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Abstract

Modern minimax problems, such as generative adversarial network and adversarial
training, are often under a nonconvex-nonconcave setting, and developing an
efficient method for such setting is of interest. Recently, two variants of the
extragradient (EG) method are studied in that direction. First, a two-time-scale
variant of the EG, named EG+, was proposed under a smooth structured nonconvex-
nonconcave setting, with a slowO(1/k) rate on the squared gradient norm, where k
denotes the number of iterations. Second, another variant of EG with an anchoring
technique, named extra anchored gradient (EAG), was studied under a smooth
convex-concave setting, yielding a fast O(1/k2) rate on the squared gradient
norm. Built upon EG+ and EAG, this paper proposes a two-time-scale EG with
anchoring, named fast extragradient (FEG), that has a fast O(1/k2) rate on the
squared gradient norm for smooth structured nonconvex-nonconcave problems;
the corresponding saddle-gradient operator satisfies the negative comonotonicity
condition. This paper further develops its backtracking line-search version, named
FEG-A, for the case where the problem parameters are not available. The stochastic
analysis of FEG is also provided.

1 Introduction

Recently, nonconvex-nonconcave minimax problems have received an increased attention in the
optimization community and the machine learning community due to their applications to generative
adversarial network [10] and adversarial training [27]. In this paper, we consider a smooth structured
nonconvex-nonconcave minimax problem:

min
x∈Rdx

max
y∈Rdy

f(x,y), (1)

where f : Rdx × Rdy → R is smooth and is possibly nonconvex in x for fixed y, and possibly
nonconcave in y for fixed x; the saddle-gradient operator F := (∇xf,−∇yf) satisfies the negative
comonotonicity [1]. We construct an efficient (first-order) method, using a saddle gradient operator
F for finding a first-order stationary point of the problem (1).

So far little is known under the nonconvex-nonconcave setting, compared to the convex-concave
setting. Recent works [4, 7, 22, 24, 26, 42, 44] studied extragradient-type methods [19, 39] for
minimax problems under various structured nonconvex-nonconcave settings. In other words, they
consider various non-monotone conditions on F , such as the Minty variational inequality (MVI)
condition [4], the weak MVI condition [7], and the negative comonotonicity [1].1 Among them, this
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1Relations between the conditions on F considered in this paper is summarized in Figure 1.



paper focuses on the negative comonotonicity condition for a Lipschitz continuous F . To the best of
our knowledge, the following two-time-scale variant of the extragradient method, named EG+:

zk+1/2 = zk −
αk
β
Fzk,

zk+1 = zk − αkFzk+1/2,
(EG+)

is the only known (explicit)2 method, using F , that converges under the considered setting3 [7],
where zk := (xk,yk). The EG+, however, has a slow O(1/k) rate on the squared gradient norm.
Note that a similar two-time-scale approach has been found to stabilize the stochastic extragradient
method with unbounded noise variance [14].

Meanwhile, under the smooth convex-concave setting, recent works [6, 17, 21, 40, 43] suggest that
Halpern-type [12] (or anchoring) methods, performing a convex combination of an initial point z0
and the last updated point zk at each iteration, has a fastO(1/k2) rate in terms of the squared gradient
norm. In particular, [43] developed the following anchoring variant of the extragradient method,
named extra anchored gradient (EAG):

zk+1/2 = zk + βk(z0 − zk)− αkFzk,

zk+1 = zk + βk(z0 − zk)− αkFzk+1/2.
(EAG)

This is the first (explicit) method with a fast O(1/k2) rate on the squared gradient norm, when F
satisfies both the Lipschitz continuity and the monotonicity. [43] also showed that such O(1/k2) rate
is optimal for first-order methods using a Lipschitz continuous and monotone F .

Built upon both EG+ and EAG, this paper studies the following class of two-time-scale anchored
extragradient methods, named fast extragradient (FEG):

zk+1/2 = zk + βk(z0 − zk)− (1− βk)(αk + 2ρk)Fzk,

zk+1 = zk + βk(z0 − zk)− αkFzk+1/2 − (1− βk)2ρkFzk.
(Class FEG)

