φ-PLCDP Algorithm that estimates the mean of I with ℓ2 error at most

O


√
log nd

β

n
min
s∈R≥0

√∑
u

1(s
√
Φ(u)/2 < ω(I))ω(I) +

√
ndtln

td

β
s


with probability at least 1− β, where t = ⌈log dB

√
ρmax

ρmin
⌉.

The whole process is a two-round protocol, where the first round finds an interior point and does the
shift, and the second round computes the sum estimation. As discussed in the previous section, without
loss of utility, the communication cost of the first round can be reduced to O(d log Bρmax

ρmin
) message

segments per user, whereas each message has size O(logB +
√
ρmax). And for the second round,

each user sends t = O(log Bdρmax

ρmin
) message segments, each with length O(d) (or O(log d+

√
ρmax)

if d is too large).
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