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Abstract001

This study investigates the optimal utilization002
of Large Language Models (LLMs) for link-003
ing job vacancy texts to the ESCO taxonomy004
and the EQF classification. We demonstrate005
that an entity-linking methodology significantly006
outperforms traditional sentence similarity ap-007
proaches, and we release our entity linker to008
facilitate further research. To advance be-009
yond skill extraction, we introduce two novel010
datasets for evaluating occupation and quali-011
fication extraction. Furthermore, we explore012
optimal embedding strategies for ESCO nodes013
in a retrieval setting, revealing which combina-014
tion of fields is the most effective for occupa-015
tions and which works best for skills. Finally,016
we achieve state-of-the-art results on an estab-017
lished dataset for job entity extraction.018

1 Introduction019

Recent developments in deep learning have spurred020

significant advancements in the job domain. This021

emerging field emphasizes the skill extraction022

paradigm, wherein deep neural networks are em-023

ployed to extract skill-related information from024

plain-text job vacancies (Senger et al., 2024). How-025

ever, these texts also contain various other types026

of information—such as occupations and qualifica-027

tions—that warrant further attention. We argue that028

robust models should not only identify these addi-029

tional entities but also, where feasible, link them to030

an appropriate knowledge base.031

Linking job descriptions to established tax-032

onomies—such as the European Skills, Compe-033

tences, Qualifications and Occupations (ESCO)034

(le Vrang et al., 2014) or the International Standard035

Classification of Occupations (ISCO)—remains a036

pivotal challenge. Early Large Language Mod-037

els (LLMs) have demonstrated effectiveness in ex-038

tracting robust semantic representations from un-039

structured text, as shown by Devlin et al. (2018).040

Building on this foundation, sentence embedding041

techniques introduced in SBERT (Reimers and 042

Gurevych, 2019) have further enhanced the effi- 043

ciency of text classification and semantic similarity 044

tasks, which are critical for mapping job descrip- 045

tions to standardized occupational frameworks. 046

In this work, we address the following research 047

question: What is the optimal way to employ 048

LLMs for linking job descriptions to established 049

taxonomies? 050

We select the ESCO taxonomy as our use case 051

and aim to match job vacancy texts to its nodes. 052

This constitutes a text classification problem, for 053

which we investigate two possible approaches. 054

(Methodology 1) We approach the task as a sen- 055

tence linking (SL) problem, feeding complete job 056

descriptions into the models and expecting a list of 057

ESCO nodes as outputs. This approach is often la- 058

beled as extreme multi-label classification (Decorte 059

et al., 2023; D’Oosterlinck et al., 2024). 060

(Methodology 2) We introduce an intermediate 061

step where the models first perform entity recog- 062

nition (ER) (Li et al., 2022), thereby framing the 063

task under the entity linking (EL) paradigm (Sevgili 064

et al., 2022). 065

We explore both methodologies and present a 066

comparative analysis using transformer-based neu- 067

ral networks as our foundation. 068

Previous studies have primarily concentrated on 069

skill extraction from job vacancies, often overlook- 070

ing other job-related entities. This limitation is 071

likely due to the inherent complexity of the broader 072

task. Defining what precisely constitutes a "skill" 073

is itself challenging, introducing ambiguities into 074

the training data. 075

Some prior work has adopted Methodology 1, ap- 076

plying plain sentence similarity strategies focused 077

solely on skills. For example, Khaouja et al. (2021) 078

compare using sent2vec trained on Wikipedia sen- 079

tences with SBERT, which is trained on large col- 080

lections of paraphrased sentences to generate em- 081

beddings. Similarly, Zhang et al. (2022b) employ 082
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language models to align n-grams extracted from083

