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Abstract— Encouraged by the remarkable achievements of
language and vision foundation models, developing generalist
robotic agents through imitation learning, using large demon-
stration datasets, has become a prominent area of interest
in robot learning. The efficacy of imitation learning is heavily
reliant on the quantity and quality of the demonstration datasets.
In this study, we aim to scale up demonstrations in a data-
efficient way to facilitate the learning of generalist robotic
agents. We introduce AdaDemo (Adaptive Online Demonstration
Expansion), a general framework designed to improve multi-
task policy learning by actively and continually expanding
the demonstration dataset. AdaDemo strategically collects new
demonstrations to address the identified weakness in the existing
policy, ensuring data efficiency is maximized. Through a
comprehensive evaluation on a total of 22 tasks across two
robotic manipulation benchmarks (RLBench and Adroit), we
demonstrate AdaDemo’s capability to progressively improve
policy performance by guiding the generation of high-quality
demonstration datasets in a data-efficient manner.

I. INTRODUCTION

The recent unprecedented success of language and vision
foundation models [1], [2] have highlighted the importance
of scaling up datasets as a key strategy for solving chal-
lenging tasks. This insight has similarly influenced the field
of robotics, where the development of robotic foundation
models through imitation learning, utilizing large datasets of
demonstrations, has emerged as a prominent area of interest
[3]–[6]. However, the success of these robotic foundation
models is significantly dependent on the quantity, quality, and
diversity of the demonstration data. Meanwhile, recent efforts
of collecting large-scale robot demonstration datasets, such as
RT-1 [4] and Open X-Embodiment [7], require extensive time
and resources, involving years of data collection by numerous
human teleoperators, which proves to be costly. Given these
considerations, it is both crucial and timely to explore this
question: how to scaling up demonstrations in a data-efficient
manner for learning generalist robotic agents?

In this work, we delve into the direction of actively
expanding the demonstration dataset. Imitation learning [8]
is a widely-used method in training generalist robotic agents,
which typically relies on datasets that are pre-collected and
static. Despite various efforts to improve the demonstration
datasets through data augmentation [9], [10] and dataset
re-distribution methods [11], [12], such approaches remain
fundamentally limited by the original dataset. Our study
introduces a significant paradigm shift: rather than collecting
the demonstration dataset once and using it forever, we
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Fig. 1: Comparison of data efficiency between AdaDemo (adap-
tively expanding the demo dataset) and Uniform (collecting more
demonstrations uniformly). After achieving a mediocre success rate
57% on RLBench and 62% on Adroit, Uniform only gains slightly
better success rate with a huge increase in demonstration numbers.
While the baseline’s performance plateaus, AdaDemo continues
improving multi-task performance iteratively. Overall, it achieves
better performance with only 1/2 the data on RLBench and 1/3
on Adroit. This data efficiency could translate into substantial cost
savings in large-scale demonstration collection.

propose actively and continuously expanding the dataset by
collecting new demonstrations to boost the performance of
the learned agent. In the context of embodied AI, it is usually
feasible to collect new demonstrations by interacting with the
environments, especially in simulated environments, where
the cost of interactions is relatively low.

We study the problem of data-efficient demonstration
expansion in a multi-task visual policy learning setup, where
the objective is to develop a single generalist policy capable of
executing a variety of tasks. This setup aligns with the recent
trend of creating versatile, generalist agents that can handle
a broad spectrum of challenges [4]–[6]. A straightforward
idea to expand the demonstration dataset is to uniformly
collect more demonstrations across all tasks. However, our
observations indicate that while this approach can improve
policy performance in certain scenarios, it lacks data efficiency



and tends to reach a performance plateau easily (see Fig. 1).
To improve the data efficiency in demonstration expansion, a
crucial intuition is that the new demonstrations should target
scenarios where the current policy fails. Stemming from
this intuition, we propose a framework named AdaDemo
(Adaptive Online Demonstration Expansion) that is grounded
in three core principles: 1) prioritizing the collection of
demonstrations for tasks with low policy performances; 2)
within each task, focusing on acquiring demonstrations for the
initial states where the policy underperforms; and 3) adapting
sampling strategies in training to emphasize challenging
tasks. By adopting this framework, we aim to tailor the
demonstration expansion process to precisely address the
weaknesses of the existing policy, thereby avoiding collecting
unnecessary demonstrations.

The effectiveness of AdaDemo was evaluated through a
series of multi-task visual policy learning experiments on
two robotic manipulation benchmarks: RLBench [13] and
Adroit [14], including a total of 22 tasks. These experiments
demonstrate AdaDemo’s capability to progressively improve
policy performance by guiding the generation of high-
quality demonstration datasets in a data-efficient manner, as
depicted in Fig. 1. Notably, AdaDemo exhibits significant data
efficiency, particularly at points where performance plateaus.
Compared to the baseline, it achieves better performance
with only 1/2 the data on RLBench and 1/3 on Adroit. This
efficiency could translate into substantial cost savings,
especially in large-scale demonstration collection.
To summarize, our contributions go as follows:

1) We propose AdaDemo, a data-efficient demonstration
expansion framework, designed to improve multi-task
visual policy learning by adaptively expanding the demon-
stration dataset and employing an appropriate sampling
strategy for training.

2) Through extensive experiments on two robotic manip-
ulation benchmarks, including a total of 22 tasks, we
demonstrate the effectiveness of AdaDemo in expanding
demonstration datasets in a data-efficient way.

