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Abstract

Understanding user intents from Ul interac-
tion trajectories remains a challenging, yet
crucial, frontier in intelligent agent devel-
opment. While massive, datacenter-based,
multi-modal large language models (MLLMs)
possess greater capacity to handle the com-
plexities of such sequences, smaller models
which can run on-device to provide a privacy-
preserving, low-cost, and low-latency user ex-
perience, struggle with accurate intent infer-
ence. In this paper, we address these limita-
tions by introducing a novel decomposed ap-
proach: first, we perform structured interac-
tion summarization, capturing key information
from each user action. Second, we perform
fine-tuned intent extraction model operating
on the aggregated summaries. Remarkably,
this method empowers resource-constrained
models to not only achieve improved intent un-
derstanding, but also surpass the base perfor-
mance of large MLLMs.

1 Introduction

Accelerated advancements in the capabilities of
multi-modal large language models (MLLMs) has
led to recent interest in modeling sequences of user
interactions with phone and web graphical inter-
faces, both for the purposes of automation (Wang
et al., 2024b; Jiménez-Ramirez, 2024), and un-
derstanding (Berkovitch et al., 2024; Zhang et al.,
2024).

In this work, we focus on the user intent extrac-
tion task, which consists of producing a free-form
description of the inferred intent of a user from a
sequence of interactions with a device e.g., screen-
shots and actions.

Large MLLMs are naturally fairly good at this
task, however, it is more challenging for smaller
models (E.g., Gemini 1.5 Flash 8B (Gemini Team
etal., 2024) or Qwen2 VL 7B (Wang et al., 2024a)).
The performance of smaller models is important for

user interaction tasks due to their ability to operate
within private, on-device environment like a phone
or browser, with reduced cost, energy usage, and
latency (Xu et al., 2024).

In this paper, we introduce a two-stage approach
for extracting user intent with small models. In the
first stage, each atomic interaction is summarized.
In the second stage, the full sequence of summaries
is fed to a second model which outputs an intent.
The overall flow is illustrated in Figure 1. Using
semantic equivalence metrics on public UI automa-
tion data, our two-stage approach demonstrates
superior performance compared to both smaller
models and a state-of-the-art large MLLM, inde-
pendent of dataset and model type. Our approach
also naturally handles scenarios with noisy data that
traditional supervised fine-tuning methods struggle
with. The modular nature of the architecture is ex-
tremely helpful from an engineering perspective,
allowing us to evaluate the approach in detail and
identify key areas to improve.

Our contributions can be summarized as fol-
lows: 1) We describe an effective decomposition
the intent-extraction that unlocks the potential of
small models; 2) We present non-trivial design
components related to each stage of the decomposi-
tion; 3) We extensively evaluate our approach and
demonstrate the effectiveness of our method across
arange of data sets, base models and metrics.

2 Background

2.1 Intent Extraction from UI Interactions

We formalize the intent extraction task, sometimes
called goal understanding, similarly to Berkovitch
et al. (2024) and Zhang et al. (2024). Consider
a user journey 7' within a mobile or web ap-
plication, represented as a sequence of interac-
tions: T' = (Iy, Is, ..., I;), where each interaction
I; = (O, A;) consists of an observation O;, and
the action A; the user performed at that step. This
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Figure 1: Proposed intent extraction flow (Described in detail in Section 4). Individual interactions are summarized
independently and then sequence of summaries are combined to output a short inferred intent for the trajectory. The
summaries are structured in two fields corresponding to screen summary (top, blue) and user action (bottom, red).

description is general and different modeling ap-
proaches have used different representations for
observations and actions (e.g., textual descriptions,
screenshot images, DOM hierarchies, etc.) (e.g.,
Rawles et al., 2023; Burns et al., 2022). The ob-
jective of the intent-extraction task is to generate
a free-form sentence describing the user’s intent.
Effectively, this setting can be thought of as the
inverse problem of the UI automation task, with
inputs and outputs swapped. Rather than producing
a sequence of actions from an instruction, we ask
“what was the user trying to accomplish with this
trajectory?”. Intent extraction have been identified
as an important building block for UI automation
tasks, proactive assistance, and personalized mem-
ory (Berkovitch et al., 2024; Zhang et al., 2024).

A good intent is: faithful - i.e., only describes
things that actually occur in the trajectory, com-
prehensive - i.e., provides all of the information
about the user intent required to re-enact the tra-
jectory, and relevant - i.e., does not contain ex-
traneous information beyond what is needed for
comprehensiveness. However, even with a well-
defined ground truth intent, accurately evaluating
a model’s extracted intent is challenging. User
intents often contain many details, such as trip
planning specifics or transaction data, necessitat-
ing metrics that can handle partial matches. Such
metrics fall into two categories: semantic, which
analyze underlying meaning, and lexical, which
assess surface-level word overlap. As shown in
previous work (Caduri, 2025), lexical metrics (e.g.,
BLEU and ROUGE) correlate poorly with human
judgments of intent similarity, as they merely com-
pare words. In contrast, semantic metrics, such
as NLI (Natural Language Inference) and BI-Fact
(a bi-directional variant of FActScore (Min et al.,
2023)), strive to capture the intended meaning.

