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Boosting Semi-supervised Crowd Counting
with Scale-based Active Learning

Anonymous Authors

ABSTRACT
The core of active semi-supervised crowd counting is the sample
selection criteria. However, the scale factor has been neglected in
active learning approaches despite the fact that the scale of heads
varies drastically in the crowd images. In this paper, we propose
a simple yet effective active labeling strategy to explicitly select
informative unlabeled images, guided by the intra-scale uncertainty
and inter-scale inconsistency metrics. The intra-scale uncertainty
is quantified through the sum of the query-level entropy of im-
ages at different scales. Images are initially ranked based on this
uncertainty for preselection. Inter-scale inconsistency is measured
by the divergence between the query-level predictions of upscaled
and downscaled images, allowing for the identification of the most
informative images exhibiting the highest inconsistency. Addition-
ally, we implement a progressive updating scheme for the semi-
supervised crowd counting framework, in which the pseudo-labels
for unlabeled images are refined iteratively. It further improves the
counting accuracy. Through extensive experiments on widely used
benchmarks, the proposed approach has demonstrated superior
performance compared to previous state-of-the-art semi-supervised
and active semi-supervised crowd counting methods.

CCS CONCEPTS
• Computing methodologies→ Computer vision tasks; Active
learning settings; Semi-supervised learning settings.

KEYWORDS
Crowd Counting, Active Learning, Semi-supervised Learning

1 INTRODUCTION
Recently, crowd counting has attracted attention due to its wide
applications in real scenarios. Benefiting from the advancements
in Deep Learning [13, 36], crowd counting approaches have made
significant improvements in their performance. Nevertheless, most
of the existing methods [27, 33, 40] are trained in a fully supervised
manner, which poses challenges and burdens in the annotation
process due to each individual in every image is required to be
annotated.

To alleviate the annotation burden, numerous semi-supervised
crowd counting methods [19, 24, 28, 38] have been proposed. These
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Figure 1: Scale-based Active Labeling strategy for crowd
counting. The unlabeled image is selected for annotation
with high uncertainty and inconsistency. (a) The entropy of
query-level prediction measures the intra-scale uncertainty.
(b) The divergence of query-level predictions indicates the
inter-scale inconsistency.

methods typically involve the random selection of a subset of sam-
ples for annotation, followed by the use of both labeled and unla-
beled images to train a crowd counting model. Some methods di-
rectly generate pseudo-labels for the unlabeled data [42], while oth-
ers incorporate auxiliary tasks such as binary segmentation [24, 28],
count ranking [23], and density prediction [19] to leverage the in-
formation contained in the unlabeled images.

Aware of the significant influence that the selection of image sub-
set for annotation can have on performance, some researchers have
proposed active semi-supervised crowd counting [25, 54] which
actively annotates the most informative images or regions in the
dataset. However, existing active semi-supervised methods are still
far from fully-supervised methods. On the one hand, these meth-
ods only analyze images at the image-level and/or patch-level, but
more fine-grained query-level analysis is not taken into account.
On the other hand, scale is neglected despite the fact that head
sizes significantly vary within the same image or between different
images, which has been demonstrated as a key factor affecting the
counting performance in the fully-supervised methods [3, 26].

To address the above issues, we propose a simple yet effective
active labeling strategy to explicitly select informative unlabeled im-
ages for semi-supervised crowd counting guided by the intra-scale
uncertainty and inter-scale inconsistency metrics, which is named
Scale-based Active Learning(SAL). It offers fine-grained analysis
from the query-level and takes scale as a main factor for data selec-
tion. The intra-scale uncertainty is quantified through the sum of
the query-level entropy of images at different scales. The prediction
probability of one query is shown on the left of Fig. 1. Images with
higher uncertainty values are recognized as informative ones since
the queries in them are hard to classify. Images are initially ranked

https://doi.org/10.1145/nnnnnnn.nnnnnnn
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based on this uncertainty for preselection. Inter-scale inconsistency
is measured by the divergence between the query-level predictions
of upscaled and downscaled images. The query-level predictions are
shown on the right of Fig. 1. A larger divergence indicates higher
inconsistency of images that are sensible to scale. It allows the
identification of the most informative images exhibiting the highest
inconsistency. Additionally, we implement a progressive updating
scheme for the semi-supervised crowd counting framework. In
each iteration, a counting model is trained with the labeled and
unlabeled by the supervision of ground-truth and pseudo-labels.
Then the pseudo-labels are refined by this new model. With this
scheme, the counting accuracy is further improved.

To verify the effectiveness of our proposed approach, we con-
ducted comprehensive experiments on both the small datasets of
ShanghaiTech_A [53], ShanghaiTech_B [53], UCF_QNRF [10], and
large-scale datasets of JHU-Crowd++ [37] and NWPU-Crowd[46].
The results demonstrate that our method significantly surpasses
previous semi-supervised and active semi-supervised crowd count-
ing methods under the setting of 10% and 40% labeled data.

In a nutshell, the main contributions of the proposed active semi-
supervised crowd counting model can be summarized as follows:

• Wedevelop a simple yet effective strategy termed Scale-based
Active Learning(SAL) for active labeling. The intra-scale
uncertainty and inter-scale inconsistency are specifically
designed to explicitly select informative unlabeled images.

• We propose a progressive updating scheme for the semi-
supervised framework that progressively refines the pseudo
labels.

• The proposed method achieves state-of-the-art performance
on five datasets. It exceeds all the semi-supervised methods
and active semi-supervised methods with 40% labeled data.

The rest of this paper is organized as follows: In Sec. 2, we review
related research, including crowd counting with full annotation,
crowd counting with limited annotation, and active learning. In
Sec. 3, we introduce the preliminaries for active semi-supervised
crowd counting, including settings and procedures. The details of
our proposed approach are described in Sec. 4. Experimental results
are presented and discussed in Sec. 5. Finally, we conclude and
propose possible future work in Sec. 6.

2 RELATEDWORK
2.1 Crowd Counting with Full Annotations
In recent years, fully-supervised crowd counting has gained satisfy-
ing performance based on the rapid development of deep learning.
These methods can be divided into two categories: density-map
based methods and point-matching methods.

The density map-based method was initially introduced in [14].
They utilized all point labels to generate a pseudo density map,
which served as supervision for the predicted density map produced
by the network. The estimated count is obtained by summing the
values within the predicted density map. In recent years, numerous
studies [9, 16, 53] have focused on density map schemes, addressing
various challenges in crowd counting and pushing the boundaries
of counting performance. Additionally, [12, 20, 30, 52] introduced
attention networks to extract attentive features for boosting crowd
counting. [3, 11] argued that scale variations largely influenced the

performance of crowd counting methods, and proposed adaptive
scales or trellis architecture were employed to address it. In [27],
the Bayesian assumption was introduced. Optimal transport was
proposed in [44] to match the distributions. [4] incorporated prob-
ability maps into crowd counting and decoupled the task into two
stages. In [29], a novel head size estimation method was proposed
to reduce noise.

