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Abstract001

Understanding user intents from UI interac-002
tion trajectories remains a challenging, yet003
crucial, frontier in intelligent agent devel-004
opment. While massive, datacenter-based,005
multi-modal large language models (MLLMs)006
possess greater capacity to handle the com-007
plexities of such sequences, smaller models008
which can run on-device to provide a privacy-009
preserving, low-cost, and low-latency user ex-010
perience, struggle with accurate intent infer-011
ence. In this paper, we address these limita-012
tions by introducing a novel decomposed ap-013
proach: first, we perform structured interac-014
tion summarization, capturing key information015
from each user action. Second, we perform016
fine-tuned intent extraction model operating017
on the aggregated summaries. Remarkably,018
this method empowers resource-constrained019
models to not only achieve improved intent un-020
derstanding, but also surpass the base perfor-021
mance of large MLLMs.022

1 Introduction023

Accelerated advancements in the capabilities of024

multi-modal large language models (MLLMs) has025

led to recent interest in modeling sequences of user026

interactions with phone and web graphical inter-027

faces, both for the purposes of automation (Wang028

et al., 2024b; Jiménez-Ramírez, 2024), and un-029

derstanding (Berkovitch et al., 2024; Zhang et al.,030

2024).031

In this work, we focus on the user intent extrac-032

tion task, which consists of producing a free-form033

description of the inferred intent of a user from a034

sequence of interactions with a device e.g., screen-035

shots and actions.036

Large MLLMs are naturally fairly good at this037

task, however, it is more challenging for smaller038

models (E.g., Gemini 1.5 Flash 8B (Gemini Team039

et al., 2024) or Qwen2 VL 7B (Wang et al., 2024a)).040

The performance of smaller models is important for041

user interaction tasks due to their ability to operate 042

within private, on-device environment like a phone 043

or browser, with reduced cost, energy usage, and 044

latency (Xu et al., 2024). 045

In this paper, we introduce a two-stage approach 046

for extracting user intent with small models. In the 047

first stage, each atomic interaction is summarized. 048

In the second stage, the full sequence of summaries 049

is fed to a second model which outputs an intent. 050

The overall flow is illustrated in Figure 1. Using 051

semantic equivalence metrics on public UI automa- 052

tion data, our two-stage approach demonstrates 053

superior performance compared to both smaller 054

models and a state-of-the-art large MLLM, inde- 055

pendent of dataset and model type. Our approach 056

also naturally handles scenarios with noisy data that 057

traditional supervised fine-tuning methods struggle 058

with. The modular nature of the architecture is ex- 059

tremely helpful from an engineering perspective, 060

allowing us to evaluate the approach in detail and 061

identify key areas to improve. 062

Our contributions can be summarized as fol- 063

lows: 1) We describe an effective decomposition 064

the intent-extraction that unlocks the potential of 065

small models; 2) We present non-trivial design 066

components related to each stage of the decomposi- 067

tion; 3) We extensively evaluate our approach and 068

demonstrate the effectiveness of our method across 069

a range of data sets, base models and metrics. 070

2 Background 071

2.1 Intent Extraction from UI Interactions 072

We formalize the intent extraction task, sometimes 073

called goal understanding, similarly to Berkovitch 074

et al. (2024) and Zhang et al. (2024). Consider 075

a user journey T within a mobile or web ap- 076

plication, represented as a sequence of interac- 077

tions: T = (I1, I2, ..., In), where each interaction 078

Ii = (Oi, Ai) consists of an observation Oi, and 079

the action Ai the user performed at that step. This 080
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… Airbnb website …
User chose “Any week”

… Check out is selected …
User chose April 12.

… Range is 10-12 April …
User chose “add guests”

… Check in is selected …
User chose April 10.

Book an airbnb for April 10-12 2023.

Stage 1
Summary

Stage 2
Intent extraction

UI Trajectory

Figure 1: Proposed intent extraction flow (Described in detail in Section 4). Individual interactions are summarized
independently and then sequence of summaries are combined to output a short inferred intent for the trajectory. The
summaries are structured in two fields corresponding to screen summary (top, blue) and user action (bottom, red).