II. RELATED WORK

Data Augmentation in Policy Learning Data augmentation
is a widely utilized technique in machine learning that derives
additional data samples by applying varied transformations to
the existing data. In the context of policy learning, specialized
techniques have been proposed: prior works [15]–[17] discuss
enhancing the robustness of visual policies by applying image-
based data augmentation techniques to observations. On the
other hand, some recent studies [18], [19] propose to add
additional trajectories by adapting existing demonstration
trajectories to novel situations. While data augmentation can
produce novel data instances, these instances are intrinsically
limited in informational value as they are derived from the
original dataset. AdaDemo distinguishes itself from these
approaches by directly collecting new demonstrations to
address the weakness of the learned policy.
Data Collection for Foundation Models Foundation models,
such as large language models [1], vision language models

[20], generalist agents [21], and robotic agents [4], [5],
usually rely on datasets that are pre-collected and static.
This means the data collection phase is conducted once,
with the dataset then used forever. Although straightforward
to implement, this one-off approach to data collection can
restrict the models’ potential for learning and adaptation.
Recently, there has been a shift towards training foundation
models using dynamically expanding datasets. For instance,
SAM [2] employs a bootstrapping approach, leveraging
pre-trained segmentation models to help annotate a more
extensive dataset, which is then used to train stronger models.
Similarly, in the robotics field, RoboCat [3] utilizes a pre-
trained policy to collect additional demonstrations for new
tasks or robots, enlarging the dataset for subsequent agent
training. Compared to these methods, AdaDemo prioritizes
data efficiency by selectively targeting data collection efforts
towards scenarios where the current policy underperforms,
rather than indiscriminately adding data.
Online Policy Learning In contexts where online interaction
is feasible, a straightforward strategy for policy learning is
using reinforcement learning (RL) [22]. However, due to the
sample efficiency issue and the unstable training dynamics,
RL is rarely used in training large-scale policies. Also, online
imitation learning [23]–[27] presents a viable approach for
leveraging online interactions in policy learning. Many of
these methods are based on DAgger [23], which requires
an expert to provide action supervision for all encountered
states during online interactions. The requirement for an
expert capable of providing immediate supervision across
all possible states can be impractical, making such methods
less feasible for a wide range of applications. In contrast,
AdaDemo simplifies this requirement by only requiring a
demonstration collector for the initial states of tasks. This
more manageable assumption positions AdaDemo as a less
demanding alternative compared to methods like DAgger.

III. PROBLEM SETUP

In this paper, we study a multi-task setting where a single
visual policy (generalist) is trained to solve multiple tasks,
each having variants in terms of different goals and initial
states. This setup mirrors practical scenarios, such as a robotic
arm performing diverse tasks like stacking plates and opening
drawers, depending on the given instructions and observed
objects. We assume that tasks come with a success metric,
allowing us to verify the task completion and compute the
success rate of the policy.

To train the multi-task visual policy, we employ behavior
cloning [8], a widely adopted algorithm in learning generalist
robotic agents [3], [4]. Behavior cloning serves as a general
foundation that can accommodate various modern visual
policy learning architectures [28], [29]. Following prior
work, we assume the demonstration dataset in behavior
cloning has the format: D0 := {D1

0, ...,DM
0 }, where M is

the number of tasks, the superscript denotes the index of
the task, and the subscript 0 denotes this is an initial pre-
collected demonstration dataset. The demonstration dataset
of each task m contains a set of demonstration trajectories τ :



Dm
0 := {τm0 , τm1 , ...}. For each demonstration τ , it contains

a goal description g and a sequence of transition: τ :=
⟨g, {(o0, a0), (o1, a1), ...}⟩, where g is a goal description (e.g.,
language or low-dim vectors) and oi is a visual observation, ,
which serves as the input of the visual policy. ai is an action,
which provides the supervision for output of visual policy.

An important aspect of our problem setup is the flexibility
in collecting demonstration, which can be sourced through
varied methods such as task and motion planning, state-
based reinforcement learning, or teleoperation from human
demonstrators. We assume access to a demonstration collector
to generate demonstrations for any state from the initial state
distribution of the tasks. Note that the demonstration collector
only needs to handle the initial states of tasks, thus the
assumption is less demanding than methods like DAgger
[23], which require an oracle providing action supervision
across all possible states. Such a demonstration collector is
also feasible in real world via human teleoperation [30] or
real-world motion planning [31], [32].

Generating demonstrations for all possible states is sig-
nificantly more challenging than focusing on initial states,
because most human-designed tasks are typically solvable
from the initial states. For instance, in a “Stacking Cup”
task, it is feasible to generate demonstrations where cups are
initially standing on a table. However, if a cup is knocked
down or falls from the table during the task execution, creating
a demonstration for that state becomes difficult or impossible.
Thus, our assumption is more realistic, only requiring a
demonstration collector capable of handling initial task states.

IV. ADAPTIVE ONLINE DEMO EXPANSION

A. Overview

We aim to actively and continuously expand the demonstra-
tion dataset for training generalist robotic agents, particularly,
for multi-task visual policy learning. Contrary to the con-
ventional use of pre-collected and static datasets in imitation
learning [8], AdaDemo (Adaptive Online Demonstration
Expansion), differentiates itself by adopting an online and
adaptive method. It operates over multiple iterative rounds
to progressively improve the demonstration dataset, and
consequently, the performance of the policy. Before delving
into the technical details, we first highlight the key properties
of AdaDemo below:

1) Online Demonstration Expansion: AdaDemo advocates
the concept of online expansion of the demonstration dataset
to overcome the limitations associated with pre-collected and
static datasets in imitation learning. By incorporating new
demonstrations, it becomes possible to address the weakness
of the learned policy by directly providing additional super-
vision. This strategy is also supported by recent successes
in foundation models [2], [3], suggesting that expanding the
dataset is a potent method for enhancing model performance.