Note that (Class FEG) reuses the Fzk term in the zk+1 update, unlike the standard extragradient-
type methods, which we found essential for handling the negative comonotonicity condition. We
leave further understanding the use of Fzk and the formulation of (Class FEG) as future work. The
proposed FEG method (with appropriately chosen step coefficients αk, βk and ρk discussed later)
has an O(1/k2) rate on the squared gradient norm, under the Lipschitz continuity and the negative
comonotonicity conditions on F . To the best of our knowledge, this is the first accelerated method
under the nonconvex-nonconcave setting. The FEG also has value under the smooth convex-concave
setting. First, when F is Lipschitz continuous and monotone, the rate bound of FEG is about 27/4
times smaller than that of EAG. Also note that the rate bound of FEG is only about four times larger
than the O(1/k2) lower complexity bound of first-order methods under such setting [43], further
closing the gap between the lower and upper complexity bounds. Second, when F is cocoercive,
FEG has a rate faster than that of a version of Halpern iteration [12] in [6].

We also develop an adaptive variant of FEG, named FEG-A, which updates its parameters, αk and ρk
in (Class FEG), adaptively using a backtracking line-search [2, 25, 31]. FEG requires the knowledge
of the two problem parameters for the Lipschitz continuity and the comonotonicity of F . However,
those global parameters can be conservative, and in practice, they are even usually unknown. For
such cases, the FEG-A adaptively and locally estimates the problem parameters, while preserving
the fast rate O(1/k2) on the squared gradient norm for smooth structured nonconvex-nonconcave
minimax problems.

Lastly, we study a stochastic version of FEG, named S-FEG, which uses an unbiased stochastic
estimate of Fz, i.e., F̃ z = Fz + ξ, instead of Fz in FEG, where ξ denotes a stochastic noise. For a
Lipschitz continuous and monotone F , we provide a convergence analysis in terms of the expected
squared gradient norm. In specific, we show that the S-FEG is stable with a rate O(1/k2) +O(ε),
when the noise variance decreases in the order of O(ε/k), while being unstable otherwise due to

2A proximal point method converges under the negative comonotonicity [1, 18], but such implicit method is
not preferable over explicit methods in practice due to its implicit nature.

3The EG+ was originally shown to work under the weak MVI condition of F , which is weaker than the
negative comonotonicity.
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error accumulation. This is similar to the convergence behavior of a stochastic version of Nesterov’s
fast gradient method [35, 36], observed in [5], for smooth convex minimization.

Our main contributions are summarized as follows.

• We propose the FEG method that has an accelerated convergence rate O(1/k2) on the
squared gradient norm for smooth structured nonconvex-nonconcave minimax problems.

• We present that the FEG method has a rate faster than those of the EAG and the Halpern
iteration for smooth convex-concave problems.

• We construct a backtracking line-search version of FEG, named FEG-A, for the case where
the Lipschitz constant and comonotonicity parameters of F are unavailable.

• We analyze a stochastic version of FEG, named S-FEG, for smooth convex-concave prob-
lems.

2 Related work

2.1 Methods for convex-concave minimax problems

The extragradient method [19] is one of the widely used methods for solving smooth convex-concave
minimax problems (see, e.g., [4, 7, 22, 24, 26, 42, 44] for its extensions and applications). In terms
of the duality gap, maxy′∈Y f(x,y′)−minx′∈X f(x′,y), where X and Y are compact4 domains,
the ergodic iterate of the extragradient-type methods [32, 37] have an O(1/k) rate. Such O(1/k)
rate on the duality gap is order-optimal for the first-order methods [34, 38], leaving no room for
improvement. On the other hand, the last iterate of the extragradient method has a slower O(1/

√
k)

rate on the duality gap, under an additional assumption that F has a Lipschitz derivative [9]. In terms
of the squared gradient norm, ‖Fz‖2, the best iterate of the extragradient-type methods [19, 39]
have an O(1/k) rate [40, 41, 43]. The last iterate of the extragradient method also has a rate O(1/k),
when F is further assumed to have a Lipschitz derivative [9]. Unlike the duality gap, the O(1/k) rate
on the squared gradient norm is not optimal [43]. From now on throughout this paper, we mainly
study and compare the convergence rates on the squared gradient norm, which still has room for
improvement in convex-concave problems, and has meaning for nonconvex-nonconcave minimax
problems, unlike the duality gap.

