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Abstract

Visual reasoning in multimodal large language models (MLLMs) has primarily
been studied in static, fully observable settings, limiting their effectiveness in
real-world environments where information is often incomplete due to occlusion
or limited field of view. Humans, in contrast, actively explore and interact with
their environment—moving, examining, and manipulating objects—to gather in-
formation through a closed-loop process integrating perception, reasoning, and
action. Inspired by this human capability, we introduce the Active Visual Rea-
soning (AVR) task, extending visual reasoning to partially observable, interactive
environments. AVR necessitates agents to: (1) actively acquire information via
sequential physical actions, (2) integrate observations across multiple steps for
coherent reasoning, and (3) dynamically adjust decisions based on evolving visual
feedback. To rigorously evaluate AVR, we introduce CLEVR-AVR, a simulation
benchmark featuring multi-round interactive environments designed to assess both
reasoning correctness and information-gathering efficiency. We present AVR-152k,
a large-scale dataset offers rich Chain-of-Thought (CoT) annotations detailing
iterative reasoning for uncertainty identification, action-conditioned information
gain prediction, and information-maximizing action selection, crucial for train-
ing agents in a higher-order Markov Decision Process. Building on this, we
develop PhysVLM-AVR, an MLLM achieving state-of-the-art performance on
CLEVR-AVR, embodied reasoning (OpenEQA, RoboVQA), and passive visual rea-
soning (GeoMath, Geometry30K). Our analysis also reveals that current embodied
MLLMs, despite detecting information incompleteness, struggle to actively acquire
and integrate new information through interaction, highlighting a fundamental gap
in active reasoning capabilities.

1 Introduction

Visual reasoning, a fundamental capability in artificial intelligence, has enabled multimodal large
language models (MLLMs) [1, 2, 3, 4, 5] to excel at tasks such as object counting [6, 7, 8] and
visual question answering (VQA) [9, 10, 11, 12]. These abilities are crucial for developing intelligent
systems that can comprehend and interact with the visual world. As MLLMs continue to evolve,
their potential to understand and reason about dynamic, real-world environments is increasingly
recognized, paving the way for more sophisticated and autonomous agents [13, 14, 15, 16, 17].
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Figure 1: Passive Visual Reasoning (top) fails with partial views. Active Visual Reasoning (AVR,
bottom) actively interacts to gather information for a correct answer.

Despite these advancements, current MLLM approaches to visual reasoning—including prominent
tasks like VQA [18, 12, 19, 20] and spatial reasoning [21, 22, 23]—predominantly rely on static,
passive visual inputs. This inherently limits their applicability in real-world physical environments
where information is often partially observable due to occlusions, containment, or limited field of
view [24]. As illustrated in Figure 1, a passive model observing only the initial image I0 answers
incorrectly, whereas an active agent interacts to uncover occluded objects across I1 and I2, arriving at
the correct answer. And in the task of counting all object categories in the scene, the more occluded
objects there are, the worse the model performs in passive visual reasoning mode. This highlights
that effective reasoning in partially observable settings necessitates interaction to actively acquire
missing information.

Humans, in stark contrast, naturally overcome such limitations through active perception. We
instinctively move, change viewpoints, and manipulate objects to gather information needed for a
specific goal. This active engagement exemplifies a core aspect of human cognition: closing the
perception-reasoning-action loop to incrementally resolve uncertainties and establish the causal
links essential for complex reasoning.

However, existing computational frameworks often suffer from paradigm fragmentation and thus fail
to holistically model the complete perception-reasoning-action loop. Conventional visual reasoning
tasks [25, 9, 10] (e.g., CLEVR [6]) assume complete visual inputs, requiring only a single "perception
→ reasoning" step without active information gathering [26, 27, 28]. While embodied question
answering (EQA) tasks (e.g., OpenEQA [29], RoboVQA [30]) involve interaction, they often focus
on reasoning from single, albeit potentially long, video sequences. Similarly, embodied exploration
methods [31, 32, 33], also interactive, tend to prioritize task completion metrics (e.g., navigation
success) over the explicit information gain needed for nuanced reasoning. The fundamental limitation
across these approaches is their failure to effectively link reasoning with the strategic, sequential
actions essential for information gathering. Specifically, they often overlook how an agent’s actions
dynamically alter available information and, crucially, how these changes should guide and refine the
ongoing reasoning process, especially when multiple evidence-gathering steps are required.

Inspired by human active perception and to address these limitations, we introduce the Active
Visual Reasoning (AVR) task. AVR extends visual reasoning to partially observable, interactive
environments, bridging the gap between passive observation and active, embodied understanding.
Specifically, AVR combines embodied interaction with temporal visual reasoning, requiring agents
to: (1) actively gather information through sequential physical actions; (2) integrate multi-step
observations for coherent reasoning; and (3) dynamically adjust decisions based on incremental
visual feedback. This paradigm requires models to interpret visual data and strategically decide how
to interact with the environment, thereby resolving uncertainties crucial for complex reasoning.

To establish a rigorous foundation for the AVR task and facilitate research in this domain, this paper
makes the following primary contributions:

• We formally introduce and define the Active Visual Reasoning (AVR) task, mandating ac-
tive information gathering, multi-step integration, and dynamic decision-making in partially
observable settings.
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• We develop CLEVR-AVR, a simulation benchmark featuring multi-round interactive environ-
ments. This benchmark is specifically designed to assess both the reasoning correctness and the
information-gathering efficiency of agents performing AVR tasks.

• We present AVR-152k, a large-scale dataset with multi-level annotations designed to train
agents for AVR. Its core component, AVR-Core, models the task as a higher-order Markov
Decision Process and features rich Chain-of-Thought (CoT) annotations. These CoTs articulate
the structured, iterative reasoning humans employ for active information seeking, including
critical steps such as: (i) identifying information uncertainty, (ii) predicting action-conditioned
information gain, and (iii) selecting information-maximizing actions, thereby providing explicit
supervision for these decision-making processes.

• We develop and evaluate PhysVLM-AVR, an MLLM that achieves state-of-the-art performance
on CLEVR-AVR while maintaining strong results on standard embodied visual reasoning tasks,
and reveals insights into current MLLM limitations regarding active interaction.

Collectively, our work provides a foundation for developing MLLMs capable of actively reasoning
about and intelligently interacting with their physical environments, thereby narrowing the gap
between static visual reasoning and embodied intelligence.

2 Related Work

Visual Reasoning. Traditional visual reasoning tasks, such as Insight-V [34], CLEVR [6] and its
variants (e.g., CLEVR-Math [7], MathVision [35]), have significantly advanced models’ abilities in
attribute recognition, counting, and spatial reasoning [36]. However, these tasks operate on static,
fully observable images, lacking mechanisms for active information seeking in partially observable
scenarios. Consequently, they do not model the sequential, interactive process essential for real-world
understanding. AVR addresses this by requiring agents to perform sequential actions to actively
acquire information necessary for reasoning.

Embodied Question Answering. Embodied Question Answering (EQA) tasks (e.g., OpenEQA [29],
RoboVQA [30], CityEQA [37]) extend question answering to simulated embodied environments.
However, by often relying on pre-captured data, these approaches limit agents to passive observation
rather than active, dynamic exploration to resolve current uncertainties. As a result, the critical
closed-loop interaction – where reasoning about the question drives information-seeking actions, and
new information from these actions refines understanding – is frequently underemphasized. AVR, in
contrast, centers on this loop, compelling agents to integrate multi-step observations acquired through
their own goal-directed actions.

Embodied Exploration. Embodied exploration and task planning methods (e.g., Knowledge-based
EQA [33], Embodied Reasoner [32], ET-Plan-Bench [38], EXPRESS-Bench [39]) enable agents
to interact with their environments for broader goals like navigation or multi-step task completion.
However, these approaches typically optimize for overall task success (e.g., navigation efficiency)
rather than the targeted information acquisition crucial for active reasoning. Their evaluation often
prioritizes general task metrics over the specific information gain pertinent to a reasoning objective.
AVR, conversely, prioritizes dynamic, uncertainty-driven action selection to maximize information
gain directly relevant to the goal, highlighting the link between information-seeking actions and
reasoning refinement.

In summary, while existing research touches upon interaction and reasoning, AVR uniquely integrates
these by emphasizing active perception driven by reasoning needs. This directly addresses robust
understanding in partially observable environments, mirroring a key aspect of human cognition.

3 Active Visual Reasoning

3.1 Problem Formulation

We define Active Visual Reasoning (AVR) as a closed-loop paradigm where an agent must actively
interact with a partially observable environment E using a finite set of atomic actions A to answer a
question Q. Unlike conventional visual reasoning, AVR models reasoning as an iterative perception-
reasoning-action cycle. At each timestep t ∈ {0,1, ...,Tmax}, the agent receives a partial observation
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ot and maintains an observation history ht = {o0, ...,ot}. Based on Q and ht , the reasoning module
freason generates an intermediate reasoning trace:

Thinkt = freason(Q,ht ,A). (1)

The agent then assesses if ht is sufficient to answer Q. If so, it generates an answer yt = fanswer(Q,ht).
Otherwise, it selects an optimal information-gathering action at to maximize expected information
gain about the true answer Y :

at = argmaxat∈AEot+1∼E(ht ,at ) [I(Y ;yt+1|ht+1,Q)] , (2)

where ht+1 = (ht ,ot+1). Executing at yields ot+1, and ht+1 is updated. This cycle iterates until an
answer is generated or Tmax is reached.

AVR thus integrates three key components: (1) Active Information Acquisition: Strategically inter-
acting to gain relevant information. (2) Temporal Visual Integration: Reasoning over accumulated
sequential observations. (3) Dynamic Decision-Making: Continuously adapting beliefs and actions
based on new evidence.