2) Iterative Improvement Process: AdaDemo employs an
iterative approach, progressively incorporating new demonstra-
tions into the dataset with each round. This iterative process
offers several key advantages over the bulk accumulation
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Fig. 2: AdaDemo iteratively expands the demonstration dataset
through online evaluation of the trained policy, adaptively collecting
additional demonstrations to target cases where the multi-task policy
most needs improvement.

of demonstrations: 1) Data efficiency: With the policy re-
evaluated at each round, it is possible to specifically collect
new demonstrations that address the current policy’s weakness,
thus eliminating the collection of unnecessary demonstrations;
2) Adaptability to Dynamic Budgets: Resource budgets for
demonstration collection may vary over time. This iterative
approach accommodates such fluctuations, allowing for the
initial use of available resources and the integration of
new demonstrations as more resources become available; 3)
Alignment with Current Research: The iterative expansion
of data is a strategy that has been utilized in modern
foundation models [2], underscoring its effectiveness and
relevance to current practices in the field.

3) Adaptive Demonstration Expansion: Instead of indis-
criminately adding data, AdaDemo strategically focuses on
demonstrations that are likely to yield the most significant
improvements in policy performance, thus ensuring enhanced
data efficiency. The adaptiveness is mainly grounded in
three core principles: 1) Emphasizing collecting more
demonstrations for initial states where the current policy fails
(Sec. IV-B); 2) Prioritizing the collection of demonstrations
for tasks where the current policy gets low success rates (Sec.
IV-C); 3) to efficiently utilize the additional data, AdaDemo
adapts the sampling strategy in training to emphasize tasks
considered more challenging, ensuring that the model is
continually exposed to and learns from the most demanding
scenarios (Sec. IV-D).

In summary, AdaDemo actively expands the demonstration
dataset for training generalist robotic agents. It emphasizes
an online, iterative, and adaptive strategy to expand the
dataset, ensuring that each newly incorporated demonstration
is strategically selected to boost the policy’s capability across
a diverse range of tasks. See Fig. 2 for a visual illustration
of our framework. The full framework is summarized in
Algorithm 1. In the following subsections, we delve into the



details of the three core principles mentioned in Sec. IV-A.3.

B. Demo Collection on Failed Initial States

One core principle of AdaDemo is to focus on collecting
demonstrations for tasks specifically from those initial states
where the current policy falters. To systematically identify
these failed initial states, we evaluate the multi-task policy
on each task, pinpointing specific initial states where the
current policy cannot successfully complete the task. For the
sake of brevity, we treat the goal description as a part of the
initial state of a task. Focusing on these failed initial states
ensures that the newly collected demonstrations provide direct
guidance for solving scenarios where the policy previously
failed, thereby enhancing the data efficiency without wasting
resources on collecting demonstrations for initial states the
policy already navigates successfully.

In practice, we evaluate the policy on the default initial
state distribution for each task. Upon encountering an initial
state that leads to an unsuccessful episode, we engage a
demonstration collector to generate an expert demonstration
trajectory from that specific initial state.

Our framework is compatible with a variety of tools for
expert demonstration collection, including task and motion
planning systems, state-based reinforcement learning, model-
predictive control, and even human teleoperation. The key
requirement for these tools is their capability to complete the
task from a given initial state. In cases where a demonstration
collector fails to complete a task from a particular initial state,
we can either opt for retrying the collection process a few
more times, or choose to skip collecting a demonstration for
that specific initial state. This flexible approach accommodates
the reality of imperfect demonstration collectors, ensuring
our framework’s broad applicability.

C. Demo Collection on Unsolved Tasks

With the above strategy for collecting new demonstrations
within a task, a critical consideration emerges: how should
we allocate our demonstration collection budget across
various tasks? Specifically, we need to decide the number of
demonstrations to collect for each task.

Our guiding principle is straightforward: prioritize the
collection of demonstrations for tasks that remain unsolved,
i.e., the tasks where the current policy gets low success
rates. These tasks are crucial in improving the overall
performance across all tasks, because they offer large room
for improvement. For each task, we keep evaluating the policy
until it reaches a predetermined number of successful episodes.
During this process, demonstrations are collected from the
initial states where the policy fails, as described in Sec. IV-B.

Consequently, tasks with lower success rates naturally lead
to more failures during the evaluation, thereby getting more
new demonstrations. This approach creates a direct correlation
between the task’s difficulty (gauged by its success rate)
and the number of demonstrations collected for this task. It
ensures a concentrated effort on those tasks where the current
policy underperforms, leading to a more efficient and focused
data-collection process.

