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ABSTRACT

A molecular perceptron is of immense interest due to its computing and classifica-
tion ability in biophysical and aqueous environments. Because such a perceptron
relies on biochemical interactions, it must adapt to perturbations and be resilient
against stochastic fluctuations to maintain faithful in vivo classification. In this
paper, we design a molecular exchange mechanism (MEM)-based perceptron fol-
lowing a set of evolutionarily preserved in vivo signaling steps, including negative
feedback known for noise regulation. The efficacy study of the MEM-perceptron
demonstrates an improved adaptation against perturbations and noise.

1 INTRODUCTION

The basic building block of a biomolecular neural network (BNN) is the molecular perceptron
that resembles activation functions by chemical interactions (Hjelmfelt et al., 1991). Such BNN-
based molecular machines are suitable in applications ranging from point-of-care disease detection
to smart drug delivery (Lopez et al., 2018; Ma et al., 2022), and can be implemented using DNA
strands as the interacting species (Qian et al., 2011; Cherry & Qian, 2018). A molecular percep-
tron design often uses a deterministic analysis approach involving Ordinary Differential Equations
(ODE) and mass-action kinetics to form a solid theoretical cue for general computing (Bournez et al.,
2017). For instance, previous studies used molecular sequestration (Moorman et al., 2019) and
phosphorylation-dephosphorylation (Samaniego et al., 2021), which followed deterministic ODE
formulation in perceptron design. In many BNN applications, the molecular mixture of species is
subdivided into smaller compartments, each with considerably low-concentration molecular interac-
tions making intrinsic noise inherent in the system (Plesa et al., 2018). Due to noise, the determin-
istic steady state concentration may deviate from its acceptable threshold, causing the perceptron
to be error-prone. In contrast to its detrimental role, evidence also suggests noise as a sensitivity
enhancer (Gammaitoni et al., 1998), frequently observed in many species (Douglass et al., 1993;
Ozbudak et al., 2002). An intriguing question thus arises, whether a mechanism can curb noise to
an acceptable range and still perform as a molecular perceptron. As a solution, we propose a model
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Figure 2: a) Change in n,RTOT and E for different values of w0 to eliminate ∆. b) Adaptation
time for production perturbations of N . c) Presence of E reduces the CV for favored kinetics. d)
Multilayer MEM-perceptron network, capable of performing non-linear classification.

comprised of molecular interactions seen in many biophysical contexts (Umulis et al., 2009; Papouin
et al., 2012) that confer perceptron-like behavior while maintaining an improved noise control.

2 METHODS AND RESULTS

MEM Model: The MEM-perceptron performs binary classification for inputs x1, x2 using the
species NR (Fig. 1a,b,c). The classification boundary follows the decision boundary equation,
defined as x2 = −(w1/w2)x1 + (w0/w2), for w1, w2 variations, whereas variations in w0 pro-
duce a deviation ∆(Fig. 1d, 2a), traceable through Ω. The MEM-perceptron considers mass-action
based ODEs, and the steady state value of NR provides its decision boundary (Appendix A.2).
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Enhanced adaptation to perturbation: An enhanced chemical adaptation ability increases the
fidelity of the perceptron outcomes in the presence of production perturbations of the interacting
species. We compare different candidate MEM models to assess the adaptability (Fig. 2b) and
choose the model that minimizes adaptation time.
Reduced noise: For noise analysis, we numerically approximate the Chemical Master Equation
(CME)(Van Kampen, 1992) using Gillespie’s algorithm (Gillespie, 1976). A numerical screen over
parameter sets of NRE formation demonstrates kinetics-dependent noise control (Fig. 2c) quanti-
fied by the coefficient of variation (CV) reduction of the steady state NR count (Appendix A.4).

3 DISCUSSION

The designed MEM-perceptron includes feedback circuitry and demonstrates an enhanced adapta-
tion against perturbations. It is also resilient against stochastic fluctuations needed for molecular
computing (Plesa et al., 2018). Interestingly, noise injection during artificial neural network training
regularizes the network (Bishop, 1995). As the MEM-perceptron demonstrates improved noise con-
trol, a multilayer network consisting of MEM-perceptron may be more flexible to noise addition at
low-concentration molecular interactions. Aligned with the previous studies, the MEM-perceptron
is scalable to form multilayer perceptron (MLP) (Fig. 2d) for a chosen set of weights (wi) ensuring
that each module works independently as a perceptron. Overall, the ability of the MEM-perceptron
to maintain the decision threshold within an acceptable range and a potential regularizing role with
an improved noise control make it a viable avenue to explore for BNN applications.
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A APPENDIX