description is general and different modeling ap-081

proaches have used different representations for082

observations and actions (e.g., textual descriptions,083

screenshot images, DOM hierarchies, etc.) (e.g.,084

Rawles et al., 2023; Burns et al., 2022). The ob-085

jective of the intent-extraction task is to generate086

a free-form sentence describing the user’s intent.087

Effectively, this setting can be thought of as the088

inverse problem of the UI automation task, with089

inputs and outputs swapped. Rather than producing090

a sequence of actions from an instruction, we ask091

“what was the user trying to accomplish with this092

trajectory?”. Intent extraction have been identified093

as an important building block for UI automation094

tasks, proactive assistance, and personalized mem-095

ory (Berkovitch et al., 2024; Zhang et al., 2024).096

A good intent is: faithful - i.e., only describes097

things that actually occur in the trajectory, com-098

prehensive - i.e., provides all of the information099

about the user intent required to re-enact the tra-100

jectory, and relevant - i.e., does not contain ex-101

traneous information beyond what is needed for102

comprehensiveness. However, even with a well-103

defined ground truth intent, accurately evaluating104

a model’s extracted intent is challenging. User105

intents often contain many details, such as trip106

planning specifics or transaction data, necessitat-107

ing metrics that can handle partial matches. Such108

metrics fall into two categories: semantic, which109

analyze underlying meaning, and lexical, which110

assess surface-level word overlap. As shown in111

previous work (Caduri, 2025), lexical metrics (e.g.,112

BLEU and ROUGE) correlate poorly with human113

judgments of intent similarity, as they merely com-114

pare words. In contrast, semantic metrics, such115

as NLI (Natural Language Inference) and BI-Fact116

(a bi-directional variant of FActScore (Min et al.,117

2023)), strive to capture the intended meaning.118

Further, there is inherent subjectivity in intent 119

extraction, as a single trajectory could have been 120

driven by multiple underlying motivations (e.g., a 121

user may have selected a flight based on its price 122

versus its departure time). This subjectivity is evi- 123

dent in prior work, such as Berkovitch et al. (2024) 124

where human-composed intentions matched each 125

other in only 80% and 76% of web and phone tra- 126

jectories, respectively. This level of human agree- 127

ment may be considered a practical upper bound 128

for performance on this task. 129

2.2 UI Interaction Datasets 130

Recently, a number of datasets have been devel- 131

oped for evaluating UI interaction agents, (sur- 132

veyed in Wang et al. (2024b)). We use two that 133

are representative and suitable for measuring the in- 134

tent extraction task. We confirmed that our usage of 135

the data adhered to all ethical and legal standards. 136

Mind2Web (CC BY 4.0 license) (Deng et al., 137

2024): Has 2,350 human demonstrations on web- 138

sites. Each user trajectory is on average 7.3 steps 139

long and contains screenshots and actions for each 140

step, as well as high level description of the task 141

the human was asked to perform. 142

AndroidControl (Apache 2.0 license) (Li et al., 143

2024): Has 15,283 examples of humans performing 144

tasks on Android apps. Each user trajectory is on 145

average 5.5 steps long, and contains screenshots 146

and actions for each step, as well as high level 147

description of the goal. 148

Mind2Web’s data collection included a valida- 149

tion step where annotators verified the alignment 150

between the completed trajectory steps and the in- 151

tent making this dataset highly suitable for the in- 152

tent extraction task as well. This crucial step was 153

absent from the AndroidControl collection proto- 154

col, resulting in noisier labels. For example con- 155
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sider the following task "Delete all emails from156