3.2 Key Challenges

AVR presents distinct challenges beyond static visual reasoning: (1) Efficient Exploration: Strategi-
cally exploring partially observable environments to acquire task-relevant information with minimal
actions. (2) Temporal Visual Reasoning: Integrating and reasoning over extended observation
sequences from multi-step interactions. (3) Reasoning-Driven Actions: Ensuring actions are guided
by current understanding to purposefully reduce uncertainty, avoiding random exploration.

Addressing these multifaceted challenges necessitates dedicated benchmarks and datasets. Accord-
ingly, the CLEVR-AVR benchmark and the AVR-152k dataset, detailed in the next section, are
designed to encapsulate these difficulties. Our dataset construction, in particular, captures the sequen-
tial decision-making processes inherent in AVR, providing a structured foundation for developing
and evaluating agents for these complex tasks.

4 CLEVR-AVR Benchmark and AVR-152k Dataset

4.1 CLEVR-AVR: A Benchmark for Evaluating AVR Capabilities

The CLEVR-AVR benchmark is a simulation-based evaluation suite designed to rigorously assess an
agent’s proficiency in the AVR paradigm. Leveraging the Genesis [40] physical simulation platform, it
extends the classic CLEVR [6] setup into an interactive, embodied domain. This provides a controlled
yet rich environment for studying the closed loop of perception, reasoning, and action fundamental
to AVR. Further details on the scene types, question template structures, and the distribution of
occlusion and stacking challenges within CLEVR-AVR are provided in Appendix Figures A-1, A-2,
and A-3, respectively.

Challenge of Efficient Exploration in Partial Observability. A core tenet of AVR is overcoming
incomplete information. As shown in Figure 2, CLEVR-AVR confronts agents with diverse scenarios
featuring 10 occlusion types, 10 stacking types, and 10 composite scenarios combining these elements.
The action space includes object manipulation and viewpoint changes, with agents required to
interactively gather information to answer diverse question types. For detailed action formats and
candidate generation, see Appendix Sec. A.1.

Challenge of Temporal Visual Reasoning. CLEVR-AVR demands multi-step integration of obser-
vations for coherent reasoning. On average, each question requires at least two reasoning steps to
resolve, with some scenarios designed to necessitate 4-6 interaction steps.

Challenge of Reasoning-Driven Actions. Each question in CLEVR-AVR is paired with candidate
responses that include both final answer options and intermediate [Action] options, as exemplified
in Figure 2. This structure allows agents to either provide a conclusive answer or explicitly choose to
interact further with the environment. Agents must assess whether current information is sufficient or
if an action is necessary to reduce uncertainty, promoting purposeful, uncertainty-reducing interactions
over random exploration. (Further details on action candidate generation are in Appendix Sec. A.1).
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Figure 2: Top: CLEVR-AVR Simulator Benchmark, showing distributions of question types, action
space, scenes, and examples. Bottom: Higher-order Markov Decision Process (MDP) paradigm for
Active Visual Reasoning (AVR).

Evaluation Metrics.

CLEVR-AVR primarily evaluates: (1) Information Sufficiency Judgment Accuracy (ACCISJ):
Accuracy in judging whether the initial observation provides sufficient information to answer the
question. For example, if crucial objects for a counting task are occluded in the initial view, a correct
judgment would be to acknowledge insufficiency and select an action option rather than attempting
a premature final answer. (2) Information Gain Rate (IGR): This metric is derived by dividing
the count of information-gaining decisions by the total number of decision steps. (3) Final Answer
Accuracy (ACCFA): Correctness of the final answer, with ground truth from the simulator.

An action achieves Information Gain if it reveals new, question-relevant visual information (e.g.,
uncovering hidden objects, changing viewpoints for obscured areas). This is determined by simulator
ground truth: an action gains information if it unhides relevant objects/surfaces previously occluded
or stacked upon. This objectively measures if the action yielded a more complete observation, crucial
for tasks like counting or attribute querying needing comprehensive exploration. These metrics
together comprehensively assess an agent’s efficient and accurate Active Visual Reasoning (AVR).

4.2 AVR-152k Dataset: Modeling Active Visual Reasoning as a Higher-Order MDP

To facilitate the development of agents capable of Active Visual Reasoning (AVR)—particularly in
addressing the challenges of Efficient Exploration, Temporal Visual Reasoning, and Reasoning-
Driven Actions—we introduce the AVR-152k dataset. A key component of this dataset, AVR-Core,
is specifically designed to model AVR tasks as a higher-order Markov Decision Process (MDP), as
illustrated in Figure 2. This MDP formulation provides a principled framework for agents to learn
how to sequentially gather information and reason in interactive environments.

Within this MDP, As shown in Figure 3, AVR-Core provides rich Chain-of-Thought (CoT) annotations
for the reasoning state (Thinkt ). These CoTs are meticulously structured to reflect a natural, human-
like information-seeking process: (1) Assessing Current Understanding: evaluating the information
available from observation history (ht ) in relation to the question (Q) and identifying key uncertainties
or missing details. (2) Evaluating Potential Actions: considering available actions (A) and forecasting
their potential to resolve identified uncertainties and yield valuable new information. (3) Strategic
Decision-Making: based on the assessment and evaluation, deciding whether to take an information-
gathering action (at ) or, if uncertainty is sufficiently resolved, provide a final answer. Training with
these explicit CoT annotations enables models to internalize this multi-step reasoning.
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Figure 3: AVR-152k Dataset Construction. Left: Workflows for AVR-Caption and AVR-Embodied
Reasoning (perception, temporal reasoning). Right: AVR-Core details including its sequential
annotation, CoT supervision, and quality verification.

The full AVR-152k dataset, including its foundational subsets, supports training models to master
this complex, interactive reasoning loop. As shown in Figure 3, AVR-152k comprises three subsets
with progressively increasing complexity:

AVR-Caption (100k samples): Focuses on foundational visual perception and spatial understanding,
providing dense captions with bounding boxes for indoor scenes from diverse embodied datasets
(e.g., ScanNet [41], RT1 [42]). Captions were generated by Gemini-2.0-flash [43] using the prompt
detailed in Appendix Figure A-4, and an example data instance is shown in Appendix Figure A-5.

AVR-Embodied Reasoning (50k samples): Advances to temporal visual reasoning. It consists of
multi-image sequences paired with questions requiring spatiotemporal understanding. Dense captions
were generated by Gemini-2.0-flash, while DeepSeek-R1-671B [44] produced reasoning chains (see
Appendix Figure A-6 for the prompt), which were subsequently optimized by DeepSeek-V3 [45]
(see Appendix Figure A-7 for the refinement prompt). An illustrative example from this subset is
provided in Appendix Figure A-8.

AVR-Core (2k samples): Directly instantiates the higher-order MDP for AVR. Data was collected using
UMI [46] devices interacting with 640 real-world tabletop settings. As shown in Figure 3, each sample
in AVR-Core contains expert-structured CoT annotations for the Thinkt state, initially authored by
human experts through a multi-step process (details in Appendix Sec. B.1), and subsequently refined
by Gemini (see Appendix Figure A-9 for the refinement prompt). These annotations explicitly
demonstrate the human-like reasoning process. They detail how to assess uncertainty, predict
information gain from potential actions, and articulate the rationale for selecting an action or providing
a final answer. This iterative process is exemplified in the multi-step interactive reasoning sequences
shown in Appendix Figures A-10, A-11, and A-12. Questions typically involve several reasoning-
and-action steps (avg. 3.2), requiring models to repeatedly apply this iterative decision-making
process. AVR-Core underwent rigorous validation: expert annotation, logical consistency verification
by Gemini [43], and human expert review of perception-reasoning-action validity.

The higher-order MDP embodied by AVR-Core (illustrated in Figure A-10, A-11, and A-12) for-
malizes this iterative, closed-loop process. Each sample in AVR-Core captures a single step of this
interaction. It provides the current context, including the question Q, visual observation history ht ,
past action history a0:t−1, and the set of available actions A. Crucially, it contains the expert-annotated
reasoning trace Thinkt , which details the assessment of current understanding, evaluation of potential
actions, and strategic decision-making. As an approximation of the goal in Equation 2, This reasoning
culminates in a recorded outcome: either a chosen information-gathering action at ∈ A or a final
answer yt . If an action at is selected, the resulting new visual observation ot+1 from the environment
E is also included, forming the basis for the next step. This structured data allows models to learn the
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mapping from the current state and available actions to the generation of a reasoning trace Thinkt
and the subsequent decision.

AVR-152k, with its structured CoT annotations within an MDP framework, offers a principled ap-
proach for developing models that actively seek information for reasoning in interactive environments.

5 PhysVLM-AVR Model

To equip a MLLM with active visual reasoning capabilities, we develop PhysVLM-AVR. The
architecture of PhysVLM-AVR is similar to LLaVA [2], employing Qwen2.5-3B [47] as the LLM
decoder and SigLIP-400M [48] as the visual encoder. A key modification for efficient multi-image
reasoning is the introduction of a max pooling layer after the visual encoder’s output, reducing the
number of visual tokens by a factor of three. This allows for more efficient processing of multiple
visual inputs. More details of the model architecture see Appendix A-14.

We employ a multi-stage, mixed-data training strategy to progressively build the generalizable active
visual reasoning capabilities of PhysVLM-AVR:

• Stage 1: Alignment. In this initial stage, we focus on aligning visual features with the language
model. We train only the connector layers (2xMLP) using the LLaVA-Pretrain [2] dataset.

• Stage 2.1: Single-Image Understanding. To develop foundational image comprehension, all
parameters are fine-tuned using the LLaVA-OneVision-data [3].

• Stage 2.2: Comprehensive Visual Understanding. We then enhance the model’s broader
visual understanding capabilities by training on the M4-Instruct-data [3] and our AVR-Caption.