In addition to density map-based methods, several new solutions
have been proposed. [40] proposed a purely point-based network
that utilizes Hungarian Matching for point matching. Furthermore,
[45] introduced two theoretically demonstrated criteria called Uni-
form Error Partition andMean Count Proxies. Following the two cri-
teria, the Uniform Error Partition Network is proposed. CLTR [18]
proposed an end-to-end transformer network to directly predict the
localization. To address instability, [32] proposed a local matching
point-based framework. [22] viewed crowd counting as a decom-
posable point querying process and introduced PET to achieve
dynamic processing of sparse and dense regions.

These fully supervised methods have demonstrated remarkable
performance on diverse datasets. However, the process of anno-
tating a crowd image in its entirety is both time-consuming and
labor-intensive. Take UCF-QNRF dataset [10] as an example, the
average annotation time for one image is over an hour. And anno-
tators spent over 2000 hours on all of 1535 images.

2.2 Crowd Counting with Limited Annotations
Because the annotation process of crowd counting is time-consuming
and complicated, an increasing number of methods have been pro-
posed recently to achieve crowd counting with limited annotations.

In [23], a learning-to-rank framework that doesn’t need manual
annotation was proposed. Depending on the large collection of
unlabeled crowd images, the framework was successfully trained to
achieve crowd counting. Building upon this idea, a soft-label sorting
network was proposed in [50] to directly regress the count, a chal-
lenging optimization task. In [48], binary ranking of image pairs
was employed for network training. Additionally, [38] proposed
a GP-based framework to exploit unlabeled data efficiently. Fea-
ture learning from unlabeled images was addressed in [24], where
a generic feature extractor was trained. [28] propose a surrogate
task to estimate the uncertain spatial regions and a differentiable
transformation layer. In [19], a density agent is introduced to di-
vide features into different groups and construct supervisions for
unlabeled data. Furthermore, [49] proposed labeling only a patch
of an image instead of the entire image. Furthermore, [1] presented
a completely self-supervised crowd counting framework that only
requires a few supervisions. Although [17] developed a counting
method using count-level annotations, it does not reduce annota-
tion effort. The optimal transport minimization (OT-M) algorithm
was proposed in [21] and applied in semi-supervised crowd count-
ing. Lastly, [15] introduced a supervised uncertainty estimation
strategy to train the model using a surrogate function.

However, there is still a gap between the methods with limited
annotation and full supervision. Moreover, the random selection of
labeled images can significantly impact the model’s performance.
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Figure 2: The overall training pipeline of the proposed scale-based active semi-supervised learning, which consists of an active
learning phase and a semi-supervised phase. The most informative unlabeled image is selected in the active learning phase for
human annotation. Both labeled and unlabeled images are used to train a crowd count model in the semi-supervised phase by
the supervision of ground-truth and pseudo-label. The model and the pseudo-label are progressively updated in turn.

2.3 Active Learning
Active learning [2, 6–8, 31] aims to design a strategy to select
data samples that can improve a previously trained model most
effectively. In the field of image classification, pool-based selective
sampling was adopted by many active learning methods [2, 35, 39]
to select the most informative images from the unlabeled set for
annotation and merge them with the labeled pool which has limited
budget. For object detection, [5] leverages probabilistic modeling to
estimate the uncertainty, and [51] uses multiple instance learning
to select samples.

In the field of crowd counting, some researchers try to combine
active learning with semi-supervised learning. AL-AC [54] was
the first attempt to introduce active learning into crowd counting,
which proposed a PSSW strategy to actively select samples. [25]
proposed to annotate the most representative regions of an image
and use GMM to make clustering. ALCrowd[34] performed approx-
imate Bayesian inference to estimate the predictive variance to
select informative images.

Existing methods simply analyze images at the image-level or
patch-level. It still lacks a systematic method to learn the image at
a fine-grained level.

3 PRELIMINARY
Denote X𝑡𝑟𝑎𝑖𝑛 as the training set for crowd counting, all of which
are not annotated at the very beginning. The training stage of active
semi-supervised crowd counting can be roughly divided into two
phases as the active learning phase and the semi-supervised phase.

In the active learning phase, suppose that the selected image set
is S𝑖 and the collection of unlabeled images is U𝑖 in the 𝑖-th cycle
satisfying X𝑡𝑟𝑎𝑖𝑛 = S𝑖 ∪ U𝑖 , where 𝑖 ∈ 1, ..., 𝑁 and 𝑁 is the total
number of active learning cycles. The goal of active learning is to
select a subset of the informative images under a limited annotation

budget of 𝐵, That is to say, 𝐵/𝑁 images are chosen in each cycle.
For the initialization, a crowd counter 𝑓0 is trained with the labeled
training set (S0,Y0), where S0 is selected randomly from X𝑡𝑟𝑎𝑖𝑛

and Y0 is the crowd head point annotation by human annotators.
In the 𝑖-th active learning cycle, the unlabeled images in U𝑖 are
predicted by the crowd counter 𝑓𝑖−1. With sample selection criteria
on the predictions, a subset ΔS𝑖 with the most informative images
is selected and then labeled by human annotators as ΔY𝑖 . S𝑖 andY𝑖

are updated as S𝑖 = S𝑖−1 ∪ ΔS𝑖 and Y𝑖 = Y𝑖−1 ∪ ΔY𝑖 respectively,
which are used to train a new crowd counter 𝑓𝑖 .

The semi-supervised phase is implemented after all of 𝑁 cycles
are executed and the annotation budget 𝐵 is exhausted. In the semi-
supervised phase, the final labeled image collection S𝑁 with label
Y𝑁 and the unlabeled imagesU𝑁 are used to train a final crowd
count model 𝑓 based on various semi-supervised approaches.

Denote X𝑡𝑒𝑠𝑡 as the test set for crowd counting, the counting
result of images in X𝑡𝑒𝑠𝑡 are predicted by the final crowd count
model 𝑓 .

4 METHODOLOGY
4.1 Overview
The scale of heads varies drastically in the crowd images, which has
been demonstrated as a key factor affecting the counting perfor-
mance in the fully-supervised methods [3, 26]. However, the scale
factor has been neglected in active learning approaches. In this
paper, we argue that an active selection strategy should also take
scale as an important factor and analyze images from a fine-grained
level. Hence we propose a Scale-based Active Learning (SAL) for
semi-supervised crowd-counting.