sender X" while there were no emails from that157

sender. Based on the execution of task it’s impossi-158

ble to identify that the original goal was to delete159

the emails. We preprocess labels to remove clearly160

irrelevant statements (Section 5.2) and analyze the161

effect of remaining discrepancies between the la-162

bels and trajectories in Section 6.2.163

2.3 Related Work164

User interaction understanding for HCI Sin-165

gle screen summarization as a special case of im-166

age description has been extensively studied for167

the purposes of e.g., accessibility, automation, and168

question answering (e.g., Li et al., 2021b; Bai et al.,169

2021; Li and Li, 2022; Wang et al., 2021; Yang170

et al., 2024).171

Our setting of identifying and summarizing in-172

tents from trajectories has been recently proposed173

in Berkovitch et al. (2024); Zhang et al. (2024);174

Jiménez-Ramírez (2024).175

Multi-stage summarizations Decomposing a176

complex task into smaller simpler stages is a well-177

known approach for problem solving. Hierarchi-178

cal models are common in summarization tasks179

of many modalities, e.g., text (Christensen et al.,180

2014), audio (Li et al., 2021a), video (Zhao et al.,181

2022; Cheng et al., 2024).182

Chain of thought reasoning (Wei et al., 2022) is183

a very popular general purpose method for prompt-184

ing models to decompose a problem into smaller185

parts. Khot et al. (2022) propose an automated de-186

composition step that delegates different parts of187

the problem to distinct model calls.188

3 Baseline Modeling Approaches189

In this section, we first present natural baseline ap-190

proaches for addressing our task, whose lessons191

have led us to developing our decomposed two-192

stage approach which will be described in Section 4.193

Our task is a text generation task, where intent de-194

scriptions are generated from the multi-modal input195

of UI trajectories. As such, it is most natural to ad-196

dress it through multi-modal LMs, applying either197

prompt-based or fine-tuned methods, as described198

below. The focus of our work is to explore the use199

of small LMs, aiming at their eventual utilization200

on-device. The particular models we experimented201

with are specified in Section 5.1, including a top-202

tier large model as a reference point.203

Prompt-based methods Such methods are ad- 204

vantageous in that they do not require training data, 205

instructing a generic LM via its prompt. We found 206

that a Chain-of-Thought (CoT) prompt worked best. 207

Specifically, our CoT prompt (see C1) instructs the 208

model to first generate a sequence of individual 209

descriptions of the user intents within each UI in- 210

teraction, and then to consolidate these interaction- 211

level description into the final description of the 212

accumulated user intent along the trajectory. 213

Fine-tuned models Since performance of 214

prompting a generic model may not be fully 215

aligned with the intended task output, while 216

prompt-based performance of small LMs might 217

generally be limited, we explore also baseline 218

fine-tuning methods. To that end, we fine-tuned 219

small models using available training datasets, 220

specifically those developed for the inverse 221

problem of UI automation, while swapping their 222

input/output roles (see Section 2.2). 223

All of the baselines require composing a sin- 224

gle prompt that contains the entire user trajectory 225

including images, requiring a large context win- 226

dow. As described in Section 5.1, practically this 227

required some filtering over the input to fit the avail- 228

able context size. 229

4 A Decomposed Two-stage Model 230

4.1 Overview 231

While CoT prompting works well with large lan- 232

guage models (LLMs), we observe limitations in 233

both CoT and fine-tuned small LMs when pre- 234

sented with the full trajectory at once. When ap- 235

plying CoT reasoning, small models struggle to 236

generate a high-quality thoughts that cover the full 237

trajectory. Fine-tuned small models also have trou- 238

ble generating comprehensive intents from the full 239

trajectory. 240

These observations led us to develop a decom- 241

posed, two-stage approach that emulates the CoT 242

process, illustrated in Figure 1. First, we use 243

prompting to generate a summary for each inter- 244

action in a trajectory. This stage is prompt-based 245

as there is currently no training data available with 246

summary labels for individual interactions. Second, 247

we feed all of the interaction-level summaries into 248

a second stage model to generate an overall intent 249

description. We can apply fine-tuning in the second 250

stage and we describe that process in more detail 251

below (Section 4.3). The following subsections 252
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provide a detailed description of each stage in our253

proposed method.254

4.2 Interaction Summarization255

In the first stage, we apply a screen summarizer256

to each individual user interaction Ii = {Oi, Ai}257

of the length-n trajectory T = (I1, . . . , In). The258

summarizer extracts relevant information regarding259

the user’s goals and actions within that each inter-260

action. The output of this stage is a summary of the261

screen context and user action (see Figure 1). This262

key information, which describes this particular263

user interaction, will be used in the subsequent fu-264

sion stage. This summarization process is entirely265

prompt-based (our prompt is given in Appendix C).266

We add two improvements to the design of this267

stage that improve overall performance: Adding268

a context window and structured summaries. The269

effects of both of these improvements are measured270

in ablation studies in Section 6.3.271

Context window While the primary task is to272

understand Ii in isolation, we recognize that often273

context can be crucial for eliminating ambiguity274

and/or uncertainty. Therefore, in addition to Ii275

the model also receives as input the preceding and276

successive interactions, Ii−1 and Ii+1, respectively.277

Structured summaries We request that the sum-278

mary be structured in two distinct components: (a)279

the relevant screen context – a short list of salient280

details on the current screen Oi, and (b) the user281

action: a list of mid-level actions that the user took282

in the current interaction (example in Figure 1).283

As a practical measure for dealing with cases284

where the model outputs its (unwarranted) inter-285

pretations of the user’s underlying intent, we also286

instructed it to output those in a third field (labelled287

“speculative intent”) that we discard before proceed-288

ing to the next stage.289

This structured format was selected to address290

challenges encountered with alternative prompting291

strategies. Simply asking the model to be concise292

resulted in summaries that lacked crucial details.293

Conversely, prompting for comprehensive informa-294

tion, including user intent, led to excessive specu-295

lation that could hinder the subsequent summary296

fusion stage. Our structured format aims to cap-297

ture a broader range of information while enabling298

the removal of speculative elements prior to the299

second stage. This balanced approach mitigates300

the risk of contradictions and improves the overall301

summarization process.302

4.3 Generating Session-Level Intent 303

In the second stage, we aggregate the information 304

extracted during the first stage. A second-stage 305

model takes as input the summaries of all inter- 306

actions in the trajectory to infer the user’s overall 307

intent. 308

This aggregation stage can be implemented by 309

using either pure prompting of a base model, or by 310

additionally fine-tuning a model that specializes in 311

the aforementioned aggregation. For fine-tuning, 312

the training data consists of: a) input summaries 313

representing all interactions in the trajectory, and b) 314

a corresponding ground truth target that describes 315

the user’s overall intent in the given trajectory. 316

We noted in early explorations that naively ap- 317

plying fine-tuning yields a model that embellishes 318

or hallucinates by introducing details that were not 319

present in the screen summary inputs. On further 320

examination, we found that the training procedure 321

encourages the model to act this way since the in- 322

puts are potentially incomplete summaries and the 323

targets are the complete intent statements. Thus, 324

when looking at (input, target) pairs, the model 325

learns that it needs to sometimes add additional 326

information in order to produce the target intent. 327

Following this insight we refine our target intents 328

at training time to remove details not reflected in 329

the corresponding input (using a large language 330

model, see Appendix C for details on the prompt 331

used in this stage). This ensures that the model will 332

learn to infer intents based solely on the provided 333

interaction summaries. We discuss the effects of 334

this cleanup stage in Subsection 6.3. 335

5 Experimental Setting 336

5.1 Models 337

We focus on smaller, multi-modal (image and text 338

input) models, that can be fine-tuned. In particu- 339

lar, we use Gemini1 1.5 Flash 8B (Gemini Team 340

et al., 2024) and Qwen2 VL 7B (Apache 2.0 li- 341

cense) (Wang et al., 2024a). For comparisons with 342

a MLLM, we use Gemini 1.5 Pro (Gemini Team 343

et al., 2024). 344

When using the Qwen2 VL 7B for baseline mod- 345

els, we dropped frames randomly from the trajec- 346

tory if they exceeded the context window length. 347

We found that limiting trajectories to 15 steps was 348

sufficient to run our experiments. We also down- 349

sized AndroidControl images by a factor of 4 in 350

1Terms of service: https://ai.google.dev/gemini-api/terms
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each dimension when inputting them to Qwen mod-351