• Stage 3: General Reasoning and Active Visual Reasoning. The final stage aims to instill
general reasoning abilities and specialized active visual reasoning skills. For this, we fine-tune
the model on a diverse mixture of datasets: Reason-RFT-129k [25], AM-DeepSeek-R1-Distilled-
100k [49], our AVR-Embodied Reasoning and AVR-Core datasets.

This multi-stage training culminates in the PhysVLM-AVR-3B model. The detailed training configu-
ration for PhysVLM-AVR-3B, including hyperparameters and software environment, is presented in
Appendix Section C and Figure A-13.

6 Experiment

6.1 Experimental Setup

Tasks. We demonstrate the effectiveness of our dataset and model through experiments across the
following three categories of tasks:

• Active Visual Reasoning. To demonstrate that our approach enables models to acquire active
visual reasoning capabilities, we first conduct comparative experiments on the CLEVR-AVR
(Sec. 4) benchmark. The CLEVR-AVR benchmark is built on the Genesis simulation framework,
ensuring that no similar images appear in the training data.

• Embodied Reasoning and Planning. To demonstrate that the reasoning capabilities developed
with our dataset and exemplified by PhysVLM-AVR are also effective in embodied reasoning
and task planning scenarios, we include comparative experiments on two embodied benchmarks:
OpenEQA [29] and RoboVQA [30].

• Visual Reasoning. To demonstrate the generalization reasoning capability of PhysVLM-AVR
in static visual reasoning tasks, we further evaluate its performance on two visual structure
perception benchmarks: GeoMath [50] and Geometry3K [51].

Baselines. In addition to our PhysVLM-AVR-3B (Sec 5), we also fine-tune Qwen2.5-VL-7B on
the AVR-152K dataset to obtain AVR-Qwen2.5-VL-7B (fine-tune details see A-13). We compare
them against four categories of models: (1) Open-source MLLMs: Qwen2.5-VL-7B [1] and
LLaVA-OV-7B [3], representing standard multimodal foundation models. (2)Visual Reasoning
MLLMs: R1-Onevision-7B [52] and Reason-RFT-7B [25], specialized for visual reasoning tasks. (3)

7



Embodied MLLMs: Embodied-Reasoner-7B [32] and RoboBrain-7B [13], designed for embodied
reasoning tasks. (4) API-based MLLMs: GPT-4o [53] and Gemini-2.0-flash [43].

Evaluation Metrics. For CLEVR-AVR, we report ACCISJ , IGR, and ACCFA (Sec 4.1), measuring
the correctness of judging whether the initial observation is sufficient, information gain rate of
action decision and accuracy of final answers. For OpenEQA, we follow the LLM-score [29] (GPT-
4o) evaluation protocol of the original paper. For RoboVQA, we report BLEU1-4 scores [30] as
established in the original benchmark.

Table 1: CLEVR-AVR Benchmark: Our PhysVLM-AVR-3B and AVR-Qwen2.5-VL-7B vs. various
MLLM categories. Best bold, second underlined.

Occlusion Stack Composite AVG.
Method ACCISJ IGR ACCFA ACCISJ IGR ACCFA ACCISJ IGR ACCFA ACCISJ IGR ACCFA

Open-sourceMLLMs
LLaVA-OV-7B 0 0 0 0 0 0 0 0 0 0 0 0
Qwen2.5-VL-7B 0 0 0 7.7 5.8 7.7 7.1 5.4 0 4.9 3.7 2.6

Reasoning MLLMs
R1-Onevision-7B 0 0 0 6.6 4.9 3.3 6.1 6.1 2.0 4.2 3.7 1.8
Reason-RFT-7B 0 0 0 0 0 0 1.5 1.5 0.0 0.5 0.5 0.0

Embodied MLLMs
RoboBrain-7B 4.5 3.8 0.0 1.6 0.0 1.6 4.6 3.1 3.1 3.6 2.3 1.6
Embodied-Reasoner-7B 21.2 13.6 1.5 16.4 8.2 3.3 23.1 10.8 0.0 20.2 10.9 1.6

API-based MLLMs
Gemini-2.0-flash 50.8 24.4 33.6 52.6 27.4 31.0 56.3 42.0 25.9 53.2 31.3 30.2
GPT-4o 85.2 39.4 53.1 90.5 46.8 41.4 89.6 66.3 42.5 88.4 50.8 45.7
AVR-Qwen2.5-VL-7B 95.5 43.9 40.9 88.5 26.2 36.1 82.9 40.8 37.4 89.3 34.7 38.1
PhysVLM-AVR-3B 90.6 27.4 42.2 90.5 22.4 37.9 90.2 40.0 39.1 90.5 29.9 39.7

6.2 Results on Active Visual Reasoning Tasks

Table 1 results from CLEVR-AVR offer compelling insights into active visual reasoning and highlight
our AVR framework’s significance. First, the results validate our premise: existing MLLMs, trained
on static data, struggle with active reasoning in interactive, partially observable environments.
Standard open-source MLLMs (LLaVA-OV-7B, Qwen2.5-VL-7B) and passive visual reasoning
models (R1-Onevision-7B, Reason-RFT-7B) show near-zero performance. This illustrates passive
capabilities don’t translate to AVR’s dynamic demands, necessitating new paradigms.

Critically, existing embodied MLLMs reveal a fundamental limitation. While models like Embodied-
Reasoner-7B can detect information incompleteness (20.2% ACCISJ), they largely fail to act effectively
for correct reasoning (only 1.6% ACCFA). This highlights: current embodied agents may recognize
missing information but struggle to strategically acquire and integrate it.

In contrast, our PhysVLM-AVR-3B and the fine-tuned AVR-Qwen2.5-VL-7B excel in Information
Sufficiency Judgment Accuracy (ACCISJ) (90.5% and 89.3%), surpassing GPT-4o (88.4%). This
validates the CoT of our AVR-Core dataset to teach the identification of uncertainty and the
need for interaction. Beyond this, AVR-Qwen2.5-VL-7B achieves a robust 39.7% average final
reasoning accuracy (ACCFA), making it the best open source model, second to GPT-4o and well ahead
of other baselines. The PhysVLM-AVR-3B also shows considerable improvement (39.7% ACCFA),
further showing the impact of our data set.

However, the gap between our models’ high ACCISJ and their final ACCFA (e.g., PhysVLM-AVR-3B:
90.5% ACCISJ vs. 39.7% ACCFA) highlights AVR’s central challenge: mastering optimal action
selection and multi-step information integration for coherent reasoning. While identifying the
need to act is learned, consistently choosing the best action and synthesizing information over time
needs more development.

In summary, CLEVR-AVR results show existing MLLMs’ difficulty with AVR. They also affirm
our AVR framework (AVR-152K dataset and PhysVLM-AVR model) is a significant step towards
MLLMs that can intelligently explore, gather information, and reason in physical environments.
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6.3 Results on Embodied Reasoning and Planning Tasks

As shown in Figure 4(a) and (b), our proposed models, PhysVLM-AVR-3B and AVR-Qwen2.5-
VL-7B, achieve strong performance on both the OpenEQA and RoboVQA embodied reasoning
benchmarks. On OpenEQA, our models consistently outperform standard multimodal models and
dedicated embodied reasoning models across all sub-tasks. Notably, even when trained with only
1/20 of the RoboVQA training set (indicated by *), our models deliver BLEU scores close to or
surpassing those of fully supervised baselines. These results demonstrate that active visual reasoning
and the AVR-152k dataset significantly enhance embodied reasoning and planning capabilities, even
under limited data conditions.
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Figure 4: Results for Embodied and Visual Reasoning Tasks.

6.4 Results on Visual Reasoning Tasks

We further evaluate our approach on static visual reasoning benchmarks, GeoMath and Geometry3K.
As shown in Figure 4(c), PhysVLM-AVR-3B achieves the highest Accuracy among all compared
models, outperforming both large-scale API models (GPT-4o) and specialized visual reasoning
models (Reason-RFT-7B). This indicates that our active reasoning paradigm not only benefits
embodied scenarios but also generalizes well to traditional visual reasoning tasks, confirming the
broad applicability and robustness of our approach.

6.5 Ablation Study

To assess the contributions of our AVR-Core dataset and its Chain-of-Thought (CoT) annotations,
we conducted ablations on CLEVR-AVR (see Table 2). Removing the entire AVR-Core dataset
("w/o AVR-Core") caused a catastrophic performance collapse: ACCISJ dropped from 90.5% to
16.4%, ACCFA from 39.1% to 2.3%, and IGR from 29.9% to 11.2%. This highlights AVR-Core’s
fundamental role in teaching the model to actively gather information and reason iteratively within
the higher-order MDP framework.

Excluding only the Chain-of-Thought (CoT) annotations
from AVR-Core ("w/o CoT") also led to a significant de-
cline: ACCISJ fell to 47.6%, IGR to 18.0%, and ACCFA
to 16.9%. This underscores the CoTs’ crucial function
in providing explicit supervision for the nuanced reason-
ing steps of uncertainty identification, action-conditioned
information gain prediction, and strategic action selection.

Method ACCISJ IGR ACCFA

Full Model 90.5 29.9 39.7
w/o CoT 47.6 18.0 16.9
w/o AVR-Core 16.4 11.2 2.3

Table 2: Ablation study results.

These ablations clearly demonstrate that both the specialized AVR-Core dataset and its detailed CoT
annotations are indispensable for developing effective Active Visual Reasoning capabilities.