The overall training pipeline of SAL is shown in Fig. 2. We use a
point-based crowd counting model [40] so that the query-level pre-
diction is achieved. In the active learning phase, we propose a simple
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yet effective active labeling strategy to explicitly select informative
unlabeled images guided by the intra-scale uncertainty and inter-
scale inconsistency metrics. In the 𝑖-th active cycle, firstly we apply
scaling operations to each unlabeled image𝑈 ∈ U𝑖 . Then, the count-
ing model 𝑓𝑖−1 trained with all labeled images S𝑖−1 is leveraged to
infer on both upscaled image𝑈𝑢𝑝 and downscaled image 𝑈𝑑𝑜𝑤𝑛 .
After that, we calculate the Scale-based Query Entropy(SQE) of
images at different scales to measure the intra-scale uncertainty.
Based on the rank of uncertainty, we create an initial selected pool.
Finally, we propose Scale-based Query Divergence(SQD) between
the upscaled and downscaled images to measure the inter-scale in-
consistency. The SQD is used to determine the final selected images.
SQE and SQD are detailed in Sec. 4.2 and Sec. 4.3, respectively.

Inspired by the success of pseudo-label refinement in the weakly
supervised object detection [41, 43], a progressive updating scheme
is proposed for the semi-supervised phase to refine the pseudo
labels iteratively, which further improves the accuracy of crowd
counting. The progressive updating scheme is detailed in Sec. 4.4.

4.2 Intra-scale Uncertainty by SQE
The point-based crowd counts model [40] generates multiple point
queries for each unlabeled image. Supposing 𝑠 represents the down-
sampling rate of the counting model and the input image is with the
size of𝐻×𝑊 , the output of themodel is with a size of𝐻𝑠×𝑊𝑠 , where
𝐻𝑠 = 𝐻/𝑠 and𝑊𝑠 =𝑊 /𝑠 . Each location of the output corresponds to
a 𝑠×𝑠 patch of the input image. To densely detect the head points,𝐾
point queries are predefined around the center of the patch. Hence
the total number𝑇 of point queries in the input image is𝐻𝑠×𝑊𝑠×𝐾 .
We denote the set of point queries as𝑄 = {𝑞 𝑗 | 𝑗 ∈ {1, ...,𝑇 }}, where
𝑞 𝑗 is described with its location (𝑥 𝑗 , 𝑦 𝑗 ).

In the point-based crowd counting model, a classification branch
is implemented to classify each point query into the foreground
(person) or background. Thus the confidence score 𝑝 𝑗 of the point
query 𝑞 𝑗 is obtained, which indicates the probability of whether
𝑞 𝑗 is a person. With this prediction probability, the entropy for the
𝑗-th point query can be derived as:

𝐸 (𝑞 𝑗 ) = −𝑝 𝑗 𝑙𝑜𝑔(𝑝 𝑗 ) − (1 − 𝑝 𝑗 )𝑙𝑜𝑔(1 − 𝑝 𝑗 ). (1)

The query entropy (QE) of the image 𝑈 is defined as the mean
entropy of all point queries, as:

𝑄𝐸 (𝑈 ) = 1
𝑇

𝑁∑︁
𝑗=1

𝐸 (𝑞 𝑗 )

=
1
𝑇

𝑁∑︁
𝑗=1

(−𝑝 𝑗 𝑙𝑜𝑔(𝑝 𝑗 ) − (1 − 𝑝 𝑗 )𝑙𝑜𝑔(1 − 𝑝 𝑗 ))

. (2)

Higher QE indicates more information in the input image.
To ensure an image is still informative after scaling, we propose

Scale-based Query Entropy (SQE) to estimate the uncertainty of
images at different scales. Except for calculating the query entropy
of the original image, we also input a scaled version 𝑈𝑠 of image
𝑈 into the counting model to calculate the corresponding query
entropy 𝑄𝐸 (𝑈𝑠 ). As a result, the SQE is formulated as:

𝑆𝑄𝐸 (𝑈 ) = 𝑄𝐸 (𝑈 ) +𝑄𝐸 (𝑈𝑠 ). (3)

In practice, the SQE can computed by different combinations of
downscaled, original, and upscaled images.

With the proposed SQE, we can measure the intra-scale uncer-
tainty of images at different scales. The images which have high
SQE values are selected as informative ones. The number of selected
images is slightly over the cycle budget. These selected images will
be filtered again in the next step.

4.3 Inter-scale Inconsistency by SQD
SQE enhances the intra-scale uncertainty and creates an initial
selected pool. In this section, we propose Scale-based Query Diver-
gence(SQD) to measure the inter-scale inconsistency between the
original and scaled images and decide the final selected ones.

SQD is computed on positive queries. Firstly, for a point query
𝑞 𝑗 of the original image, we should find the corresponding point
queries in the scaled image. In the point-based crowd counting
model, a localization branch is adopted to predict the offset for each
point query. Thus, the predicted localization of a point query 𝑞 𝑗 of
the original image is formulated as:

(𝑥 𝑗 , 𝑦 𝑗 ) = (𝑥 𝑗 + △𝑥 𝑗 , 𝑦 𝑗 + △𝑦 𝑗 ), (4)

where (△𝑥 𝑗 , △𝑦 𝑗 ) is the prediction offset. We apply a scaling opera-
tion on (𝑥 𝑗 , 𝑦 𝑗 ) with the same scale factor of the scaled image. The
Euclidean distance between scaled 𝑞 𝑗 and the point queries of the
scaled image are computed. Denote the nearest point query for the
scaled 𝑞 𝑗 in the scaled image as 𝑞𝑐 .

Then, KL divergence is leveraged to measure the inconsistency
between the two positive point queries:

𝐷 (𝑞 𝑗 , 𝑞𝑐 ) = 𝐾𝐿(𝑝 𝑗 | |𝑝𝑐 ), (5)

where 𝑝 𝑗 and 𝑝𝑐 are the corresponding classification score of 𝑞 𝑗 and
𝑞𝑐 , respectively. To measure the inter-scale inconsistency between
the original and scaled images, the proposed SQD is formulated as:

𝑆𝑄𝐷 (𝑈 ) = 1
𝑂

𝑂∑︁
𝑗=1

𝐾𝐿(𝑝 𝑗 | |𝑝𝑐 ), (6)

where 𝑂 denotes the number of positive queries of the original
image. Since a higher SQD value represents higher inter-scale in-
consistency and indicates a more scaling-sensible image, images
with high SQD values are selected from the initial images pool as
key images.