job postings with the ESCO taxonomy. Further-084

more, Decorte et al. (2023) and Clavié and Soulié085

(2023) utilize a synthetic skills training set to di-086

rectly link sentences with skills, employing LLM-087

based re-rankers. In the work of Gnehm et al. 2022,088

skill extraction is conducted directly by leveraging089

context-aware embeddings and the SBERT model,090

in a manner similar to Zhang et al. (2022b). More-091

over, their approach contextualizes skill domains092

within specific spans and ontology terms, utilizing093

ESCO’s hierarchical structure.094

In contrast, Methodology 2 has not received as095

much academic attention. An EL paper focused096

on the job domain was published by Zhang et al.097

(2024), in which the authors train two widely used098

models for this task: BLINK (Wu et al., 2019)099

and GENRE (De Cao et al., 2020). They as-100

sess the effectiveness of skill extraction using this101

methodology with synthetic training data provided102

by Decorte et al. (2023), achieving moderate yet103

promising results. The authors emphasize the need104

for a more comprehensive dataset for evaluation.105

In our work, we use the same evaluation set, in-106

troduced by Decorte et al. (2022), for the skills107

component of our study.108

SkillGPT (Li et al., 2023) represents the first tool109

to employ a large language model (LLM) for the110

matching task. It transforms ESCO entries into111

structured documents, which the language model112

subsequently vectorizes. The input job text is then113

condensed into a summary, and the embedding of114

this summary is used to retrieve the most relevant115

ESCO entries. SkillGPT’s architecture resembles116

an EL pipeline, as it follows a two-step process.117

Although it incorporates both skill and occupation118

entities, the authors unfortunately do not provide119

an analytical evaluation.120

Given the substantial progress in recent years,121

we aim to advance the research field by propos-122

ing an evaluation framework for skill, occupation,123

and qualification extraction concerning ESCO and124

EQF.125

Data scarcity remains a significant challenge in126

the job domain when applying machine learning127

algorithms. To address this issue, we introduce128

three novel datasets: one for evaluating occupa-129

tion linking with the ESCO taxonomy, another for130

qualification linking to the European Qualifications131

Framework (EQF), and a third for assessing occu-132

pation title similarity. A detailed description of all133

datasets used in this study is provided in Section 2.134

When considering a Retrieval-Augmented Gen- 135

eration (RAG) architecture (Gao et al., 2023), both 136

of the aforementioned methodologies can serve as 137

the retrieval component of the system. Given the 138

growing popularity of RAG and in-context learning 139

(D’Oosterlinck et al., 2024; Kavas et al., 2025), it 140

is essential to examine the respective strengths and 141

weaknesses of these approaches. This constitutes 142

the primary motivation behind our research. 143

Additionally, we conducted extensive experi- 144

ments on entity extraction using a well-established 145

benchmark: the dataset introduced by Green et al. 146

(2022). We achieve state-of-the-art results on this 147

benchmark, which are reported in Section 4. 148

Overall, the EL approach produced the most ef- 149

fective results, as it facilitates a more precise infor- 150

mation flow—embedding only the most relevant 151

textual segments via text embedding models. Fur- 152

ther analysis can be found in Section 5. 153

As a byproduct of this comparison, we also in- 154

vestigated optimal strategies for embedding ESCO 155

nodes in a retrieval context. Each node consists 156

of multiple data fields, which opens the door to 157

diverse embedding techniques. We present our 158

findings in Section 3. 159

Finally, in Section 6, we explore various strate- 160

gies for leveraging the latest generation of LLMs 161

to support our task. 162

2 Datasets 163

In this section, we present the datasets used 164

throughout our work. These are categorized into 165

three groups: reference sets, evaluation sets, and 166

training sets. Detailed data statistics are provided 167

in Appendix B. 168

169

2.1 Reference Sets 170

ESCO The central aim of this study is to classify 171

arbitrary English-language job vacancy texts using 172

the ESCO taxonomy. 173

We utilize version 1.1.1 of ESCO, which con- 174

tains 3,007 Occupations and 13,896 Skills. Both 175

the Skill and Occupation frameworks are organized 176

as taxonomies (Poli et al., 2010)—that is, they fol- 177

low subclass relationships—where each Skill may 178

have multiple parent categories. In this work, we 179

focus exclusively on discrete entities within ESCO 180

and disregard hierarchical relationships between 181

broader concepts or links between Occupations and 182

Skills. We leave this aspect for future exploration. 183

2



EQF ESCO defines a qualification as the official184