els. Details of fine-tuning can be found in Ap-352

pendix A.353

5.2 Datasets and Preprocessing354

We use the Mind2Web (Deng et al., 2024) and355

AndroidControl (Li et al., 2024) datasets as repre-356

sentative user interaction datasets. We follow the357

standard train/test split of each dataset, fine-tuning358

with train, and reporting results on test data.359

In Mind2Web, we represent the action from the360

dataset textually: (e.g., “[element name] click” or361

“[element name] hover”.). In AndroidControl, we362

use the accessibility tree to convert the screen coor-363

dinates of the interacted item to an element name364

and format the action in the same way. In both365

datasets, we use screenshots as observations. We366

highlight the interacted element in the screenshot367

with with a red box (Zheng et al.; Yang et al., 2023).368

For the gold standard extracted goal, we use the369

high-level goal for each dataset. As mentioned370

in Section 2.2, the annotation process of Android-371

Control was less rigorous than that of Mind2Web,372

resulting in noisier labels. Furthermore, Android-373

Control labels, designed to simulate real user in-374

structions, often contain irrelevant information that375

cannot be inferred from the trajectory (e.g., "I’m376

hungry, order an olive pizza from DoorDash"). To377

mitigate the impact of this noise, we cleaned the la-378

bels using Gemini 1.5 Pro (prompt in Appendix C).379

This cleaning still doesn’t completely provide clean380

goals like Mind2Web’s validation process. We find381

that even after applying a prompt-based cleaning,382

manual validation on 100 examples (following the383

annotation protocol in Berkovitch et al. (2024))384

makes changes to ∼ 30% of the label intents. We385

use this manually cleaned data in Section 6.2 to386

quantify the impact of AndroidControl’s noisy la-387

bels.388

5.3 Evaluation Metrics389

We measure quality of extracted goals using two390

different semantic equivalence metrics.391

T5 NLI (Honovich et al., 2022): A T5-XXL392

model2 trained for NLI (Natural Language Infer-393

ence). We compute the entailment probability of394

the produced summary from the gold standard and395

vice versa, and then average the two values to get a396

single bidirectional score.397

2Available at: https://huggingface.co/google/t5_
xxl_true_nli_mixture

BiFact (Caduri, 2025): A bi-directional varia- 398

tion of FActScore (Min et al., 2023) developed 399

for assessing the equivalence of intents in UI in- 400

teractions, demonstrating the highest correlation 401

with human judgments compared to existing meth- 402

ods. This metric deconstructs both the ground-truth 403

and predicted intents into their fundamental factual 404

components using an LLM (we use Gemini 1.5 Pro 405

for this). These components are then compared to 406

measure the extent of coverage. We use the BiFact 407

measures of precision (the proportion of facts in the 408

predicted intent that are present in the true intent - 409

i.e., relevance), recall (the proportion of facts in the 410

true intent that are captured by the predicted intent, 411

i.e., comprehensiveness) and F1. 412

We believe that the BiFact, which uses a fine- 413

grained, fact-level comparison is ideally suited for 414

our task since intents can be composed of many 415

parts (e.g., book a flight, flight is to LAX, flight 416

is on Friday). NLI, which holistically evaluates 417

logical entailment of the full sentences is less ideal, 418

but provides an extra signal. 419

6 Experiments 420

6.1 Evaluating Extracted Intents 421

To show that our decomposed approach is gener- 422

ally helpful compared to baselines across models 423

and data modalities, we evaluate the metrics in 424

Section 5.3 on two different datasets using two dif- 425

ferent models. The results are displayed in Table 1. 426

In this table, CoT (Chain of Thought) and E2E- 427

FT (End-to-End Fine-tuned) represent the natural 428

baselines described in Section 3. 429

Of these two baselines, neither is uniformly more 430

effective across all settings. On the Mind2Web 431

dataset, which has cleaner labels (described in 2.2), 432

Gemini, as a stronger base model, has higher Bi- 433

Fact F1 and Bi-NLI scores with CoT, whereas 434

Qwen2 VL 7B benefits from fine-tuning. 435

Without fine-tuning, the decomposed model has 436

strong recall, but lower precision, giving it mixed 437

results compared to the baselines. However, by 438

adding a fine-tuned intent extraction step, the de- 439

composed FT model outperforms all baselines on 440

the BiFact metric and nearly all baselines on the 441

Bi-NLI metric. 442

Gemini 1.5 Pro COT is presented as a compar- 443

ison to a top-tier large MLLM. We find that on 444

Mind2Web, the fine-tuned decomposed approach 445

allows the Gemini Flash 8B to even exceed the per- 446

formance of the Gemini 1.5 Pro model using COT. 447
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Mind2Web AndroidControl