4.4 Progressive Updating Scheme
With labeled images selected by the proposed active labeling strat-
egy, existing methods[19, 24] can be applied in the semi-supervised
phase to train the final crowd counting model. However, to better
refine the pseudo labels, as shown in Fig. 2, we propose a Progres-
sive Updating Scheme (PUS) which can refine the pseudo labels
iteratively for active semi-supervised crowd counting.

After 𝑁 cycles, we train a counting model with all of the selected
labeled images S𝑁 and leverage the trained model to infer on un-
labeled imagesU𝑁 . The predictions are filtered by a threshold to
obtain pseudo labels for U𝑁 . Then, we use the ground-truth of
labeled images and the pseudo labels of unlabeled images as super-
vision to train the counting network as shown in Fig. 2. Meanwhile,
the newly trained counting model is leveraged to predict the crowd
counting result on the unlabeled images. As demonstrated in Fig. 2,
the newly trained counting model is used to update the old one,
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Method Type
SHA SHB QNRF JHU++ NWPU

MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE

MT [42] SS 88.2 151.1 15.9 25.7 147.2 249.6 121.5 388.9 129.8 515.0
L2R [23] SS 86.5 148.2 16.8 25.1 145.1 256.1 123.6 376.1 125.0 501.9
SUA [28] SS 68.5 121.9 14.1 20.6 130.3 226.3 80.7 290.8 111.7 443.2
GP [38] SS 89.0 – – – 136.0 – – – – –
DACount[19] SS 71.1 119.7 8.1 13.6 96.8 168.2 66.3 276.6 – –
MRL[47] SS 68.3 111.9 11.0 17.6 126.7 209.7 68.4 279.6 97.0 413.5
OT-M[21] SS 70.7 114.5 8.1 13.1 100.6 167.6 72.1 272.0 – –
CU[15] SS 64.7 109.6 – – – – – – – –

MDC[25] AS 68.5 116.1 – – – – 80.2 287.5 109.3 438.1
ALCrowd[34] AS 66.7 106.8 9.8 16.1 95.3 171.5 64.3 256.7 – –

Ours AS 60.7 97.2 7.9 12.7 95.0 167.0 62.0 255.1 92.8 406.7

Table 1: Comparison with semi-supervised (SS) and active semi-supervised (AS) methods with 40% annotations. Bold results are
the best scores and the results with an underline are the second best scores.

and the refined pseudo labels are generated by the updated model.
In practice, this refinement step is executed iteratively. Through
multiple refinement steps, the pseudo labels for unlabeled images
are progressively refined which is beneficial for us to train a robust
crowd counting model.

5 EXPERIMENTS
Firstly, we describe the experimental setting, which includes the
datasets, implementation details, and evaluation metrics. Then, we
compare the performance of our method with state-of-the-art semi-
supervised and active semi-supervised crowd counting approaches.
Through ablation studies, we quantitatively discuss the effective-
ness of our proposed SAL strategy. Finally, we conduct experiments
to discuss the impact of scale factors, every active learning cycle,
and our proposed progressive updating scheme. The visualization
of the prediction qualitatively verifies the efficacy of our method.

5.1 Experimental Setting
Datasets. Five open-source datasets are adopted for evaluation.

ShanghaiTech_A(SHA) [53] consists of 482 images with 244,167
annotated persons. Among these, 300 images are allocated for train-
ing purposes, while the remaining 182 images are reserved for
testing. The images in the SHA dataset were randomly collected
from the internet and were also utilized for ablation studies in the
paper.

ShanghaiTech_B(SHB) [53] comprises 716 images with 88,498
annotated persons, indicating a lower crowd density compared to
SHA. Out of these, 400 images are allocated for training, while the
remaining 316 images serve as the test set.

UCF_QNRF(QNRF) [10] comprises 1535 high-resolution images
with 1.25 million annotated persons. The training set consists of
1201 images, while the remaining 334 images are designated for
testing. QNRF dataset presents a variety of scenes, perspectives,
crowd densities, and illumination conditions, making it a highly
challenging dataset for crowd counting research.

JHU-Crowd++(JHU++) [37] is a large-scale dataset consisting
of 4372 images with 1.51 million annotations. 2272 images are col-
lected for training, 500 images for validation, and 1600 images are
designated for testing. Moreover, the dataset includes images with
weather changes, density variations, and diverse illumination con-
ditions which make it a challenging benchmark for crowd counting.

NWPU-Crowd(NWPU) [46] is a large-scale crowd counting
dataset. It contains 3109 images for training and 500 images for
validation. The number of annotated persons in a single image
ranges from 0 to 20,033 and varies greatly throughout the dataset.

Implementation details.We optimize the network using the
Adam optimizer with a learning rate of 1e-5 for the parameters of
the backbone and 1e-4 for the rest of the parameters. VGG-16 [36]
is utilized as the backbone. The batch size is set to 8. 𝐾 is set to 8
for the QNRF dataset, while set to 4 for the other datasets.

To align with the previous methods, we apply random scaling to
the images, selecting a scaling factor from the range of [0.7, 1.3].
Subsequently, a random crop operation is applied to the image. The
patch size is 256×256 for QNRF, JHU++, and NWPU, while 128×128
for SHA and SHB. Additionally, the patches are horizontally flipped
with a probability of 0.5. To maintain the original aspect ratio, for
datasets whose images are high-resolution, the longer side of each
image is constrained with a hyperparameter 𝑙 . For QNRF, 𝑙 is set
as 1408. For JHU++ and NWPU, 𝑙 is set as 2048. In our proposed
SAL strategy, except for the original image, we utilize one upscale
factor and one downscale factor to obtain upscaled and downscaled
images respectively. The scaling factors are set to 0.8 and 1.2.

For the 10% annotation budget, the first 5% labeled images are
randomly initialized and 2.5% images are labeled in every active
learning cycle. For the 40% annotation budget, the first 20% labeled
images are randomly collected. At each cycle, after the counter is
fully trained, 5% of the total images are acquired from the unlabeled
set for labeling.