Algorithm 1 Adpative Online Demo Expansion
Require: Initial demonstration dataset for M tasks D0 :=
{D0

0,D1
0, ...,DM

0 }, where demonstration dataset for task k
Dk

0 := {τk
0 , τ

k
1 , ...}; Demonstration collector G;

1: Train a multi-task policy π on D0 by imitation learning
2: for each round i do
3: Determine a target number of success episodes Ei for this

round according to the budget
4: for each task T k do
5: Dk

i ← {}
6: Counter c← 0
7: repeat
8: Random sample an initial state s in task T k

9: Evaluate π on s
10: if π failed on s then
11: Collect a demo trajectory on s: τ ← G(s)
12: Dk

i ← Dk
i ∪ {τ}

13: else
14: c← c+ 1
15: until c = Ei

16: Di ← {D0
i ,D1

i , ...,DM
i }

17: Merge the datasets from all rounds D ←
⋃i

j=0Di

18: Re-train π on D with the selected sampling strategy

To provide a quantitative analysis, the formula for estimat-
ing the number of demonstrations Nk

demo required for each
task k is given by Nk

demo = E
SRk − E,, where SRk denotes

the success rate of the current policy on task k, and E is
a hyperparameter specifying the target number of success
episodes, which could be adjusted based on the available
resource budget. In practice, we also impose a cap on the
demonstrations to be collected per task. The rationale behind
this is to prevent the potential endless evaluation process to
reach a target number of successful episodes for some tasks
with extremely low success rates.

D. Sampling Strategy in the Collected Dataset

Beyond increasing the number of demonstrations, it is
also crucial to optimize the use of the expanded dataset
through a suitable sampling strategy during training. A
simplistic strategy might involve uniformly sampling across
the entire dataset. However, this method unintentionally
biases towards tasks with longer trajectories, which does
not necessarily correlate with their actual importance to the
overall policy performance. To address this bias, we need
to adopt alternative sampling strategies that more accurately
prioritize demonstrations which are crucial for enhancing
policy performance. One possible approach could be to ensure
uniform sampling with respect to tasks, granting each task an
equal chance of being selected. This method offers a more
balanced distribution compared to uniform sampling with
respect to the entire dataset, but falls short in highlighting
the significance of the more difficult tasks, which are vital
for the overall policy performance.

Therefore, we adopt a strategy that draws samples uni-
formly with respect to the demonstration trajectories, i.e.,
the sampling probability of each task’s data is proportional
to the number of demonstration trajectories in the dataset.
This method aligns with our focused approach of collecting
more demonstrations for unsolved tasks. By sampling in this



manner, we naturally place more emphasis on these unsolved
tasks within the learning process. This not only ensures that
harder tasks receive more attention, but also maximizes the
utility of the additional demonstrations we have collected.
In practice, we also set a minimum sampling weight for
each task to avoid some tasks with a very small number of
demonstrations being undersampled during training.

This sampling strategy plays a crucial role in our frame-
work, guaranteeing that the expanded demonstration dataset
is fully utilized, thereby directly supporting our objective of
achieving maximal data efficiency.

V. EXPERIMENTS

A. Experimental Setup

The goal of our experimental evaluation is to study whether
AdaDemo can effectively expand the demonstration dataset
in a data-efficient manner, thereby enhancing the learned
multi-task visual policy. Conceptually, AdaDemo is expected
to be compatible with a variety of core components within
the learning system, including the demonstration collector,
network architecture, and type of controller. To confirm
AdaDemo’s wide-ranging applicability, our experimental
designs incorporate variations across these dimensions:
• 2 Demonstration collectors: Task and Motion Planning

(TAMP), and state-based reinforcement learning (RL)
• 2 Controllers: Keyframe-based end-effector control, and

joint position control
• 2 Network architectures: Vision Transformer [29], and

Convolutional Neural Network [33].
• A total of 22 tasks across 2 benchmarks: RLBench [13]

(table-top robotic manipulation, 18 tasks) and Adroit [14]
(dexterous manipulation, 4 tasks). Fig. 4 shows sample
tasks from each benchmark.

We summarize the key details of our setups as follows.
1) Environments: RLBench:

a) Task Description: We follow the standard setting
used in [28], [29]. A 7-DoF Franka Panda robot equipped
with a parallel gripper is directed to solve a total of 18 tasks,
including pick-and-place, tool use, drawer opening, and high-
accuracy peg insertions. Each task includes several variations
specified by the associated language description. The visual
observations are from four RGB-D cameras positioned at
the robot’s front side, left shoulder, right shoulder, and wrist,
each providing a resolution of 128 × 128.

b) Demonstration Collector: The demonstrations are
collected by a task and motion planning (TAMP) system
from RLBench [13]. Notably, this TAMP system can only
solve the tasks from the default task initial states. It lacks the
capacity to tackle the tasks from certain intermediate states.

c) Visual Policy and Controller: In our RLBench
experiments, we employ RVT [29] as the backbone visual
policy. RVT features a multi-view transformer architecture and
performs keyframe-based control, predicting actions at low
frequency that specify the next keyframe’s end-effector pose.
A motion planner then directs the end effector to this predicted
pose. The original RVT (as well as its predecessor [28], [34])

has a legacy issue leading to that makes the training dataset
unnecessarily large. By refining the data processing scripts,
we have mitigated this, resulting in a more storage-efficient
RVT with a minor performance trade-off. Importantly, since
the same modifications are consistently applied across all our
RLBench experiments, we ensure a fair comparison between
AdaDemo and baselines. Additionally, to accommodate the
increasing demonstration data, we also raise the number of
epochs to ensure that the model adequately fits the data.