outcome of an assessment by a competent body185

that verifies an individual’s learning achievements186

against established standards (ESCO, 2024). The187

qualification data available in Europass are sourced188

from national databases representing the frame-189

works of EQF member countries. Europass offers190

a consolidated repository of current, high-quality191

data on qualifications, national frameworks, and192

educational trajectories across Europe (Europass,193

2024). We extract relevant information on EQF lev-194

els from the official European Union comparison195

portal.1 Only English-language content is retained.196

This results in a dataset of 814 entries, each con-197

sisting of a qualification string, the issuing country,198

and the corresponding EQF level (Table 8).199

2.2 Evaluation Sets200

Ethiopian Dataset To evaluate occupational clas-201

sification, we employ a dataset comprising job de-202

scriptions annotated with corresponding ESCO oc-203

cupation codes.204

The vacancy data were collected from both on-205

line and offline sources in Ethiopia. Offline sources206

include physical job boards, public postings, and207

government gazettes across major cities. Online208

sources involve local job portals, an Ethiopian en-209

terprise platform, and digital media managed by210

employers. Data are gathered either directly via211

the Ethiopian platform or through web scraping.212

In addition, printed job advertisements are pho-213

tographed at the Ethiopian employment center for214

digital processing.215

All collected data are reviewed and annotated216

by trained personnel using proprietary tools. Staff217

members receive specialized training on ESCO,218

ISCO, and O*NET classification systems, cover-219

ing taxonomy structure, application rationale, and220

practical annotation exercises.221

We compile real-world evaluation sets (Table 9)222

for each entity type relevant to our models.223

Occupations We use a subset of the Ethiopian Jobs224

dataset containing 542 annotated entries (Table 9),225

each comprising a job title, a job description, and226

the relevant ESCO occupation code. This subset is227

constructed ensuring diversity across multiple job228

sectors.229

Skills For skill evaluation, we utilize the dataset230

introduced by Decorte et al. (2022), which includes231

the HOUSE and TECH extensions of the SkillSpan232

1https://europass.europa.eu/en/
compare-qualifications

dataset (Zhang et al., 2022a). These datasets fea- 233

ture test and development sets with SkillSpan enti- 234

ties mapped to the ESCO model. 235

Qualifications We extend the Green Benchmark 236

Qualifications dataset by mapping each entry to the 237

appropriate EQF level. 238

Two native Greek-speaking annotators (one male 239

and one female) performed the annotation process. 240

The resulting inter-annotator agreement, measured 241

using Cohen’s Kappa (Fleiss and Cohen, 1973), 242

was 0.45—indicating moderate agreement. Qualifi- 243

cations that did not align with any EQF level were 244

labeled as unknown (UNK). A common example is 245

the "driving license," which is not associated with 246

any EQF level under ESCO. 247

To improve consistency, we resolve disagree- 248

ments as follows: when both annotators select valid 249

but differing EQF levels, we assign the lower level. 250

If one annotator selects UNK while the other pro- 251

vides a valid EQF level, we consult Gemini 1.5 252

Pro as an adjudicator. The model is prompted to 253

choose between the two annotations, and its deci- 254

sion is included in the final dataset. Details of the 255

prompts used are provided in Appendix C. 256

2.3 Training Sets 257

To support Methodology 2, we train entity extrac- 258

tion models using the benchmark dataset intro- 259

duced by Green et al. (2022) (Table 6). 260

Title Similarity Dataset To enhance occupa- 261

tional classification performance, we further fine- 262

tune two sentence transformers using a derivative 263

dataset from the Ethiopian Dataset. We construct 264

this dataset (Table 7) by aligning job titles with 265

the preferred and alternative labels specified in the 266

ESCO occupation taxonomy. 267

3 Methodology #1 : Sentence Linking 268

Let D be the Document space and a Sentence Trans- 269

former ST : D → Rn be an embedding function 270

to an arbitrary Euclidean metric space. Also, let 271

O = {o1, o2, ..., o3007} , S = {s1, s2, ..., s13896} 272

and Q = {q1, q2, ..., q814} be the reference sets de- 273

scribed in section 2. Our goal is to retrieve entities 274

from these sets so we embed O,S and Q using 275

ST and cache them in separate vector databases. 276

We define a query which is a plain-text sentence, 277

annotated with entities from the reference sets. 278

We consider different possible ways of embed- 279

ding the ESCO occupations and skills nodes and 280

of comparing the embedding to the query, to find 281
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the one that maximizes precision. With respect to282