Evaluation metrics. Mean Absolute Error (MAE) and Mean
Squared Error (MSE) are widely used evaluation metrics in crowd
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Method Type
SHA SHB QNRF JHU++ NWPU

MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE

MT [42] SS 94.5 115.5 15.6 24.5 145.5 250.3 90.2 319.3 144.1 508.6
L2R [23] SS 90.3 115.5 15.6 24.4 148.9 249.8 87.5 315.3 138.3 550.2
IRAST [24] SS 86.9 148.9 14.7 22.9 135.6 233.4 86.7 303.4 – –
DACount[19] SS 82.5 123.2 10.9 19.1 115.1 193.5 74.0 297.1 – –
MRL[47] SS 80.2 125.6 12.1 19.7 132.5 221.2 80.1 299.9 132.9 511.3
OT-M[21] SS 80.1 118.5 10.8 18.2 113.1 186.7 73.0 280.6 – –
CU[15] SS 70.8 116.6 9.7 17.7 104.0 164.3 74.9 281.7 108.8 458.0

AL-AC[54] AS 87.9 139.5 12.7 20.4 131.4 229.7 – – – –
MDC[25] AS 79.6 127.5 12.7 20.3 128.6 226.4 – – – –

Ours AS 69.7 114.5 9.7 17.5 106.7 171.3 69.7 263.5 107.1 443.6

Table 2: Comparison with semi-supervised (SS) and active semi-supervised (AS) methods with 10% annotations. Bold results are
the best scores and the results with an underline are the second best scores.

counting which is also adopted in this paper. With the predicted
count 𝐶𝑖 of the 𝑖-th image and the ground truth count𝐺𝑇 𝑖 . MAE
and MSE can be formulated as follows:

𝑀𝐴𝐸 =

∑𝑁
𝑖=1 |𝐶𝑖 −𝐺𝑇 𝑖 |

𝑁
(7)

𝑀𝑆𝐸 =

√︄∑𝑁
𝑖=1 |𝐶𝑖 −𝐺𝑇 𝑖 |2

𝑁
(8)

where 𝑁 is the total number of testing images.

5.2 Comparison with State-of-the-art Methods
In this section, we compare our proposed method with state-of-the-
art semi-supervised and active semi-supervised methods.

The results with 40% annotations are shown in Table 1. It shows
that our approach outperforms other state-of-the-art methods on
all datasets, regardless of the type of methods. Compared to the
second-best results, our method reduces the MAE by 4.0, 0.2, 0.3, 2.3,
and 4.2 points on datasets SHA, SHB, QNRF, JHU++, and NWPU,
respectively. Compared to the best active semi-supervised learning
method ALCrowd [34], our method reduces the MAE by 6.0, 1.9, 0.3,
and 2.3 points on datasets SHA, SHAB, QNRF, and JHU++, respec-
tively. On the NWPU dataset, we achieve about 15% improvement
of MAE compared with the state-of-the-art active semi-supervised
learning method.

Our method is also effective when the labeling budget is lower.
As shown in Table 2, with only 10% annotations available, our
approach improves all the previous methods by at least 1.1, 3.3,
and 1.7 MAE on datasets SHA, JHU++, and NWPU respectively.
Moreover, compared to the best active learning method MDC [25],
the improvement of MAE is 9.9 points on SHA, 3.0 points on SHB,
and 21.9 points on QNRF. These outstanding results demonstrate
the effectiveness of ourmethod in the field of active semi-supervised
crowd counting.

Method MAE MSE

Random 68.1 115.5
ALCrowd[34] 66.7 106.8

QE 66.2 109.8
SQE 62.3 104.5
SQD 63.6 105.2
SQE + SQD 60.7 97.2

Table 3: Ablation study of different active selection strategies
on SHA dataset.

5.3 Ablation Study
We conduct ablation experiments to verify the effectiveness of our
proposed intra-scale uncertainty (SQE) and inter-scale inconsis-
tency (SQD). The results are shown in Table 3.

All experiments are conducted on the SHA dataset with a 40%
annotation budget. We start with random sampling on a progres-
sive updating scheme. It achieves 68.1 MAE and 115.5 MSE. While
the state-of-the-art active semi-supervised method ALcrowd [34]
achieves 66.7 MAE and 106.8 MSE which is better than random
sampling, indicating that active labeling is important for semi-
supervised crowd counting. With the application of QE which does
not include a scaling operation, it improves the performance com-
pared to random sampling. But it only slightly improves the MAE
and obtains a worse MSE compared to ALCrowd [34]. We believe
that this limited improvement is because the intra-scale uncertainty
cannot be accurately estimated by simply calculating QE and over-
looking the impact of scale.

The proposed SQE is adopted to study its efficiency. With SQE
which includes scaling operations, its performance significantly
exceeds using QE, the error reduces by 3.9 and 5.3 for MAE and
MSE, respectively. Hence, the results verify that the proposed SQE
can accurately estimate the intra-scale uncertainty and select infor-
mative images. By measuring the inter-scale inconsistency between
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images at different scales, images that are sensitive to scale varia-
tion are selected. As the results shown in Table 3, SQD improves
the performance by 4.5 MAE compared with the random selection.
It proves the effectiveness of inter-scale inconsistency. Finally, the
combination of SQE and SQD enhances the overall performance
even further, improving 6.0 for MAE and 9.6 for MSE compared
to ALCrowd [34], suggesting that the proposed SQE and SQD are
complementary.

5.4 Discussions
The impact of scale factors. In the proposed SAL, with the orig-
inal image, two scale factors are utilized to produce their corre-
sponding downscaled and upscaled image respectively. We conduct
experiments to study the effect of different combinations of scale
factors. All experiments are performed on the SHA dataset with a
40% budget and the comparison results are summarized in Table 4.

The results show that all three scale factor combinations can
improve the performance compared to random sampling. The best
performance is obtained when the scale factors are set to 0.8&1.2,
achieving 60.7 MAE and 97.2 MSE. In specific, when the scale fac-
tors are set to 0.9&1.1, the small differences between two images
can lead to a decrease in diversity, making performance unsatis-
factory. When the scale factors are 0.7&1.3, the differences are
too big to estimate accurate intra-scale uncertainty and inter-scale
inconsistency, which also causes a decline in performance.

The impact of active labeling cycle.We conduct experiments
on the SHA dataset to examine the impact of every active learning
cycle. The labeling budget is set to 40%. The first 20% images are
randomly sampled, and the rest are sampled in four cycles by our
proposed active labeling strategy. The performance of every cycle
is compared to random sampling, and the comparison results are
shown in Table 5.

Compared to random sampling, our method which leverages
SAL strategy to actively select images has consistent promotion
in all cycles. As shown in Table 5, the improvement will be larger
when the labeled percentage becomes bigger. This is reasonable
since as the number of cycles increases, more images selected by
our proposed SAL strategy are annotated. This quantitative experi-
ment proves that our SAL strategy can select informative images
to improve performance.

The effect of the progressive updating scheme. In the semi-
supervised phase, a progressive updating scheme(PUS) is proposed
to refine the pseudo labels iteratively. In Table. 6 and Table. 7, we
conduct experiments to analyze the effect of different iterations and
verify the superiority of PUS against the existing semi-supervised
method. All experiments are conducted on SHA with an annotation
budget of 40%.