Further, there is inherent subjectivity in intent
extraction, as a single trajectory could have been
driven by multiple underlying motivations (e.g., a
user may have selected a flight based on its price
versus its departure time). This subjectivity is evi-
dent in prior work, such as Berkovitch et al. (2024)
where human-composed intentions matched each
other in only 80% and 76% of web and phone tra-
jectories, respectively. This level of human agree-
ment may be considered a practical upper bound
for performance on this task.

2.2 Ul Interaction Datasets

Recently, a number of datasets have been devel-
oped for evaluating Ul interaction agents, (sur-
veyed in Wang et al. (2024b)). We use two that
are representative and suitable for measuring the in-
tent extraction task. We confirmed that our usage of
the data adhered to all ethical and legal standards.
Mind2Web (CC BY 4.0 license) (Deng et al.,
2024): Has 2,350 human demonstrations on web-
sites. Each user trajectory is on average 7.3 steps
long and contains screenshots and actions for each
step, as well as high level description of the task
the human was asked to perform.
AndroidControl (Apache 2.0 license) (Li et al.,
2024): Has 15,283 examples of humans performing
tasks on Android apps. Each user trajectory is on
average 5.5 steps long, and contains screenshots
and actions for each step, as well as high level
description of the goal.

Mind2Web’s data collection included a valida-
tion step where annotators verified the alignment
between the completed trajectory steps and the in-
tent making this dataset highly suitable for the in-
tent extraction task as well. This crucial step was
absent from the AndroidControl collection proto-
col, resulting in noisier labels. For example con-



sider the following task "Delete all emails from
sender X" while there were no emails from that
sender. Based on the execution of task it’s impossi-
ble to identify that the original goal was to delete
the emails. We preprocess labels to remove clearly
irrelevant statements (Section 5.2) and analyze the
effect of remaining discrepancies between the la-
bels and trajectories in Section 6.2.

2.3 Related Work

User interaction understanding for HCI Sin-
gle screen summarization as a special case of im-
age description has been extensively studied for
the purposes of e.g., accessibility, automation, and
question answering (e.g., Li et al., 2021b; Bai et al.,
2021; Li and Li, 2022; Wang et al., 2021; Yang
etal., 2024).

Our setting of identifying and summarizing in-
tents from trajectories has been recently proposed
in Berkovitch et al. (2024); Zhang et al. (2024);
Jiménez-Ramirez (2024).

Multi-stage summarizations Decomposing a
complex task into smaller simpler stages is a well-
known approach for problem solving. Hierarchi-
cal models are common in summarization tasks
of many modalities, e.g., text (Christensen et al.,
2014), audio (Li et al., 2021a), video (Zhao et al.,
2022; Cheng et al., 2024).

Chain of thought reasoning (Wei et al., 2022) is
a very popular general purpose method for prompt-
ing models to decompose a problem into smaller
parts. Khot et al. (2022) propose an automated de-
composition step that delegates different parts of
the problem to distinct model calls.

3 Baseline Modeling Approaches

In this section, we first present natural baseline ap-
proaches for addressing our task, whose lessons
have led us to developing our decomposed two-
stage approach which will be described in Section 4.
Our task is a text generation task, where intent de-
scriptions are generated from the multi-modal input
of UI trajectories. As such, it is most natural to ad-
dress it through multi-modal LMs, applying either
prompt-based or fine-tuned methods, as described
below. The focus of our work is to explore the use
of small LMs, aiming at their eventual utilization
on-device. The particular models we experimented
with are specified in Section 5.1, including a top-
tier large model as a reference point.

Prompt-based methods Such methods are ad-
vantageous in that they do not require training data,
instructing a generic LM via its prompt. We found
that a Chain-of-Thought (CoT) prompt worked best.
Specifically, our CoT prompt (see C1) instructs the
model to first generate a sequence of individual
descriptions of the user intents within each Ul in-
teraction, and then to consolidate these interaction-
level description into the final description of the
accumulated user intent along the trajectory.

Fine-tuned models Since performance of
prompting a generic model may not be fully
aligned with the intended task output, while
prompt-based performance of small LMs might
generally be limited, we explore also baseline
fine-tuning methods. To that end, we fine-tuned
small models using available training datasets,
specifically those developed for the inverse
problem of UI automation, while swapping their
input/output roles (see Section 2.2).