Recently, [6, 17, 21, 40, 43] found that Halpern-type [12] (or anchoring) methods yield a fastO(1/k2)
rate in terms of the squared gradient norm for minimax problems. [17, 21] showed that the (implicit)
Halpern iteration [12] with appropriately chosen step coefficients has an O(1/k2) rate on the squared
norm of a monotone F . Then, for a cocoercive F , an (explicit) version of the Halpern iteration
was studied in [6, 17] that has the same fast rate. In addition, [6] constructed a double-loop version
of the Halpern iteration for a Lipschitz continuous and monotone F , which has a rate Õ(1/k2)
on the squared gradient norm, slower than the rate O(1/k2). While this is promising compared
to the O(1/k) rate of the extragradient methods on the squared gradient norm [40, 41, 43], the
computational complexity due to its double-loop nature and a relatively slow rate remained a problem.
Very recently, [43] proposed the extra anchored gradient (EAG) method, which is the first (explicit)
method with a fast O(1/k2) rate for smooth convex-concave minimax problems, i.e., for Lipschitz
continuous and monotone operators. In addition, [43] proved that the EAG is order-optimal by
showing that the lower complexity bound of first-order methods is Ω(1/k2).

Cocoercive ⊆ Monotone ⊆ Negative comonotone⊆ ⊆

MVI ⊆ Weak MVI

Figure 1: Relations between the conditions on F .

4The convergence analysis on the duality gap of the extragradient type methods are generalized under the
unbounded domain assumption in [28, 29, 30].
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2.2 Methods for nonconvex-nonconcave minimax problems

Some recent literature considered relaxing the monotonicity condition of the saddle gradient operator
to tackle modern nonconvex-nonconcave minimax problems. For example, the Minty variational
inequality (MVI) condition, i.e., there exists z∗ ∈ Z∗(F ) satisfying 〈Fz, z − z∗〉 ≥ 0 for all
z ∈ Rd where Z∗(F ) := {z∗ ∈ Rd : Fz∗ = 0}, is studied in [4, 23, 22, 24]. This condition
is also studied under the name, the coherence, in [26, 42, 44]. Moreover, [7] considered a weaker
condition, named the weak MVI condition, i.e., for some ρ < 0, there exists z∗ ∈ Z∗(F ) satisfying
〈Fz, z − z∗〉 ≥ ρ‖Fz‖2 for all z ∈ Rd. The weak MVI condition is implied by the negative
comonotonicity [1] or, equivalently, the (positive) cohypomonotonicity [3]. The comonotonicity will
be further discussed in the upcoming section.

For L-Lipschitz continuous F , [4, 42] showed that the extragradient-type methods have an O(1/k)
rate on the squared gradient norm under the MVI condition, and [7] developed the (EG+) method
under the weak MVI condition (and thus under the negative comonotonicty), which also has an
O(1/k) rate on the squared gradient norm. To the best of our knowledge, there is no known
accelerated method for the nonconvex-nonconcave setting; our proposed FEG method is the first
method to have a fast O(1/k2) rate under the nonconvex-nonconcave setting. The convergence rates
of the existing methods and the FEG on the squared gradient norm are summarized in Table 1.

Table 1: Comparison of the convergence rates of the existing extragradient-type methods and the
FEG, with respect to the squared gradient norm, for smooth structured minimax problems, under
various assumptions on the Lipschitz continuous saddle gradient operator F .

Method Convex-concave Nonconvex-nonconcave
Cocoercive Monotone Negative comonotone MVI Weak MVI

Normal EG [4, 42] O(1/k) O(1/k) O(1/k)
EG+ [7] O(1/k) O(1/k) O(1/k) O(1/k) O(1/k)

Accelerated
Halpern [12, 6] O(1/k2) Õ(1/k2)

EAG [43] O(1/k2) O(1/k2)
FEG (this paper) O(1/k2) O(1/k2) O(1/k2)

3 Preliminaries

The followings are the two main assumptions for the saddle gradient operator F of the smooth
structured nonconvex-nonconcave problem (1). Under such assumptions, we develop efficient
methods that find a first-order stationary point z∗ ∈ Z∗(F ) where Z∗(F ) := {z∗ ∈ Rd : Fz∗ = 0}.
Assumption 1 (L-Lipschitz continuity). For some L ∈ (0,∞), F satisfies

‖Fz − Fz′‖ ≤ L‖z − z′‖, ∀z, z′ ∈ Rd.

Assumption 2 (ρ-Comonotonicity). For some ρ ∈
(
− 1

2L ,∞
)
, F satisfies

〈Fz − Fz′, z − z′〉 ≥ ρ‖Fz − Fz′‖2, ∀z, z′ ∈ Rd.