BiFact Bi-NLI BiFact Bi-NLI
Method Recall Precision F1 Recall Precision F1

Gemini Flash 8B

CoT 0.656 0.751 0.660 0.326 0.660 0.628 0.594 0.302
E2E-FT 0.676 0.676 0.652 0.311 0.656 0.655 0.611 0.343
Decomposed 0.792 0.717 0.718 0.221 0.719 0.488 0.528 0.185
Decomposed-FT 0.756 0.807 0.753 0.391 0.688 0.664 0.630 0.35

Qwen2 VL 7B

CoT 0.551 0.694 0.563 0.272 0.603 0.589 0.538 0.28
E2E-FT 0.621 0.670 0.610 0.233 0.546 0.594 0.506 0.343
Decomposed 0.672 0.621 0.591 0.154 0.630 0.385 0.420 0.181
Decomposed-FT 0.609 0.736 0.623 0.3 0.646 0.661 0.608 0.333

Gemini-1.5-Pro

CoT 0.740 0.761 0.721 0.331 0.767 0.612 0.634 0.347

Table 1: BiFact and Bi-NLI results on the Mind2Web (N=1,005) and AndroidControl (N=1,543) datasets using
Gemini 1.5 Flash 8B, Qwen2 VL 7B, and Gemini 1.5 Pro. Best scoring method for each model is bolded. F1,
precision, recall are micro-averaged over the dataset.

On AndroidControl, the scores are comparable.448

The BiFact score is non-deterministic as it uses449

an LLM to compute the score. We observe a 0.016450

standard deviation when running it multiple times.451

Manual verification - Human preference: As a452

small additional verification, we presented a hu-453

man rater with 20 trajectories from the Mind2Web454

with intent predictions from Gemini Flash 8B and455

asked them to choose whether they preferred the456

response using CoT or Decomposed-FT (details in457

Appendix B). Overall, Decomposed-FT was pre-458

ferred 12 times, CoT 4 times, and 4 judged to be459

equally good.460

6.2 Label Quality and Comparison with461

Expert-Written Intents462

As mentioned in 5.2, we elicited expert-written463

intent statements for 100 examples in the Android-464

Control dataset. In Table 2 we compare the BiFact465

F1 metric for proposed intents against dataset la-466

bels and against expert written intents.467

Overall, the performance of each model im-468

proves when compared to expert annotations, ex-469

cept for the E2E-FT model, which was trained on470

the noisy labels. The fine-tuned decomposed ap-471

proach also uses fine-tuning, and could have been472

expected to similarly suffer from training on noisy473

labels, but instead it significantly improves when474

evaluated using expert intents. We believe this is 475

due to our approach to constructing fine-tuning 476

labels (Section 4.3) which removes information 477

present in the gold labels but absent from sum- 478

maries. Interesting to notice that after cleaning 479

the AndroidControl the performance of Gemini 480

Pro CoT on it is similar to the performance on 481

Mind2Web suggesting the gap in performance be- 482

tween the dataset is only the result of the noisier 483

data. 484

Method
(Gemini-1.5 Flash 8B)

Expert
Labels

Dataset
Labels

CoT 0.652 0.580
E2E-FT 0.590 0.565
Decomposed 0.535 0.512
Decomposed-FT 0.701 0.596

Gemini-1.5-Pro CoT 0.724 0.635

Table 2: A comparison of BiFact F1 scores for intent
prediction on the AndroidControl dataset, using expert
annotations and dataset labels as ground truth.

6.3 Ablation Study 485

We consider three variants of our method to esti- 486

mate the impact of each design choice. 487

6



No Context In this variant, Stage 1 is provided488

with only a single interaction, without previous or489

next interactions. Our analysis reveals that490

incorporating information from the previous and491

next interactions significantly helps the model to492

infer the user action in the current screen, thereby493

leading to a noticeable increase in Stage 1 recall.494

Removing this contextual information significantly495

reduces overall recall, as shown in Table 3.496

Unstructured interaction-level summaries497

Our method instructs the model to output498

interaction summaries that are structurally broken499

down into context, user actions, and a speculative500

intent list (which is removed prior to proceeding to501

the next stage). Instead, we permit free-form502

summaries, and the concatenation of those are503

provided to the goal extraction. As the results in504

Table 3 show, instructing the model to output these505

particular structured responses allows the Stage 2506

model to focus on user actions on the one hand,507

while mitigating Stage 1 hallucinations as much508

possible. We notice a slight decrease in both509

precision and recall, as a result of eliminating this510

part in our method.511

No Label Refinement Recall that label512

refinement was added to address Stage 2513

hallucinations. In this variant, we exclude the label514

refinement step, during the data preparation for the515

fine-tuning of the Stage 2 model, as described in516

Subsection 4.3. As expected, after removing this517

step, we notice a significant decrease in precision.518

However, we also see a slight increase in recall,519

suggesting potential areas for improvement in the520

refinement process.521

Method F1 Precision Recall

Decomposed-FT 0.753 0.807 0.756
- No context 0.710 0.787 0.709
- Unstructured 0.733 0.787 0.741
- No label refine 0.728 0.740 0.776

Table 3: Ablation study on Mind2Web using BiFact
scores. The Decomposed-FT model is the full model
and then each subsequent line shows the effect of re-
moving a single design component.

