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ABSTRACT

State Space Models (SSMs), such as Mamba, have recently demonstrated the po-
tential to match or even surpass Transformers in language understanding tasks,
making them a promising alternative for designing Large Language Models
(LLMs). Concurrently, model quantization, particularly Post-Training Quantiza-
tion (PTQ), has been proven effective in reducing memory usage and inference
latency in LLMs. In this paper, we explore post-training quantization for Mamba
(Q-Mamba) by converting both linear projections and state caches into low-bit in-
tegers for efficient inference. After a theoretical analysis of the causes of outliers
in states, we propose Decoupled Scale Quantization (DSQ), which mitigates
outliers in both the state and channel dimensions by applying separate quantiza-
tion scales. To preserve the selective ability of quantized Mamba, we introduce
Efficient Selectivity Reconstruction (ESR), a block-wise reconstruction method
that involves a novel quantization simulation scheme, enabling fast parallel scan
algorithms with the non-linear quantization function. We demonstrate the effec-
tiveness of Q-Mamba across various quantization settings, model sizes, and both
generation and zero-shot tasks. In particular, for Mamba2-2.7B with W8A8H4
quantization, Q-Mamba achieves a 50% reduction in memory consumption with
only a 2.13% average accuracy degradation on zero-shot tasks.

1 INTRODUCTION

Large language models (LLMs), such as LLaMa (Touvron et al., 2023) and GPT-4 (OpenAI, 2023),
have shown exceptional capabilities in general-purpose language understanding (Kaplan et al., 2020;
Hoffmann et al., 2022). However, LLMs based on Transformer architectures still face a signifi-
cant limitation: the computational cost of their attention mechanism scales quadratically with the
sequence length (Vaswani et al., 2017). Therefore, prior works have focused on more efficient at-
tention variants, such as structured state space models (SSMs) (Gu & Dao, 2023; Dao & Gu, 2024;
Smith et al., 2023) and linear attention (Peng et al., 2023; Han et al., 2023; Child et al., 2019).
Among these, the Mamba architecture (Gu & Dao, 2023; Dao & Gu, 2024) has been shown to
match or exceed the downstream accuracy of Transformers on standard language modeling tasks
(Waleffe et al., 2024). Following its success in natural language understanding, it has also garnered
significant attention in other research areas, such as vision and multimodal tasks (Qiao et al., 2024;
Zhu et al., 2024).

Like Transformers, Mamba language models also operate in two computation phases (Patel et al.,
2024). The first is the prefill phase, where all input prompt tokens are processed in parallel through
the model’s forward pass to generate the first output token. During this phase, Mamba models (Gu
& Dao, 2023; Dao & Gu, 2024) employ a hardware-efficient parallel algorithm to compute SSMs
(Section 3). The second is the token generation phase, where subsequent output tokens are generated
sequentially, relying on the cached state from previous tokens in the sequence. Due to the lack of
computational parallelism, this phase tends to be more memory-bound and contributes significantly
to the total generation latency.

Although Mamba has successfully replaced the O(T 2) attention module with O(T ) selective state
space models, our profiling results in Section 4 indicate that it still suffers from two inefficien-
cies during the generation stage. Firstly, similar to Transformers, the Mamba architecture consists
of large linear layers, which require substantial GPU memory and slow down token generation
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(Figure 2b). Secondly, as larger states allow more information to be stored, states in Mamba are
expanded to be N times larger than vanilla activations, where N is the state dimension (128 in
Mamba-2 models). Consequently, these state caches account for a significant portion of memory
consumption, especially after quantizing weights to low bits (79.6% in Mamba2-2.7B with a batch
size of 128, as shown in Figure 2a). In this paper, we address a key question: Can Mamba models
be further optimized through model compression techniques?

In this paper, we propose Q-Mamba, which quantizes both linear projections and state caches
into low-bit integers for Mamba models. Although previous research has successfully quantized
Key and Value (KV) caches into low-bit representations in transformers (Liu et al., 2023; 2024b;
Hooper et al., 2024), this work is the first to explore the quantization of state cache in Mamba ar-
chitectures. We observe that states exhibit both outlier channels and outlier states (i.e., the state
dimension contains large values across all channel dimensions), as shown in Figure 3. Further the-
oretical analysis reveals this phenomenon results from the computation of the outer products of two
activations, each of which contains outliers in distinct dimensions. This observation motivates us
to propose Decoupled Scale Quantization (DSQ), which utilizes separate quantization scales for
both dimensions. Additionally, the non-linear nature of the quantization function disrupts the orig-
inal equivalence between recurrence and quadratic dual form, the latter being essential for efficient
training. To address this, we propose Efficient Selectivity Reconstruction (ESR), which simulates
quantization errors by quantizing only the final timestep during training. Specifically, ESR updates a
small number of selective parameters (approximately 2% of the total) using just 128 training samples
in a block-wise reconstruction manner.

Extensive experiments demonstrate that our methods achieve significant performance improvements
for Mamba families on various evaluation metrics. To the best of our knowledge, we are the first
to achieve W8A8H4 (8-bit linear projection and 4-bit states) for the Mamba architectures. For
generation tasks, Q-Mamba achieved perplexities of 12.99 and 16.90 with 4-bit states on WikiText2
(Merity et al., 2017) and C4 (Pal et al., 2023), respectively, while baseline methods degraded to 21.18
and 29.86 even with 6-bit quantization. Additionally, Q-Mamba achieves W8A8H4 quantization for
zero-shot tasks with only 2.13% and 2.11% average accuracy degradation on Mamba2-2.7B and
Mamba2-1.3B, respectively.