7 Conclusion

In this work, we introduced Active Visual Reasoning (AVR), a novel paradigm that extends visual
reasoning to interactive, partially observable environments. We developed the CLEVR-AVR bench-
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mark to rigorously evaluate AVR capabilities and the AVR-152k dataset, with its core AVR-Core
component providing detailed Chain-of-Thought annotations within a higher-order MDP framework,
to train agents for this task. Our PhysVLM-AVR model demonstrates significant progress, achieving
state-of-the-art performance on CLEVR-AVR and showing strong generalization to other embodied
and static reasoning tasks. Our findings highlight that while current models can identify information
incompleteness, a critical challenge remains in enabling them to strategically act to acquire and
integrate new information effectively. Future work will focus on enhancing the model’s ability to
predict action-conditioned information gain and select optimal information-gathering actions. We
also plan to explore the application of AVR to more complex real-world scenarios and investigate
methods for improving sample efficiency in learning these active reasoning skills.
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A More details of CLEVR-AVR benchmark

Figure A-1 shows examples of the three scene types in the CLEVR-AVR benchmark, Figure A-2
displays the question template settings for different question types, and Figure A-3 illustrates the
distribution of occlusion and stacking quantities in each of the three scene types.

A.1 Action Candidate Generation in CLEVR-AVR

The available action space includes Pick, Move Viewer, Rotate Viewer, and Move Object. Beyond the
diverse scenarios, the benchmark incorporates a rich variety of question types, including Query, Exist,
Counting, Compare, Math Counting, and Math Compare. Agents must utilize the provided Franka
robotic manipulator and camera controls to actively uncover essential details, thereby tackling the
challenge of efficient exploration under conditions of partial observability. The agent communicates
its decision by generating text that includes its reasoning (CoT) and the selected action, formatted for
example as <action>E</action>, where E would map to a specific action like Pick(yellow cube) from
the candidate list.

At each interaction step in CLEVR-AVR, the agent is presented with 5-8 candidate actions. The types
of actions (e.g., Pick, Move Viewer, Rotate Viewer, Move Object) are predefined. However, the target
objects for actions like Pick or Move Object are dynamically selected based on the current visual
scene, often including objects relevant to resolving potential occlusions or ambiguities. To rigorously
test the agent’s reasoning-driven action selection, approximately 3-5 of these candidate actions are
intentionally designed as distractors or sub-optimal choices that would yield less information gain
towards answering the question. This forces the model to not just pick any valid action, but to
strategically select the one most likely to resolve its current uncertainty.

B More details of AVR-152k dataset

Figure A-4 shows the system prompt used for generating AVR-Caption data. An example of an
AVR-Caption data instance, featuring an image and its corresponding dense caption, is presented in
Figure A-5.

For the AVR-Embodied Reasoning subset, Figure A-6 displays the prompt used for DeepSeek-R1
to generate initial reasoning, and Figure A-7 illustrates the prompt for DeepSeek-V3 to refine this
Chain-of-Thought (CoT) reasoning. A representative data instance from AVR-Embodied Reasoning,
which includes a multi-image sequence, a question, and the associated reasoning chain, can be seen
in Figure A-8.

The prompt provided to Gemini for refining human expert Chain-of-Thought annotations within the
AVR-Core dataset is detailed in Figure A-9. This prompt utilizes placeholders such as {question},
{options}, {answer}, {visual_reasoning}, {hypothesis}, {gain_prediction}, and {planning}, which
are filled with content from expert human annotations. To concretely illustrate the rich, multi-step
interactive reasoning process captured in AVR-Core, Figures A-10, A-11, and A-12 collectively
showcase a complete, sequential example from an AVR-Core instance.

B.1 Initial Generation of Expert CoT Annotations for AVR-Core

The Chain-of-Thought (CoT) annotations in the AVR-Core dataset, prior to their refinement by large
language models like Gemini, were meticulously crafted by human experts. The process involved
two main stages:

Live Task Execution and Initial Logging: Human experts actively performed the interactive tasks
using the UMI devices in real-world tabletop settings. During this live interaction, they made
contemporaneous notes capturing their key reasoning steps, uncertainties identified, hypotheses about
hidden information, and the rationale behind their intended actions at each decision point.

Post-Interaction Refinement and Structuring: After completing each task, the experts revisited
their initial logs alongside the complete record of the interaction (including all visual observations
and executed actions). They then elaborated on their initial notes, structuring them into the detailed,
step-by-step CoT format that reflects the iterative process of assessing information, predicting gains
from potential actions, and making a decision.
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This human-centric initial annotation phase was crucial for ensuring that the CoTs genuinely reflected
plausible and effective human reasoning strategies for active information gathering, forming a
high-quality foundation for subsequent automated refinement and model training.

• Specifically, Figure A-10 depicts the initial state (Step 0) of an active visual reasoning
scenario. Here, based on the initial visual observation and the posed question, the agent’s
CoT reflects its assessment of information insufficiency and its decision to take an action
("Move the yellow object to the left") to acquire more details.

• Figure A-11 shows the subsequent state (Step 1) after the execution of the first action.
The agent re-evaluates the situation with the new visual input (IMAGE1), and its CoT
again indicates the need for further information to fully resolve the question, leading to the
planning of another action ("Move the green object to the right").

• Finally, Figure A-12 illustrates Step 2 of the process. After the second action and observing
IMAGE2, the agent has gathered sufficient visual evidence, and its CoT culminates in
providing the final answer ("Yes") to the question.

Together, these three figures (Figures A-10-A-12) highlight the core principles of AVR-Core: the
iterative cycle of identifying uncertainty, predicting information gain conditioned on potential actions,
and making strategic decisions, all articulated through detailed CoT annotations.

C More details of Model and Training

Figure A-13 shows the detailed training parameters for PhysVLM-AVR-3B and AVR-Qwen.25-
VL-7B, including input image resolution, trainable parameters, batch size, maximum token length,
learning rate, and number of epochs. We conducted the training on an Ubuntu server equipped with
8 * NVIDIA A800 GPUs. The main software used was PyTorch=2.6.0, transformers=3.72.0, flash
attention2, and DeepSpeed. Figure A-14 showns the architecture of the PhysVLM-AVR.

D Baseline Model Input Prompt for CLEVR-AVR Experiments

In experiments on the CLEVR-AVR benchmark, the inputs for the compared baseline models are
prompts that include AVR task instructions and cues for potential actions. The input template is as
follows:

You are required to perform active visual reasoning: when the
information obtained from image observations is insufficient
to answer the question, you need to make action decisions to
interact with the environment in order to acquire additional
visual information relevant to the question. You should continue
gathering new observations until you can infer and summarize a
reliable answer based on the accumulated visual history. Choose
either an answer to the question or an action decision option from
the options above. Final option choice follow this format: (your
analysis)...<answer>A/B/C/D/E/F...</answer>

E Code Availability

The code for our project is available anonymously at the following link: https://anonymous.
4open.science/r/anonymous-je99tt.

F Ethical Considerations and Usage Restrictions

Large Language Models (LLMs) and related AI technologies possess the potential for significant
societal impacts, both beneficial and detrimental. While they offer capabilities to enhance productivity,
creativity, and access to information, it is crucial to acknowledge the inherent risks. These risks
include, but are not limited to, the generation and propagation of misinformation, the amplification of
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existing societal biases, potential for job displacement in certain sectors, and the possibility of misuse
for malicious purposes.

The code, data, and models provided in this work are intended strictly for research and development
purposes. They must not be employed in any high-risk applications or for activities that could result
in harm, discrimination, infringement of rights, or any other negative societal consequences. Users
of these resources bear full responsibility for ensuring their applications comply with all applicable
laws, ethical guidelines, and responsible AI practices. We explicitly disclaim liability for any misuse
of our code, data, or models. We encourage a cautious and ethical approach to the development and
deployment of AI technologies.

Occlusion

Stacking

Composite

CLEVR-AVR基准环境示例
Figure A-1: Examples of the three scene types in the CLEVR-AVR benchmark.
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CLEVR-AVR基准问题模板, attr_type为从被遮挡或压盖的物体中提取的属性，top_obj为堆叠组
中最上面的方块，front_obj为遮挡组前面的大尺寸物体，direction为远或近，area包括left和right， 
comparison包括”more”, “equal”, “less”，back_description为遮挡组后方物体的描述，
random_description为独立的随机物体的描述

Question Type Templates

Query

f"What {attr_type} is the object with the smallest center-to-center distance from the {top_obj.color} {top_obj.size} {top_obj.shape} on top?"

f"What {attr_type} is the object closest to the {front_obj.color} {front_obj.size} {front_obj.shape}?"

f"What is the {attr_type} of the small object on the far {direction}?"

Exist f"Is there a small {getattr(back_obj, attr_type1)} that is {getattr(back_obj, attr_type2)}?"

Count

f"How many objects are {attr_value}?"

f"In the stack with a {top_obj.color} cube on top, how many cubes are {attr_value}?"

f"How many objects are {attr_value} in the {area} area?"

Compare f"Is the number of {attr_value} objects in the left area and the right area equal?"

f"Which area has {comparison} {attr_value} objects?"

f"Is the {attr_type} of the {back_description} object the same as the {random_description} object?"

MathCount

f"Is the number of {attr_value} objects in the left area and the right area equal?"

f"Subtract all {random_shape} {random_size} objects, how many {attr_value} objects remain?"

f"Subtract all {random_shape} {random_size} objects, how many {attr_value} objects remain in the {area} area?"

f"Add {random_number} {attr_value} objects, how many {attr_value} objects would there be?"

f"Add {random_number} {attr_value} cubes to the stack with a {top_obj.color} cube on top, how many {attr_value} cubes would there be in 
the stack?"

f"Subtract all {random_shape} {random_size} and {random_shape2} {random_size2} objects, how many {attr_value} objects remain?"

f"Add {random_number} {attr_value} objects, how many {attr_value} objects would there be?"