the Skills and Qualifications Evaluation Sets, we283

remove the UNK labels and link each sentence only284

one time.285

To improve Occupational matching, provided the286

title similarity dataset described in section 2, we287

fine-tune the all-mpnet-base-v2 sentence trans-288

former. The model was trained on minimizing the289

Multiple Negatives Loss (Henderson et al., 2017),290

using default hyperparameters.291

The relevant textual fields for each ESCO node292

are: preferred label, description, secondary la-293

bels, i.e., alternative titles presented as a newline-294

separated list.295

To evaluate various embedding strategies, we296

consider the following configurations: (1) Single297

embedding: preferred label (2) Single embedding:298

description (3) Single embedding: concatenation of299

preferred label and description (4) Single embed-300

ding: concatenation of all fields into a single string301

(5) Multiple embeddings: one per field (preferred302

label, description, and combined secondary labels)303

(6) Multiple embeddings: one for preferred label,304

one for description, and individual embeddings for305

each secondary label.306

In the multiple embedding setup, retrieval is307

based on the highest cosine similarity between any308

field-level embedding and the query. The top-k309

nodes are selected based on these maximum simi-310

larities, ensuring duplicate entries are removed.311

The results of this experiment are summarized in312

Table 10, with evaluation based on Accuracy@1, in313

line with prior work (Zhang et al., 2024; Zaporojets314

et al., 2022).315

For occupations, we find that multi-field embed-316

dings (strategy 5) improve performance—provided317

that the inclusion of secondary labels does not in-318

troduce excessive noise or redundancy (due to over-319

lapping labels across nodes). In contrast, for skills,320

injecting too much information via multiple fields321

degrades performance. The optimal strategy is to322

embed the concatenation of all fields (strategy 4).323

Notably, embeddings based solely on the preferred324

label offer nearly comparable accuracy while re-325

ducing computational overhead, which is especially326

relevant given the large number of ESCO skills.327

Fine-tuning on occupation-specific data signifi-328

cantly improves accuracy for the Occupations task,329

without negatively impacting performance on Qual-330

ifications. However, for Skills, we observe a drop in331

performance after fine-tuning, suggestive of catas-332

trophic forgetting.333

Next, we investigate whether an ER approach 334

outperforms full-sentence embedding. As a prelim- 335

inary analysis, we rerun the previous experiment 336

using job titles (Title Linking) as queries, and com- 337

pare their embedding-based retrieval performance 338

against the earlier configurations. Results are pre- 339

sented in Table 11. 340

We observe a substantial improvement in per- 341

formance, with an approximate 15% increase in 342

accuracy. These findings reinforce our motivation 343

to develop a dedicated EL model to surpass our 344

current SL baseline. 345

4 Methodology #2: Entity Linking 346

Given an input text document D = {w1, ..., wr} 347

and a list of entity mentions (n-grams correspond- 348

ing to entities) MD = {m1, ...,mn}, the output 349

of an EL model is a list of mention-entity pairs 350

{(mi, ei)}, i ∈ [1, n]. Each entity ei is an element 351

in a set E of all possible entities in a knowledge 352

base (e.g. WikiData, DBpedia, ESCO). 353

Most EL-related works hypothesize that the men- 354

tions are explicitly given in the training and test 355

datasets. Inspired by Sevgili et al. (2022), we dis- 356

tinguish the mention detection and entity disam- 357

biguation steps and assume that the mention bound- 358

aries are missing from the evaluation procedure. 359

Consequently, as shown in Figure 1, this model 360

consists of two discrete modules. 361

Entity Recognition Module Formally, the ER 362

task according to Zhang et al. (2022b) is defined 363

as follows. Let d be a subset of sentences (se- 364

quences of tokens) from a job posting D. Let 365

Xi
d = {x1, x2, ..., xT } be the ith sequence of in- 366

put tokens and Y i
d = {y1, y2, ..., yT } be the tar- 367

get sequence of BIO labels (e.g., “B-Skill”, “I- 368

Occupation”, “O”) corresponding tp this input se- 369

quence. The goal is to use D to train a sequence 370

labeling algorithm h : X → Y to accurately pre- 371

dict entity spans by assigning an output label yt to 372

each token xt. 373

We perform the ER task by training BERT- 374

based models for token classification. We exper- 375

imented with language models of various sizes 376

and pre-training schemes. Namely, we used BERT 377

with both its base and large variances on the 378

cased version. Also, we experimented with two 379

domain-adapted models, JobBERT (Zhang et al., 380

2022a) and ESCOXLM-R (Zhang et al., 2023) to test 381

whether domain adaptation generalizes in our holis- 382

tic overview of job postings text analysis. Both 383
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Figure 1: Entity Linking Job Posting Analysis Framework

RoBERTabase and RoBERTalarge (Liu et al., 2019)384

were fine-tuned on our task, as well as the first ver-385

sion of Microsoft’s DeBERTabase(He et al., 2020)386

model.387

Based on previous work (Zhang et al., 2022a;388

Souza et al., 2019; Jensen et al., 2021), we experi-389

mented adding a conditional random field (Lafferty390

et al., 2001) decoder on top of transformer language391

models for improved accuracy.392

Entity Similarity Module Let (mi, ei) be a tu-393

ple of an extracted mention by the entity extractor,394

where mi ∈ P(D), ei ∈ E. D is the Document395

space, P(D) it’s power set and E is the set of entity396

categories. Similar to section 3, we represent Oc-397

cupations O, Skills S, and Qualifications Q using398

a Sentence Transformer (ST) to generate the cor-399

responding embedding vectors in Rn space. Note400

that E = O ∪ S ∪Q.401

Given a job posting d = {w1, ..., wn}, we apply402

the NLTK (Bird et al., 2009) package to tokenize403

the document into chunks, Xk = {x1, ..., xk}.404

Each Xk is passed through the ER function h to405

generate the BIO labels h(Xk) = Yk = {y1, ...yk}.406

From these we can obtain the mentions mi and ap-407

ply post-processing steps to improve performance.408

These steps include: (1) removing special to-409

kens (e.g. [SEP], [CLS], <s>, etc), (2) correcting410

common sequence errors such as converting the411

sequence (..., "B-", "O", "I-",...) to (..., "B-", "I-",412

"I-",...), and (3) ignoring single "I-" tags appearing413

at the end of a sentence.414

For each mention mi the Sentence Transformer 415

is used to generate the embedding vector V = 416

ST (mi) ∈ Rn. 417

We then proceed to compute the cosine similarity 418

of V against oj ∈ O, si ∈ S and qk ∈ Q, depend- 419

ing on the category indicated by the ER module. 420

Finally, we retrieve ranked lists of the top-k ESCO 421

Occupations, ESCO Skills or EQF Qualification 422

entities based on the above metric. 423

We experiment with two sentence transformers: 424

all-MiniLM-L6-v2 and all-mpnet-base-v2. 425

The all-MiniLM-L6-v2 model is further fine- 426

tuned on the title similarity set, similar to 427

all-mpnet-base-v2 as described in Section 3. 428

All four resulting models are evaluated as can- 429

didates for our sentence transformer function 430

ST . 431

4.1 Evaluation 432

The ER training was assessed using standard span 433

F1 strict metric (Li et al., 2022; Nakayama, 2018), 434

where true positives are considered if the exact 435

entity span is predicted. 436

The entity similarity evaluation can be catego- 437

rized into in-KB Evaluation when all the entities 438

in the evaluation set are from the same knowledge 439

base, and out-of-KB Evaluation when Unknown 440

labels correspond to entities in the text. 441

For out-of-KB Evaluation, we developed an al- 442

gorithm using the whole system to evaluate the sim- 443

ilarity module. Specifically, based on the extracted 444
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entities on a given evaluation set, we check whether445

an overlap exists with the ground truth entity us-446

ing the Jaccard Similarity (Jaccard, 1912). The447

ground truth span that maximizes the Jaccard Sim-448

ilarity with the extracted entity is then attributed449

to the top-k retrieved entities from the reference450

sets. If no overlap exists, the system returns the451

Unknown (UNK) label. Furthermore, the system452

returns UNK, if the retrieved item with the highest453

cosine similarity does not exceed a predetermined454

limit. After multiple experiments, we set this limit455

to 0.7 for the Skills and 0.8 for the Qualifications.456

When we perform the in-KB evaluation, the limit457

is set to 0 for all entities.458

As a metric, we use the Mean Average Precision459

(MAP) evaluated at the first and fifth positions of460

the recommendations. MAP offers a single-figure461

measure of quality across different levels of recall.462

It is particularly noted for its excellent discrimina-463

tion and stability. Given a set of input queries C,464

we calculate:465

MAP@k(C) =

∑|C|
c=1AvgP@k(c)