2) Environments: Adroit:
a) Task Description: Adroit tasks are introduced in

[14], where a 24-DoF ADROIT hand is tasked to master
four dexterous manipulation skills: object relocation, in-
hand manipulation, tool use, and opening doors. The visual
observations are acquired from a pre-defined camera with a
resolution of 256 × 256.

b) Demonstration Collector: The demonstrations are
collected by a well-trained state-based RL agent. It is
a common practice to employ state-based RL agents for
demonstration collection, followed by rendering to images
[35]–[37]. This approach is favored because generally it is
easier to train a state-based agent compared to a visual agent.

c) Visual Policy and Controller: In our Adroit experi-
ments, we utilize LfS [33] as the backbone visual policy.
This approach employs a CNN enhanced with random
shifting augmentation to generate actions at a high frequency,
controlling the absolute joint positions of the dexterous hand.
For the sake of simplicity, the observation space is limited
to a single image frame rather than multiple frame stacking.
Originally, the four tasks in Adroit have different action
dimensions since certain tasks constrain the free movement
of the robot hand. To learn a single multi-task policy, we
set a unified action space as 6D movement of the root
link and the 24-DoF joint control signal. Contrary to [33],
which evaluates the policy at every epoch and selects the
top three performances, we evaluate and report solely on
the final policy’s performance to avoid cherry-picking. It is
crucial to note that these adjustments make our results not
directly comparable to [33]. However, by employing the same
visual policy backbone across all experiments, we ensure fair
comparisons between our framework and the baselines.

B. Experimental Results

This subsection aims to substantiate two key points: 1)
AdaDemo can progressively improve the performance of the
multi-task visual policy across multiple rounds; 2) Compared
to the uniform approach of data collection across all tasks
and initial states, AdaDemo can expand the demonstration
datasets in a more data-efficient manner.

We implemented AdaDemo on the RLBench and Adroit
benchmarks, with results presented in Fig. 1, Table I and II.
In these results, “Uniform” denotes the baseline method for
expanding demonstrations, where demonstrations are evenly
distributed across all tasks and initial states. Despite appearing
simplistic, this uniform collection strategy is actually widely
used in multi-task policy learning [28], [29], [34]. For each
round, we trained visual policies of the same architectures

https://github.com/peract/peract/issues/6#issuecomment-1355555980


(a) RLBench (showing 4 of 18 tasks)

(b) Adriot (showing 2 of 4 tasks)

Fig. 4: Tasks: We consider challenging
and diverse robotic manipulation tasks
spanning two benchmarks: RLBench
(table-top robot arm manipulation) and
Adroit (dexterous manipulation).

Initial Round 1 Round 2 Round 3
• AdaDemo • Uniform • AdaDemo • Uniform • AdaDemo • Uniform

Put in Drawer 85.3±8.3 80.0±4.0 80.0±17.4 72.0±12.0 70.7±31.1 82.7±12.2 94.7±2.3
Drag Stick 78.7±15.1 78.7±16.2 82.7±23.1 97.3±2.3 65.3±22.7 92.0±4.0 58.7±40.3
Turn Tap 92.0±4.0 90.7±2.3 96.0±4.0 92.0±10.6 93.3±2.3 96.0±4.0 93.3±2.3

Slide Block 56.0±8.0 33.3±8.3 54.7±22.0 16.0±4.0 29.3±18.0 17.3±6.1 13.3±8.3
Open Drawer 78.7±8.3 85.3±8.3 76.0±10.6 85.3±6.1 81.3±6.1 80.0±4.0 74.7±4.6

Put in Cupboard 34.7±8.3 61.3±4.6 58.7±8.3 64.0±6.9 65.3±2.3 77.3±12.9 60.0±13.9
Sort Shape 29.3±2.3 28.0±4.0 36.0±8.0 40.0±4.0 40.0±4.0 41.3±10.1 37.3±8.3
Put in Safe 76.0±4.0 78.7±8.3 90.7±2.3 86.7±6.1 93.3±2.3 93.3±2.3 93.3±4.6

Push Buttons 74.7±4.6 86.7±2.3 88.0±0.0 92.0±4.0 96.0±4.0 96.0±4.0 98.7±2.3
Close Jar 29.3±6.1 45.3±2.3 38.7±12.2 58.7±4.6 48.0±10.6 48.0±6.9 48.0±13.9

Stack Blocks 13.3±8.3 29.3±10.1 17.3±12.9 37.3±9.2 25.3±2.3 46.7±2.3 37.3±8.3
Place Cups 1.3±2.3 0.0±0.0 0.0±0.0 2.7±2.3 8.0±0.0 1.3±2.3 4.0±4.0
Place Wine 92.0±4.0 84.0±8.0 94.7±2.3 78.7±4.6 85.3±2.3 90.7±6.1 92.0±4.0
Screw Bulb 38.7±4.6 50.7±8.3 49.3±4.6 57.3±2.3 58.7±18.0 78.7±4.6 62.7±8.3

Sweep to Dustpan 45.3±11.5 52.0±4.0 48.0±6.9 48.0±12.0 46.7±11.5 45.3±2.3 57.3±4.6
Insert Peg 9.3±4.6 13.3±6.1 4.0±4.0 21.3±4.6 16.0±8.0 12.0±0.0 16.0±4.0

Meat off Grill 96.0±4.0 97.3±2.3 96.0±0.0 97.3±2.3 96.0±0.0 94.7±4.6 100.0±0.0
Stack Cups 4.0±4.0 37.3±8.3 20.0±21.2 54.7±6.1 29.3±6.1 60.0±6.9 45.3±20.5

Average SR 51.9 57.3 57.3 61.2 58.2 64.1 60.4
Average # Demo 20 49.4 50 91.0 100 191.2 200

TABLE I: RLBench Results: “SR” stands for success rate, and “Average # Demo” indicates
the average number of demonstrations allocated per task. “Uniform” refers to the baseline where
demonstrations are uniformly collected across all tasks and initial states. SRs are averaged over 3
random seeds. All agents are evaluated for 100 episodes on each task.