The ρ-comonotonicity consists of three cases depending on the choice of ρ; the negative comono-
tonicity when ρ < 0, the monotonicity when ρ = 0, and the cocoercivity when ρ > 0. The negative
comonotonicity is weaker than the other two, and is the main focus of this paper. The following is an
examplary nonconvex-nonconcave condition that is stronger than the negative comonotonicity [1, 3].
Example 1. Let f be twice continuously differentiable and γ-weakly-convex-weakly-concave. Fur-
ther assume that f satisfies

∇2
xxf +∇2

xyf(ηI −∇2
yyf)−1∇2

yxf � αI, (2)

−∇2
yyf +∇2

yxf(ηI +∇2
xxf)−1∇2

xyf � αI,
for some α ≥ 0 and η > γ, named α ≥ 0-interaction dominant condition in [11]. Then, the saddle
gradient of f satisfies the − 1

η -negative comonotonicity. (See Appendix A.1.) For any γ-weakly-
convex-weakly-concave function, the condition (2) holds with α = −γ < 0. Its extreme case is
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f(x, y) = −γ2x
2 + γ

2 y
2, where there is no interaction between x and y. On the other hand, when the

the second terms in the left-hand side of (2) are sufficently positive definite, a nonconvex-nonconave
function satisfies the condition (2) with a nonnegative α. In specific, the α ≥ 0-interaction dominant
condition is satisfied when the interaction term of Hessian∇2

xyf is dominating any negative curvature
in Hessians∇2

xxf and −∇2
yyf [11].

We next present our proposed FEG, and illustrate that the FEG outperforms existing methods such as
EG+, EAG, and the Halpern iteration, for each three comonoticity case, respectively.

4 Fast extragradient (FEG) method for Lipschitz continuous and
comonotone operators

This section considers an instance of (Class FEG) with αk = 1
L , βk = 1

k+1 , and ρk = ρ for all k ≥ 0.
The resulting method, named FEG, is illustrated in Algorithm 1, which has an O(1/k2) fast rate
with respect to the squared gradient norm, in Theorem 4.1. The proof of Theorem 4.1 is provided in
Section 7.

Algorithm 1 Fast extragradient (FEG) method

Input: z0 ∈ Rd, L ∈ (0,∞), ρ ∈
(
− 1

2L ,∞
)

for k = 0, 1, . . . do

zk+1/2 = zk +
1

k + 1
(z0 − zk)−

(
1− 1

k + 1

)( 1

L
+ 2ρ

)
Fzk

zk+1 = zk +
1

k + 1
(z0 − zk)− 1

L
Fzk+1/2 −

(
1− 1

k + 1

)
2ρFzk.

end for

Theorem 4.1. For the L-Lipschitz continuous and ρ-comonotone operator F with ρ > − 1
2L and for

any z∗ ∈ Z∗(F ), the sequence {zk}k≥0 generated by FEG satisfies, for all k ≥ 1,

‖Fzk‖2 ≤
4‖z0 − z∗‖2(
1
L + 2ρ

)2
k2
. (3)

The following example shows that the bound (3) of the FEG is exact for ρ = 0 and k = 4l + 2. The
bound (3) is not known to be exact in general, and we leave finding the exact bound as future work.

Example 2. Let f : R × R → R be f(x, y) = Lxy. Its saddle gradient operator and solution
are F (x, y) = (Ly,−Lx) and z∗ = (0, 0), respectively. For the initial point z0 = (x0, y0) =
(1, 0), the sequence {zk}k≥0 generated by FEG satisfies z4l+2 =

(
0, 1

2l+1

)
for all l ≥ 0. Hence,

‖Fz4l+2‖2 = L2

(2l+1)2 = 4L2‖z0−z∗‖2
(4l+2)2 for all l ≥ 0. (See Appendix B.1.)

We next compare the rate bound (3) with existing analyses for the three cases − 1
2L < ρ < 0, ρ = 0,

and ρ > 0.

4.1 Comparison to EG+ under the negative comonotonicity (ρ < 0)

Under the negative comonotonicity with − 1
8L < ρ < 0, the (EG+) method with αk = 1

2L and β = 1
2

has anO(1/k) rate on the squared gradient norm. To the best of our knowledge, this is the best known
rate, and the FEG has a faster O(1/k2) rate with a wider region of convergence − 1

2L < ρ < 0.