|C|
466

Average Precision at k is computed using the467

formula:468

AvgP@k =

∑k
i=1 P (i)× rel(i)

number of relevant documents
469

where i is the rank in the sequence of retrieved470

documents k is the number of retrieved documents,471

P (i) is the precision at cut-off k in the list, rel(i)472

is an indicator function equaling 1 if the item at473

rank i is a relevant document, zero otherwise. This474

metric is chosen since MAP does not penalize475

the suggestions if few relevant items exist. For476

consistency in subsequent comparisons, we define477

Accuracy@1 := MAP@1.478

4.2 Experiments479

Entity Recognition Our system’s foundation is the480

ER module, which acts as the mention detector481

in the EL framework. Similar to traditional EL482

models (Sevgili et al., 2022; Stern et al., 2012), the483

ER errors propagate to entity disambiguation.484

All training was conducted using V100 GPUs485

provided by a trusted source2. For the ER training,486

we performed a comprehensive grid search over487

hyperparameters for all encoder models. In all488

experiments, we utilized the test set from Green489

2To be disclosed following the review process

Figure 2: F1-Score results on the Green Benchmark test
set. The results show the mean and standard deviation
over three random seeds.

et al. (2022) for both validation and evaluation. 490

The best-performing configurations were selected 491

as outlined in Appendix A. 492

Figure 2 presents the results of the entity extrac- 493

tion experiments conducted on the Green Bench- 494

mark dataset. Each model was trained using three 495

different random seeds to ensure robustness. The 496

optimal model for this dataset is RoBERTabase, 497

which achieves a strict F1-score of 54.3±2.6. 498

Overall, we observe that the addition of a CRF 499

decoder enhances the performance of both BERT 500

and DeBERTa models, but does not yield improve- 501

ments for RoBERTa. 502

Our best-performing model, RoBERTabase, estab- 503

lishes a new state-of-the-art on this benchmark. In 504

our experimental setup, the previously reported 505

state-of-the-art model, ESCOXLM-R (Zhang et al., 506

2023), achieves an F1-score of 53.6±2.5 F1-score. 507

508

Entity Similarity We represent ESCO nodes based 509

on the findings in Section 3: for Occupations, we 510

adopt the multiple embeddings—one per field strat- 511

egy, while for Skills, we use single embedding: 512

preferred label. The evaluation sets are assessed 513

using fourteen fine-tuned entity extractors in combi- 514

nation with four sentence transformers. We report 515

the best-performing models for each entity type in 516

Table 1, using the MAP metric. 517

While occupational fine-tuning significantly en- 518

hances performance on the Occupations dataset, it 519

leads to a substantial drop in MAP when evaluated 520

on Skills and Qualifications. This suggests the 521

presence of catastrophic forgetting and indicates a 522

need for a more diverse and representative training 523

set to mitigate this effect. 524

525
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out-of-KB
Entity Type Entity Model Similarity Model MAP@1 MAP@5

Skills roberta-base all-mpnet-base-v2 0.497 0.494

EQF bert-large-cased all-mpnet-base-v2 0.640 0.630

in-KB

Occupations roberta-large+CRF all-mpnet-base-v2-FT 0.489 0.375

Skills roberta-base+CRF all-MiniLM-L6-v2 0.326 0.387

EQF bert-large-cased all-MiniLM-L6-v2 0.350 0.203

Table 1: Entity Linking Results With FT (fine-tuned) we note the models that were fine-tuned on the Ethiopian
training set. in-KB Evaluation refers to the absence of unknown (UNK) labels in evaluation sets.