2 RELATED WORKS

2.1 STATE SPACE MODEL

Transformer-based LLMs (Touvron et al., 2023; OpenAI, 2023) suffer from the computational cost
of their attention mechanism scales quadratically with sequence length. Consequently, much re-
search has focused on developing more efficient variants of attention, such as structured state space
models (SSMs) (Gu & Dao, 2023; Dao & Gu, 2024; Smith et al., 2023). The original structured
SSMs (S4) (Gu et al., 2022) were linear time-invariant (LTI) systems motivated by continuous-time
online memorization. Many variants of structured SSMs have been proposed, for example, Gated
SSM architectures, such as GSS (Mehta et al., 2023) and BiGS (Wang et al., 2023), incorporate a
gating mechanism into SSMs for language modeling. Recently, the Mamba (Gu & Dao, 2023; Dao
& Gu, 2024) architecture demonstrates promising performance on standard language modeling tasks
(Waleffe et al., 2024), as well as on vision and multimodal tasks (Zhu et al., 2024; Qiao et al., 2024).
Mamba showed that state expansion and selective ability are crucial for selecting and memorizing
useful information in the hidden states.

2.2 MODEL QUANTIZATION

In the current era of burgeoning LLM development, model quantization has also become widely
employed (Xiao et al., 2023; Lin et al., 2023; Frantar et al., 2022). Considering the substantial
computational costs of retraining the entire model, much research has focused on Post-Training
Quantization (PTQ), which requires only a small amount of calibration data to adjust a limited por-
tion of the parameters. Typically, PTQ methods operate by quantizing and finetuning individual
layers or small blocks of consecutive layers. For example, AdaRound (Nagel et al., 2020) uses
gradient optimization to determine optimal rounding in a single convolution layer. For LLMs, pre-
vious quantization methods have identified significantly larger outliers in activations compared to
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Figure 1: Schematic of the PTQ framework for Mamba. Left: The selective parameters B, ∆,
and C, along with the SSM inputs x, are generated by the input projections in the Mamba block.
Middle: After quantizing states using DSQ, ESR updates a small number of selective parameters
(approximately 2% of the total) in a block-wise reconstruction manner. Right: Finally, we quantize
the linear projection into W8A8.

smaller convolutional neural networks (CNNs). To quantize both weights and activations into INT8,
SmoothQuant (Xiao et al., 2023) mitigates activation outliers by shifting the quantization difficulty
from activations to weights through a mathematically equivalent transformation. These outliers in
activations also pose challenges even in scenarios where activations are not quantized (i.e., weight-
only quantization) because they amplify the quantization errors of weights when multiplied with
activations.

For Mamba models, states have an additional state dimension compared to standard activations,
resulting in not only more significant memory consumption but also a distinctive distribution of
outliers. To address this issue, we propose two novel methods that enable the quantization of states
into 4-bit integers for the first time.

3 FOUNDATIONS

State Space Model. State space models (SSMs) in Equation (1) map a 1-dimensional input se-
quence xt ∈ R to an output sequence yt ∈ R through a latent state ht ∈ R(N,1):

ht = Āht−1 + B̄xt (1a)
yt = Cht (1b)

h′(t) = Ah(t) +Bx(t) (2a)
y(t) = Ch(t) (2b)

where Ā ∈ R(N,N), B, B̄, ht−1, ht, h(t) ∈ R(N,1), and C ∈ R(1,N). Equation (1) can be viewed
as discrete versions of a classical continuous system described by Equation (2). Specifically, a
timescale parameter ∆ is introduced to discretize the parameters A and B into their discrete coun-
terparts, Ā and B̄, as explained in the following sections.

Mamba-1. To operate on an input sequence xt with D channels, rather than the scalar sequence
described earlier, Mamba-1 (Gu & Dao, 2023) assumes that Ā has a diagonal structure and applies
the SSM independently to each channel:

ht = Ā⊙ ht−1 + B̄ ⊙ xt, Ā, B̄, ht, ht−1 ∈ R(N,D), xt ∈ R(1,D) (3a)

yt = Cht, C ∈ R(1,N), yt ∈ R(1,D) (3b)

where ⊙ denotes the element-wise product, with automatic broadcasting applied to dimensions of
size one.. The discretized parameters are defined as Ā = exp(A ⊙ ∆) and B̄ = B ⊙ ∆, where
A ∈ R(N,D), B ∈ R(N,1), and ∆ ∈ R(1,D). Unlike previous non-selective SSMs, Mamba set ∆, B,
and C as functions of the inputs rather than fixed parameters. As a result, the variables Ā, B̄, and C
can vary across time steps to dynamically select relevant information from the context.