A.1 DETAILS OF THE MEM-PERCEPTRON DESIGN

The molecular exchange mechanism (MEM) is similar to interactions commonly seen in various
biophysical systems, for example, in the synaptic cleft of the brain (Fig. 4a). There are three species
working in the MEM: N (signaling agent, which could be a neurotransmitter), R (receptor), and
E (exchanger molecule). The molecular exchange between the species occurs with the help of the
exchanger molecule. Production of the decision-making species NR occurs in two channels. Firstly,
NR is produced from the interaction between N and R. Secondly, the exchange of E between NRE
and NR contributes to NR production. The exchanger molecule E also facilitates the production of
the species NE which is used to impose negative feedback on the forward production rate of NR,
leading to a smooth ReLU-like behavior of NR in steady state, similar to Anderson et al. (2021).
As molecular production adds noises, the designed dynamics takes N and E as a constant source to
establish a better control over noise. A conservation condition for R is maintained in the continuum.
The chemical reaction network (CRN) of MEM is as follows:

r1: N +R
k̂on

NR−−⇀↽−−
koff

NR

NR, r2: N + E
kon

NE−−⇀↽−−
koff

NE

NE
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NRE−−−⇀↽−−−
koff

NRE

NRE, r4: NE +R
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NER−−−⇀↽−−−
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NER

NRE

r5: NR,NE,NRE
δ−→ ∅

[RTOT] = [R] + [NR] + [NRE] (3)

Upon formation of NE, the species negatively regulate the NR forward rate constant kon
NR following

a Hill equation as follows:

k̂on
NR = kon

NR

(
Kn

Kn + [NE]n

)
(4)

where kon
NR is the basal NR production rate.

A.2 STEADY STATE ANALYSIS FOR THRESHOLD DEPENDENT PERCEPTRON BEHAVIOR

At steady state, d/dt[NR] = d/dt[NE] = 0. We ignore the term δ and assume that koff
NRE = koff

NER,
kon

NRE = γkon
NE, kon

NER = γkon
NR, and r = [R]/[E]. From Eq. 1,
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Applying feedback expression of k̂on
NR,
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Making [NR] the subject, and denoting the feedback expression as Kn/(Kn + [NE]n) = β
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Hence, we get the threshold condition:

[NR] ≈
{
(βkon

NRr[N ]− kon
NE[N ] + [NE](γrkon

NR))/γk
on
NE if kon

NR ≥ Ωkon
NE

0 if kon
NR < Ωkon

NE
(7)

We can rewrite the above condition in terms of perceptron inputs and weights as follows:

[NR] ≈
{
(βkon

NRr[N ]− kon
NE[N ] + [NE](γrkon

NR))/γk
on
NE if w1x1 + w2x2 ≥ Ωw0

0 if w1x1 + w2x2 < Ωw0
(8)

A.3 EXPERIMENTAL RESULTS

A.3.1 PARAMETER SCREEN

The underlying mechanism of the MEM-model consists of negative regulation of NR formation rate
(kon

NR) by NE. Initially, the concentration of NR is restricted to a near-zero value until kon
NR reaches

a threshold (Eq. 6), leading to the binary classification of inputs. However, the ReLU-like behavior
is obtained for specific parameter combinations, rendering parameter dependency of the model. To
explore this parameter dependency, we conduct a parameter screen to identify suitable parameter
sets for which the species NR exhibits ReLU-like behavior. Our screen involves a set of criteria
to detect perceptron-like behavior for any given parameter set (Fig. 4d). Efficacy of these steps is
demonstrated using two of the previously studied models, namely the molecular sequestration model
(Moorman et al., 2019) and the phosphorylation-dephosphorylation model (Samaniego et al., 2021).
We utilize the following algorithms to detect a perceptron-like activation function from the steady
state NR concentration of a model. The value of the variables tol, z and y are chosen based on the
model parameters.
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Algorithm 1 ReLU Detection

1: flag← 0, num zero← 0
2: m← max(NR)
3: for i←1 to length(NR) do
4: if NRi ≤ 0.02*m then
5: num zero← num zero + 1
6: end if
7: end for
8: Coordinates a←(0.75,NR), b←(0.74,NR),
9: c←(1,NR), d←(0.99,NR)

10: g1 ← gradient for points c,d
11: g2 ← gradient for points a,b
12: d← g1 − g2
13: if num zero ≥ z and 0 ≤ d ≤ tol then
14: flag← 1
15: end if

Algorithm 2 Sigmoid Detection

1: flag← 0, num zero← 0, num one← 0
2: m← max(P)
3: for i←1 to length(P) do
4: if Pi ≤ 0.02*m then
5: num zero← num zero + 1
6: end if
7: end for
8: for j←1 to length(P) do
9: if Pj ≥ 0.98*m then

10: num one← num one + 1
11: end if
12: end for
13: if num zero ≥ z and num one ≥ y then
14: flag← 1
15: end if

A.3.2 DECISION BOUNDARY ANALYSIS

The MEM-perceptron takes two inputs x1 and x2 and three weights w0, w1, w2. The weights
w1, w2 are for the inputs x1, x2, respectively, whereas w0 is the bias. In the MEM-perceptron,
weights and inputs together form the intrinsic NR formation rate, which is modulated further by
NE. As observed, NR subdivides the surface formed by the inputs (x1, x2) into two classes,
class 0 (orange) and class 1 (blue) by forming a decision boundary (white). We then change the
weights and bias and observe that decision boundary shifts congruently with the analytical decision
boundary (Fig. 3c,d), defined for two inputs as: x2 = −(w1/w2)x1 + (w0/w2), where (w1/w2)
is the slope and (w0/w2) is the intercept from the y-axis (x2) of the boundary line. However, a
boundary deviation ∆ between the analytical decision boundary and simulated decision boundary
emerges when the bias (w0) is changed (Fig. 3b). Interestingly, the deviation ∆ is traceable for a
change in w0 through the dependency of NR concentration on n, R and E. Traceability of ∆ is
shown in Fig. 2a and remains subject to further investigation as part of our ongoing expansion of
this work.