As shown in Table. 6, when the number of iterations increases,
the MAE first decreases quickly in the first two iterations and
then begins to oscillate. For efficiency, 2 iterations are applied in
our other experiments. Compared to the baseline (0 iteration), the
performance is largely improved by 5.2 MAE, which proves that
our iterative refinement for pseudo-labels is effective. Meanwhile,
the significant improvement in the first two iterations indicates
that the converging speed of our PUS is fast and the efficiency is
excellent.

Scale factors MAE MSE

0.9 & 1.1 63.5 103.6
0.8 & 1.2 60.7 97.2

0.7 & 1.3 62.0 102.7

Table 4: The impact of different scale factors.

Percentage
Ours Random

MAE MSE MAE MSE

20% 72.5 132.3 72.5 132.3
25% (1st cycle) 68.4 120.3 71.1 127.4
30% (2nd cycle) 65.2 112.6 69.8 122.9
35% (3rd cycle) 62.6 104.7 68.8 118.6
40% (4th cycle) 60.7 97.2 68.1 115.5

Table 5: The impact of active labeling cycle.

Iterations 0 1 2 3 4

MAE 65.9 62.2 60.7 61.1 60.8
MSE 113.8 105.1 97.2 98.6 96.1

Table 6: The results of PUS with different iterations.

Method MAE MSE

DACount[19]+Random 71.1 119.7
DACount[19]+SAL 67.3 114.3

PUS+Random 68.1 115.5
PUS+SAL 60.7 97.2

Table 7: The effect of the progressive updating scheme.

In Table. 7, we choose the previous state-of-the-art semi-supervised
method DACount [19] for comparison. We train DACount [19]
and our proposed PUS with samples selected by random sampling
(+Random) and SAL strategy (+SAL). As the results demonstrate,
the performance of PUS surpasses DACount whether using ran-
dom sampling or SAL strategy. Our PUS which can consistently
refine the pseudo labels shows its effectiveness. Also, it is worth
noting that the performance of DACount+SAL outperforms DA-
Count+Random which strongly validate the superiority of our pro-
posed active labeling strategy and the representativeness of our
selected images.

5.5 Visualization
To examine the impact of our proposed SAL strategy qualitatively,
we visualize some results predicted by our model and DACount[19]
in Fig. 3. All models are trained with 40% labeled images. As shown
in the third column of Fig. 3, the single use of SQE has already
resulted in improvement compared to random sampling. Moreover,
the combination of SQE and SQDwhich can accurately measure the
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Figure 3: Visualization of the crowd counting predictions. All models are trained with 40% annotations. Predicted counting
results are shown at the top-left corner. Random, SQE, and SQE+SQD indicate the labeled samples are selected randomly, with
SQE, and with both SQE and SQD, respectively. DACount [19] is a SOTA semi-supervised method.
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1507

690

620

1286

Figure 4: Visualization of the results of model trained with 20%, 30% and 40% labeled images in active learning phase. The
accuracy is improved following the increasing percentage of annotation.

intra-scale uncertainty and inter-scale inconsistency forms com-
plementarity and further improves the performance as the fourth
column of Fig. 3 shows. Meanwhile, our proposed method achieves
a better performance compared to DACount[19].

We also visualize the predictions of our approach trained with
20%, 30%, and 40% labeled images in Fig. 4. We first annotate 20%
images that are randomly selected. The results of a model trained
with 20% images are shown in the second column. We can find that
the errors are a little bit large. Then we leverage the SAL strategy to
actively select another 10% and 20% images to annotate and show
the results in the third column and fourth column. The comparison
between the second, third, and fourth columns shows that our
proposed SAL strategy can largely improve the performance of a
countingmodel. Furthermore, the more images are actively selected,
the bigger improvement is obtained.

6 CONCLUSION
We present a simple yet effective scale-based active learning strat-
egy for active semi-supervised crowd counting in this paper. For
active semi-supervised crowd counting, it is the first attempt to
analyze images from the query-level and take scale as an important
factor in informative sample selection. Specifically, in the active
learning phase, intra-scale uncertainty and inter-scale inconsistency
are proposed to actively choose images step by step. In addition, in
the semi-supervised phase, to iteratively refine the pseudo labels for
unlabeled images, a progressive updating scheme is introduced. Ex-
tensive experiments conducted on public crowd counting datasets
provide strong evidence of the effectiveness of the proposedmethod.
In the future, it’s worth analyzing the combination and incorpora-
tion of the proposed scale-based active labeling strategy and other
active semi-supervised crowd counting approaches.



929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

Boosting Semi-supervised Crowd Counting
with Scale-based Active Learning ACM MM, 2024, Melbourne, Australia

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

REFERENCES
[1] Deepak Babu Sam, Abhinav Agarwalla, Jimmy Joseph, Vishwanath A Sindagi,

R Venkatesh Babu, and Vishal M Patel. 2022. Completely Self-supervised Crowd
Counting via Distribution Matching. In ECCV. Springer.

[2] William H Beluch, Tim Genewein, Andreas Nürnberger, and Jan M Köhler. 2018.
The power of ensembles for active learning in image classification. In Proceedings
of the IEEE conference on computer vision and pattern recognition. 9368–9377.

[3] Xinkun Cao, Zhipeng Wang, Yanyun Zhao, and Fei Su. 2018. Scale Aggregation
Network for Accurate and Efficient Crowd Counting. In European Conference on
Computer Vision. 757–773.

[4] Jian Cheng, Haipeng Xiong, Zhiguo Cao, and Hao Lu. 2021. Decoupled Two-Stage
Crowd Counting and Beyond. IEEE Transactions on Image Processing 30 (2021),
2862–2875. https://doi.org/10.1109/TIP.2021.3055631

[5] Jiwoong Choi, Ismail Elezi, Hyuk-Jae Lee, Clement Farabet, and Jose M. Alvarez.
2021. Active Learning for Deep Object Detection via Probabilistic Modeling. In
Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV).
10264–10273.

[6] Ido Dagan and Sean P Engelson. 1995. Committee-based sampling for training
probabilistic classifiers. In Machine Learning Proceedings 1995. Elsevier, 150–157.

[7] Yarin Gal and Zoubin Ghahramani. 2016. Dropout as a bayesian approximation:
Representing model uncertainty in deep learning. In international conference on
machine learning. PMLR, 1050–1059.

[8] Mingfei Gao, Zizhao Zhang, Guo Yu, Sercan Ö Arık, Larry S Davis, and Tomas
Pfister. 2020. Consistency-based semi-supervised active learning: Towards mini-
mizing labeling cost. In Computer Vision–ECCV 2020: 16th European Conference,
Glasgow, UK, August 23–28, 2020, Proceedings, Part X 16. Springer, 510–526.