In-KB Evaluation When assuming that all526

evaluation entities belong to the known entity set527

E, we observe a slight decrease in MAP. This528

suggests that UNK labels, which are prevalent in529

both the Skill and Qualification datasets, impact530

the evaluation outcome. Notably, several prior531

studies (Clavié and Soulié, 2023; Decorte et al.,532

2023; D’Oosterlinck et al., 2024) evaluating533

the Skill dataset do not explicitly describe their534

handling of UNK labels.535

Out-of-KB Evaluation In this setting, our re-536

sults regarding the Skills evaluation set can be di-537

rectly compared to Zhang et al. (2024), who report538

23.55% Accuracy@1 for their best model. Our539

best approach achieves 49.7%, though this result540

may be biased due to the treatment of UNK la-541

bels. Unlike Zhang et al. (2024), who evaluate only542

entity similarity and disambiguation, our system543

performs both entity extraction and disambigua-544

tion. We advocate for a more comprehensive evalu-545

ation methodology that jointly assesses both tasks546

while preserving UNK labels (akin to Kolitsas et al.547

(2018)), as this more accurately reflects real-world548

conditions for entity linking applications.549

5 Methodologies comparison550

We must denote that the evaluation on sentence551

linking is done on the sentence level, while the552

EL is done on the entity level, so it is not in one-553

to-one correspondence (Zhang et al., 2024). For554

these methods to be compared we need to adjust555

the outputs of EL, so the system aggregates the556

recommendation entities into a single list, akin to557

sentence linking.558

In Table 2 we present a brief summary of the559

comparable results discussed so far. In all these560

experiments, the Preferred Labels are used as re- 561

trieval options. Regarding the Occupations, since 562

there exists one possible correct entity in our evalu- 563

ation set, we can apply direct comparisons. Plain 564

title similarity is the optimal strategy, where EL 565

outperforms SL. In the case of EL and title simi- 566

larity, we can observe the error propagation of the 567

entity extraction, with a drop about 6 % accuracy. 568

For the Skills and Qualifications, we perform the 569

aggregation discussed. We return a list of the top-k 570

similar entities based on the highest cosine similar- 571

ity score, as with sentence similarity. In all cases, 572

we observe EL to have a significant boost to the 573

results. 574

6 Transformer Decoder Integration 575

In this section we explore different avenues of inte- 576

grating the latest generation of LLMs for the task 577

of linking sentences to the ESCO taxonomy. 578

From our experimentation, we concluded that 579

linking job descriptions to ESCO with LLMs, like 580

GPT-4 (Achiam et al., 2023) and Gemini (Team 581

et al., 2023) directly was impossible at the time. 582

It requires an understanding ESCO’s hierarchical 583

structures and precise concept definitions (le Vrang 584

et al., 2014), where LLMs often produce hallucina- 585

tions regarding the exact ESCO codes/ labels. 586

For a thorough evaluation, we opt to perform 587

the ER task using a general-purpose decoder, the 588

Gemini 1.5 Pro model and an open-source one, 589

the Universal-NER (Zhou et al., 2023) model 590

where the authors fine-tuned Llama (Touvron et al., 591

2023) to task-adapt it for ER and to output JSON 592

format strings. We use the same prompt tem- 593

plate for both models (Appendix C). We mea- 594

sure the performance of the models in terms of 595

7



Method Embedding Model Entity Model Accuracy@1

O
cc

up
at

io
ns Entity Linking all-mpnet-base-v2-FT roberta-base 0.4261

Sentence Linking all-mpnet-base-v2-FT - 0.2934
Title Linking all-mpnet-base-v2-FT - 0.5387

Sk
ill

s Entity Linking all-mpnet-base-v2 roberta-base 0.3969
Sentence Linking all-mpnet-base-v2 - 0.2116

E
Q

F Entity Linking all-mpnet-base-v2 roberta-base 0.2881
Sentence Linking all-mpnet-base-v2 - 0.1837

Table 2: Retrieval comparison: With bold we denote the best experiments for Occupation, Skill and Qualification
reference sets, referred to section 2. All experiments consider only ESCO’s Preferred Labels as the retrieval items.

strict F1-score, where Gemini 1.5 Pro achieves596

0.22 with one-shot prompting and 0.25 with five-597

shots. Universal-NER reaches 0.33. Both models,598

severely underperform supervised methods.599

Previous studies (Nguyen et al., 2024; Wang600

et al., 2023) have consistently shown that super-601

vised approaches substantially outperform decoder-602

only models in terms of classification accuracy and603

consistency. These findings underscore the im-604

portance of domain-specific, fine-tuned decoders605

(Herandi et al., 2024) over reliance on in-context606

learning alone (Nguyen et al., 2024). Nonetheless,607

transformer-based decoders have demonstrated util-608

ity (Decorte et al., 2023; Clavié and Soulié, 2023)609

in re-ranking the outputs of retrieval models—an610

avenue not explored in the present work.611

On the other hand, one of the most prominent612

uses of transformer decoders is their ability to cre-613

ate synthetic data (Clavié and Soulié, 2023). In-614

spired by the work of (Li et al., 2023), where they615

summarize the job description before performing616

similarity, using Gemini 1.5 Pro, we generate617

a new query from each sentence in Occupation618

and Skill evaluation sets. We prompt the model619

to produce sentences comparable to what a user620

with the given skill or occupation would tell the621

model when asked to describe their skills or occu-622

pation (Appendix C). Then, we embed such queries623

using all-mpnet-base-v2 and its fine-tuned ver-624

sion. Detailed experiments can be found in table625

10. In terms of Occupations, we observe that this626

method yields better results than plain sentence627

linking but not entity linking. For the Skills, we628

see a slight drop in accuracy. This indicates that629

synthetic query generation implements occupation630

matching but not skill linking.631

7 Conclusion 632

In this study, we investigated optimal strategies for 633

leveraging large language models (LLMs) to link 634

job vacancy texts to the ESCO taxonomy. Empha- 635

sizing the use of open-source models, we compared 636

two main approaches: sentence linking (SL) and 637

entity linking (EL), with the latter incorporating an 638

entity recognition (ER) component. Our findings 639

indicate that EL consistently outperforms SL meth- 640

ods. However, we note that EL introduces greater 641

complexity and computational overhead compared 642

to SL. To support continued research and practical 643

adoption, we release our entity linking system3 and 644

advocate for the integration of ER components into 645

information extraction pipelines within the employ- 646

ment domain. 647

Furthermore, we introduced two novel datasets 648

to support the evaluation of occupation and qual- 649

ification extraction tasks, thereby broadening the 650

focus beyond skill extraction for ESCO. 651

Given the richness of textual information in 652

ESCO nodes, we investigated effective embed- 653

ding strategies for retrieval. For Occupations, we 654

found that combining multiple fields—preferred 655

labels, descriptions, and concatenated alternative 656

labels—yields the best performance. For Skills, 657

embedding only the preferred labels proved most 658

effective and computationally efficient. 659

Lastly, we achieved state-of-the-art performance 660

on the Green Benchmark Dataset (Green et al., 661

2022) for entity extraction, attaining an F1 score of 662

54.3—surpassing the previous best of 51.2 reported 663

by Zhang et al. (2023). 664

3To be disclosed following the review process
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Limitations665