All of the baselines require composing a sin-
gle prompt that contains the entire user trajectory
including images, requiring a large context win-
dow. As described in Section 5.1, practically this
required some filtering over the input to fit the avail-
able context size.

4 A Decomposed Two-stage Model

4.1 Overview

While CoT prompting works well with large lan-
guage models (LLMs), we observe limitations in
both CoT and fine-tuned small LMs when pre-
sented with the full trajectory at once. When ap-
plying CoT reasoning, small models struggle to
generate a high-quality thoughts that cover the full
trajectory. Fine-tuned small models also have trou-
ble generating comprehensive intents from the full
trajectory.

These observations led us to develop a decom-
posed, two-stage approach that emulates the CoT
process, illustrated in Figure 1. First, we use
prompting to generate a summary for each inter-
action in a trajectory. This stage is prompt-based
as there is currently no training data available with
summary labels for individual interactions. Second,
we feed all of the interaction-level summaries into
a second stage model to generate an overall intent
description. We can apply fine-tuning in the second
stage and we describe that process in more detail
below (Section 4.3). The following subsections



provide a detailed description of each stage in our
proposed method.

4.2 Interaction Summarization

In the first stage, we apply a screen summarizer
to each individual user interaction I; = {O;, A;}
of the length-n trajectory ' = (Iy,...,I,). The
summarizer extracts relevant information regarding
the user’s goals and actions within that each inter-
action. The output of this stage is a summary of the
screen context and user action (see Figure 1). This
key information, which describes this particular
user interaction, will be used in the subsequent fu-
sion stage. This summarization process is entirely
prompt-based (our prompt is given in Appendix C).

We add two improvements to the design of this
stage that improve overall performance: Adding
a context window and structured summaries. The
effects of both of these improvements are measured
in ablation studies in Section 6.3.

Context window While the primary task is to
understand /; in isolation, we recognize that often
context can be crucial for eliminating ambiguity
and/or uncertainty. Therefore, in addition to I;
the model also receives as input the preceding and
successive interactions, I; 1 and ;4 1, respectively.

Structured summaries We request that the sum-
mary be structured in two distinct components: (a)
the relevant screen context — a short list of salient
details on the current screen O;, and (b) the user
action: a list of mid-level actions that the user took
in the current interaction (example in Figure 1).

As a practical measure for dealing with cases
where the model outputs its (unwarranted) inter-
pretations of the user’s underlying intent, we also
instructed it to output those in a third field (labelled
“speculative intent”) that we discard before proceed-
ing to the next stage.

This structured format was selected to address
challenges encountered with alternative prompting
strategies. Simply asking the model to be concise
resulted in summaries that lacked crucial details.
Conversely, prompting for comprehensive informa-
tion, including user intent, led to excessive specu-
lation that could hinder the subsequent summary
fusion stage. Our structured format aims to cap-
ture a broader range of information while enabling
the removal of speculative elements prior to the
second stage. This balanced approach mitigates
the risk of contradictions and improves the overall
summarization process.

4.3 Generating Session-Level Intent

In the second stage, we aggregate the information
extracted during the first stage. A second-stage
model takes as input the summaries of all inter-
actions in the trajectory to infer the user’s overall
intent.

This aggregation stage can be implemented by
using either pure prompting of a base model, or by
additionally fine-tuning a model that specializes in
the aforementioned aggregation. For fine-tuning,
the training data consists of: a) input summaries
representing all interactions in the trajectory, and b)
a corresponding ground truth target that describes
the user’s overall intent in the given trajectory.

We noted in early explorations that naively ap-
plying fine-tuning yields a model that embellishes
or hallucinates by introducing details that were not
present in the screen summary inputs. On further
examination, we found that the training procedure
encourages the model to act this way since the in-
puts are potentially incomplete summaries and the
targets are the complete intent statements. Thus,
when looking at (input, target) pairs, the model
learns that it needs to sometimes add additional
information in order to produce the target intent.

Following this insight we refine our target intents
at training time to remove details not reflected in
the corresponding input (using a large language
model, see Appendix C for details on the prompt
used in this stage). This ensures that the model will
learn to infer intents based solely on the provided
interaction summaries. We discuss the effects of
this cleanup stage in Subsection 6.3.

5 Experimental Setting
5.1 Models

We focus on smaller, multi-modal (image and text
input) models, that can be fine-tuned. In particu-
lar, we use Gemini' 1.5 Flash 8B (Gemini Team
et al., 2024) and Qwen2 VL 7B (Apache 2.0 li-
cense) (Wang et al., 2024a). For comparisons with
a MLLM, we use Gemini 1.5 Pro (Gemini Team
et al., 2024).