6.4 Manual Error Analysis522

To gain a deeper understanding of the errors523

produced by the decomposed-FT model, we524

manually analyzed 20 examples. We categorized525

the errors based on the two main components of 526

our approach: Interaction Summarization and 527

Generating Session-Level Intent. Additionally, we 528

identified instances where the evaluation method 529

itself contributed to discrepancies. 530

Counts are indicated in parentheses after each 531

error type. Some examples exhibited multiple 532

error types, so the counts do not necessarily add up 533

to the total number of examples. 534

Errors in Interaction Summarization: 535

• Incorrect screen understanding (6): 536

Includes instances where the model 537

misinterpreted the UI elements or incorrectly 538

understood the user action. 539

• Omissions (6): Includes instances where the 540

model failed to capture important on-screen 541

details, like not mentioning the destination on 542

a flight booking site. 543

• Hallucinations (4): Includes instances 544

involving generating information not present 545

on the screen, such as claiming the user 546

selected a specific item when they did not. 547

• Irrelevant details (0): Includes instances 548

where the model included correct but 549

excessive information which often confused 550

the second stage. While this error was not 551

present in our full model, it was significant in 552

the "no formatting" models used in the 553

ablation study (Section 6.3). 554

Errors in Generating Session-Level Intent: 555

• Omissions (8): Includes instances where the 556

second stage failed to include important 557

details present in the individual summaries. 558

Evaluation Errors (1): These errors were 559

infrequent and typically involved situations where 560

complex screen understanding was required to 561

determine the equivalence of intents. 562

Our analysis highlighted the Interaction 563

Summarization stage as the primary source of 564

errors, suggesting potential benefits from 565

distillation training (fine-tuning the smaller model 566

based on the outputs of a larger one). However, 567

initial experiments with distillation did not yield 568

significant improvements, a finding that warrants 569

further investigation in future work. 570
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4280 (100%)

3600 (84%)680 (16%)

Ground Truth Facts
Recall Analysis

NO Yes
Is Fact In Summaries?

2937 (82%)663 (18%)

Is Fact In Predicted Goal?
NO Yes

Interaction summarization 
missed

Intent extraction missed

3191 (100%)

2938 (92%)253 (8%)

Predicted Facts
Precision Analysis

NO Yes
Is Fact In Summaries?

2362 (80%)576 (20%)

Is Fact In Ground Truth?
NO Yes

Intent extraction 
hallucinated

Interaction summary outputted incorrect / 
irrelevant information, extraction failted to filter it

Figure 2: Performance analysis of our method on the Mind2Web dataset, tested with Gemini Flash-8B, tracking
ground-truth and predicted facts to obtain stage-level recall and precision.

6.5 Granular Performance Analysis571

The modular structure of our decomposed572

approach, combined with the granularity of the573

BiFact metric allows us to gain a deeper574

understanding of our method’s performance at575

each stage and identify areas for future576

optimization. For that purpose, we adopt the577

BiFact approach, and break down both the578

ground-truth intents and the predicted intents into579

atomic facts, enabling us to track them across both580

stages with a finer granularity than analyzing full581

intents. Recall is assessed by tracking ground-truth582

facts and attributing misses to either the interaction583

summarization stage, or the intent extraction stage.584

As for precision, we attribute incorrectly predicted585

facts to two main issues: the first is hallucinations;586

i.e., facts that were not present in the summaries.587

The second cause for incorrect facts prediction588

poor quality summary content that gets propagated589

to the output of the second stage without being590

filtered-out. We lump incorrect and irrelevant591

information summarization facts together as it is592

challenging to automatically distinguish between593

the two. Our analysis of the Mind2Web test set is594

given in Figure 2 using the Decomposed-FT595

model. The left-hand side, which focuses on recall,596

shows that the summarization process results in a597

16% loss of ground truth facts. Subsequently,598

intent extraction further reduces the remaining599

facts by 18%. Effectively, each stage introduces a600

similar magnitude of error. The right-hand side601

describes the precision analysis, showing that 8%602

of the facts predicted by Decomposed-FT were, in603

fact, hallucinations. This low hallucination rate is604

attributed to the label processing techniques605

employed during training. Following that, 20% of606

the remaining predicted facts were present in the 607

summary but absent from the ground truth, 608

indicating incorrect or irrelevant information in the 609

interaction summarization output and a filtering 610

issue of the intent extractor. We propose this 611

analysis framework as a means to evaluate future 612

two-stage intent extraction methods by helping to 613

determine the optimal focus of future efforts and 614

by assessing the impact of each stage to overall 615

performance. 616

7 Discussion 617

Our study utilized datasets designed for 618

automation to tackle the challenge of user intent 619

identification, despite their inherent limitations 620

such as noise and information gaps. We observe 621

that fine-tuning alone does not surpass 622

Chain-of-Thought, especially in noisy data 623

scenarios. However, our two stage decomposition 624

exhibited superior performance delivering 625

significant improvements regardless of data quality. 626

This improvement can be attributed to the cleaning 627

process and the combination of prompts and 628

fine-tuning, which effectively mitigated the impact 629

of data noise. 630

Furthermore, our approach significantly reduced 631

the storage footprint of individual screenshots by 632

summarizing each screen independently, thereby 633

minimizing the required tokens for representation. 634

This reduction in token usage is particularly 635

beneficial for on-device models with limited 636

context windows, enabling them to handle longer 637

trajectories more effectively. 638
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8 Ethical Considerations & Risks639