MathCompare

f"Subtract all {random_shape} {random_size} objects, is the {attr_type} of the center cube in the stack with a {top_obj.color} cube on top the 
same as the {random_description} object?"

f"Subtract all {random_shape} {random_size} and {random_shape2} {random_size2} objects, which area would have {comparison} 
{attr_value} objects?"

Figure A-2: Question template settings for different question types in the CLEVR-AVR benchmark.
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AVR-Caption prompt

PROMPT_CAPTION = """

Your tasks are:
### I. Provide a Detailed, Systematic, and Well-Organized Description of the Entire Scene:

Describe the scene from a macro to micro perspective, moving from the overall view to specific regions and then to 
individual objects in a step-by-step manner.

When describing objects, be thorough, including but not limited to:
- Color
- Shape and Structure
- Material and Texture
- State (e.g., on/off, neat/messy, in use/idle)
- Size Estimation (relative or approximate size)
- Position and Spatial Relationships (relative to other objects)
- Determine the relative hierarchical relationships between objects, their distribution in terms of distance, and layering.

**Interaction and Usage Context** (if applicable): If the combination of objects in the scene suggests a particular usage 
context (e.g., bowls, chopsticks, and cups on a dining table), reasonably infer and describe the possible purpose of the 
scene or the activity taking place.

### II. Analyze the Current Observation Perspective (Camera Position) and the Relative Positional Relationships and 
Spatial Distance Estimates with Other Objects, and Describe the Orientation of the Current Viewpoint:

### III. Generate 2D Object Detection Results:

- Perform 2D detection on all recognizable objects in the image.
- For each object, output its bounding box in the format `[y_min, x_min, y_max, x_max]`.
- Add a `describe` field for a detailed description of the object to distinguish between similar objects.

---
**Scene Description**
(Fill in the detailed scene description here)

**2D Detect Results**
```json
[{
    "label": "",
    "bbox": [],
    "describe": ""
  },
  ...]
```
"""

AVR-Embodied Reasoning - R1 reasoning

PROMPT_REASONING = f"""
        Multiple images in the scene along with task-related descriptions and object bounding boxes are provided as your        
visual observations. You need to combine the observations from all images to answer questions about the entire scene: 
{question}

        Image descriptions: {caption}

        Note that all images are taken in the same scene, so the same object may appear in different images.
        The final answer should be a phrase, word, or other concise and clear response (if the answer cannot be found, 
respond with "Unable to answer"), following the format similar to <answer>a sofa, a coffee table, ..</answer>
        """

AVR-Embodied Reasoning - v3 refine

PROMPT_CoT_REFINE = f"""
        **Enhance and Modify the "Chain-of-Thought" (CoT) by Integrating Scene Captions, Adhering to the Following 
Guidelines:**
        
        1. **STYLE TRANSFORMATION (Most Important):** Replace phrases such as "based on image description," 
"based on scene caption," "based on detection results" and "explicitly described as" with "the image shows," "I detected." 
Rewrite the CoT in the FIST PERSON, focusing on image observation, analysis, and reasoning. Don't let readers feel that 
you have obtained the caption and detection results of the scene with IMAGE, but rather that you have analyzed them 
from the visual information of the image.
        
        2. **Sequential Image Summarization:** For each image (IMAGE1 to IMAGEn), provide a sequential summary of 
its main content within the CoT, even if specific information related to the question isn't visible. Avoid statements like 
"xxx does not appear in IMAGEn-t."

        3. **Retain Object Bounding Boxes:** Maintain the object bounding box information for each image within the 
CoT to preserve spatial and contextual details. (<box>object:[xmin, ymin, xmax, ymax]</box>)

        4. **Enhance Logical Coherence:** Ensure that the CoT flows logically, with clear connections between 
observations and inferences, improving the overall coherence of the reasoning process.

        5. **Maintain Tag Integrity:** Preserve the integrity of tags like `<think>`, `</think>`, `<answer>`, and 
`</answer>`. Ensure that the `<answer>` tag remains concise, retaining its original brevity.

        **Scene Captions:** `{scene_captions}`

        **Chain-of-Thought (CoT):** `{cot_answer}`
        """

Figure A-4: System prompt for generating AVR-Caption data.
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AVR-Caption prompt

PROMPT_CAPTION = """

Your tasks are:
### I. Provide a Detailed, Systematic, and Well-Organized Description of the Entire Scene:

Describe the scene from a macro to micro perspective, moving from the overall view to specific regions and then to 
individual objects in a step-by-step manner.

When describing objects, be thorough, including but not limited to:
- Color
- Shape and Structure
- Material and Texture
- State (e.g., on/off, neat/messy, in use/idle)
- Size Estimation (relative or approximate size)
- Position and Spatial Relationships (relative to other objects)
- Determine the relative hierarchical relationships between objects, their distribution in terms of distance, and layering.

**Interaction and Usage Context** (if applicable): If the combination of objects in the scene suggests a particular usage 
context (e.g., bowls, chopsticks, and cups on a dining table), reasonably infer and describe the possible purpose of the 
scene or the activity taking place.

### II. Analyze the Current Observation Perspective (Camera Position) and the Relative Positional Relationships and 
Spatial Distance Estimates with Other Objects, and Describe the Orientation of the Current Viewpoint:

### III. Generate 2D Object Detection Results:

- Perform 2D detection on all recognizable objects in the image.
- For each object, output its bounding box in the format `[y_min, x_min, y_max, x_max]`.
- Add a `describe` field for a detailed description of the object to distinguish between similar objects.

---
**Scene Description**
(Fill in the detailed scene description here)

**2D Detect Results**
```json
[{
    "label": "",
    "bbox": [],
    "describe": ""
  },
  ...]
```
"""

{
        "image": "avr/OXE/bridge/bridge_ac10000_0.jpg",
        "conversations": [
            {  
                "from": "human",
                "value": "RGB IMAGE:\n<image>\nProvide a thorough and organized depiction of the scene 
utilizing RGB, starting with the overall layout and then detailing specific objects, their attributes, and 
spatial relationships. Incorporate any suggested interactions or contexts of use. Analyze the camera's 
viewpoint and the relative positions Generate 2D object detection results with normalized bounding boxes 
and descriptive labels in JSON format."
            },
            {  "from": "gpt",
                "value": "Here's a breakdown of the scene, object detection results, and viewpoint analysis based 
on the provided images.\n\n**Scene Description**\n\nThe scene depicts a play kitchen setup. The 
backdrop consists of a wall with a faux wood paneling design on top and a blue-gray textured surface on 
the left. The main focus is on the countertop of the play kitchen.\n\n**Countertop:** The countertop 
surface has a light brown, wood-grain pattern, resembling a butcher block.  It appears to be constructed 
from horizontal planks. On the countertop are several play kitchen items:\n\n*   **Metal Pot:** A small, 
shiny silver pot sits on the left side of the countertop. It is round and has two small handles on either side. 
It appears to be made of stainless steel.\n*  ...... **II. Analysis of Observation Perspective**\n\nThe 
camera appears to be positioned at a medium height and angle, looking slightly down at the play kitchen 
countertop. The viewpoint is slightly to the left of center, providing a good view of all the objects on the 
counter. The perspective is relatively close, allowing for clear details of the objects and their 
arrangement.\n\n**III. 2D Detect Results**\n\n```json[\n    {\n        \"label\": \"pot\",\n        \"bbox\": [\n            
0.313,\n          0.451,\n            0.611,\n            0.71\n        ],\n        \"describe\": \"Small, silver, stainless 
steel play pot with two handles.\"\n    },\n    {\n        \"label\": \"cloth\",\n        \"bbox\": [\n            0.435,\n            
0.302,\n          0.714,\n            0.548\n      ],\n      \"describe\": \"Folded yellow cloth.\"\n    },\n    {\n    
\"label\": \"corn\",\n        \"bbox\": [\n            0.742,\n            0.391,\n            0.83,\n            
0.532\n     ],.... ],\n      \"describe\": \"Black plastic play faucet hanging above the countertop.\"\n    }\n]```"
            }
        ]
}

AVR-Caption 数据示例。我们的数据都提供EGB和Depth
图像，训练模型的时候使用的是单RGB图像。

Figure A-5: Data instance of AVR-Caption.
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AVR-Caption prompt

PROMPT_CAPTION = """

Your tasks are:
### I. Provide a Detailed, Systematic, and Well-Organized Description of the Entire Scene:

Describe the scene from a macro to micro perspective, moving from the overall view to specific regions and then to 
individual objects in a step-by-step manner.

When describing objects, be thorough, including but not limited to:
- Color
- Shape and Structure
- Material and Texture
- State (e.g., on/off, neat/messy, in use/idle)
- Size Estimation (relative or approximate size)
- Position and Spatial Relationships (relative to other objects)
- Determine the relative hierarchical relationships between objects, their distribution in terms of distance, and layering.

**Interaction and Usage Context** (if applicable): If the combination of objects in the scene suggests a particular usage 
context (e.g., bowls, chopsticks, and cups on a dining table), reasonably infer and describe the possible purpose of the 
scene or the activity taking place.

### II. Analyze the Current Observation Perspective (Camera Position) and the Relative Positional Relationships and 
Spatial Distance Estimates with Other Objects, and Describe the Orientation of the Current Viewpoint:

### III. Generate 2D Object Detection Results:

- Perform 2D detection on all recognizable objects in the image.
- For each object, output its bounding box in the format `[y_min, x_min, y_max, x_max]`.
- Add a `describe` field for a detailed description of the object to distinguish between similar objects.