When using the Qwen2 VL 7B for baseline mod-
els, we dropped frames randomly from the trajec-
tory if they exceeded the context window length.
We found that limiting trajectories to 15 steps was
sufficient to run our experiments. We also down-
sized AndroidControl images by a factor of 4 in

"Terms of service: https://ai.google.dev/gemini-api/terms



each dimension when inputting them to Qwen mod-
els. Details of fine-tuning can be found in Ap-
pendix A.

5.2 Datasets and Preprocessing

We use the Mind2Web (Deng et al., 2024) and
AndroidControl (Li et al., 2024) datasets as repre-
sentative user interaction datasets. We follow the
standard train/test split of each dataset, fine-tuning
with train, and reporting results on test data.

In Mind2Web, we represent the action from the
dataset textually: (e.g., “[element name] click” or
“[element name] hover”.). In AndroidControl, we
use the accessibility tree to convert the screen coor-
dinates of the interacted item to an element name
and format the action in the same way. In both
datasets, we use screenshots as observations. We
highlight the interacted element in the screenshot
with with a red box (Zheng et al.; Yang et al., 2023).

For the gold standard extracted goal, we use the
high-level goal for each dataset. As mentioned
in Section 2.2, the annotation process of Android-
Control was less rigorous than that of Mind2Web,
resulting in noisier labels. Furthermore, Android-
Control labels, designed to simulate real user in-
structions, often contain irrelevant information that
cannot be inferred from the trajectory (e.g., "I'm
hungry, order an olive pizza from DoorDash"). To
mitigate the impact of this noise, we cleaned the la-
bels using Gemini 1.5 Pro (prompt in Appendix C).
This cleaning still doesn’t completely provide clean
goals like Mind2Web’s validation process. We find
that even after applying a prompt-based cleaning,
manual validation on 100 examples (following the
annotation protocol in Berkovitch et al. (2024))
makes changes to ~ 30% of the label intents. We
use this manually cleaned data in Section 6.2 to
quantify the impact of AndroidControl’s noisy la-
bels.

5.3 Evaluation Metrics

We measure quality of extracted goals using two
different semantic equivalence metrics.

T5 NLI (Honovich et al., 2022): A T5-XXL
model? trained for NLI (Natural Language Infer-
ence). We compute the entailment probability of
the produced summary from the gold standard and
vice versa, and then average the two values to get a
single bidirectional score.

ZAvailable at: https://huggingface.co/google/t5_
xx1_true_nli_mixture

BiFact (Caduri, 2025): A bi-directional varia-
tion of FActScore (Min et al., 2023) developed
for assessing the equivalence of intents in Ul in-
teractions, demonstrating the highest correlation
with human judgments compared to existing meth-
ods. This metric deconstructs both the ground-truth
and predicted intents into their fundamental factual
components using an LLM (we use Gemini 1.5 Pro
for this). These components are then compared to
measure the extent of coverage. We use the BiFact
measures of precision (the proportion of facts in the
predicted intent that are present in the true intent -
i.e., relevance), recall (the proportion of facts in the
true intent that are captured by the predicted intent,
i.e., comprehensiveness) and F1.

We believe that the BiFact, which uses a fine-
grained, fact-level comparison is ideally suited for
our task since intents can be composed of many
parts (e.g., book a flight, flight is to LAX, flight
is on Friday). NLI, which holistically evaluates
logical entailment of the full sentences is less ideal,
but provides an extra signal.

6 Experiments

6.1 Evaluating Extracted Intents

To show that our decomposed approach is gener-
ally helpful compared to baselines across models
and data modalities, we evaluate the metrics in
Section 5.3 on two different datasets using two dif-
ferent models. The results are displayed in Table 1.

In this table, CoT (Chain of Thought) and E2E-
FT (End-to-End Fine-tuned) represent the natural
baselines described in Section 3.

Of these two baselines, neither is uniformly more
effective across all settings. On the Mind2Web
dataset, which has cleaner labels (described in 2.2),
Gemini, as a stronger base model, has higher Bi-
Fact F1 and Bi-NLI scores with CoT, whereas
Qwen2 VL 7B benefits from fine-tuning.

Without fine-tuning, the decomposed model has
strong recall, but lower precision, giving it mixed
results compared to the baselines. However, by
adding a fine-tuned intent extraction step, the de-
composed FT model outperforms all baselines on
the BiFact metric and nearly all baselines on the
Bi-NLI metric.