Data Diversity and Language This research666

was done primarily on English-speaking datasets,667

which could limit its effectiveness in job markets668

with diverse linguistic profiles. Expanding han-669

dle multiple languages is recommended for future670

research. Additionally, the ESCO framework is671

designed for Europe and may not capture precisely672

the low- and middle-income countries’ job market.673

Perhaps other (a few) Occupations exist in their674

countries that do not exist in the ESCO. In every675

language, and in an English setting, the specific676

country context has limitations, such as idioms677

used to refer to occupations or specially named678

Qualifications. There exists ongoing research re-679

garding this topic 4.680

No Joint Training The lack of a comprehensive,681

AIDA-style (Hoffart et al., 2011) dataset tailored682

for entity linking job descriptions to taxonomies683

like ESCO presents a significant limitation. Ex-684

isting datasets fail to capture the variability and685

context-dependent nature of job-related terminol-686

ogy and they focus on different kinds of entites.687

This deficiency hinders the development and evalu-688

ation of robust entity linking models, particularly689

those designed for joint training across diverse job690

domains.691

ESCO Node Interconnections The ESCO taxon-692

omy includes defined links between Occupations693

and Skills, and within the ISCO hierarchy, inter-694

connections also exist between various Occupa-695

tions. In this work, we did not incorporate these696

structural relationships. However, leveraging these697

interconnections could potentially enhance model698

predictions if integrated appropriately in future im-699

plementations.700

Closed-Source Models With the exception of701

Gemini, all models used in this study are open-702

source. While closed-source models have demon-703

strated superior performance in various scientific704

studies, we intentionally prioritized open-source705

alternatives to ensure transparency, reproducibility,706

and accessibility. This choice may have resulted in707

a trade-off in terms of maximum achievable perfor-708

mance.709

Ethics Statement710

Ethical standards were strictly adhered to through-711

out the research. Data collected was sourced legally712

4https://docs.tabiya.org/overview

and ethically from public sources, with sensitive 713

and personally identifiable information excluded 714

to protect privacy. The sensitive information in the 715

original files has been redacted using Google DLP 716

API5. As part of this research, we release three 717

datasets to support transparency, reproducibility, 718

and further investigation by the research commu- 719

nity. These datasets are made publicly available 720

under the Creative Commons Attribution 4.0 Inter- 721

national (CC BY 4.0) license. 722

The entity linking tool was designed to be fair, 723

unbiased, and transparent. The use of large founda- 724

tional models, BERT and SBERT, allows for han- 725

dling various text sources. The tool’s performance 726

and results were thoroughly evaluated and docu- 727

mented to ensure transparency. Recognizing the 728

tool’s significant potential impact on the job market, 729

the authors also acknowledge its limitations, such 730

as reliance on existing data sources and potential er- 731

rors or biases. Ongoing evaluation and refinement 732

are emphasized to maintain effectiveness and fair- 733

ness. Future research directions include expanding 734

data sources, improving performance in specific 735

segments, and integrating the tool into existing job 736

market analysis frameworks. The authors are com- 737

mitted to the responsible use of the tool, ensuring 738

its fairness, transparency, and continued improve- 739

ment. 740
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Appendix938

A Training Hyperparameters939

In Table 3, we present the model parameters that940

were used during this research.

Model Sizes Parameters
roberta-base 124M
roberta-large 354M
bert-base-cased 107M
bert-large-cased 332M
deberta 138M
all-mpnet-base-v2 104M
all-MiniLM-L6-v2 22M

Table 3: Model Sizes and Parameters

941

A.1 Entity Recognition942

For the ER training we did a hyperparameter search943

regarding the parameters batch size, epochs, and944

learning rate. We set the max length of the sen-945

tences to 128 tokens weight decay to 0.01, while946

we search from possible options batch size:16, 32,947

64, epochs:5, 10, learning rate: 0.0001, 0.00005,948

0.00001. In Table 4, we present the best hyper-949

parameters with respect to the results in Table 2.950

ER evaluation was performed with three random951

seed initialization 3, 37 and 42 on the HuggingFace952

token classification script.953

model batch lr epoch
bert-base 16 5e-5 10
bert-base+CRF 32 1e-4 5
bert-large 64 1e-4 10
bert-large+CRF 16 5e-5 10
deberta-base 32 5e-5 5
deberta-base+CRF 32 5e-5 5
jobbert 32 5e-5 10
jobbert+CRF 32 1e-4 5
roberta 32 1e-4 5
roberta+CRF 16 1e-4 5
roberta-large 32 5e-5 5
roberta-large+CRF 32 5e-5 5
ESCOXLM-R 32 5e-5 5
ESCOXLM-R+CRF 32 5e-5 5

Table 4: Entity Recognition best training hyperparame-
ters

Parameter Value

Epochs 2
Evaluation Steps 0
Evaluator NoneType
Max Gradient Norm 1
Optimizer Class AdamW
Learning Rate (lr) 2e-05
Scheduler WarmupLinear
Warmup Steps 10000
Weight Decay 0.01

Table 5: Summary of the training configuration parame-
ters for Sentence Transformers