Autonomous agents offer significant innovation,640

but their development necessitates careful ethical641

consideration, particularly regarding user privacy.642

Our research, which aims to interpret user intent643

from UI interactions, inherently involves sensitive644

data. We particularly study small models that can645

run on-device, thereby reducing some of the646

privacy risks associated with transmitting data to647

external servers. Furthermore, accurately648

understanding user intents can greatly benefit users649

through enhanced personalization, improved work650

efficiency, and facilitating future recall of past651

activities on their devices. While this work focuses652

on intent understanding, the development of agents653

capable of autonomously completing actions654

requires extreme care. The potential for for655

misalignment with user intentions and the need for656

robust safeguards must be thoroughly addressed to657

ensure responsible deployment.658

9 Limitations659

We acknowledge several discrepancies between660

our datasets and real-world user behavior. The661

datasets predominantly feature English-language,662

U.S.-centric web interactions, restricting our663

analysis to this specific demographic. In contrast,664

real-world users frequently navigate multiple665

applications, adapt their goals on the fly, and666

exhibit varying levels of digital literacy, resulting667

in more complex and unpredictable interaction668

patterns. The Mind2Web dataset’s single-website669

limitation further deviates from the multi-site670

nature of typical user tasks. Additionally, our671

study’s reliance on Android and web environments672

limits the generalizability of our findings to other673

platforms.674
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A Fine-Tuning Details 811

We fine-tuned Gemini models similarly to the 812

process described at https://ai.google.dev/ 813

gemini-api/docs/model-tuning. We use a 814

batch-size of 32 and fine-tuned for 1,000 steps 815

saving checkpoints every 100 steps and then 816

choose the model that minimizes 817

negative-log-likelihood of the validation data. 818

We fine-tuned the Qwen2-VL-7B model using the 819

Hugging Face TRL library. We followed the steps 820

described in the official Hugging Face VL 821

fine-tuning cookbook3, and adhered to the 822

hyper-parameters used by the author. As for done 823

for Gemini, we used the checkpoint that 824

minimized the validation NLL loss function. We 825

saved a checkpoint every 20 steps, as 826

recommended in the tutorial, and performed up to 827

three training epochs in total. 828

For the AndroidControl dataset, we used 5,000 829

training examples and 137 validation examples 830

randomly sampled from the train set. For 831

Mind2Web we used 900 training examples and 90 832

validation examples. 833

B Human Preference Annotation 834

We presented the rater with a full trajectory of 835

screenshots and actions, and then asked the 836

following question: “After you have seen the 837

trajectory, which intent better describes the 838

trajectory? A or B.” The choices A and B 839

contained either CoT or Decomposed-FT. The 840

order of the two options were randomized in each 841

question and the names of the methods were not 842

shown to the respondent. The decoding of choices 843

to model name was only done after the rater had 844

finished the task. 845

3https://huggingface.co/learn/cookbook/en/
fine_tuning_vlm_trl
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C Prompts846

 You are analyzing a user's session on a mobile app. Each session consists of a sequence of 
 screenshots and actions that will appear at the end of this prompt. Your goal is to understand 
 the user's overall intent based on the series of interactions provided. 

 Instructions: 

 1. Analyze Each Step in the Sequence**: 
 - What is displayed in the screenshot? 
 - What action did the user take? 
 - Why might the user have taken this action? 
 - What specific details are relevant? (e.g., dates, items, locations, quantities) 

 2. Summarize the User’s Goal: 
 - After analyzing each screenshot-action pair, combine insights to determine the user’s 

 overall objective. 
 - Include all observed details to make the goal clear and specific. 

 Output: 

 1. **Reasoning**: 
 - Provide a step-by-step analysis of each screenshot and action pair. 
 - Focus on the user’s likely intentions and relevant details observed in the input sequence. 

 2. **Final Answer**: 
 - Summarize the user’s overall goal in one concise sentence. 
 - Start with an action verb. Phrase the action in the imperative form. 
 - Include all specific details observed in the input sequence. 
 - Avoid using any phrases or structures from the instructions or examples above. 
 - Your final answer should start with the appname, followed by a semicolon, and then the 

 inferred goal (example: "eBay; order a basket ball"). 

 Important Notes: 

 - Do not reuse or paraphrase any examples provided in the instructions. 
 - Base your response solely on the screenshots and actions in the input sequence. 
 - Each session is unique ensure your final answer reflects the specific details of this session 
 alone. 

 The format of the the output should json: 

 {{ 
 "reasoning": "your reasoning here", 
 "final_answer": "your final answer here" 

 }} 

 --- 

 The sequence of screenshots and actions for this session will now follow: 

Figure C1: CoT model prompt

847

11



Your task is to rephrase instructions given by users to automated agents that execute tasks on 
the user's phone. 
Rephrase the instruction in the imperative mood, starting with a verb, and remove any text 
irrelevant to the user's objective. 
Add the app name before the instruction, in the following format: "App name; Instruction". 
If the app is now known, use "Unknown app; Instruction". 
Correct any spelling or punctuation errors as needed. 
 