Gemini 1.5 Pro COT is presented as a compar-
ison to a top-tier large MLLM. We find that on
Mind2Web, the fine-tuned decomposed approach
allows the Gemini Flash 8B to even exceed the per-
formance of the Gemini 1.5 Pro model using COT.
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‘ Mind2Web AndroidControl
BiFact Bi-NLI BiFact Bi-NLI

Method Recall Precision F1 Recall Precision F1
Gemini Flash 8B |
CoT 0.656 0.751 0.660 0.326 0.660 0.628 0.594 0.302
E2E-FT 0.676 0.676 0.652 0.311 0.656 0.655 0.611 0.343
Decomposed 0.792 0.717 0.718 0.221 0.719 0.488 0.528 0.185
Decomposed-FT | 0.756 0.807 0.753 0.391 0.688 0.664 0.630 0.35
Qwen2 VL 7B
CoT 0.551 0.694 0.563 0.272 0.603 0.589 0.538 0.28
E2E-FT 0.621 0.670 0.610 0.233 0.546 0.594 0.506 0.343
Decomposed 0.672 0.621 0.591 0.154 0.630 0.385 0.420 0.181
Decomposed-FT | 0.609 0.736 0.623 0.3 0.646 0.661 0.608 0.333
Gemini-1.5-Pro ‘
CoT | 0740 0761 0721 | 0331 | 0767  0.612  0.634 | 0.347

Table 1: BiFact and Bi-NLI results on the Mind2Web (N=1,005) and AndroidControl (N=1,543) datasets using
Gemini 1.5 Flash 8B, Qwen2 VL 7B, and Gemini 1.5 Pro. Best scoring method for each model is bolded. FI,

precision, recall are micro-averaged over the dataset.

On AndroidControl, the scores are comparable.

The BiFact score is non-deterministic as it uses
an LLLM to compute the score. We observe a 0.016
standard deviation when running it multiple times.
Manual verification - Human preference: As a
small additional verification, we presented a hu-
man rater with 20 trajectories from the Mind2Web
with intent predictions from Gemini Flash 8B and
asked them to choose whether they preferred the
response using CoT or Decomposed-FT (details in
Appendix B). Overall, Decomposed-FT was pre-
ferred 12 times, CoT 4 times, and 4 judged to be
equally good.

6.2 Label Quality and Comparison with
Expert-Written Intents

As mentioned in 5.2, we elicited expert-written
intent statements for 100 examples in the Android-
Control dataset. In Table 2 we compare the BiFact
F1 metric for proposed intents against dataset la-
bels and against expert written intents.

Overall, the performance of each model im-
proves when compared to expert annotations, ex-
cept for the E2E-FT model, which was trained on
the noisy labels. The fine-tuned decomposed ap-
proach also uses fine-tuning, and could have been
expected to similarly suffer from training on noisy
labels, but instead it significantly improves when

evaluated using expert intents. We believe this is
due to our approach to constructing fine-tuning
labels (Section 4.3) which removes information
present in the gold labels but absent from sum-
maries. Interesting to notice that after cleaning
the AndroidControl the performance of Gemini
Pro CoT on it is similar to the performance on
Mind2Web suggesting the gap in performance be-
tween the dataset is only the result of the noisier
data.

Method Expert Dataset
(Gemini-1.5 Flash 8B) Labels Labels
CoT 0.652 0.580
E2E-FT 0.590 0.565
Decomposed 0.535 0.512
Decomposed-FT 0.701 0.596
Gemini-1.5-Pro CoT 0.724 0.635

Table 2: A comparison of BiFact F1 scores for intent
prediction on the AndroidControl dataset, using expert
annotations and dataset labels as ground truth.

6.3 Ablation Study

We consider three variants of our method to esti-
mate the impact of each design choice.



No Context In this variant, Stage 1 is provided
with only a single interaction, without previous or
next interactions. Our analysis reveals that
incorporating information from the previous and
next interactions significantly helps the model to
infer the user action in the current screen, thereby
leading to a noticeable increase in Stage 1 recall.
Removing this contextual information significantly
reduces overall recall, as shown in Table 3.

Unstructured interaction-level summaries

Our method instructs the model to output
interaction summaries that are structurally broken
down into context, user actions, and a speculative
intent list (which is removed prior to proceeding to
the next stage). Instead, we permit free-form
summaries, and the concatenation of those are
provided to the goal extraction. As the results in
Table 3 show, instructing the model to output these
particular structured responses allows the Stage 2
model to focus on user actions on the one hand,
while mitigating Stage 1 hallucinations as much
possible. We notice a slight decrease in both
precision and recall, as a result of eliminating this
part in our method.

No Label Refinement Recall that label
refinement was added to address Stage 2
hallucinations. In this variant, we exclude the label
refinement step, during the data preparation for the
fine-tuning of the Stage 2 model, as described in
Subsection 4.3. As expected, after removing this
step, we notice a significant decrease in precision.
However, we also see a slight increase in recall,
suggesting potential areas for improvement in the
refinement process.