[9] Siyu Huang, Xi Li, Zhongfei Zhang, Fei Wu, Shenghua Gao, Rongrong Ji, and
Junwei Han. 2018. Body Structure Aware Deep Crowd Counting. IEEE Transac-
tions on Image Processing 27, 3 (2018), 1049–1059. https://doi.org/10.1109/TIP.
2017.2740160

[10] Haroon Idrees, Muhmmad Tayyab, Kishan Athrey, Dong Zhang, Somaya Al-
Máadeed, Nasir M. Rajpoot, and Mubarak Shah. 2018. Composition Loss for
Counting, Density Map Estimation and Localization in Dense Crowds. In Euro-
pean Conference on Computer Vision. 544–559.

[11] Xiaolong Jiang, Zehao Xiao, Baochang Zhang, Xiantong Zhen, Xianbin Cao,
David S. Doermann, and Ling Shao. 2019. Crowd Counting and Density Esti-
mation by Trellis Encoder-Decoder Networks. In IEEE Conference on Computer
Vision and Pattern Recognition. 6133–6142.

[12] Xiaoheng Jiang, Li Zhang, Mingliang Xu, Tianzhu Zhang, Pei Lv, Bing Zhou,
Xin Yang, and Yanwei Pang. 2020. Attention Scaling for Crowd Counting. In
IEEE/CVF Conference on Computer Vision and Pattern Recognition. 4705–4714.

[13] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. 2017. ImageNet classi-
fication with deep convolutional neural networks. ACM Commun. 60, 6 (2017),
84–90.

[14] Victor S. Lempitsky and Andrew Zisserman. 2010. Learning To Count Objects in
Images. In Advances in Neural Information Processing Systems. 1324–1332.

[15] Chen Li, Xiaoling Hu, Shahira Abousamra, and Chao Chen. 2023. Calibrating
uncertainty for semi-supervised crowd counting. arXiv preprint arXiv:2308.09887
(2023).

[16] Yuhong Li, Xiaofan Zhang, and Deming Chen. 2018. CSRNet: Dilated Convolu-
tional Neural Networks for Understanding the Highly Congested Scenes. In IEEE
Conference on Computer Vision and Pattern Recognition. 1091–1100.

[17] D. Liang, X. Chen, W. Xu, Y. Zhou, and X. Bai. 2022. Transcrowd: weakly-
supervised crowd counting with transformers. SCIS 65, 6 (2022), 160104.

[18] D. Liang, W. Xu, and X. Bai. 2022. An end-to-end transformer model for crowd
localization. In ECCV. 38–54.

[19] Hui Lin, Zhiheng Ma, Xiaopeng Hong, Yaowei Wang, and Zhou Su. 2022. Semi-
supervised Crowd Counting via Density Agency. In ACM MM. 1416–1426.

[20] Hui Lin, Zhiheng Ma, Rongrong Ji, Yaowei Wang, and Xiaopeng Hong. 2022.
Boosting Crowd Counting via Multifaceted Attention. In IEEE/CVF Conference
on Computer Vision and Pattern Recognition. 19596–19605.

[21] Wei Lin and Antoni B Chan. 2023. Optimal Transport Minimization: Crowd
Localization on Density Maps for Semi-Supervised Counting. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 21663–
21673.

[22] Chengxin Liu, Hao Lu, Zhiguo Cao, and Tongliang Liu. 2023. Point-query
quadtree for crowd counting, localization, and more. In Proceedings of the
IEEE/CVF International Conference on Computer Vision. 1676–1685.

[23] Xialei Liu, Joost van de Weijer, and Andrew D. Bagdanov. 2018. Leveraging
Unlabeled Data for Crowd Counting by Learning to Rank. In IEEE Conference on
Computer Vision and Pattern Recognition. 7661–7669.

[24] Yan Liu, Lingqiao Liu, Peng Wang, Pingping Zhang, and Yinjie Lei. 2020. Semi-
supervised Crowd Counting via Self-training on Surrogate Tasks. In European
Conference Computer Vision. 242–259.

[25] Yongtuo Liu, Sucheng Ren, Liangyu Chai, Hanjie Wu, Dan Xu, Jing Qin, and
Shengfeng He. 2022. Reducing spatial labeling redundancy for active semi-
supervised crowd counting. IEEE Transactions on Pattern Analysis and Machine

Intelligence (2022).
[26] Zhiheng Ma, Xiaopeng Hong, Xing Wei, Yunfeng Qiu, and Yihong Gong. 2021.

Towards a universal model for cross-dataset crowd counting. In Proceedings of
the IEEE/CVF International Conference on Computer Vision. 3205–3214.

[27] Zhiheng Ma, Xing Wei, Xiaopeng Hong, and Yihong Gong. 2019. Bayesian Loss
for Crowd Count Estimation With Point Supervision. In IEEE/CVF International
Conference on Computer Vision. 6141–6150.

[28] Yanda Meng, Hongrun Zhang, Yitian Zhao, Xiaoyun Yang, Xuesheng Qian, Xi-
aowei Huang, and Yalin Zheng. 2021. Spatial Uncertainty-Aware Semi-Supervised
Crowd Counting. In CVPR. 15529–15539.

[29] Hong Mo, Wenqi Ren, Yuan Xiong, Xiaoqi Pan, Zhong Zhou, Xiaochun Cao,
and Wei Wu. 2020. Background Noise Filtering and Distribution Dividing for
Crowd Counting. IEEE Transactions on Image Processing 29 (2020), 8199–8212.
https://doi.org/10.1109/TIP.2020.3009030

[30] Hong Mo, Wenqi Ren, Xiong Zhang, Feihu Yan, Zhong Zhou, Xiaochun Cao, and
Wei Wu. 2022. Attention-Guided Collaborative Counting. IEEE Transactions on
Image Processing 31 (2022), 6306–6319. https://doi.org/10.1109/TIP.2022.3207584

[31] Hieu T Nguyen and Arnold Smeulders. 2004. Active learning using pre-clustering.
In Proceedings of the twenty-first international conference on Machine learning. 79.

[32] L. Niu, X. Wang, C. Duan, Q. Shen, and W. Liu. 2022. Local Point Matching
Network for Stabilized Crowd Counting and Localization. In PRCV.

[33] Deepak Babu Sam, Shiv Surya, and R. Venkatesh Babu. 2017. Switching Convo-
lutional Neural Network for Crowd Counting. In IEEE Conference on Computer
Vision and Pattern Recognition. 4031–4039.

[34] Siddharth Singh Savner and Vivek Kanhangad. 2023. Crowd Counting From
Limited Labeled Data Using Active Learning. IEEE Signal Processing Letters 30
(2023), 1662–1666. https://doi.org/10.1109/LSP.2023.3330412

[35] Ozan Sener and Silvio Savarese. 2017. Active learning for convolutional neural
networks: A core-set approach. arXiv preprint arXiv:1708.00489 (2017).