4.2 Comparison to EAG under the monotonicity (ρ = 0)

For an L-Lipschitz continuous and monotone operator F , [43] proposed two EAG methods, named
EAG-C and EAG-V, with same βk = 1

k+2 but with different choices of αk. EAG-C sets αk to
be a constant 1

8L for all k ≥ 0 in (EAG), and has a large constant 260 in its convergence rate,
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‖Fzk‖2 ≤ 260L2‖z0−z∗‖2
(k+1)2 for all k ≥ 0. On the other hand, while EAG-V requires a complicated

recursive update for {αk}, αk+1 = αk
1−α2

kL
2

(
1− (k+2)2

(k+1)(k+3)α
2
kL

2
)

for all k ≥ 0, with α0 = 0.618
L ,

its rate has a smaller constant 27.

The FEG takes a constant αk = 1
L , unlike EAG-V, but has an even smaller constant 4 in its

convergence rate ‖Fzk‖2 ≤ 4L2‖z0−z∗‖2
k2 for ρ = 0. Therefore, the FEG with ρ = 0 has about

260/4-times and 27/4-times faster convergence rate compared to those of EAG-C and EAG-V,
respectively. Furthermore, the rate bound of FEG with ρ = 0 is only about 4-times larger than the
lower complexity bound of first-order methods under the considered setting [43], reducing the gap
between the lower and upper complexity bounds from 27 to 4.

4.3 Comparison to the Halpern iteration under the cocoercivity (ρ > 0)

For a ρ-cocoercive operator F , an (explicit) version of Halpern iteration [12], studied in [6], has a
fast rate, ‖Fzk‖2 ≤ ‖z0−z∗‖2

ρ2k2 . Note that while the ρ-cocoercivity implies the 1
ρ -Lipschitz continuity,

there is case where the ρ-cocoercive (and thus Lipschitz continuous) operator has a Lipschitz constant
L smaller than 1

ρ . Since L ≤ 1
ρ , the FEG has a rate ‖Fzk‖2 ≤ 4‖z0−z∗‖2

(1/L+2ρ)2k2 = 4‖z0−z∗‖2
9ρ2k2 that

is faster than that of Halpern iteration. However, if we take into account that the FEG requires
computing the saddle gradient twice per iteration, unlike Halpern iteration studied in [6], the FEG
method has a slower rate in terms of the number of gradient computations. If we narrow down to
the case L < 1

2ρ , the FEG has a faster rate, ‖Fzk‖2 ≤ 4‖z0−z∗‖2
(1/L+2ρ)2k2 < ‖z0−z∗‖2

4ρ2k2 . For such case,
the FEG has a rate faster than that of the Halpern iteration, even in terms of the number of gradient
computations.

4.4 Toy example

We performed a toy experiment on a simple quadratic function, f(x, y) = ρL2

2 x2+L
√

1− ρ2L2xy−
ρL2

2 y2, which has an L-Lipschitz continuous and ρ-comonotone saddle gradient. For the case
ρ = − 1

3L and L = 1, Figure 2 illustrates that the FEG converges with an accelerated rate whereas
EG+, EAG-C, EAG-V, and the (explicit) version of Halpern iteration [6] diverge. This example
presents that the existing guarantees on convergence and acceleration of the aforementioned methods
under the convex-concave setting do not generalize to the nonconvex-nonconcave setting.

5 FEG with backtracking line-search

The FEG requires the knowledge of the two global parameters L and ρ for Lipschitz continuity and
comonotonicity, respectively. Those global parameters are often difficult to compute in practice
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and can be locally conservative. To handle these two disadvantages, we employ the backtracking
line-search technique [2, 25, 31] in FEG. We adaptively decrease the two step size parameters, τ
and η, to satisfy the both conditions, the local 1

τ -Lipschitz continuity and the η−τ
2 -comonotonicity.5

A pseudocode of the resulting method, named FEG-A, is illustrated in Algorithm 2. For a detailed
description of the FEG-A, see Algorithm 4 in Appendix C.1.