Method F1 Precision Recall
Decomposed-FT  0.753 0.807 0.756
- No context 0.710 0.787 0.709
- Unstructured 0.733 0.787 0.741
- No label refine  0.728 0.740 0.776

Table 3: Ablation study on Mind2Web using BiFact
scores. The Decomposed-FT model is the full model
and then each subsequent line shows the effect of re-
moving a single design component.

6.4 Manual Error Analysis

To gain a deeper understanding of the errors
produced by the decomposed-FT model, we
manually analyzed 20 examples. We categorized

the errors based on the two main components of
our approach: Interaction Summarization and
Generating Session-Level Intent. Additionally, we
identified instances where the evaluation method
itself contributed to discrepancies.

Counts are indicated in parentheses after each
error type. Some examples exhibited multiple
error types, so the counts do not necessarily add up
to the total number of examples.

Errors in Interaction Summarization:

* Incorrect screen understanding (6):
Includes instances where the model
misinterpreted the Ul elements or incorrectly
understood the user action.

e Omissions (6): Includes instances where the
model failed to capture important on-screen
details, like not mentioning the destination on
a flight booking site.

e Hallucinations (4): Includes instances
involving generating information not present
on the screen, such as claiming the user
selected a specific item when they did not.

¢ Irrelevant details (0): Includes instances
where the model included correct but
excessive information which often confused
the second stage. While this error was not
present in our full model, it was significant in
the "no formatting" models used in the
ablation study (Section 6.3).

Errors in Generating Session-Level Intent:

e Omissions (8): Includes instances where the
second stage failed to include important
details present in the individual summaries.

Evaluation Errors (1): These errors were
infrequent and typically involved situations where
complex screen understanding was required to
determine the equivalence of intents.

Our analysis highlighted the Interaction
Summarization stage as the primary source of
errors, suggesting potential benefits from
distillation training (fine-tuning the smaller model
based on the outputs of a larger one). However,
initial experiments with distillation did not yield
significant improvements, a finding that warrants
further investigation in future work.
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Figure 2: Performance analysis of our method on the Mind2Web dataset, tested with Gemini Flash-8B, tracking
ground-truth and predicted facts to obtain stage-level recall and precision.

6.5 Granular Performance Analysis

The modular structure of our decomposed
approach, combined with the granularity of the
BiFact metric allows us to gain a deeper
understanding of our method’s performance at
each stage and identify areas for future
optimization. For that purpose, we adopt the
BiFact approach, and break down both the
ground-truth intents and the predicted intents into
atomic facts, enabling us to track them across both
stages with a finer granularity than analyzing full
intents. Recall is assessed by tracking ground-truth
facts and attributing misses to either the interaction

summarization stage, or the intent extraction stage.

As for precision, we attribute incorrectly predicted
facts to two main issues: the first is hallucinations;
i.e., facts that were not present in the summaries.
The second cause for incorrect facts prediction
poor quality summary content that gets propagated
to the output of the second stage without being
filtered-out. We lump incorrect and irrelevant
information summarization facts together as it is
challenging to automatically distinguish between
the two. Our analysis of the Mind2Web test set is
given in Figure 2 using the Decomposed-FT
model. The left-hand side, which focuses on recall,
shows that the summarization process results in a
16% loss of ground truth facts. Subsequently,
intent extraction further reduces the remaining
facts by 18%. Effectively, each stage introduces a
similar magnitude of error. The right-hand side
describes the precision analysis, showing that 8%
of the facts predicted by Decomposed-FT were, in
fact, hallucinations. This low hallucination rate is
attributed to the label processing techniques
employed during training. Following that, 20% of

the remaining predicted facts were present in the
summary but absent from the ground truth,
indicating incorrect or irrelevant information in the
interaction summarization output and a filtering
issue of the intent extractor. We propose this
analysis framework as a means to evaluate future
two-stage intent extraction methods by helping to
determine the optimal focus of future efforts and
by assessing the impact of each stage to overall
performance.

7 Discussion

Our study utilized datasets designed for
automation to tackle the challenge of user intent
identification, despite their inherent limitations
such as noise and information gaps. We observe
that fine-tuning alone does not surpass
Chain-of-Thought, especially in noisy data
scenarios. However, our two stage decomposition
exhibited superior performance delivering
significant improvements regardless of data quality.
This improvement can be attributed to the cleaning
process and the combination of prompts and
fine-tuning, which effectively mitigated the impact
of data noise.

Furthermore, our approach significantly reduced
the storage footprint of individual screenshots by
summarizing each screen independently, thereby
minimizing the required tokens for representation.
This reduction in token usage is particularly
beneficial for on-device models with limited
context windows, enabling them to handle longer
trajectories more effectively.



