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ABSTRACT

In this work we show that Reinforcement Learning (RL) is an effective algo-
rithm for calibration problems at a scale which traditionally applied Bayesian ap-
proaches struggle. This work uses synthetic data, so has access to ground truth
parameters and it can be seen that RL learns different, arguably better information
for different parts of the learning process. These exciting results set the foundation
for deeper consideration of RL in this space.

1 INTRODUCTION

The process of inferring latent values from available data is a commonly recurring challenge in
science. For example, given the number of confirmed cases of COVID-19 in a country or even a
city, one might need to determine the epidemiological parameters of the virus. This task, sometimes
referred to as calibration or sometimes as history matching is an example of an inverse problem, and
has a variety of commonly applied formulations (Bent et al., 2021; Saulnier et al., 2017). In many
solutions to inverse problems, Bayesian methods feature strongly however we see an opportunity
to consider a slightly different problem formulation, and to utilise information which is already
present to overcome one of the challenges which will plague any Bayesian application, the curse of
dimensionality. This is of specific importance for applications of these methods in contemporary
contexts like the case of COVID-19 where we have years of data and would like to learn about the
effects of interventions over time and the dynamics of the virus as it evolves and adapts. We are
specifically interested in learning more than 20 parameters, a regime where Bayesian methods are
known to struggle. In this work we explore the application of Reinforcement Learning and consider
if the nature of the results which can be generated with it 1) are substantively distinct from Bayesian
Optimisation, 2) can be used with the results from Bayesian Optimisation to generate better results
as quantified by accuracy and uncertainty. The general problem being solved is the following: Given
data from some phenomenon or object which we cannot see, and given access to domain insights
encoded in a mathematical (or even a neural network) model which can simulate similar data, we
would like to use the model, and the acquired data to infer properties or parameters describing the
unseen phenomenon, thus solving the inverse problem. More detail on this problem can be found in
Tarantola (2005). While this problem is straightforward to express, it is challenging for a variety of
reasons. Of note, the observed data is rarely the same type of data predicted by the model, so there
is an often lossy transformation performed on the data before it is collected. An example of this is
case data being aggregated across multiple health facilities, or reported in batches at different times
from when it was captured. These are natural issues that arise which cannot be avoided.

2 METHODOLOGY

Case data, the cumulative number of confirmed cases (daily) and the number of deaths for a period
of N=280 days, were generated using a SIRD model, a type of compartmental model. This model
derives the values for the number of individuals in a population in the Susceptible (S), Infected (I),
Recovered (R) and Dead (D) compartments. These four numbers thus capture the state of the pop-
ulation over time. The rate at which individuals transfer between each of these compartments is
encapsulated in deterministic parameterised equations. For this work, only one parameter, the daily
transmission rates can be varied, and the interval in which they can change is an experimental vari-
able. We consider two treatments, one where the transmission rates can change in 28 day intervals,
and another in which they can change at 7 day intervals. Accordingly, in this work, we use 280
days of case data to infer the associated sequence of transmission parameters in one case learning
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10 potentially unique values and the second case learning 40 potentially unique values. All other
model parameters are fixed at their default levels.

The transmission rate, a continuous variable, is quantised into one of 500 equally distributed values
(in future work we will consider algorithms which support continuous actions). In this work we
compare a Bayesian Optimization algorithm implemented in Optuna1 with an implementation of
SARSA with a Fourier basis linear function approximation (Sutton & Barto, 2018). This RL algo-
rithm was selected since it has generally good performance with a state space of dimension k ≤ 5.
To generate an inference of the parameter sequence likely to have created the considered data, 30
runs each of length 10, 000 episodes were executed for each algorithm. Barycenters were calculated
for the resulting sets of data using three methods: the arithmetic mean across all sequences for each
individual point in time (Petitjean et al., 2011), optimizing with Dynamic Time Warping (DTW) as a
loss function (Schultz & Jain, 2018), and optimizing with a differentiable modification to the DTW
Cuturi & Blondel (2017). The implentations for each of these is selected from tslearn2.

3 RESULTS

From the images presented in Figure 1 it can be seen that the sequence of transmission parameters
inferred through the use of RL in this work are different from the values inferred with Bayesian Op-
timization. Moreover, they both diverge from the ground truth during some of the 280 day duration,
but they do so in different ways. For example, Bayesian optimisation has poor alignment with the
ground truth data early in the sequence, while RL has poor alignment towards the end. Qualita-
tively, Bayesian Optimisation is unable to capture the peak in transmission rates at the beginning,
a property which would be of great importance to the public health response. It is unclear why RL
over estimates the data for the last 30 days, but this overestimation still results in better performance
when quantified using Dynamic Time Warping as a measure (0.435 vs 0.568). In this work we char-
acterise uncertainty by considering the variance in the results from the 30 independently generated
inferences. In the regions where both methods diverge from the ground truth, the true value remains
within the region of uncertainty. When increasing the temporal resolution to weekly transmission
rates, the quadrupling the number of parameters to be inferred, the quantitative and qualitative per-
formance of RL remains consistent. This is notable as Bayesian Optimization utilises more RAM,
uses more time to generate the inferences and still is unable to outperform RL. Aggregating data
from both methods does not result in a statistically significant increase in performance, but future
work would explore conditions under which this would be possible.

(a) Bayesian Optimisation. (b) Reinforcement Learning (c) High Resolution RL

Figure 1: Results

4 CONCLUSIONS

In this work the benefit of Reinforcement Learning in the solution of Inverse Problems with interme-
diate states are presented. This benefit is likely tied to the value of learning the system dynamics and
the relationship between these dynamics and the resulting rewards. Future work is required to better
characterise the benefit, and to better understand the contexts where this value will not be derived.

1https://optuna.readthedocs.io/
2https://tslearn.readthedocs.io/
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