Algorithm 2 Fast extragradient method with adaptive step size (FEG-A)
Input: z0 ∈ Rd, τ−1 ∈ (max{0,−2ρ},∞), η0 ∈ (0,∞), δ ∈ (0, 1)
Find the smallest nonnegative integer i0 such that ẑ = z0 − τ−1(1 − δ)i0Fz0 satisfies ‖F ẑ −
Fz0‖ ≤ 1

τ−1(1−δ)i0 ‖ẑ − z0‖.
τ0 = τ−1(1− δ)i0 , z1 = z0 − τ0Fz0.
for k = 1, 2, . . . do

ik = jk = 0.
Increase each ik and jk one by one until

ẑk+1/2 = zk +
1

k + 1
(z0 − zk)−

(
1− 1

k + 1

)
ηk−1(1− δ)jkFzk and

ẑk+1 = zk +
1

k + 1
(z0 − zk)− τk−1(1− δ)ikFzk+1/2

−
(

1− 1

k + 1

)
(ηk−1(1− δ)jk − τk−1(1− δ)ik)Fzk

satisfy both conditions,

‖F ẑk+1 − F ẑk+1/2‖ ≤
1

τk−1(1− δ)ik
‖ẑk+1 − ẑk+1/2‖ and

〈F ẑk+1 − Fzk, ẑk+1 − zk〉 ≥
ηk−1(1− δ)jk − τk−1(1− δ)ik

2
‖F ẑk+1 − Fzk‖2.

τk = τk−1(1− δ)ik , ηk = ηk−1(1− δ)jk , zk+1 = ẑk+1.
end for

The following lemma shows that each of the nonincreasing sequences {τk}k≥0 and {ηk}k≥0 of the
FEG-A has a positive lower bound, and thus FEG-A is well-defined6, under the condition ρ > − τk2 .
This condition for ρ can be weaker than the condition ρ > − 1

2L of FEG, since the local Lipschitz
parameter 1

τk
can be smaller than L. This is another benefit of using a backtracking line-search in

FEG, over the standard FEG.
Lemma 5.1. For the L-Lipschitz and ρ-comonotone operator F and a given constant δ ∈ (0, 1), the
step size τk of FEG-A is lower bounded by a positive value τ := min

{
τ−1,

1−δ
L

}
for all k ≥ 0, and

if ρ > − τk2 , the step size ηk is lower bounded by a positive value min
{
η0, (1− δ)

(
τk + 2ρ

)}
for all

k ≥ 1.

The FEG-A method also has the following O(1/k2) rate with respect to the squared gradient norm in
Theorem 5.1, when ρ > − τk2 . The proof is provided in Section 7 and Appendix C.3.
Theorem 5.1. For the L-Lipschitz and ρ-comonotone operator F and for any z∗ ∈ Z∗(F ), the
sequence {zk}k≥0 generated by FEG-A satisfies

‖Fzk‖2 ≤
4‖z0 − z∗‖2

((k − 1)ηk + τk + 2ρ)
2

for all k ≥ 1, if ρ > − τk2 .

This rate bound of FEG-A reduces to that of FEG in Theorem 4.1, when we choose τ−1 = 1
L and

η0 = 1
L + 2ρ for FEG-A.

5In specific, τ and η locally estimate 1
L

and 1
L
+2ρ, respectively. One could have directly estimate ρ, instead

of 1
L
+ 2ρ, but this complicates the line-search process to handle both positive and negative values of ρ, unlike

our choice of η in FEG-A.
6This requires one to chooses τ−1 strictly greater than the unknown value −2ρ when ρ < 0.
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6 FEG under stochastic setting

When exactly computing Fz is expensive in practice, one usually instead consider its stochastic
estimate for computational efficiency (see, e.g., [13, 16, 26, 33, 40, 42, 44]). This section also
considers using a stochastic oracle in FEG for smooth convex-concave problems. In specific, this
section assumes that we only have access to a noisy saddle gradient oracle, F̃ zk/2 = Fzk/2 + ξk/2,
where {ξk/2}k≥0 are independent random variables satisfying E[ξk/2] = 0 and E[‖ξk/2‖2] = σ2

k/2

for all k ≥ 0. Under this setting, we study a stochastic first-order method, named stochastic fast
extragradient (S-FEG) method, illustrated in Algorithm 3.

Algorithm 3 Stochastic fast extragradient (S-FEG) method
Input: z0 ∈ Rd, L ∈ (0,∞).
for k = 0, 1, . . . do

zk+1/2 = zk +
1

k + 1
(z0 − zk)−

(
1− 1

k + 1

) 1

L
F̃ zk

zk+1 = zk +
1

k + 1
(z0 − zk)− 1

L
F̃ zk+1/2

end for

The following theorem provides an upper bound of the expected squared gradient norm for the S-FEG.
(See Appendix D.3 for the proof.)
Theorem 6.1. Let F̃ zk/2 = Fzk/2 + ξk/2, where {ξk/2}k≥0 are independent random variables
satisfying E[ξk/2] = 0 and E[‖ξk/2‖2] = σ2

k/2 for all k ≥ 0. Then, for the L-Lipschitz continuous
and monotone operator F and for any z∗ ∈ Z∗(F ), the sequence {zk}k≥0 generated by S-FEG
satisfies