8 Ethical Considerations & Risks

Autonomous agents offer significant innovation,
but their development necessitates careful ethical
consideration, particularly regarding user privacy.
Our research, which aims to interpret user intent
from Ul interactions, inherently involves sensitive
data. We particularly study small models that can
run on-device, thereby reducing some of the
privacy risks associated with transmitting data to
external servers. Furthermore, accurately
understanding user intents can greatly benefit users
through enhanced personalization, improved work
efficiency, and facilitating future recall of past
activities on their devices. While this work focuses
on intent understanding, the development of agents
capable of autonomously completing actions
requires extreme care. The potential for for
misalignment with user intentions and the need for
robust safeguards must be thoroughly addressed to
ensure responsible deployment.

9 Limitations

We acknowledge several discrepancies between
our datasets and real-world user behavior. The
datasets predominantly feature English-language,
U.S.-centric web interactions, restricting our
analysis to this specific demographic. In contrast,
real-world users frequently navigate multiple
applications, adapt their goals on the fly, and
exhibit varying levels of digital literacy, resulting
in more complex and unpredictable interaction
patterns. The Mind2Web dataset’s single-website
limitation further deviates from the multi-site
nature of typical user tasks. Additionally, our
study’s reliance on Android and web environments
limits the generalizability of our findings to other
platforms.
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A Fine-Tuning Details

We fine-tuned Gemini models similarly to the
process described at https://ai.google.dev/
gemini-api/docs/model-tuning. We use a
batch-size of 32 and fine-tuned for 1,000 steps
saving checkpoints every 100 steps and then
choose the model that minimizes
negative-log-likelihood of the validation data.

We fine-tuned the Qwen2-VL-7B model using the
Hugging Face TRL library. We followed the steps
described in the official Hugging Face VL
fine-tuning cookbook?, and adhered to the
hyper-parameters used by the author. As for done
for Gemini, we used the checkpoint that
minimized the validation NLL loss function. We
saved a checkpoint every 20 steps, as
recommended in the tutorial, and performed up to
three training epochs in total.

For the AndroidControl dataset, we used 5,000
training examples and 137 validation examples
randomly sampled from the train set. For
Mind2Web we used 900 training examples and 90
validation examples.

B Human Preference Annotation

We presented the rater with a full trajectory of
screenshots and actions, and then asked the
following question: “After you have seen the
trajectory, which intent better describes the
trajectory? A or B.” The choices A and B
contained either CoT or Decomposed-FT. The
order of the two options were randomized in each
question and the names of the methods were not
shown to the respondent. The decoding of choices
to model name was only done after the rater had
finished the task.

3https: //huggingface.co/learn/cookbook/en/
fine_tuning_vlm_trl
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C Prompts

You are analyzing a user's session on a mobile app. Each session consists of a sequence of
screenshots and actions that will appear at the end of this prompt. Your goal is to understand
the user's overall intent based on the series of interactions provided.

Instructions:

1. Analyze Each Step in the Sequence**:
- What is displayed in the screenshot?
- What action did the user take?
- Why might the user have taken this action?
- What specific details are relevant? (e.g., dates, items, locations, quantities)

2. Summarize the User’s Goal:

- After analyzing each screenshot-action pair, combine insights to determine the user’s
overall objective.

- Include all observed details to make the goal clear and specific.

Output:

1. **Reasoning™*:
- Provide a step-by-step analysis of each screenshot and action pair.
- Focus on the user’s likely intentions and relevant details observed in the input sequence.

2. **Final Answer**:

- Summarize the user’s overall goal in one concise sentence.

- Start with an action verb. Phrase the action in the imperative form.

- Include all specific details observed in the input sequence.

- Avoid using any phrases or structures from the instructions or examples above.

- Your final answer should start with the appname, followed by a semicolon, and then the
inferred goal (example: "eBay; order a basket ball").

Important Notes:

- Do not reuse or paraphrase any examples provided in the instructions.

- Base your response solely on the screenshots and actions in the input sequence.

- Each session is unique ensure your final answer reflects the specific details of this session
alone.

The format of the the output should json:

"reasoning": "your reasoning here",
"final_answer": "your final answer here"

b

The sequence of screenshots and actions for this session will now follow:

Figure C1: CoT model prompt
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Your task is to rephrase instructions given by users to automated agents that execute tasks on
the user's phone.

Rephrase the instruction in the imperative mood, starting with a verb, and remove any text
irrelevant to the user's objective.

Add the app name before the instruction, in the following format: "App name; Instruction”.

If the app is now known, use "Unknown app; Instruction”.

Correct any spelling or punctuation errors as needed.