3
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Mamba-2. To integrate the multi-head design of modern attention mechanisms into Mamba ar-
chitectures, Mamba-2 (Dao & Gu, 2024) further assumes that Ā and B̄ are identical across all
dimensions within the same head where the head dimension P ∈ {64, 128}:

ht = Ā · ht−1 + B̄ ⊗ xt, ht, ht−1 ∈ R(N,P ), Ā ∈ R, B̄ ∈ R(N,1) (4a)

yt = Cht, C ∈ R(1,N), xt, yt ∈ R(1,P ) (4b)

The discretized parameters are still defined as Ā = exp(A⊙∆) and B̄ = B ⊙∆. However, unlike
Mamba-1, A and ∆ are simplified into two scalars within a single head, transforming the operation
between B̄ and x into an outer product. This simplification improves training efficiency and allows
for a larger state size. Consequently, Mamba-2 increases the state size N from 16 in Mamba-1
to 128. Figure 1 left shows the architecture of the Mamba-2 block. The selective parameters B,
∆, and C, along with the SSM inputs xt, are produced by the input projections in the Mamba
block. Specifically, Mamba-2 employs B = (uWB)

⊤, C = uWC ,∆ = uW∆, xt = uWx, where
WB ,WC ∈ R(D,N),Wx ∈ R(D,P ),W∆ ∈ R(D,1) and u ∈ R(1,D) represents the inputs of Mamba
block.

Parallel Training. The recurrent mode described in Equation (1) is used only during the token
generation phase, where output tokens are generated sequentially, relying on the cached state from
the previous timestep. For parallel training, Mamba Dao & Gu (2024) establishes the equivalence
between selective SSMs and semiseparable matrices, enabling the use of efficient algorithms for
structured matrix multiplication (e.g, prefix sum algorithm (Goldberg & Zwick, 1995) ). Specifi-
cally, Equation (5) represents the quadratic form of Equation (1) to compute all timesteps simulta-
neously:

yt =

t∑
s=0

CtĀ
×
t:sBsxs, B̄, C̄⊤ ∈ R(N,1), Ā ∈ R(N,N), xt, yt ∈ R

y = Mx, Mji := CjAj · · ·Ai+1Bi, M ∈ R(T,T )

(5)

where M is N-semiseparable matrix.

This paper primarily focuses on quantizing the Mamba-2 architecture, which has demonstrated su-
perior performance compared to Mamba-1 across various tasks (Waleffe et al., 2024; Dao & Gu,
2024). A detailed comparison between the two architectures from a quantization perspective is pro-
vided in the appendix. For more information on the Mamba architecture, please refer to the original
papers (Gu & Dao, 2023; Dao & Gu, 2024).

4 ANALYSIS

In this section, we first analyze the memory consumption and runtime of primary components on
the Mamba2-2.7B model, i.e., linear projection, 1D convolution, SSM, and LayerNorm. Based on
the results presented in Figures 2a and Figures 2b, we can draw the following conclusions:

Linear projections. Similar to Transformers, large linear layers in Mamba not only require sub-
stantial GPU memory but also slow down token generation. When applying quantization to these
linear layers, experiments in Section A.1 reveal that outliers exist in specific activation channels of
Mamba, particularly in output projections. This phenomenon has also been observed in previous
studies on Transformer-based LLMs (Xiao et al., 2023; Wei et al., 2022).

States in SSMs. As larger states allow more information to be stored, states in Mamba are expanded
to be N times larger than vanilla activations, where N is the state dimension (128 in Mamba-2
models). Consequently, these state caches account for a significant portion of memory consumption,
especially after quantizing weights to low bits (e.g., 79.6% in Mamba2-2.7B with a batch size of 128,
as shown in Figure 2a). This phenomenon not only poses challenges for increasing the batch size
to enhance throughput but also prevents further enlargement of state dimensions in Mamba models,
which would improve their storage capacity for long contexts (Dao & Gu, 2024; Arora et al., 2024).

To address the above problems, in this paper, we aim to quantize both linear projections and state
caches into low-bit integers for Mamba models.

4
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Figure 2: State distribution in Mamba2-370M. Left: Memory consumption of weights and state
caches in Mamba2-2.7B with different batch sizes. Right: The Runtime of the Mamba2-2.7B model
using NVIDIA profiling tools, with both prompt and generation lengths set to 100 and a batch size
of 32.

5 METHOD

5.1 DECOUPLED SCALE QUANTIZATION

5.1.1 OUTLIERS IN STATES

For Transformers, particularly LLMs, extensive research (Wei et al., 2022; Xiao et al., 2023; Liu
et al., 2024a) has shown that the presence of outliers extends the range of activation values, which
in turn increases quantization errors for normal values. In Mamba models, we observe a similar
or even more pronounced issue with outliers in the states. As illustrated in the state distribution
visualization in Figure 3(a), outliers are present in both state dimensions (red row) and channel
dimensions (green column). Consequently, either per-channel quantization (i.e., using a different
quantization step for each channel) or per-state quantization (i.e., using a different quantization step
for each state) tends to ignore outliers in the other dimension. As shown in Table 3, the model’s
performance declines significantly when adopting the above quantization granularity, which calls
for a more effective quantization method to address the problem.

5.1.2 DECOUPLED SCALE QUANTIZATION

Motivated by the distribution characteristics shown in Figure 3, we present the following theorem,
which reveals the underlying causes of this distribution and provides insights for a solution.
Theorem 1. Assuming ut ∼ N (0, σIn) and At is a constant, Bt = (uWB)

⊤, xt = uWx, the
variance of states ht = At · ht−1 +Bt ⊗ xt can be factorized into two vectors:

V ar[ht] ∝ α · βT , αi = ||W x
i,:||22 and βi = ||WB

i,:||22 (6)

The above theorem demonstrates that outliers in
the channel dimension P and state dimension N
can be attributed to variables xt and Bt, respec-
tively. A visualization of this phenomenon is pro-
vided in Figure 3(b). This motivates us to pro-
pose a novel quantization scheme called Decou-
pled Scale Quantization (DSQ), which utilizes
separate quantization scales for the state dimen-
sion and the channel dimension:

× ×
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Figure 4: An illustration of DSQ.