The MEM-perceptron shown in this work takes two positive weights (w1, w2). However, it can also
be used with one positive weight and one negative weight. The design of the MEM-perceptron with
positive-negative weights is given in Fig. 4b. The resulting decision boundary for positive-negative
weights shows a similar characteristic as the perceptron with only the positive weights, however, the
slope of the boundary is positive and follows the equation x2 = (w1/w2)x1+(w0/w2). The surface
plots of the positive-negative weight version are not shown here for brevity.

NR
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Figure 3: Concentration surface plots show decision boundaries corresponding to the weights. a,c-d)
The analytical and simulated decision boundary lines align for the changing weights w1 and w2. b)
Changing the bias w0 causes a parallel deviation ∆ of the simulated from the analytical line.
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Table 1: Parameters used to generate the decision boundary in Fig. 3

Parameter Value Unit
kon

NR [0.02, 2] nM−1s−1

kon
NE 0.5 nM−1s−1

koff
NR 0.005 s−1

koff
NE 0.005 s−1

γ 10 dimensionless
kon

NRE 5 nM−1s−1

kon
NER [0.2, 20] nM−1s−1

Parameter Value Unit
koff

NRE 0.005 s−1

koff
NER 0.005 s−1

K 0.05 nM
n 6 dimensionless
RTOT 7.85 nM
E 5 nM
δ 1 s−1

A.4 STEADY STATE PROBABILITY APPROXIMATION AND NOISE MEASUREMENT

The Chemical Master Equation (CME) (Van Kampen, 1992) captures the dynamic time evolution
of interacting systems’ joint probability distribution p(X, t). Here, X denotes the molecular count
of each species Si as X = [X1, X2 . . . XN ]T . The CME transforms the deterministic reaction
rate constant of molecular interactions to the propensity function (Gillespie, 1976), which treats an
interaction as a probabilistic event, with an expression as follows

d

dt
p(x, t) = −

∑
i

ai(x, t)p(x, t) +
∑
i

ai(x− νi, t)p(x− νi, t) (9)

where ai(x) is the propensity function that quantifies the state due to the occurrence of transition
from state X to the next for reaction ri. For steady state probability distribution, p(x, t)ss, the time
evolution of probability p(x, t) can be represented as a system of linear equations:

d

dt
p(x, t) = Sp(x, t) = Spss ⇒ Spss = 0 for steady-state (10)

To reduce the computational cost associated with the numerical approximation of CME for steady-
state probability distribution, we treat CME as a system of linear equations for a truncated state-
space Ω̂, elaborately outlined in Karim et al. (2012). In the truncated state-space Ω̂, the steady state
probability distribution pss is approximated by transforming the normalization of probability as∑

x∈Ω

pss = 1 to
∑
x∈Ω̂

pss = 1− ϵ, (11)

where ϵ is negligibly small, and the molecular strength of species X remains within a sufficiently
large left (α) and right (β) boundary of the truncated state-space Ω̂ = {X : αi ≤ Xi ≤
βi, for all i ≤ N}. Finally, we use the coefficient of variation (CV) as a metric to compare the
noise between a set of chemical reactions with and without the presence of exchanger molecules E,
and is defined as below:

CV =
standard deviation of NR

mean of NR
=

√
variance of NR
mean of NR

=
σNR

µNR
(12)

A.5 BIOLOGICAL RELEVANCE OF MEM

The dynamics which drives the decision making of the MEM-perceptron may relate to certain bio-
physical interactions, such as those seen in the synaptic cleft of neurons and in cellular pattern
formation. In the synaptic cleft, regulators such as Glycine and D-serine (Papouin et al., 2012)
bind to receptors to control neuronal activation and inhibition. The MEM-perceptron employs the
likeliness of such physiological interactions and the roles similar to different regulators have been
collectively attributed to a single type of regulator, which is the exchanger molecule E in the MEM
model. Neurotransmitters directly bind to receptors and activate neurons similar to N and R form-
ing NR in the MEM-model. On the other hand, neurotransmitters also bind with regulators to form
an intermediate complex (Choquet & Triller, 2013) and the intermediate complex may couple with
receptors forming a tripartite complex similar to NE and NRE respectively, as demonstrated in the
MEM-model (Fig. 4a).
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Figure 4: a) Interactions at the synaptic cleft (simplified) which serves as the inspiration for our
design. b) Schematic diagram of the MEM perceptron with one positive weight and one negative
weight. c) Adaptability of the MEM perceptron against perturbations of the concentration of N.
d) Plot of some sample outputs of the ReLU detection algorithm. Blue lines (solid) are accepted.
Orange lines (dashed) are rejected.
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