Initial Round 1 Round 2 Round 3 Round 4 Round 5
• AdaDemo • Uniform • AdaDemo • Uniform • AdaDemo • Uniform • AdaDemo • Uniform • AdaDemo • Uniform

Relocate 0.6±0.4 1.9±0.7 0.9±0.7 6.0±1.7 6.0±3.1 18.6±4.0 12.3±0.9 28.8±1.3 25.2±5.5 32.2±6.2 23.6±9.6
Door 50.0±3.1 55.2±8.5 55.7±6.6 70.1±3.3 70.5±3.2 73.7±3.5 76.1±1.2 77.2±3.0 79.7±3.8 83.0±3.9 74.4±4.1
Pen 35.8±1.4 42.7±1.9 39.8±0.7 53.5±2.4 55.5±5.5 66.6±6.4 64.3±4.9 68.9±1.3 63.0±3.2 74.8±1.5 74.6±3.2

Hammer 95.7±4.9 97.2±1.6 98.9±1.7 98.8±1.0 97.7±1.8 97.6±1.7 97.5±2.4 97.7±3.5 97.7±2.6 97.3±4.4 96.9±4.7

Average SR 45.6 49.2 48.8 57.1 57.4 64.2 62.5 68.2 66.4 71.8 67.4
Average # Demo 20 37.8 40 99.0 100 290.0 300 997.0 1000 2994.3 3000

TABLE II: Adroit Results: For definitions of specific terms, please refer to Table I.

but utilized datasets collected separately by AdaDemo and
the baseline, with the baseline dataset being comparable or
slightly larger in size. The same demonstration collector was
employed across both methods to ensure a fair comparison.

Fig. 1 shows a clear trend: the average performance of the
multi-task visual policy can be progressively improved by
expanding the demonstration datasets. Additionally, AdaDemo
outperforms the baseline in two respects:
• Data Efficiency: AdaDemo demonstrates remarkable data

efficiency, particularly at junctures where performance
tends to plateau. It surpasses the baseline by requiring only
1/2 data for RLBench and 1/3 for Adroit. This efficiency
could translate into significant cost reductions, especially
in scenarios of large-scale data collection.

• Performance Upper Bound: While the baseline method
quickly hits performance plateaus, AdaDemo consistently
improves the multi-task performance, broadening the perfor-
mance gap between the two approaches with each round.
This trend indicates a greater potential in performance
upper bound as the demonstration dataset is scaling up.
Tables I and II offer more detailed insights into performance

differences. The RLBench results indicate that AdaDemo
consistently outperforms the baseline in terms of average

performance across tasks, although it does not lead in
every single task. We hypothesize that the performance drop
in certain RLBench tasks might be related to the issue
of conflicting gradients in multi-task learning, as studied
in [38]–[40]. AdaDemo’s strategy of accumulating more
demonstrations for harder tasks means that when gradients
from these tasks do not align well with those from other
tasks, following their gradient direction might adversely
affect the performance on other tasks. Intuitively, focusing
more on some tasks naturally detracts attention from others,
and hence might hurt performance on other tasks. This
effect appears more pronounced in the RLBench experiments,
where the gradients may be noisier due to a relatively
small average number of demonstrations per task (∼ 200),
particularly impacting the easier tasks. Conversely, in the
Adroit benchmark, which comprises a larger average number
of demonstrations per task (∼ 3000) and only four tasks,
the issue of gradient conflict is potentially less severe. Here,
AdaDemo outperforms the baseline across all tasks, with the
Hammer task being an exception (given its relative ease, all
learned policies perform nearly optimally).

We noted that the contribution to the overall performance
improvement is concentrated in a few tasks, such as “Relocate”



• Uniform A A+B • AdaDemo
(A+B+C)

Put in Drawer 94.7±2.3 80.0±10.6 97.3±4.6 82.7±12.2
Drag Stick 58.7±40.3 84.0±20.8 88.0±4.0 92.0±4.0
Turn Tap 93.3±2.3 88.0±6.9 94.7±2.3 96.0±4.0

Slide Block 13.3±8.3 21.3±26.6 17.3±4.6 17.3±6.1
Open Drawer 74.7±4.6 73.3±11.5 81.3±4.6 80.0±4.0

Put in Cupboard 60.0±13.9 64.0±10.6 70.7±4.6 77.3±12.9
Sort Shape 37.3±8.3 49.3±2.3 38.7±8.3 41.3±10.1
Put in Safe 93.3±4.6 90.7±6.1 92.0±8.0 93.3±2.3

Push Buttons 98.7±2.3 94.7±2.3 97.3±2.3 96.0±4.0
Close Jar 48.0±13.9 45.3±9.2 58.7±8.3 48.0±6.9

Stack Blocks 37.3±8.3 42.7±4.6 48.0±12.0 46.7±2.3
Place Cups 4.0±4.0 2.7±2.3 0.0±0.0 1.3±2.3
Place Wine 92.0±4.0 89.3±9.2 86.7±8.3 90.7±6.1
Screw Bulb 62.7±8.3 64.0±10.6 65.3±8.3 78.7±4.6

Sweep to Dustpan 57.3±4.6 42.7±12.9 44.0±0.0 45.3±2.3
Insert Peg 16.0±4.0 21.3±2.3 22.7±4.6 12.0±0.0