Q(h) = ⌊ h

Schannel · S⊤
state

⌉ ⊙ (Schannel · S⊤
state) (7)

where Schannel ∈ RP , Sstate ∈ RN and ⌈·⌋ denotes rounding floating-point values to the nearest
integers, while ⊙ signifies element-wise multiplication.
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Figure 3: State distribution in Mamba2-370M. Left: Outliers exist in both specific state dimensions
(red) and channel dimensions (green). Right: Further analysis reveals outliers in channel dimension
and state dimension can be attributed to variables xt and Bt, respectively.

In this paragraph, we discuss how to compute scales given a specific state. To increase the effective
quantization bits, both state and channel scales should accurately represent the magnitude of their
respective dimensions. Therefore, an intuitive metric to determine these scales is the vector norm,
such as maximum norm (∥ · ∥∞) and L1 norm (∥ · ∥1). However, in practice, we find that both
norms result in even worse performance (see Table 5). Further visualization in Figure 8 shows that
these norms are highly sensitive to outliers, resulting in even greater bit wastage. Therefore, for
the channel scale, we use the square root of the mean values, which offers a more robust metric
that mitigates the influence of outliers. After mitigating most outliers by smoothing the states with
channel scale, we employ the MinMax method to compute state scale, which effectively compresses
the data range and reduces information loss during quantization:

Schannel,i = sqrt(mean(abs(hi,:))) =
√
||hi,:||1 (8)

Sstate,j = max(abs(
h:,j

Schannel
)) = || h:,j

Schannel
||∞ (9)

where i and j denote subscripts indexing into the channel and state dimensions, respectively. Table 3
demonstrates that DSQ achieves negligible overhead while significantly improving performance.

5.2 EFFICIENT SELECTIVITY RECONSTRUCTION

To mitigate the performance loss caused by quantization, PTQ methods often apply block-wise
reconstruction (Nagel et al., 2020; Li et al., 2021) with a few data. However, these methods cannot
be directly applied to Mamba models due to the following differences: First, when applying the
non-linear quantization function to states ht, the definition of SSMs can no longer be reformulated
into quadratic mode for parallel training. Second, given the distinct mechanisms between Mamba
and Transformers, it is necessary to investigate which set of parameters is critical for restoring model
performance and which may lead to overfitting. In this section, we will present Efficient Selectivity
Reconstruction (ESR) with the mechanisms to address these two challenges in Section 5.2.1 and
Section 5.2.2, respectively.

5.2.1 QUANTIZATION-AWARE STATE SPACE MODEL

To minimize memory bandwidth utilization, we store state caches as low-bit elements, then load
and dequantize them before computation at the next timestep. This process defines a new sequence
transformation through the quantized latent state hq

t in Equation (10). It is important to distinguish
hq
t = ĀQ(hq

t−1) + B̄xt from the quantized value of the original ht, denoted as Q(ht), where the
latter is given by Q(ht) = Q(Āht−1 + B̄xt).

6
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hq
t = ĀQ(hq

t−1) + B̄xt, (10a)

yqt = Chq
t (10b)

A significant challenge arises because the original parallel training algorithms are incompatible with
the quantization scenario. Specifically, the non-linear nature of the quantization function breaks the
equivalence between the recurrent and quadratic modes. (In other words, this equivalence relies on
the linearity of original SSMs.) A naive approach would involve directly applying Equation (10)
for token-by-token generation. However, given the large input lengths (e.g., 2048), this method is
extremely slow and impractical. Therefore, to apply block-wise reconstruction for Mamba models,
it is essential to first investigate how to effectively simulate quantization errors during training.

hq
t = ĀtQ(hq

t−1) + B̄txt

= ĀtQ(Āt−1h
q
t−2 + B̄t−1xt−1) + B̄txt

̸= ĀtĀt−1Q(hq
t−2) + ĀtB̄t−1xt−1 + B̄txt

̸=
t∑

s=1

ĀsĀs+1 · · · ĀtB̄sxs

(11)

To gain insight into this problem, we focus on the difference between the quantized and original
states, which is defined as δt = hq

t − ht. By substituting δt into Equation (10), we observe that δt is
composed of two parts: the quantization error propagated from the previous timestep, δt−1, and the
quantization error introduced in the current timestep:

δt = hq
t − ht = ĀtQ(hq

t−1) + B̄txt − (Ātht−1 + B̄txt)

= Āt · (Q(hq
t−1)− ht−1)

= Āt · (Q(ht−1 + δt−1)− ht−1)

(12)

Assuming that quantization errors δt−1 are sufficiently small compared to the hidden state ht−1, we
discard δt−1 and focus only on the quantization errors at the current timestep:

Q(ht−1 + δt−1) ≈ Q(ht−1) +Q′(ht−1) · δt−1 ≈ Q(ht−1)

=⇒ hq
t ≈ ĀtQ(ht−1) + B̄txt

(13)

Equation (13) enables us to utilize the parallel algorithm to compute ht at all timesteps, then simulate
the quantization errors by quantizing only one step during training. In the appendix, we present the
pseudocode for the parallel training of quantization-aware SSMs for illustrative purposes. Table 4
demonstrates the effectiveness of this quantization simulation, especially in low-bit settings.