---
**Scene Description**
(Fill in the detailed scene description here)

**2D Detect Results**
```json
[{
    "label": "",
    "bbox": [],
    "describe": ""
  },
  ...]
```
"""

AVR-Embodied Reasoning - R1 reasoning

PROMPT_REASONING = f"""
        Multiple images in the scene along with task-related descriptions and object bounding boxes are provided as your        
visual observations. You need to combine the observations from all images to answer questions about the entire scene: 
{question}

        Image descriptions: {caption}

        Note that all images are taken in the same scene, so the same object may appear in different images.
        The final answer should be a phrase, word, or other concise and clear response (if the answer cannot be found, 
respond with "Unable to answer"), following the format similar to <answer>a sofa, a coffee table, ..</answer>
        """

AVR-Embodied Reasoning - v3 refine

PROMPT_CoT_REFINE = f"""
        **Enhance and Modify the "Chain-of-Thought" (CoT) by Integrating Scene Captions, Adhering to the Following 
Guidelines:**
        
        1. **STYLE TRANSFORMATION (Most Important):** Replace phrases such as "based on image description," 
"based on scene caption," "based on detection results" and "explicitly described as" with "the image shows," "I detected." 
Rewrite the CoT in the FIST PERSON, focusing on image observation, analysis, and reasoning. Don't let readers feel that 
you have obtained the caption and detection results of the scene with IMAGE, but rather that you have analyzed them 
from the visual information of the image.
        
        2. **Sequential Image Summarization:** For each image (IMAGE1 to IMAGEn), provide a sequential summary of 
its main content within the CoT, even if specific information related to the question isn't visible. Avoid statements like 
"xxx does not appear in IMAGEn-t."

        3. **Retain Object Bounding Boxes:** Maintain the object bounding box information for each image within the 
CoT to preserve spatial and contextual details. (<box>object:[xmin, ymin, xmax, ymax]</box>)

        4. **Enhance Logical Coherence:** Ensure that the CoT flows logically, with clear connections between 
observations and inferences, improving the overall coherence of the reasoning process.

        5. **Maintain Tag Integrity:** Preserve the integrity of tags like `<think>`, `</think>`, `<answer>`, and 
`</answer>`. Ensure that the `<answer>` tag remains concise, retaining its original brevity.

        **Scene Captions:** `{scene_captions}`

        **Chain-of-Thought (CoT):** `{cot_answer}`
        """

Figure A-6: Prompt for DeepSeek-R1 reasoning in AVR-Embodied Reasoning data.

AVR-Caption prompt

PROMPT_CAPTION = """

Your tasks are:
### I. Provide a Detailed, Systematic, and Well-Organized Description of the Entire Scene:

Describe the scene from a macro to micro perspective, moving from the overall view to specific regions and then to 
individual objects in a step-by-step manner.

When describing objects, be thorough, including but not limited to:
- Color
- Shape and Structure
- Material and Texture
- State (e.g., on/off, neat/messy, in use/idle)
- Size Estimation (relative or approximate size)
- Position and Spatial Relationships (relative to other objects)
- Determine the relative hierarchical relationships between objects, their distribution in terms of distance, and layering.

**Interaction and Usage Context** (if applicable): If the combination of objects in the scene suggests a particular usage 
context (e.g., bowls, chopsticks, and cups on a dining table), reasonably infer and describe the possible purpose of the 
scene or the activity taking place.

### II. Analyze the Current Observation Perspective (Camera Position) and the Relative Positional Relationships and 
Spatial Distance Estimates with Other Objects, and Describe the Orientation of the Current Viewpoint:

### III. Generate 2D Object Detection Results:

- Perform 2D detection on all recognizable objects in the image.
- For each object, output its bounding box in the format `[y_min, x_min, y_max, x_max]`.
- Add a `describe` field for a detailed description of the object to distinguish between similar objects.

---
**Scene Description**
(Fill in the detailed scene description here)

**2D Detect Results**
```json
[{
    "label": "",
    "bbox": [],
    "describe": ""
  },
  ...]
```
"""

AVR-Embodied Reasoning - R1 reasoning

PROMPT_REASONING = f"""
        Multiple images in the scene along with task-related descriptions and object bounding boxes are provided as your        
visual observations. You need to combine the observations from all images to answer questions about the entire scene: 
{question}

        Image descriptions: {caption}

        Note that all images are taken in the same scene, so the same object may appear in different images.
        The final answer should be a phrase, word, or other concise and clear response (if the answer cannot be found, 
respond with "Unable to answer"), following the format similar to <answer>a sofa, a coffee table, ..</answer>
        """

AVR-Embodied Reasoning - v3 refine

PROMPT_CoT_REFINE = f"""
        **Enhance and Modify the "Chain-of-Thought" (CoT) by Integrating Scene Captions, Adhering to the Following 
Guidelines:**
        
        1. **STYLE TRANSFORMATION (Most Important):** Replace phrases such as "based on image description," 
"based on scene caption," "based on detection results" and "explicitly described as" with "the image shows," "I detected." 
Rewrite the CoT in the FIST PERSON, focusing on image observation, analysis, and reasoning. Don't let readers feel that 
you have obtained the caption and detection results of the scene with IMAGE, but rather that you have analyzed them 
from the visual information of the image.
        
        2. **Sequential Image Summarization:** For each image (IMAGE1 to IMAGEn), provide a sequential summary of 
its main content within the CoT, even if specific information related to the question isn't visible. Avoid statements like 
"xxx does not appear in IMAGEn-t."

        3. **Retain Object Bounding Boxes:** Maintain the object bounding box information for each image within the 
CoT to preserve spatial and contextual details. (<box>object:[xmin, ymin, xmax, ymax]</box>)

        4. **Enhance Logical Coherence:** Ensure that the CoT flows logically, with clear connections between 
observations and inferences, improving the overall coherence of the reasoning process.

        5. **Maintain Tag Integrity:** Preserve the integrity of tags like `<think>`, `</think>`, `<answer>`, and 
`</answer>`. Ensure that the `<answer>` tag remains concise, retaining its original brevity.

        **Scene Captions:** `{scene_captions}`

        **Chain-of-Thought (CoT):** `{cot_answer}`
        """

Figure A-7: Prompt for DeepSeek-V3 to refine Chain-of-Thought (CoT) reasoning in AVR-Embodied
Reasoning data.
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AVR-Embodied Reasoning - v3 refine

PROMPT_CoT_REFINE = f"""
        **Enhance and Modify the "Chain-of-Thought" (CoT) by Integrating Scene Captions, Adhering to the Following 
Guidelines:**
        
        1. **STYLE TRANSFORMATION (Most Important):** Replace phrases such as "based on image description," 
"based on scene caption," "based on detection results" and "explicitly described as" with "the image shows," "I detected." 
Rewrite the CoT in the FIST PERSON, focusing on image observation, analysis, and reasoning. Don't let readers feel that 
you have obtained the caption and detection results of the scene with IMAGE, but rather that you have analyzed them 
from the visual information of the image.
        
        2. **Sequential Image Summarization:** For each image (IMAGE1 to IMAGEn), provide a sequential summary of 
its main content within the CoT, even if specific information related to the question isn't visible. Avoid statements like 
"xxx does not appear in IMAGEn-t."

        3. **Retain Object Bounding Boxes:** Maintain the object bounding box information for each image within the 
CoT to preserve spatial and contextual details. (<box>object:[xmin, ymin, xmax, ymax]</box>)

        4. **Enhance Logical Coherence:** Ensure that the CoT flows logically, with clear connections between 
observations and inferences, improving the overall coherence of the reasoning process.

        5. **Maintain Tag Integrity:** Preserve the integrity of tags like `<think>`, `</think>`, `<answer>`, and 
`</answer>`. Ensure that the `<answer>` tag remains concise, retaining its original brevity.

        **Scene Captions:** `{scene_captions}`

        **Chain-of-Thought (CoT):** `{cot_answer}`
        """

{
        "scene_id": "scene0000_01",
        "images": [
            "scene0000_01/color/002400.jpg",
            "scene0000_01/color/002500.jpg",
            "scene0000_01/color/002600.jpg",
            "scene0000_01/color/002700.jpg",
            "scene0000_01/color/002800.jpg",
            "scene0000_01/color/002900.jpg",
            "scene0000_01/color/003000.jpg",
            "scene0000_01/color/003100.jpg"
        ],
        "question": "Where are the shoes located?",
        "answer": "<think>\n`  \nLet me analyze the images to determine where the shoes are located in the 
scene. Since all images are part of the same environment, I’ll examine each one sequentially to piece 
together the answer.  \n\n#### **IMAGE0:**  \n- **What I observe:**  \n  - The image shows a corner of 
a room with a light green curtain on the left side, hanging from the top to the floor.  \n  - I detect two pairs 
of dark-colored shoes placed near the base of the curtain (<box>shoes:[0.04, 0.62, 0.12, 0.77]</box> and 
<box>shoes:[0.12, 0.6, 0.24, 0.7]</box>).  \n  - The floor has light-colored tiles, and a bicycle is partially 
visible in the upper right.  \n\n#### **IMAGE1:**  \n- **What I observe:**  \n  - The image shows a 
living space with a bicycle leaning against the wall, a black air pump nearby, and a backpack on the floor.  
\n  - I detect cabinets, a couch, and curtains but no shoes.  \n\......\n#### **IMAGE4–IMAGE7:**  \n- 
**What I observe:**  \n  - These images focus on different angles of the room, primarily showing sofas, 
ottomans, remote controls, and a backpack.  \n  - I do not detect shoes in any of these frames.  \n\n#### 
**Logical Reasoning:**  \n- Since **IMAGE0** is the only image where I clearly see shoes, and all 
images belong to the same scene, the shoes must remain in their original position near the curtain.  \n- The 
other images either do not capture that area or focus on different parts of the room.  \n- Therefore, the 
shoes are consistently placed at the base of the left-side curtain, as observed in **IMAGE0**.  
\n\n`</think>\n<answer>near the base of the curtain on the side</answer>"
    }

Figure A-8: Data instance of AVR-Embodied Reasoning.
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AVR-Core refine。其中{question}， {options}，
{answer}，{visual_reasoning}，{hypothesis}，
{gain_prediction}，{planning}都来自于专家的人工
标注。

PROMPT_CoT_REFINE = """
Active visual reasoning: When the information obtained from image observations is not enough to answer the question, 
action decisions need to be made to interact with the environment to obtain more visual information related to the 
question. New observations are continuously collected until a reliable answer can be inferred and summarized based on 
the accumulated visual history.