Meat off Grill 100.0±0.0 98.7±2.3 96.0±0.0 94.7±4.6
Stack Cups 45.3±20.5 45.3±18.9 48.0±6.9 60.0±6.9

Average SR 60.4 61.0 63.7 64.1
Average # Demo 200 191.2 191.2 191.2

TABLE III: Ablation Study: A, B, C denote the 3 core principles
in AdaDemo, see Sec. V-C for a detailed explanation.

and “Door” in Adroit, as well as “Put in Cupboard” and
“Stack Cups” in RLBench. These tasks, which are generally
hard, significantly benefit from our adaptive demonstration
expansion strategy. By allocating more demonstrations to
these tasks, rather than to easier ones, AdaDemo enhances
both data efficiency and overall performance. However, it is
important to note that the most difficult tasks (e.g., “Place
Cups” and “Insert Peg”) do not exhibit notable improvement
with our adaptive demonstration expansion strategy. This is
mainly due to these tasks being somewhat beyond the model’s
capabilities under the current setup. In such cases, exploring
improvements to the model architecture or control method
could be a worthwhile direction.

C. Ablation Study

We conduct an ablation study to examine the importance
of the three guiding principles (Sections IV-B, IV-C, and
IV-D) underlying AdaDemo. These principles, denoted as A,
B, and C, are delineated as follows:
• A: Collecting demonstrations on unsolved tasks.
• B: Collecting demonstrations on failed initial states.
• C: Sampling data uniformly with respect to the demonstra-

tion trajectories.
To evaluate the influence of each principle, we start with

the variant that uses none of these principles, and add one
principle at one time, to create four variants. This ablation
study allows us to dissect the specific role and importance
of each component towards improving a multi-task visual
policy, utilizing a comparable amount of data. The ablated
variants are:
• None of ABC: This variant is the same as the “Uniform”

baseline mentioned above, where demonstrations are uni-
formly collected across all tasks and initial states, without
the targeted strategies of AdaDemo.

• A: Here, we collect demonstrations across tasks with the
same number as in our full framework, but unlike our
proposed approach, these demonstrations are sourced from
all initial states, not just the failed ones.

• A + B: This variant combines the collection of more
demonstrations on unsolved tasks (A) with the focus on
failed initial states (B). However, unlike our full framework,
it employs uniform sampling with respect to tasks, not
demonstration trajectories.

• A + B + C: Our complete framework incorporates all three
principles, providing a reference to compare against the
ablated variants.
All the variants are applied on RLBench, and the results

are shown in Table III. Analyzing the experimental results,
we observe that each principle contributes to the overall
performance gain, albeit to varying degrees. Notably, principle
B, which emphasizes collecting demonstrations on failed
initial states, appears to have a more substantial impact than
principles A (focusing on unsolved tasks) and C (uniform
sampling w.r.t. demonstration trajectories). This finding
highlights the critical role of targeted demonstration collection
in areas where the policy currently fails, underscoring the
importance of addressing specific weaknesses in the policy
for effective learning.

VI. LIMITATIONS

We would like to discuss a few limitations of our work.
Firstly, AdaDemo requires policy evaluation to determine the
scenarios for collecting new demonstrations, and this cost is
not precisely accounted for in comparison to baselines. Nev-
ertheless, it is important to note that the primary cost arises
from the demonstration collection itself, which potentially
involves human effort. Policy evaluation, by contrast, is a
more autonomous procedure, and its costs are likely to be
much lower than those incurred by demonstration collection.
Secondly, AdaDemo assumes the availability of a success
metric for tasks, a condition readily met in simulations but
potentially hard in the real world. However, obtaining success
signals in the real world is still feasible, and it has been
achieved by methods like visual detection/tracking [41] or
employing large vision-language models [42].

VII. DISCUSSIONS AND CONCLUSIONS

This study introduces AdaDemo, a novel framework de-
signed to actively and continuously expand the demonstration
dataset for training generalist robotic agents. AdaDemo can
be categorized as a form of active learning tailored for
robotics. Active learning methods have seen broad application
in robotics, spanning active sensing [43], [44], active coverage
[45], and active SLAM [46]. Our research aligns with the
spirit of active learning, focusing on efficiently collecting ad-
ditional demonstrations by a demonstration collector that only
handles initial task states. A standout feature of AdaDemo
is its exceptional data efficiency, especially evident at points
where the performance of the policy reaches a plateau. This
efficiency holds the potential for considerable cost reductions,
especially in scenarios of large-scale demonstration collection.
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APPENDIX

VIII. IMPLEMENTATION DETAILS

A. RVT on RLBench

In our RLBench experiments, we employed RVT [29]
as the foundational visual policy. While adhering to most
aspects of the original RVT implementation, we introduced
some modifications to address a legacy issue that resulted in
unnecessarily large training datasets. Optimizing storage was
crucial, especially considering that our framework expands the
demonstration dataset. We detail our three key modifications
below:

1) In the original RVT implementation (and its predecessor
[28], [34]), each keyframe was redundantly added to the
dataset k times, with k being the keyframe’s index. This
redundancy, acknowledged as a leftover artifact by the
authors of [28], was eliminated in our approach. We revised
the process to include each keyframe only once in the
dataset, effectively reducing the size of the resulting dataset.