5.2.2 SELECTIVITY GUIDED ADAPTATION

In the Mamba block, the selective parameters B, ∆, and C, along with the SSM inputs xt, are
generated through input projections, as shown in Figure 1. During block-wise reconstruction, we
freeze the linear projections corresponding to the SSM inputs x and z, while keeping the linear
projections for selective parameters B, C, and ∆ learnable, which is referred to as Selectivity Guided
Adaptation (SGA) (Figure 1, middle). Specifically,

min
{W q

v |v∈B,C,∆}

∥∥Bl(W
FP
v , hFP

t ;ul)− Bl(W
q
v , h

q
t ;ul)

∥∥
2
, v∈{x, z,B,C,∆} (14)

where Bl denotes the −th mapping function for the l-th Mamba block and ul represents the block’s
inputs. WFP and W q represent the weights of the original model and the quantized model, respec-
tively.

SGA offers two primary advantages: First, the success of Mamba is largely attributed to the selec-
tivity of parameters Ā, B̄, and C̄, which distinguishes it from earlier non-selective SSMs (Gu et al.,
2020; Smith et al., 2023). Thus, we hypothesize that this selectivity also plays a critical role in main-
taining performance after quantization. Second, SGA reduces the number of learnable parameters,
mitigating the risk of overfitting with limited calibration data. For example, in Mamba2-2.7B, learn-
able parameters account for only about 2% of the total. Note that during this fine-tuning process,
the linear layers remain in floating-point values and can be quantized afterward (Figure 1, right).
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Table 1: Evaluation results of the Mamba-2 models on generation tasks. #W, #A, and #H indicate
weight bits, activation bits, and state bits, respectively.

Bits Method WikiText2 ↓ C4 ↓
130M 370M 780M 1.3B 2.7B 130M 350M 780M 1.3B 2.7B

FP16 - 20.04 14.16 11.81 10.42 9.06 22.25 16.95 14.66 13.27 11.95

W16A16H4 Baseline 976.56 913.34 865.78 1556.15 116.23 542.048 599.49 911.31 529.55 96.93
Q-Mamba 45.73 22.24 19.07 15.20 11.55 39.46 26.36 22.45 19.14 14.90

W16A16H6 Baseline 249.09 134.91 38.04 23.62 13.60 322.97 101.75 38.24 23.73 19.61
Q-Mamba 23.79 15.33 12.69 11.37 9.59 25.11 18.27 15.66 14.52 12.57

W16A16H8 Baseline 20.97 14.83 12.04 10.52 9.11 22.97 17.45 14.85 13.40 12.01
Q-Mamba 20.49 14.26 11.86 10.51 9.11 22.64 17.05 14.73 13.39 12.04

W8A8H4 Baseline 2024.49 1013.15 7225.39 6375.57 364.84 635.86 795.28 10716.17 2788.23 298.57
Q-Mamba 53.12 27.53 23.53 17.60 12.99 46.90 32.91 26.79 21.56 16.90

W8A8H6 Baseline 357.69 220.09 96.51 47.28 21.18 526.59 171.90 79.70 40.46 29.86
Q-Mamba 26.75 17.27 14.51 13.05 10.84 28.18 20.53 17.79 16.45 14.46

W8A8H8 Baseline 23.60 16.69 14.32 11.85 10.42 25.51 19.50 17.44 14.86 13.73
Q-Mamba 22.88 15.83 13.57 11.93 10.36 25.01 18.84 16.80 15.03 13.69

6 EXPERIMENTS

6.1 EXPERIMENT SETUP

Settings. We conduct experiments on the Mamba-2 (Dao & Gu, 2024) models across various model
sizes (130M, 370M, 780M, 1.3B, 2.7B). We initialize quantized models using a full-precision model.
We utilize the AdamW optimizer with zero weight decay to optimize the learnable parameters in
ESR. The learning rate for learnable parameters is set to 1e-3. RedPajama is an open-source repro-
duction of the pre-training data for LLaMA(Touvron et al., 2023). We employ a calibration dataset
consisting of 128 randomly selected 2048-token segments from the RedPajama (Computer, 2023)
dataset, except for Mamba2-2.7B, which utilizes 256 samples. The entire training process is facili-
tated on a single NVIDIA A800 GPU, using a batch size of 1 over 3 epochs. For linear projections,
we apply SmoothQuant (Xiao et al., 2023) with per-token quantization. For state quantization, we
use INT8, INT6, and INT4 schemes (e.g., W8A8H4 refers to 8-bit linear projection and 4-bit quan-
tization of the states). We utilize MinMax per-channel quantization (introduced in Section 5.1.2) as
state quantization baseline.

Evaluation Tasks. We evaluate our methods on both language generation and zero-shot tasks. We
report the perplexity on WikiText2 (Merity et al., 2017) and C4 (Pal et al., 2023). For zero-shot
tasks, we provide accuracy on datasets including PIQA (Bisk et al., 2020), ARC (Clark et al., 2018),
BoolQ (Clark et al., 2019), OpenBookQA (Mihaylov et al., 2018), HellaSwag (Zellers et al., 2019)
and Winogrande (Sakaguchi et al., 2020).