A.2 Entity Similarity 954

For the entity similarity training, we used the sbert 955

official website to train our models. We resulted 956

on training with the default parameters without 957

hyperparmeter search. In Table 5, we present the 958

hyperparameters. 959

B Dataset tables 960

All analysis in this section was done with the NLTK 961
6 package. 962

T
R

A
IN

Statistics

Sentences 9,634
Tokens 233,628
Entity Spans 18,098

T
E

ST

Sentences 336
Tokens 8,050
Entity Spans 904

Average Entity Length 3.67

Table 6: Green Benchmark Data Analysis

Statistics

# of pairs 210,175
# ESCO occupations 1,156

Table 7: Ethiopian Jobs Training Set Data Analysis

C Prompts used in this study 963

The following prompts have been used in section 2 964

to judge between the qualification annotations. 965

6https://www.nltk.org/

12



EQF Level Statistics

1 40
2 88
3 89
4 166
5 115
6 128
7 117
8 74

Total 814
Average Word Length 7.24

Total Countries 30
Entries per country 27.13

Table 8: EQF reference database Data Analysis

Statistics Occupations Skills EQF

Data points 542 920 448
Avg entities 1 2.7 1.3
Avg words 418.2 16.5 29
Entities 542 2406 595
Words per entity 3.4 3.1 3.4
Max entities 1 31 7
Number of UNK 0 981 361

Table 9: Evaluation Sets Data Analysis with NLTK

Prompt: "In the context of the following sen-966

tence choose the appropriate EQF level that suits967

the qualification. If you cannot determine the EQF968

level answer UNK.969

Example:970

Sentence: Qualifications and experiences : BSc ,971

MSc or PhD or equivalent in Statistics , Computer972

Science , Mathematics or other analytical field .973

Qualification: BSc , MSc or PhD or equivalent974

in Statistics , Computer Science , Mathematics or975

other analytical field .976

EQF level: EQF8977

Sentence: sentence978

Qualification: qualification979

EQF level: "980

The following prompts have been used in section981

6 to generate synthetic queries from Occupations982

and Skills datasets for evaluation. For each dat-983

apoint, the prompt is adapted depending on the984

original job title, job description or skill descrip-985

tion.986

Occupation prompt: "Given the following de-987

scription of the user’s past job, return the answer 988

of the user to the following question. 989

Description: <title> <description> 990

Question: Describe your last job. Answer in one 991

sentence. Don’t be too formal. 992

Answer:" 993

Skill prompt: "Given the following description 994

of the user’s skill, return the answer of the user 995

to the following question. Description: <descrip- 996

tion> Question: What are your skills and expertise? 997

Answer in one sentence. Don’t be too formal. An- 998

swer:" 999

Lastly we present the prompt template used in 1000

section 6 to perform entity extraction with trans- 1001

former decoders. 1002

Prompt: "A virtual assistant answers questions 1003

from a user based on the provided text. 1004

$few shots$ 1005

USER: Text: $text$ 1006

ASSISTANT: I’ve read this text. 1007

USER: What describes $entity$ in the text? 1008

ASSISTANT: " 1009

where we replace the few shot, text and entity place- 1010

holders with data points from the Green Bench- 1011

mark. 1012

D Sentence Linking results 1013

In this section, we present the analytical results of 1014

the experiments mentioned in section 3 and sec- 1015

tion 6. Table 10 denotes the initial vector search 1016

where we embed full sentences and table 11 the 1017

title similarity experiments. 1018
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Fulltext Synthetic query

Embeddings selection mpnet mpnet-ft mpnet mpnet-ft

O
cc

up
at

io
ns

Single: Preferred Label 0.1974 0.2934 0.2177 0.3506
Single: Description 0.2657 0.3745 0.2675 0.4022
Single: Preferred Label and Description 0.2915 0.3635 0.2878 0.4133
Single: All fields 0.2454 0.3450 0.2749 0.3616
Multiple: All fields 0.2874 0.3945 0.3415 0.4256
Multiple: All fields separated 0.2612 0.3542 0.2884 0.3965

Sk
ill

s

Single: Preferred Label 0.2116 0.1678 0.1783 0.1573
Single: Description 0.1211 0.081 0.0858 0.0705
Single: Preferred Label and Description 0.2059 0.1554 0.1401 0.1411
Single: All fields 0.2212 0.1697 0.2050 0.1582
Multiple: All fields 0.1554 0.1487 0.1386 0.1311
Multiple: All fields separated 0.1516 0.1430 0.1335 0.1286

E
Q

F Single 0.1837 0.1880 - -

Table 10: RAG-related Vector Search: sentence linking The best results on each experiment are denoted in bold.
Single indicates that only one embedding was generated for each target ESCO node, while multiple indicates than
more than one embedding was generated. It is important to note that this evaluation is done on the sentence level.
The fulltext column refers to experiments done in section 3 and the synthetic query to the experiments of section 6.

O
cc

up
at

io
ns

Single: Preferred Label 0.3764 0.5387
Single: Description 0.3339 0.4686
Single: Preferred Label and Description (concatenated) 0.3339 0.4502
Single: All fields (concatenated) 0.3321 0.4446
Multiple: All fields (separated) 0.3782 0.5406
Multiple: All fields (separated secondary labels) 0.3321 0.5018

Table 11: RAG-related Vector Search: title linking Experiment for occupation linking using job titles as queries
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