E[‖Fzk‖2] ≤ 4L2‖z0 − z∗‖2

k2
+

6

k2

[
σ2
0 +

k−1∑
l=1

(l2σ2
l + (l + 1)2σ2

l+1/2)

]
(4)

for all k ≥ 1. Furthermore, if σ2
0 ≤ ε

6 , σ2
k ≤ ε

6k and σ2
k+1/2 ≤

ε
6(k+1) for all k ≥ 1, then the bound

(4) reduces to

E[‖Fzk‖2] ≤ 4L2‖z0 − z∗‖2

k2
+ ε

for all k ≥ 1.

Here, we needed the noise variance σ2
k/2 to decrease in the order ofO(1/k) so that the stochastic error

of the S-FEG does not accumulate. Otherwise, if σ2
k/2 is a constant for all k, the error accumulates

with rate O(k). In short, the S-FEG will suffer from error accumulation, unless the stochastic error
decreases with rate O(1/k). Such error accumulation behavior also appears in a stochastic version
of Nesterov’s fast gradient method [35, 36] for smooth convex minimization [5, 8]. Similar to [5],
we believe that adjusting the step coefficients of the S-FEG can make the S-FEG become relatively
stable even with a constant noise, which we leave as future work.

7 Convergence analysis with nonincreasing potential lemma

We analyze FEG and FEG-A by finding a nonincreasing potential function in a form Vk =
ak‖Fzk‖2 − bk 〈Fzk, z0 − zk〉 in the lemma below. We provide a similar potential lemma for
S-FEG in Appendix D.2. The convergence analyses of EAG and Halpern iteration are also based on
such potential function [6, 43].
Lemma 7.1. Let {zk}k≥0 be the sequence generated by (Class FEG) with {αk}k≥0, {βk}k≥0,
{Lk}k≥0 ⊂ (0,∞) and {ρk}k≥0 ⊂ R, satisfying α0 ∈ (0,∞), αk ∈

(
0, 1

Lk

]
, β0 = 1, {βk}k≥1 ⊆

(0, 1) for all k ≥ 1, and
(1− βk+1)

2βk+1
(αk+1 + 2ρk+1)− ρk+1 ≤

1

2βk
(αk + 2ρk)− ρk

8



for all k ≥ 0. Assume that the following conditions are satisfied.

‖Fz1 − Fz0‖ ≤ L0‖z1 − z0‖
‖Fzk+1 − Fzk+1/2‖ ≤ Lk‖zk+1 − zk+1/2‖ for all k ≥ 1,

〈Fzk+1 − Fzk, zk+1 − zk〉 ≥ ρk‖Fzk+1 − Fzk‖2 for all k ≥ 1.

Then the potential function

Vk = ak‖Fzk‖2 − bk 〈Fzk, z0 − zk〉

with a0 =
α0(L

2
0α

2
0−1)

2 , b0 = 0, b1 = 1,

ak =
bk(1− βk)

2βk
(αk + 2ρk)− bkρk and bk+1 =

bk
1− βk

for all k ≥ 1 satisfies Vk ≤ Vk−1 for all k ≥ 1.

Based on the above potential lemma, we next provide a convergence analysis of FEG. The analyses
for the convergence rate of FEG-A and S-FEG, i.e., the proofs of Theorem 5.1 and Theorem 6.1, are
similar to that of FEG and are provided in Appendix C.3 and Appendix D.3.

7.1 Convergence analysis for FEG

Proof of Theorem 4.1. Recall that FEG is equivalent to (Class FEG) with αk = 1
L , βk = 1

k+1 , and
ρk = ρ. It is straightforward to verify that the given {αk}k≥0 and {βk}k≥0 satisfy the conditions in
Lemma 7.1 with Lk = L for all k ≥ 0. Since

ak =
bk(1− βk)

2βk
(αk + 2ρk)− bkρk =

k2

2

( 1

L
+ 2ρ

)
− kρ and

bk =
1

1− βk−1
bk−1 =

( k−1∏
i=1

1

1− βi

)
b1 = k,

Lemma 7.1 implies that

0 = V0 ≥ Vk =

(
k2

2

( 1

L
+ 2ρ

)
− kρ

)
‖Fzk‖2 − k 〈Fzk, z0 − zk〉 .