Here are a few examples of rephrased instructions: 
Input: I am tired of the hustle and bustle of the world. I want to just have a peaceful mind. Play 
the classic song "Casta diva by Maria Callas" in the Dailymotion app 
Output: Dailymotion; Play the song "Casta diva by Maria Callas" 
 
Input: I want to write the review comment, Perfect! My favorite dessert for this recipe 
Output: Unknown app; Write the review comment: "Perfect! My favorite dessert for this recipe." 
 
Input: Open TickTick app and share the wedding plan task on dwbscratchid3@google.com 
through Gmail 
Output: TickTick; Share the wedding plan task on dwbscratchid3@google.com through Gmail 
 
Input: I'd like to forward Google Community team emails to Cerebra Research at 
dbwscratch.test.id4@gmail.com. 
Output: Gmail; Forward Google Community team emails to Cerebra Research at 
dbwscratch.test.id4@gmail.com. 
 
Input: I am looking for a rental place in St. John, USA, under $4,000, so search for rental 
properties for me in St. John on the Redfin app. 
Output: Redfin; Search for rental properties in St. John, USA under $4,000. 
 
Your test instruction: 
 

Figure C2: AndroidControl cleaning prompt
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 You are evaluating user behavior within a mobile app.  Given a screenshot of the app interface 
 and a description of the user's action, your task is to provide a comprehensive summary of the 
 user's intent and the specifics of their interaction. 

 **Instructions:** 

 1. **Analyze the Input:** 
 - Carefully examine the provided screenshot. 
 - Interpret the user's action, including any additional information provided. 

 2. **Extract Key Information:** 
 - Identify all relevant elements on the screen (e.g., buttons, text fields, images). 
 - Pinpoint the user's specific action (e.g., tap, scroll, input text). 
 - Note important details like dates, times, locations, quantities, or text content. 

 3. **Format the Output:** 
 - **Output a newline-delimited list where each item represents a distinct piece of information. 
 - **Do not include any explanatory text or labels.** Just the newline-delimited list. 
 - Example: 

 User viewed product details for iPhone 14 Pro Max. 
 User added the product to their shopping cart. 
 User selected the '256GB' storage option. 

 **Input:** 

 - **Screenshot:** <img> 
 - **Action:** {{action}} 

 **Note:** 

 - The action description may include contextual information like text content, direction (e.g., 
 'swiped left'), app name, or UI element name. 
 - The screenshot may contain a red bounding box highlighting the interacted element. 

Figure C3: Interaction summarization prompt
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 You are given a summarized user journey, consisting of screen summaries that describe what 
 the user saw on each screen and what they did. Your task is to analyze this journey and infer 
 the user's intent. 

 Your output should be a concise description of the user's intent that includes: 

 1. **The user's primary goal:** What were they ultimately trying to achieve? 
 2. **All apps involved:** List every app used in the journey. 
 3. **Key actions:**  Highlight specific actions within the summaries that reveal the intent (e.g., 
 search queries, filter selections,  options chosen). Avoid reporting purely navigational actions. 

 **Important Considerations:** 

 * **Complex Intents:** Longer journeys may involve evolving or multiple intents.  Strive to 
 identify the most plausible explanation for the user's actions, even if their initial goal shifted. 
 * **Conciseness:** Aim for 2-3 sentences that capture the essence of the intent. 
 * **Output Format:**  "AppName; Intent description" (e.g., "Amazon; User viewed the product 
 page for 'noise-canceling headphones',  added them to their cart, and proceeded to checkout.") 

 Your response should contain nothing but the output in the specified format. Do not add any 
 additional text or explanations. 

 **Important: ALL information should be extracted from the summaries. Do NOT introduce any 
 new information.** 

 **Output examples:** 

 Expedia; User launched the Expedia app, searched for flights from Paris (CDG) to London 
 (LHR) departing on January 7th, filtered results by "non-stop flights" and "lowest price", and 
 finally selected a British Airways flight departing at 10 PM. 

 Clock; User opened the Clock app, tapped on the "Alarm" tab, set a new alarm for 7:00 PM 
 tomorrow, toggled the "Snooze" option off, and saved the alarm. 

 Spotify; User opened Spotify, searched for "holiday music", tapped on the "Create Playlist" 
 button, named the playlist "Christmas 2024", and added songs like "Jingle Bells" and "Silent 
 Night" to the playlist. 

 Gmail; User opened the Gmail app, opened an email from "Bank of America" with the subject 
 "Your November Statement", tapped on the link to view the PDF statement, then navigated back 
 to their inbox and replied to an email from their boss with the subject "Project Update." 

Figure C4: Session-level intent prompt
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 You are given a summary of a user trajectory and an inferred goals of the user. 

 Your task is to rewrite the inferred goal in a way that it only contains information that is 
 present in the summaries. 
 Any information that is not present in the summaries should be removed. 

 Summaries: {{  [combined summaries]  }} 
 Inferred goal: {{  [clean goal]  }} 

 The output format should be a json object with the following format: 
 {{{{ 

 "facts_in_summaries": ["fact1", "fact2", ...], 
 "facts_not_in_summaries": ["fact3", "fact4", ...], 
 "rewritten_goal": "the rewritten goal in plain text" 

 }}}} 

Figure C5: Label refinement prompt
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