6.2 MAIN RESULTS

Generation Tasks. We evaluate generation tasks in recurrent mode with a sequence length of
2048. The results in Table 1 demonstrate the effectiveness of Q-Mamba across various quantiza-
tion configurations. For INT8 state quantization, we exclusively utilize DSQ without ESR, as DSQ
alone achieves nearly lossless quantization compared to full-precision models. Without our methods,
states are limited to 8-bit quantization, with lower-bit quantization, such as 6-bit, leading to signifi-
cant performance degradation, e.g., 23.62 perplexity for Mamba2-1.3B on the WikiText2 dataset. In
contrast, Q-Mamba facilitates nearly lossless 6-bit quantization, achieving a minimal degradation of
only 0.53 perplexity for Mamba2-2.7B and 0.88 perplexity for Mamba2-1.3B. Moreover, Q-Mamba
enables effective 4-bit quantization and is compatible with the linear projection quantization ap-
proach. For example, Q-Mamba achieves 12.99 perplexity in W8A8H4 quantization settings for the
Mamba2-2.7B model.

Zero-shot Tasks. We evaluate the performance of Q-Mamba on zero-shot tasks using the lm-eval-
harness (Gao et al., 2024) framework in Table 2. Q-Mamba significantly improves the average
accuracy across various models. For example, it increases the average accuracy by 6.37%, 6.55%,
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Table 2: Evaluation results of the Mamba-2 models with W8A8H4 (8-bit weights, activations, and
4-bit states) on zero-shot tasks.

Model Method OBQA PIQA ARC-E ARC-C HellaSwag WINO AVG ↑
Mamba2-130M FP 30.6 64.9 47.4 24.2 35.3 52.1 42.41

Baseline 30.8 63.4 45.6 24.6 34.1 51.93 41.73
Q-Mamba 30.0 63.0 45.7 23.4 33.9 53.3 41.55

Mamba2-370M FP 32.4 70.5 54.9 26.9 46.9 55.7 47.83
Baseline 28.6 58.6 46.5 24.9 30.4 53.0 40.34
Q-Mamba 32.8 68.4 53.8 26.7 43.8 54.8 46.71

Mamba2-780M FP 36.2 72.0 61.0 28.5 54.9 60.2 52.13
Baseline 32.0 61.8 50.5 25.9 29.5 57.5 42.85
Q-Mamba 34.2 69.6 57.3 27.6 52.1 55.6 49.4

Mamba2-1.3B FP 37.8 73.2 64.3 33.3 59.9 60.9 54.9
Baseline 35.6 67.1 57.6 29.2 36.8 58.5 47.46
Q-Mamba 34.8 72.6 62.5 31.4 55.7 59.5 52.77

Mamba2-2.7B FP 38.8 76.4 69.6 36.4 66.6 64.0 58.63
Baseline 39.8 73.2 66.8 36.0 56.4 59.6 55.30
Q-Mamba 40.0 73.9 66.8 35.4 62.0 61.0 56.52

and 5.31% on the 370M, 780M, and 1.3B models. Additionally, for Mamba2-2.7B and Mamba2-
1.3B, Q-Mamba achieves W8A8H4 quantization with only 2.13% and 2.11% accuracy degradation.

Table 3: The performance and overheads of
different quantization methods on Mamba2-
370M. P and N denote channel and state di-
mensions, respectively.

Granularity WikiText2 ↓ Overheads

Per-tensor 4815.83 1
P×N

Per-channel 3364.58 1
P

Per-state 947.88 1
N

DSQ 25.73 1
P + 1

N

Table 4: Efficacy of each component in ESR.
ESR enables adjusting parameters of Mamba
blocks after quantizing states in block-wise
reconstruction. When combined with SGA,
these two techniques further enhance perfor-
mance.

Method WikiText2 ↓ C4 ↓
DSQ w/o ESR 25.73 29.94
DSQ+ESR (w/o SGA) 23.73 28.19
DSQ+ESR (w/ SGA) 21.92 25.99

6.3 ABLATIONS

In this section, we conduct experiments to validate the efficacy of each component, as well as the
design choices for DSQ, training epochs, and calibration data size. In Section A.3 of the Appendix,
we provide visualizations of DSQ and a detailed analysis of the impact of trainable parameters in
ESR.

Effectiveness of each component. Table 3 demonstrates that DSQ is essential in state quantization.
The model’s performance declines significantly when per-channel or per-state quantization methods
are adopted. By decoupling scales in the state and channel dimensions, DSQ mitigates outliers
in both dimensions with negligible overhead. Table 4 shows that we can further enhance model
performance in block-wise reconstruction with ESR. Furthermore, finetuning selective parameters
instead of all parameters can help avoid overfitting and yield better results.

Design choices of DSQ. The results in Table 5 highlight the critical importance of selecting appro-
priate quantization scales for DSQ. Firstly, squaring the norms as quantization scales is essential
for maintaining stability. Furthermore, using mean values yields superior performance compared to
relying on maximum values.

Samples and epochs for block-wise reconstruction. To ensure training efficiency, we set 3 epochs
and 128 samples for all experiments, except for Mamba2-2.7B, where we use 256 samples. How-
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Figure 5: Inference latency and memory usage of the Mamba2 models with different batch sizes on
NVIDIA GeForce RTX 3090.

ever, as shown in Figure 6, performance can be further improved by increasing the number of train-
ing samples and epochs.