[36] Karen Simonyan and Andrew Zisserman. 2015. Very Deep Convolutional Net-
works for Large-Scale Image Recognition. In International Conference on Learning
Representations, Yoshua Bengio and Yann LeCun (Eds.).

[37] Vishwanath A. Sindagi, Rajeev Yasarla, and Vishal M. Patel. 2022. JHU-
CROWD++: Large-Scale Crowd Counting Dataset and A Benchmark Method.
IEEE Transactions on Pattern Analysis and Machine Intelligence 44, 5 (2022), 2594–
2609.

[38] Vishwanath A. Sindagi, Rajeev Yasarla, Deepak Babu Sam, R. Venkatesh Babu,
and Vishal M. Patel. 2020. Learning to Count in the Crowd from Limited Labeled
Data. In European Conference Computer Vision. 212–229.

[39] Samarth Sinha, Sayna Ebrahimi, and Trevor Darrell. 2019. Variational adversar-
ial active learning. In Proceedings of the IEEE/CVF International Conference on
Computer Vision. 5972–5981.

[40] Qingyu Song, Changan Wang, Zhengkai Jiang, Yabiao Wang, Ying Tai, Chengjie
Wang, Jilin Li, Feiyue Huang, and Yang Wu. 2021. Rethinking counting and
localization in crowds: A purely point-based framework. In Proceedings of the
IEEE/CVF International Conference on Computer Vision. 3365–3374.

[41] Peng Tang, Xinggang Wang, Song Bai, Wei Shen, Xiang Bai, Wenyu Liu, and
Alan L. Yuille. 2020. PCL: Proposal Cluster Learning for Weakly Supervised
Object Detection. IEEE Transactions on Pattern Analysis and Machine Intelligence
42, 1 (2020), 176–191.

[42] Antti Tarvainen and Harri Valpola. 2017. Mean teachers are better role models:
Weight-averaged consistency targets improve semi-supervised deep learning
results. In Advances in Neural Information Processing Systems. 1195–1204.

[43] Fang Wan, Chang Liu, Wei Ke, Xiangyang Ji, Jianbin Jiao, and Qixiang Ye. 2019.
C-MIL: Continuation Multiple Instance Learning for Weakly Supervised Object
Detection. In IEEE Conference on Computer Vision and Pattern Recognition. 2199–
2208.

[44] Boyu Wang, Huidong Liu, Dimitris Samaras, and Minh Hoai Nguyen. 2020. Dis-
tribution Matching for Crowd Counting. In Advances in Neural Information
Processing Systems.

[45] Changan Wang, Qingyu Song, Boshen Zhang, Yabiao Wang, Ying Tai, Xuyi Hu,
Chengjie Wang, Jilin Li, Jiayi Ma, and Yang Wu. 2021. Uniformity in Heterogene-
ity: Diving Deep into Count Interval Partition for Crowd Counting. In IEEE/CVF
International Conference on Computer Vision. 3214–3222.

[46] Qi Wang, Junyu Gao, Wei Lin, and Xuelong Li. 2021. NWPU-Crowd: A Large-
Scale Benchmark for Crowd Counting and Localization. IEEE Transactions on
Pattern Analysis and Machine Intelligence 43, 6 (2021), 2141–2149.

[47] Xing Wei, Yunfeng Qiu, Zhiheng Ma, Xiaopeng Hong, and Yihong Gong. 2023.
Semi-Supervised Crowd Counting via Multiple Representation Learning. IEEE
Transactions on Image Processing 32 (2023), 5220–5230. https://doi.org/10.1109/
TIP.2023.3313490

[48] ZhengXiong, LiangyuChai,Wenxi Liu, Yongtuo Liu, Sucheng Ren, and Shengfeng
He. 2022. Glance to Count: Learning to Rankwith Anchors forWeakly-supervised
Crowd Counting. arXiv:2205.14659 (2022).

[49] Yanyu Xu, Ziming Zhong, Dongze Lian, Jing Li, Zhengxin Li, Xinxing Xu, and
Shenghua Gao. 2021. Crowd Counting With Partial Annotations in an Image. In
ICCV. 15550–15559.

https://doi.org/10.1109/TIP.2021.3055631
https://doi.org/10.1109/TIP.2017.2740160
https://doi.org/10.1109/TIP.2017.2740160
https://doi.org/10.1109/TIP.2020.3009030
https://doi.org/10.1109/TIP.2022.3207584
https://doi.org/10.1109/LSP.2023.3330412
https://doi.org/10.1109/TIP.2023.3313490
https://doi.org/10.1109/TIP.2023.3313490


1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

ACM MM, 2024, Melbourne, Australia Anonymous Authors

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

[50] Yifan Yang, Guorong Li, Zhe Wu, Li Su, Qingming Huang, and Nicu Sebe. 2020.
Weakly-Supervised Crowd Counting Learns from Sorting Rather Than Locations.
In European Conference on Computer Vision. 1–17.

[51] Tianning Yuan, FangWan, Mengying Fu, Jianzhuang Liu, Songcen Xu, Xiangyang
Ji, and Qixiang Ye. 2021. Multiple Instance Active Learning for Object Detec-
tion. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR). 5330–5339.

[52] Anran Zhang, Jiayi Shen, Zehao Xiao, Fan Zhu, Xiantong Zhen, Xianbin Cao, and
Ling Shao. 2019. Relational Attention Network for Crowd Counting. In IEEE/CVF
International Conference on Computer Vision. 6787–6796.

[53] Yingying Zhang, Desen Zhou, Siqin Chen, Shenghua Gao, and Yi Ma. 2016. Single-
Image Crowd Counting via Multi-Column Convolutional Neural Network. In
IEEE Conference on Computer Vision and Pattern Recognition. 589–597.

[54] Zhen Zhao, Miaojing Shi, Xiaoxiao Zhao, and Li Li. 2020. Active Crowd Counting
with Limited Supervision. In European Conference on Computer Vision. 565–581.


	Abstract
	1 Introduction
	2 Related Work
	2.1 Crowd Counting with Full Annotations
	2.2 Crowd Counting with Limited Annotations
	2.3 Active Learning

	3 Preliminary
	4 Methodology
	4.1 Overview
	4.2 Intra-scale Uncertainty by SQE
	4.3 Inter-scale Inconsistency by SQD
	4.4 Progressive Updating Scheme

	5 Experiments
	5.1 Experimental Setting
	5.2 Comparison with State-of-the-art Methods
	5.3 Ablation Study
	5.4 Discussions
	5.5 Visualization

	6 Conclusion
	References