Here are a few examples of rephrased instructions:

Input: | am tired of the hustle and bustle of the world. | want to just have a peaceful mind. Play
the classic song "Casta diva by Maria Callas" in the Dailymotion app

Output: Dailymotion; Play the song "Casta diva by Maria Callas"

Input: | want to write the review comment, Perfect! My favorite dessert for this recipe
Output: Unknown app; Write the review comment: "Perfect! My favorite dessert for this recipe."

Input: Open TickTick app and share the wedding plan task on dwbscratchid3@google.com
through Gmail
Output: TickTick; Share the wedding plan task on dwbscratchid3@google.com through Gmail

Input: I'd like to forward Google Community team emails to Cerebra Research at
dbwscratch.test.id4@gmail.com.
Output: Gmail; Forward Google Community team emails to Cerebra Research at
dbwscratch.test.id4@gmail.com.

Input: I am looking for a rental place in St. John, USA, under $4,000, so search for rental
properties for me in St. John on the Redfin app.
Output: Redfin; Search for rental properties in St. John, USA under $4,000.

Your test instruction:

Figure C2: AndroidControl cleaning prompt
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You are evaluating user behavior within a mobile app. Given a screenshot of the app interface
and a description of the user's action, your task is to provide a comprehensive summary of the
user's intent and the specifics of their interaction.

**Instructions:**

1. **Analyze the Input:**
- Carefully examine the provided screenshot.
- Interpret the user's action, including any additional information provided.

2. **Extract Key Information:**
- Identify all relevant elements on the screen (e.g., buttons, text fields, images).
- Pinpoint the user's specific action (e.g., tap, scroll, input text).
- Note important details like dates, times, locations, quantities, or text content.

3. **Format the Output:**

- **QOutput a newline-delimited list where each item represents a distinct piece of information.
- **Do not include any explanatory text or labels.** Just the newline-delimited list.
- Example:

User viewed product details for iPhone 14 Pro Max.

User added the product to their shopping cart.

User selected the "256GB' storage option.

**Input:**

- **Screenshot:** <img>
- **Action:** {{action}}

**Note:**

- The action description may include contextual information like text content, direction (e.g.,
'swiped left'), app name, or Ul element name.
- The screenshot may contain a red bounding box highlighting the interacted element.

Figure C3: Interaction summarization prompt
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You are given a summarized user journey, consisting of screen summaries that describe what
the user saw on each screen and what they did. Your task is to analyze this journey and infer
the user's intent.

Your output should be a concise description of the user's intent that includes:

1. **The user's primary goal:** What were they ultimately trying to achieve?

2. **All apps involved:** List every app used in the journey.

3. **Key actions:** Highlight specific actions within the summaries that reveal the intent (e.g.,
search queries, filter selections, options chosen). Avoid reporting purely navigational actions.

**Important Considerations:**

* **Complex Intents:** Longer journeys may involve evolving or multiple intents. Strive to
identify the most plausible explanation for the user's actions, even if their initial goal shifted.

* **Conciseness:** Aim for 2-3 sentences that capture the essence of the intent.

* **Qutput Format:** "AppName; Intent description" (e.g., "Amazon; User viewed the product
page for 'noise-canceling headphones', added them to their cart, and proceeded to checkout.")

Your response should contain nothing but the output in the specified format. Do not add any
additional text or explanations.

**Important: ALL information should be extracted from the summaries. Do NOT introduce any
new information.**

**Output examples:**

Expedia; User launched the Expedia app, searched for flights from Paris (CDG) to London
(LHR) departing on January 7th, filtered results by "non-stop flights" and "lowest price", and
finally selected a British Airways flight departing at 10 PM.

Clock; User opened the Clock app, tapped on the "Alarm" tab, set a new alarm for 7:00 PM
tomorrow, toggled the "Snooze" option off, and saved the alarm.

Spotify; User opened Spotify, searched for "holiday music", tapped on the "Create Playlist"
button, named the playlist "Christmas 2024", and added songs like "Jingle Bells" and "Silent
Night" to the playlist.

Gmail; User opened the Gmail app, opened an email from "Bank of America" with the subject
"Your November Statement", tapped on the link to view the PDF statement, then navigated back
to their inbox and replied to an email from their boss with the subject "Project Update."

Figure C4: Session-level intent prompt
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You are given a summary of a user trajectory and an inferred goals of the user.

Your task is to rewrite the inferred goal in a way that it only contains information that is
present in the summaries.
Any information that is not present in the summaries should be removed.

Summaries: {{fcombined summaries]}}
Inferred goal: {{[clean goal]}}

The output format should be a json object with the following format:
{
"facts_in_summaries": ["fact1", "fact2", ...],
"facts_not_in_summaries": ["fact3", "fact4", ...],
"rewritten_goal": "the rewritten goal in plain text"

m

Figure C5: Label refinement prompt
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