6.4 EFFICIENCY

Figure 5 presents the memory and time requirements for inference using Mamba2 models. For
W8A8 linear projections, we employ CUDA INT8 GEMM, following the approach of SmoothQuant
(Xiao et al., 2023). For INT4 state quantization, we implement SSM kernels with quantized and
packed states with Triton (Tillet et al., 2019), a language and compiler for CUDA computation.
Both the input context and generation length are set to 100. The results show that the quantized
models can reduce memory usage by half while maintaining or even improving inference latency.
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Figure 6: Illustration of WikiText2 perplexity of
W16A16H4 quantization with different training
samples and epochs.

Table 5: Impact of different design choices for
DSQ. Experiments are conducted on Mamba2-
370M with W16A16H4 quantization.

Method WikiText2 ↓ C4 ↓
abs.max inf inf
abs.max.sqrt 42.88 46.61
abs.mean inf inf
abs.mean.sqrt 25.73 29.94

7 CONCLUSION

In this paper, we propose Q-Mamba, a novel quantization scheme designed for Mamba models.
After visualizing outliers in states, we conduct a theoretical analysis of their causes and propose
Decoupled Scale Quantization (DSQ). By decoupling scales in the state and channel dimensions,
DSQ mitigates outliers in both dimensions while introducing negligible overhead. To further boost
performance through block-wise reconstruction, we propose Efficient Selectivity Reconstruction
(ESR), which includes a novel quantization simulation method that enables efficient fine-tuning of
selective parameters with parallel scan mode. We validate the performance of Q-Mamba across
various quantization settings, model sizes, and both generation and zero-shot tasks. In conclusion,
Q-Mamba demonstrates that Mamba architectures have the potential for further optimization when
combined with other model compression techniques.
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A APPENDIX
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Figure 7: Visualization of inputs for linear projections. The out projection suffers from more severe
outliers compared to the in projection.

A.1 PREVIOUS PTQ METHODS ON MAMBA

In Section 4, we analyze the quantization of linear projections in Mamba models. Here, we pro-
vide more detailed results about previous PTQ methods on Mamba-1 and Mamba-2 models. We
will analyze the difference between Mamba-1 models and Mamba-2 models from a view of model
quantization. The results presented in Table 6 indicate that Mamba2 models exhibit greater robust-
ness to quantization compared to Mamba1 models. Further analysis in Figure 7 reveals that this
improvement is largely due to the additional LayerNorm applied before the output projection in
Mamba2, which helps to reduce outliers to a certain extent. Moreover, this LayerNorm simplifies
the implementation of previous PTQ methods based on smoothing between weights and activations,
such as SmoothQuant (Xiao et al., 2023) and AWQ (Lin et al., 2023). As a result, this paper primar-
ily focuses on Mamba2 models, which not only feature larger state dimensions but are also more
amenable to quantization.

Model Method WikiText2 C4
Mamba1-370M FP 14.31 17.23

W8A8 18.95 23.04
W8A8+SQ 16.17 19.85

W4A16+ GPTQ 16.03 19.06

Mamba2-370M FP 14.16 16.95
W8A8 17.14 20.10

W8A8+SQ 15.71 18.72
W4A16+GPTQ 15.81 18.71

Table 6: Different PTQ methods for Mamba models. Mamba-1 models suffer much more serious
outliers in output projections because of the absence of LayerNorm before it.

A.2 PROOF

Theorem 2. Assuming ut ∼ N (0, σIn) and At is a constant, Bt, xt = split(Wut) (Bt ∈ RN ,
xt ∈ RP ), the variance of states ht can be factorized into two vectors:

ht = At · ht−1 + xt ·B⊤
t (15)
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V ar[ht] ∝ α · βT , αi = ||W x
i,:||22 and βi = ||WB

i,:||22 (16)

where α ∈ RP and β ∈ RN and WB ,W x = split(W,dim = 0)

Proof. Firstly, we can reformulate Equation (??) as a prefix sum:

ht =

t∑
i

Ai:txiB
⊤
i , where Ai:t = Ai ×Ai+1 × . . . At (17)

Then, we can compute the mean of states ht as follows:

E[ht] =

t∑
i

Ai:tE[xiB
⊤
i ]

=

t∑
i

Ai:tE[W xuiu
⊤
i W

b⊤]

=

t∑
i

Ai:tW
xE[uiu

⊤
i ]W

b⊤

=

t∑
i

Ai:tσW
xW b⊤

(18)

After computing the mean of the states, we can similarly compute the variance of the states ht. The
equality (a) is attributed to Lemma 1.

Var[xiB
⊤
i ] = E[(W xuiu

⊤
i W

b⊤ − σW xW b⊤)]

= E[(W x(uiu
⊤
i )W

b⊤)2]− 2σ · E[W xW b⊤ ⊙ (W xuiu
⊤
i W

b⊤)] + (σW xW b⊤)2

(a)
= σ2α · β⊤ + 2σ2 · (W xW⊤

b )2 − 2σ2 · (W xW⊤
b )2 + σ2 · (W xW b⊤)2

= σ2α · β⊤ + σ2 · (W xW b⊤)2

(19)
Here, we assume that the second term (W xW b⊤)2 is sufficiently small compared to α · β⊤, and
then we obtain:

Var[ht] = = (σ2
t∑
i

Ai:t) · (α · β⊤) (20)

Lemma 1. Assuming z ∼ N (0, In), w1, w2 ∈ Rn, we have the following conclusions:

E[(w1
⊤z)2(w2

⊤z)2] = ||w1||22 · ||w2||22 + 2(w1
⊤w2)

2 (21)
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Figure 8: An illustration of how DSQ enhances performance.