Therefore,
k2

2

( 1

L
+ 2ρ

)
‖Fzk‖2 ≤ k 〈Fzk, z0 − zk〉+kρ‖Fzk‖2

= k 〈Fzk, z0 − z∗〉+k 〈Fzk, z∗ − zk〉+kρ‖Fzk‖2

≤ k 〈Fzk, z0 − z∗〉 (∵ ρ-comonotonicity of F )

≤ k‖Fzk‖‖z0 − z∗‖.

The desired result follows directly by dividing both sides by k2

2

(
1
L + 2ρ

)
‖Fzk‖.

8 Discussion: first-order methods for Lipschitz continuous operators

Throughout this paper, we studied and constructed efficient methods in a class of first-order methods:

zk ∈ z0 + span{Fz0, · · · ,Fzk}
denoted by A, for smooth structured nonconvex-nonconcave problems. We observed that all existing
first-order methods, including the FEG, required an additional condition, such as the negative
comonoticity, on a Lipschitz continuous F to guarantee convergence. One would then be curious
whether or not there exists an (efficient) method in class A that guarantees convergence without any
additional condition on a Lipschitz continuous F . Unfortunately, the following lemma states that
there exists a worst-case7 smooth example that none of the methods in A can find its stationary point.
The corresponding smooth function is illustrated in Figure 3.

7[15, 20] also introduce worst-case minimax examples that existing methods cannot find a stationary point.
A key difference from our example is that their saddle-gradient operators are not Lipschitz continuous. In
addition, the considered classes of methods in [15, 20] exclude EG+ and FEG, unlike the class A.

9



Figure 3: A smooth worst-case example f(x, y) (5) with L = R = 1 for first-order methods. any
sequence {zk}k≥0 generated by a first-order method in class A starting from (0, 0) is contained in
the line x = y.

Lemma 8.1. Let us consider the following function f : R2 → R for some L,R > 0:

f(x, y) =



R
2 for x < y −

√
R
L

−L2 (x− y)2 −
√
LR(x− y) for y −

√
R
L ≤ x < y

L
2 (x− y)2 −

√
LR(x− y) for y ≤ x < y +

√
R
L

−R2 for y +
√

R
L < x.

(5)

Its saddle-gradient operator F is L-Lipschitz continuous but not comonotone.8 Then, the sequence
{zk}k≥0 generated by any first-order method in class A with z0 = (0, 0) satisfies ‖Fzk‖2 = 2LR
for all k ≥ 0.

Proof. F satisfies F (x, y) = (−
√
LR,−

√
LR) whenever x = y. Hence, for all sequences {zk}k≥0

satisfying z0 = (0, 0) and zk ∈ z0 + span{Fz0, · · · ,Fzk} for all k ≥ 0, we have that {zk}k≥0 ⊆
{z = (x, y) ∈ R2|x = y}; thus, ‖Fzk‖2 = 2LR for all k ≥ 0.

The lemma implies that one should consider a class of methods, other than the class A, to guarantee
finding a stationary point of any smooth problem, which we leave as future work. We also leave
finding additional conditions for a Lipschitz continuous F , weaker than the weak MVI condition and
the negative comonotonicity (with ρ > − 1

2L ), which guarantee convergence or its accelerated rate,
respectively, as future work.

9 Conclusion

This paper proposed a two-time-scale and anchored extragradient method, named FEG, for smooth
structured nonconvex-nonconcave problems. The proposed FEG has an accelerated O(1/k2) rate,
with respect to the squared gradient norm, for the Lipschitz continuous and negative comonotone
operators for the first time. The FEG also has value for smooth convex-concave problems, compared
to existing works. We further studied its backtracking line-search version, named FEG-A, for the
smooth structured nonconvex-nonconcave problems and studied its stochastic version, named S-FEG,
for smooth convex-concave problems. We leave extending this work to stochastic, composite, or
more general nonconvex-nonconcave setting and applying to more realistic problems as future work.

8Let z =
(
x,x +

√
R
L

)
and w = (0, 0). Since Fz = (0, 0) and Fw = (−

√
LR,−

√
LR), we get

〈Fz − Fw, z −w〉 = 2
√
LRx + R and ‖Fz − Fw‖2 = 2LR, which implies that ρ = −∞ in the

comonotonicity condition as x→ −∞.
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