2) The removal of duplicate keyframes initially led to a
performance drop in RVT. We found a common error
pattern of the robot getting stuck at certain keyframes. We
hypothesized that this problem was due to the training
dataset’s structure of (s, a), ..., where s represents the
current state, and a is the end-effector pose for the next
keyframe. If the current frame is too close to the next
keyframe, the policy tends to yield minimal end-effector
movement, causing the robot to stay still. To address this
issue, we developed a new approach for assigning target
end-effector poses. For frames between keyframes k and
k + 1, the target pose is determined based on proximity:
if closer to k + 1, the target is set from keyframe k + 2,
otherwise from k + 1. By our empirical evaluation, this
adjustment significantly mitigated the “stuck” behavior and
enhanced overall performance.

3) Additionally, to further diminish the occurrence of the
robot getting stuck, we modified the timestep encoding
in the dataset. The original RVT augmented each frame
with a timestep dimension, linearly decaying from 1 to
−1 based on a predefined maximum episode length. We
randomized timestep encoding during both training and
evaluation, adding noises to help the agent break out of
potential loops.
Please note that the effectiveness of the aforementioned

modifications has only been validated empirically. However,
we do not claim these modifications as the contributions of
our work.

As a result of these three modifications, our adapted version
of RVT is more storage-efficient, with only a minor impact
on performance. Crucially, the consistent application of this
modified algorithm across all RLBench experiments ensures
a fair comparison between our framework and the baselines.

When collecting demonstrations from the failed initial
states of each task, we set an upper limit of 100, 200, and
200 new demonstrations for each round, respectively. The
rationale behind this is to prevent the potential indefinite

duration required to attain a targeted number of successful
episodes for some tasks with extremely low success rates.

B. LfS on Adroit

In our experiments on Adroit tasks, we followed [33],
employing a simple convolutional neural network with random
shifting augmentation as our visual policy backbone. While
[33] limited their experiments to only two Adroit tasks (pen
and relocate), we expanded our scope to include all four
Adroit tasks: pen, relocate, hammer, and door. While retaining
most of the implementation aspects from [33], we made a
few adjustments, detailed as follows:
• In the original Adroit setup, each task had varying action

dimensions, primarily because certain tasks restricted the
Adroit hand’s free movement in 3D space. To facilitate
multi-task learning, we unified the action space to include
6D movement of the root link and a 24-DoF joint control
signal. Note that we did not modify the tasks themselves,
and the extra action dimensions for certain tasks will be
ignored in the evaluation.

• For simplicity, our observation space utilizes only a single
frame of images rather than stacking multiple frames.

• The evaluation approach in [33] involves averaging results
from the top-3 performing checkpoints out of 50. To
eliminate potential bias from such selective reporting, we
assess and report performance based solely on the final
checkpoints.
It is important to note that due to these modifications,

our results are not directly comparable with those in [33].
Nonetheless, by using the same visual policy backbone for
both our framework and the baselines, we still maintain
fairness in the comparisons presented in our paper.

When collecting demonstrations from the failed initial
states of each task, we set an upper limit of 40, 120, 400, 1400,
and 6000 new demonstrations for each round, respectively.
This cap is determined as twice the average number of
demonstrations targeted for collection in each corresponding
round. The rationale behind this is to prevent the potential
indefinite duration required to attain a targeted number of
successful episodes for some tasks with extremely low success
rates.

https://github.com/peract/peract/issues/6#issuecomment-1355555980


IX. NUM OF TRAJECTORIES FOR EACH TASK

Our framework iteratively expands the demonstration dataset, and these demonstrations are not uniformly distributed across
each task. In this section, we present the number of trajectories for each task in the demonstration dataset, as accumulated in
each round of our framework. The numbers are shown in Table IV and V.

Initial Round 1 Round 2 Round 3
• AdaDemo • Uniform • AdaDemo • Uniform • AdaDemo • Uniform

Put in Drawer 20 21 50 31 100 106 200
Drag Stick 20 21 50 31 100 49 200
Turn Tap 20 20 50 21 100 41 200

Slide Block 20 54 50 144 100 344 200
Open Drawer 20 21 50 24 100 39 200

Put in Cupboard 20 73 50 98 100 177 200
Sort Shape 20 36 50 93 100 246 200
Put in Safe 20 22 50 29 100 55 200

Push Buttons 20 26 50 29 100 40 200
Close Jar 20 38 50 98 100 231 200

Stack Blocks 20 86 50 186 100 386 200
Place Cups 20 120 50 220 100 420 200
Place Wine 20 22 50 23 100 69 200
Screw Bulb 20 43 50 77 100 190 200

Sweep to Dustpan 20 26 50 76 100 245 200
Insert Peg 20 120 50 220 100 420 200

Meat off Grill 20 21 50 22 100 24 200
Stack Cups 20 120 50 220 100 359 200

Average # Demo 20 49.4 50 91.0 100 191.2 200

TABLE IV: RLBench: Number of trajectories for each task in demonstration datasets.

Initial Round 1 Round 2 Round 3 Round 4 Round 5
• AdaDemo • Uniform • AdaDemo • Uniform • AdaDemo • Uniform • AdaDemo • Uniform • AdaDemo • Uniform

Relocate 20 60 40 180 100 580 300 1980 1000 7980 3000
Door 20 35 40 79 100 206 300 922 1000 1903 3000
Pen 20 36 40 116 100 353 300 1060 1000 2068 3000

Hammer 20 20 40 21 100 21 300 26 1000 26 3000

Average # Demo 20 37.8 40 99.0 100 290.0 300 997.0 1000 2994.3 3000

TABLE V: Adroit: Number of trajectories for each task in demonstration datasets.
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