Proof. Let A and B be two arbitrary symmetric matrices, we have:

E
[
x⊤Ax · x⊤Bx

]
= E

∑
i,j

xiaijxj

∑
k,l

xkbklxl


= E

∑
i,k

aiibkkx
2
ix

2
k + 4

∑
i<j

aijbijx
2
ix

2
j


=

∑
i,k

aiibkk + 2
∑
i

aiibii + 2

∑
i,j

aijbij −
∑
i

aiibii


=

∑
i

aii
∑
k

bkk + 2
∑
i,j

aijbij

= Tr(A)Tr(B) + 2Tr(AB)

(22)

A special case occurs when A = w1w1
⊤ and B = w2w2

⊤:

E[(w1
⊤z)2(w2

⊤z)2] = ||w1||22 · ||w2||22 + 2(w1
⊤w2)

2 (23)

Although this theorem imposes strict constraints on the SSM inputs ut (Gaussian distribution) and
At (constant), it sufficiently reveals the following fact: outliers in the channel dimension P and state
dimension N can be attributed to the variables xt ∈ R(T,P ) and Bt ∈ R(T,N), respectively. Figure 3
provides a visualization of this phenomenon.

A.3 MORE ABLATION STUDIES

Visualization of DSQ. Figure 8 illustrates how DSQ improves performance. The presence of out-
liers causes MinMax quantization to waste a significant portion of available quantization slots, re-
sulting in large rounding errors. Although introducing channel scales Schannel helps make the
quantization slots non-uniform, the mean norm remains sensitive to outliers, even unexpectedly am-
plifying them (as shown in the middle figure).

Trainable parameters in ESR. Table 7 demonstrates the effectiveness of our choice of trainable
parameters in ESR: Fine-tuning selective parameters (B, C, and ∆), layer normalization, and con-
volution yields the best perplexity. In contrast, including x and z results in worse performance.
We attribute this to the fact that fine-tuning all parameters can lead to overfitting and necessitates
end-to-end training.

A.4 PSEUDOCODE

In this section, we present the pseudocode for the parallel training of quantization-aware SSMs. To
enhance understanding, we also include the pseudocode for the recurrent and quadratic modes of

17
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Norm ∆,B,C,D Conv-1D X,Z WikiText2 C4
25.73 29.94

✓ 24.76 29.02
✓ 23.27 27.22

✓ 25.24 29.09
✓ 24.99 28.88

✓ ✓ 22.51 27.00
✓ ✓ 24.93 28.87
✓ ✓ 25.31 29.43

✓ ✓ 22.68 26.91
✓ ✓ 22.97 26.41

✓ ✓ 25.66 28.89
✓ ✓ ✓ 21.92 25.99
✓ ✓ ✓ 23.63 27,43
✓ ✓ ✓ 24.89 29.04

✓ ✓ ✓ 23.01 26.98
✓ ✓ ✓ ✓ 23.73 28.19

Table 7: The performance of W16A16H4 quantization for Mamba2-370M with different trainable
parameters in the ESR.

Mamba-2. It is worth noting that these pseudocodes are provided solely for illustrative purposes and
do not represent actual implementations.

1 def ParallelSSM(
2 A, # bsz * num_head * len
3 B, # bsz * num_head * len * state_dim
4 C, # bsz * num_head * len * state_dim
5 x # bsz * num_head * len * channel_dim
6 ):
7 BC = C @ B.transpose(-1, -2)
8 prefix_sum = torch.cumsum(A)
9

10 # L : bsz * num_head * len * len
11 L = torch.tril(prefix_sum.unsqueeze(-1) - prefix_sum.unsqueeze(-2))
12

13 ABC = L * BC
14 y = ABC @ x
15 return y

1 def RecurrentSSM_onestep(
2 A, # bsz * num_head
3 B, # bsz * num_head * state_dim
4 C, # bsz * num_head * state_dim
5 x, # bsz * num_head * channel_dim
6 last_state # bsz * num_head * channel_dim * state_dim
7 ):
8 current_state = A * last_state + B.unsqueeze(-2) * x.unsqueeze(-1)
9 output = current_state @ C.unsqueeze(-1)

10 return output.squeeze(-1)

1 def QuantizationAwareParallelSSM(
2 A, # bsz * num_head * len
3 B, # bsz * num_head * len * state_dim
4 C, # bsz * num_head * len * state_dim
5 x # bsz * num_head * len * channel_dim
6 ):
7 BX = B.unsqueeze(-2) * x.unsqueeze(-1)
8 prefix_sum = torch.cumsum(A)
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9 L = torch.tril(prefix_sum.unsqueeze(-1) - prefix_sum.unsqueeze(-2))
10 state = torch.einsum(’bhldn,bhll->bhldn’, BX, L)
11

12 # Simulate the quantization errors at the last timestep
13 # Error case: qstate = fake_quant(state)
14 qstate = A[:, :, 1:] * fake_quant(state)[:, :, :-1] + BX[:, :, 1:]
15

16 y = torch.einsum(’bhldn,bhln->bhld’, qstate, C)
17 return y
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