# Question: {question}
Choice: {options}
GT answer: {answer}

---

# CoT
## Goal Analysis

## Visual Reasoning
(Detailed description of items on the table, especially task-relevant items)
{visual_reasoning}

## Uncertainty Hypothesis
{hypothesis}

## Information Gain Prediction
(Analyze the information gain that would result from each action option)
{gain_prediction}

## Planning Pseudocode
(Based on the reasoning in this step, plan the subsequent logic after this action)
{planning}

## Conclusion
(Summarize the information from visual reasoning, uncertainty assessment, and information gain predictions, including 
key items' point and bbox_2d spatial position information.)
--

You need to enrich the CoT reasoning process. The CoT should not include GT prompts, should not change the first (# 
CoT) and second level (## ) structures, and should optimize the reasoning logic in each section (more efficient, rigorous).
Replace the planning section with concise pseudocode. If no further action is needed, simply write END.
Use key points `point(y, x)` and 2d bounding box `bbox_2d(ymin, xmin, ymax, xmax)` in the CoT to assist visual 
reasoning.
"""

Figure A-9: Prompt for Gemini to refine Chain-of-Thought annotations in AVR-Core data, where
{question}, {options}, {answer}, {visual_reasoning}, {hypothesis}, {gain_prediction}, and {plan-
ning} are all derived from expert human annotations.

23



AVR-Core refine。其中{question}， {options}，{answer}，
{visual_reasoning}，{hypothesis}，{gain_prediction}，{planning}都来自于专
家的人工标注。

PROMPT_CoT_REFINE = """
Active visual reasoning: When the information obtained from image observations is not enough to answer the question, 
action decisions need to be made to interact with the environment to obtain more visual information related to the 
question. New observations are continuously collected until a reliable answer can be inferred and summarized based on 
the accumulated visual history.

# Question: {question}
Choice: {options}
GT answer: {answer}

---

# CoT
## Goal Analysis

## Visual Reasoning
(Detailed description of items on the table, especially task-relevant items)
{visual_reasoning}

## Uncertainty Hypothesis
{hypothesis}

## Information Gain Prediction
(Analyze the information gain that would result from each action option)
{gain_prediction}

## Planning Pseudocode
(Based on the reasoning in this step, plan the subsequent logic after this action)
{planning}

## Conclusion
(Summarize the information from visual reasoning, uncertainty assessment, and information gain predictions, including 
key items' point and bbox_2d spatial position information.)
--

You need to enrich the CoT reasoning process. The CoT should not include GT prompts, should not change the first (# 
CoT) and second level (## ) structures, and should optimize the reasoning logic in each section (more efficient, rigorous).
Replace the planning section with concise pseudocode. If no further action is needed, simply write END.
Use key points `point(y, x)` and 2d bounding box `bbox_2d(ymin, xmin, ymax, xmax)` in the CoT to assist visual 
reasoning.
"""

{
        "question_type": "Existence",
        "image": ["avr/avr-core/group11/group11_0/0-group11_rgb_0-init.jpg"],
        "conversations": [
            {  "from": "human",
                "value": "IMAGE0:<image>\nIMAGE0 is the initial observation. \n\nYou are required to perform active 
visual reasoning: when the information obtained from image observations is insufficient to answer the question, 
you need to make action decisions to interact with the environment in order to acquire additional visual 
information relevant to the question. You should continue gathering new observations until you can infer and 
summarize a reliable answer based on the accumulated visual history.\nQuestion: Is there an object of the same 
size as the white small-sized block and further back in the desktop and its appendage?\nChoice: A: Exists, B: Does 
not exist, C: Open drawer, D: Close drawer, E: Grasp purple small-sized block, F: Move lime to the left, G: Grasp 
blue large-sized block\nChoose either an answer to the question or an action decision option from the options 
above."},
            {  "from": "gpt",
                "value": "<think>\n## Goal Analysis\nThe user wants to determine if there is any object on the table or 
inside the drawer that has the same size as the white small-sized block `bbox_2d(0.62, 0.45, 0.71, 0.544)` and is 
located further back (greater y-coordinate, considering perspective) than the white block.\n\n## Visual 
Reasoning\nIn the initial image (IMAGE0), we observe:\n*   A white small-sized block at `bbox_2d(0.62, 0.45, 
0.71, 0.544)`.\n*   A purple small-sized block at `bbox_2d(0.531, 0.496, 0.614, 0.603)`.\n*   An orange small-sized 
block at `bbox_2d(0.681, 0.528, 0.782, 0.637)`.\n...... The drawer `bbox_2d(0.0, 0.141, 0.447, 0.528)` is also 
further back in parts, but it is closed, so its contents are unknown.\n\n
## Uncertainty Hypothesis\n1.  The lime `bbox_2d(0.533, 0.243, 0.698, 0.406)` might be occluding an object of 
the same size as the white block `bbox_2d(0.62, 0.45, 0.71, 0.544)` located behind it.\n2.  The closed drawer 
`bbox_2d(0.0, 0.141, 0.447, 0.528)` might contain an object of the same size as the white block.\n\n
## Information Gain Prediction\n*   C: Open drawer - Would resolve uncertainty hypothesis 2. High potential 
information gain regarding objects inside the drawer.\n*   D: Close drawer - The drawer is already closed; no 
information gain.\n*   E: Grasp purple small-sized block - Does not help check areas further back or inside the 
drawer. Low information gain.\n*......\nComparing C and F, moving the lime (F) directly addresses the occlusion 
in the area behind the blocks, which is a primary location to check based on the question (\"further back\"). 
Opening the drawer (C) checks another potential location. Moving the lime seems slightly more direct for checking 
the immediate area behind the visible blocks.\n\n## Planning Pseudocode\n```pseudocode\nMOVE lime\n```\n\n## 
Conclusion\nThe white block is located at `bbox_2d(0.62, 0.45, 0.71, 0.544)`. The lime `bbox_2d(0.533, 0.243, 
0.698, 0.406)` is further back but larger. The lime occludes the area behind it. The drawer `bbox_2d(0.0, 0.141, 
0.447, 0.528)` is closed and could contain relevant objects. To resolve the uncertainty about potential objects 
behind the lime, the best action is F: Move lime to the left.\n</think>
<answer>\nF\n</answer>"}
        ]
}

Step0

Figure A-10: Data instance of AVR-Embodied Reasoning. Step 0 of the active visual reasoning
process, which make a action decision to get more information.
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{
        "question_type": "Existence",
        "image": [
            "avr/avr-core/group11/group11_0/0-group11_rgb_0-init.jpg",
            "avr/avr-core/group11/group11_0/1-group11_rgb_0-F Move lime.jpg",
            "avr/avr-core/group11/group11_0/2-group11_rgb_0-C Open drawer.jpg"
             ]
        "conversations": [
            {
                "from": "human",
                "value": "IMAGE0:<image>\nIMAGE1:<image>\nIMAGE2:<image>\n......\nQuestion: Is there an 
object of the same size as the white small-sized block and further back in the desktop and its appendage?\nChoice: 
A: Exists, B: Does not exist, C: Open drawer, D: Close drawer, E: Grasp purple small-sized block, F: Move lime to 
the left,......\nChoose either an answer to the question or an action decision option from the options above."
            },
            {
                "from": "gpt",
                "value": "<think>\n## Goal Analysis\nThe objective is to determine if there exists an object on the table 
or its appendage (the drawer) that is the same size as the white small-sized block and......\n## Visual Reasoning\nIn 
the current observation (IMAGE2):\n*   The white small-sized block is at `bbox_2d(0.62, 0.45, 0.71, 0.544)`. Its 
center is approximately `point(0.665, 0.497)`.......
## Uncertainty Hypothesis\nThe primary uncertainty was whether the closed drawer contained an object meeting 
the criteria. Opening the drawer (Action C) resolved this uncertainty by revealing its empty interior. There are no 
remaining uncertainties or unexplored areas relevant to the question.\n
## Information Gain Prediction\nNo further actions are needed. All relevant areas have been observed. Actions 
like closing the drawer, grasping blocks, or moving the lime again will not provide new information relevant to 
finding an object *further back* and the *same size* as the white block. The answer can be determined from the 
current visual information.\n\n## Planning Pseudocode\nEND\n\n## Conclusion\nBased on the sequence of 
observations, including the initial state, moving the lime, and opening the drawer, all potential locations have been 
examined. The lime `bbox_2d(0.435, 0.259, 0.597, 0.387)` is further back than the white block `bbox_2d(0.62, 
0.45, 0.71, 0.544)` but is not the same size. The drawer `bbox_2d(0.0, 0.142, 0.542, 0.679)`, which is also further 
back, was opened and found to be empty. No other objects are located further back than the white block. 
Therefore, there is no object of the same size as the white small-sized block located further back. The 
answer is B: Does not exist.\n</think>
<answer>\nB\n</answer>"
            }
        ]
}

Step2

{
        "question_type": "Existence",
        "image": [
            "avr/avr-core/group11/group11_0/0-group11_rgb_0-init.jpg",
            "avr/avr-core/group11/group11_0/1-group11_rgb_0-F Move lime.jpg"
        ],
        "conversations": [
            {
                "from": "human",
                "value": "IMAGE0:<image>\nIMAGE1:<image>\nIMAGE0 is the initial observation. ......\nQuestion: Is 
there an object of the same size as the white small-sized block and further back in the desktop and its 
appendage?\nChoice: A: Exists, B: Does not exist, C: Open drawer, D: Close drawer, E: Grasp purple small-sized 
block, F: Move lime to the left,......\nChoose either an answer to the question or an action decision option from the 
options above."
            },
            {
                "from": "gpt",
                "value": "<think>\n## Goal Analysis\nThe objective is to determine if there is any object on the table or 
its appendage (the drawer) that has the same size as the white small-sized block and......## Visual Reasoning\nIn 
the current observation (IMAGE1):\n*   The white block is located at `bbox_2d(0.62, 0.45, 0.71, 0.544)`, ......\n
## Uncertainty Hypothesis\nThe only remaining possibility for an object meeting the criteria is inside the closed 
drawer. The drawer itself is positioned further back than the white block. It is uncertain whether the drawer 
contains an object of the same size as the white block.\n
## Information Gain Prediction\n*   C: Open drawer - This action will reveal the contents of the drawer, directly 
addressing the uncertainty and allowing a definitive answer to the question. High information gain.\n*   D: Close 
drawer - The drawer is already closed. No information gain.\n*   E: Grasp purple small-sized block - Irrelevant to 
finding an object further back. No information gain.\n*   F: Move lime to the left - This action was already 
performed. No further gain.\n*   G: Grasp blue large-sized block - Irrelevant to finding an object further back. No 
information gain.\n\nOpening the drawer (C) is the only action that can resolve the current uncertainty.\n\n## 
Planning Pseudocode\n```pseudocode\nOPEN drawer\n```\n\n## Conclusion\nAfter moving the lime, no visible 
object on the table surface meets the criteria of being the same size as the white block `bbox_2d(0.62, 0.45, 0.71, 
0.544)` and located further back. The only remaining unexplored location where such an object might exist is 
inside the closed drawer `bbox_2d(0.0, 0.141, 0.447, 0.528)`, which is positioned further back. Therefore, the 
next necessary action is to open the drawer to check its contents.\n</think>
<answer>\nC\n</answer>"
            }
        ]
}

Step1

Figure A-11: Data instance of AVR-Embodied Reasoning. Step 1 of the active visual reasoning
process, which make a action decision to get more information.
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{
        "question_type": "Existence",
        "image": [
            "avr/avr-core/group11/group11_0/0-group11_rgb_0-init.jpg",
            "avr/avr-core/group11/group11_0/1-group11_rgb_0-F Move lime.jpg",
            "avr/avr-core/group11/group11_0/2-group11_rgb_0-C Open drawer.jpg"
             ]
        "conversations": [
            {
                "from": "human",
                "value": "IMAGE0:<image>\nIMAGE1:<image>\nIMAGE2:<image>\n......\nQuestion: Is there an 
object of the same size as the white small-sized block and further back in the desktop and its appendage?\nChoice: 
A: Exists, B: Does not exist, C: Open drawer, D: Close drawer, E: Grasp purple small-sized block, F: Move lime to 
the left,......\nChoose either an answer to the question or an action decision option from the options above."
            },
            {
                "from": "gpt",
                "value": "<think>\n## Goal Analysis\nThe objective is to determine if there exists an object on the table 
or its appendage (the drawer) that is the same size as the white small-sized block and......\n## Visual Reasoning\nIn 
the current observation (IMAGE2):\n*   The white small-sized block is at `bbox_2d(0.62, 0.45, 0.71, 0.544)`. Its 
center is approximately `point(0.665, 0.497)`.......
## Uncertainty Hypothesis\nThe primary uncertainty was whether the closed drawer contained an object meeting 
the criteria. Opening the drawer (Action C) resolved this uncertainty by revealing its empty interior. There are no 
remaining uncertainties or unexplored areas relevant to the question.\n
## Information Gain Prediction\nNo further actions are needed. All relevant areas have been observed. Actions 
like closing the drawer, grasping blocks, or moving the lime again will not provide new information relevant to 
finding an object *further back* and the *same size* as the white block. The answer can be determined from the 
current visual information.\n\n## Planning Pseudocode\nEND\n\n## Conclusion\nBased on the sequence of 
observations, including the initial state, moving the lime, and opening the drawer, all potential locations have been 
examined. The lime `bbox_2d(0.435, 0.259, 0.597, 0.387)` is further back than the white block `bbox_2d(0.62, 
0.45, 0.71, 0.544)` but is not the same size. The drawer `bbox_2d(0.0, 0.142, 0.542, 0.679)`, which is also further 
back, was opened and found to be empty. No other objects are located further back than the white block. 
Therefore, there is no object of the same size as the white small-sized block located further back. The 
answer is B: Does not exist.\n</think>
<answer>\nB\n</answer>"
            }
        ]
}

Step2

{
        "question_type": "Existence",
        "image": [
            "avr/avr-core/group11/group11_0/0-group11_rgb_0-init.jpg",
            "avr/avr-core/group11/group11_0/1-group11_rgb_0-F Move lime.jpg"
        ],
        "conversations": [
            {
                "from": "human",
                "value": "IMAGE0:<image>\nIMAGE1:<image>\nIMAGE0 is the initial observation. ......\nQuestion: Is 
there an object of the same size as the white small-sized block and further back in the desktop and its 
appendage?\nChoice: A: Exists, B: Does not exist, C: Open drawer, D: Close drawer, E: Grasp purple small-sized 
block, F: Move lime to the left,......\nChoose either an answer to the question or an action decision option from the 
options above."
            },
            {
                "from": "gpt",
                "value": "<think>\n## Goal Analysis\nThe objective is to determine if there is any object on the table or 
its appendage (the drawer) that has the same size as the white small-sized block and......## Visual Reasoning\nIn 
the current observation (IMAGE1):\n*   The white block is located at `bbox_2d(0.62, 0.45, 0.71, 0.544)`, ......\n
## Uncertainty Hypothesis\nThe only remaining possibility for an object meeting the criteria is inside the closed 
drawer. The drawer itself is positioned further back than the white block. It is uncertain whether the drawer 
contains an object of the same size as the white block.\n
## Information Gain Prediction\n*   C: Open drawer - This action will reveal the contents of the drawer, directly 
addressing the uncertainty and allowing a definitive answer to the question. High information gain.\n*   D: Close 
drawer - The drawer is already closed. No information gain.\n*   E: Grasp purple small-sized block - Irrelevant to 
finding an object further back. No information gain.\n*   F: Move lime to the left - This action was already 
performed. No further gain.\n*   G: Grasp blue large-sized block - Irrelevant to finding an object further back. No 
information gain.\n\nOpening the drawer (C) is the only action that can resolve the current uncertainty.\n\n## 
Planning Pseudocode\n```pseudocode\nOPEN drawer\n```\n\n## Conclusion\nAfter moving the lime, no visible 
object on the table surface meets the criteria of being the same size as the white block `bbox_2d(0.62, 0.45, 0.71, 
0.544)` and located further back. The only remaining unexplored location where such an object might exist is 
inside the closed drawer `bbox_2d(0.0, 0.141, 0.447, 0.528)`, which is positioned further back. Therefore, the 
next necessary action is to open the drawer to check its contents.\n</think>
<answer>\nC\n</answer>"
            }
        ]
}

Step1

Figure A-12: Data instance of AVR-Embodied Reasoning. Step 2 of the active visual reasoning
process, which getting the final answer.
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Stage1 Stage2.1 Stage2.2 Stage3

Image Resolution 384 384 384 384

Trainable Projector Full Model Full Model Full Model

Batch Size 64 64 32 16

Max length 2048 2048 4096 8192

LR (all parameters) 1e-3 1e-5 1e-5 2e-6

Epoch 1 1 1 1

Stage1: Feature Alignment

Stage2: Visual Understanding + Temporal Visual Understanding

Stage3: Basic Reasoning + Active Visual Reasoning Abilities

PhysVLM-AVR-3B training details

AVR-Qwen2.5-VL-7B fine-tuning details

Val dataset Datasets Trainable Batch Size Max length LR Epoch

CLEVR-AVR AVR-Core LLM 16 8192 5.0e-6 1

OpenEQA and 
RoboVQA All AVR-152K LLM 16 8192 5.0e-6 1

Figure A-13: Training configuration details for PhysVLM-AVR-3B and AVR-Qwen2.5-VL-7B.

Large Language Model (Qwen2.5)

Vision Encoder
(SigLip-400M)

Projection Layer
(2xMLP)

Tokenizer

Down-Sample
(MaxPooling)

<think>...</think>\n<answer>...</answer>

Figure A-14: Model architecture of PhysVLM-AVR.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: We reflect the contribution and scope of the paper at the end of the abstract
and introduction.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We discuss the limitations of this work in Appendix.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]
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Justification: This article does not involve theoretical results that require proof of assump-
tions and reasoning.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We disclose all the information needed to reproduce the main experimental
results of the paper in Experiment, Appendix.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We use anonymous code links that follow submission guidelines.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We provide information on data splitting in Experiment and Appendix.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: The experiments in the article were averaged multiple times, and the random
seeds in the experiments were set to 42.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).
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• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We provide sufficient information in Experiment, Appendix.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The research conducted in the paper complied with the NeurIPS Code of Ethics
in all respects.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: We discuss this in Appendix.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
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• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [Yes]
Justification: We discuss this in Appendix.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: We reference the relevant code and models respecting the license.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the package

should be provided. For popular datasets, paperswithcode.com/datasets has
curated licenses for some datasets. Their licensing guide can help determine the license
of a dataset.
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• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: This paper don’t release new assets.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: This article does not involve crowdsourcing experiments and studies with
humans as subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: Not applicable to this study.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.
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• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/
LLM) for what should or should not be described.
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