DRIFT: DIVERGENT RESPONSE IN FILTERED TRANSFORMATIONS FOR ROBUST ADVERSARIAL DEFENSE

Anonymous authorsPaper under double-blind review

000

001

002

004

006

008 009 010

011 012

013

014

015

016

017

018

019

021

025

026

027

028

029

031 032 033

034

037

038

040

041

042 043

044

046

047

048

049

051

052

ABSTRACT

Deep neural networks remain highly vulnerable to adversarial examples, and most defenses collapse once gradients can be reliably estimated. We identify gradient consensus—the tendency of randomized transformations to yield aligned gradients—as a key driver of adversarial transferability. Attackers exploit this consensus to construct perturbations that remain effective across transformations. We introduce **DRIFT** (Divergent Response in Filtered Transformations), a stochastic ensemble of lightweight, learnable filters trained to actively disrupt gradient consensus. Unlike prior randomized defenses that rely on gradient masking, DRIFT enforces gradient dissonance by maximizing divergence in Jacobian- and logitspace responses while preserving natural predictions. Our contributions are threefold: (i) we formalize gradient consensus and provide a theoretical analysis linking consensus to transferability; (ii) we propose a consensus-divergence training strategy combining prediction consistency, Jacobian separation, logit-space separation, and adversarial robustness; and (iii) we show that DRIFT achieves substantial robustness gains on ImageNet across CNNs and Vision Transformers, outperforming state-of-the-art preprocessing, adversarial training, and diffusionbased defenses under adaptive white-box, transfer-based, and gradient-free attacks. DRIFT delivers these improvements with negligible runtime and memory cost, establishing gradient divergence as a practical and generalizable principle for adversarial defense.

1 Introduction

Despite the steady progress of adversarial defenses, most existing strategies collapse under adaptive attacks. Input transformations such as JPEG compression (Guo et al., 2018), randomized ensembles like BaRT (Raff et al., 2019), and even randomized smoothing (Cohen et al., 2019) all share a critical weakness: their defenses still exhibit *gradient consensus*. An adaptive adversary can approximate gradients across these transformations (e.g., via Expectation over Transformation (EoT) (Athalye et al., 2018)) and exploit the consistent directions that emerge, leading to transferable adversarial examples. This vulnerability stems not from insufficient randomness, but from the fact that most stochastic defenses still preserve a coherent, low-variance surrogate gradient landscape.

We argue that true robustness requires not masking gradients, but *destroying their alignment*. If the gradients through different transformations diverge, then an attacker aggregating them obtains noisy and incoherent signals, severely limiting transferability. Crucially, this principle stands in contrast to prior defenses: unlike BaRT, we do not rely on hand-designed random transformations; unlike randomized smoothing, we do not certify robustness by averaging over smooth noise distributions; and unlike obfuscated defenses (Athalye et al., 2018), we remain fully differentiable, avoiding the pitfall of false robustness.

Recent approaches such as DiffPure and DiffDefense (Nie et al., 2022; Silva et al., 2023) attempt to reverse adversarial perturbations using diffusion models, effectively projecting inputs back onto the data manifold. While these methods achieve strong robustness on small- and medium-scale datasets, they are computationally prohibitive for ImageNet-scale tasks and unsuitable for real-time deployment. Moreover, their robustness stems from reconstructing "clean" versions of adversar-

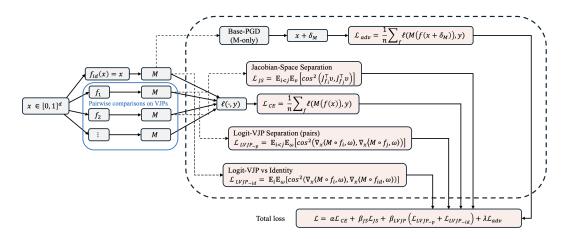


Figure 1: DRIFT methodology. Left: ensemble of learnable filters (plus identity) feeding the frozen base model M. Right: separation losses on Jacobian VJPs and logit VJPs (including vs. identity). The base-only PGD and baseline clean performance preservation loss. The total objective sums all terms with weights $(\alpha, \beta_{\rm is}, \beta_{\rm lvip}, \gamma, \lambda)$.

ial examples, which remains vulnerable if the attacker incorporates the purification step into the optimization loop. In contrast, DRIFT is lightweight and online: instead of purifying inputs, we adversarially train differentiable filters that directly disrupt gradient alignment, providing robustness without heavy generative modeling or inference overhead. We introduce **DRIFT** (Divergent Response in Filtered Transformations), a lightweight and architecture-agnostic defense that trains an ensemble of differentiable, learnable filters to explicitly maximize *gradient divergence* while preserving clean accuracy. Each filter is small, efficient, and operates as a front-end to a frozen pretrained model. Through a tailored training objective combining (i) prediction consistency, (ii) Jacobian-space divergence, (iii) logit-space divergence, and (iv) adversarial robustness, DRIFT ensures that while clean predictions remain stable, adversarial optimization encounters conflicting, decorrelated gradient directions. This breaks the attacker's ability to rely on gradient consensus, even under BPDA and EoT.

Our contributions are threefold:

- We formalize the concept of *gradient consensus* and prove that reducing gradient alignment across transformations directly lowers adversarial transferability.
- We propose DRIFT, the first differentiable and adversarially trained filter-ensemble defense that explicitly enforces gradient divergence without modifying or retraining the backbone classifier.
- We demonstrate on ImageNet-scale models (ResNet-v2, Inception-v3, DeiT-S, ViT-B/16)
 that DRIFT consistently outperforms state-of-the-art transformation-based and stochastic
 defenses against strong adaptive attacks, including PGD-EoT, AutoAttack, transfer-based
 attacks, and BPDA.

Our findings show that breaking gradient consensus is a general principle for reliable stochastic defenses. By making gradients *diverge* rather than disappear, **DRIFT** provides robustness that is both effective and compatible with real-world, large-scale classifiers.

2 RELATED WORK

Defending deep neural networks against adversarial attacks has inspired a broad range of strategies, including input transformations, stochastic preprocessing, adversarial training, architectural modifications, and generative purification. Below we summarize the most relevant categories, focusing on methods included in our evaluation. Early works rely on fixed transformations to suppress adversarial noise. JPEG compression (Dziugaite et al., 2016) reduces high-frequency perturbations but often

degrades clean accuracy and collapses under adaptive white-box attacks. BaRT (Raff et al., 2019) applies randomized blurs, noise, and color shifts at inference to obfuscate gradients. While offering some robustness, these transformations are non-differentiable and not optimized for adversarial resilience, leaving them vulnerable to BPDA-style attacks.

Adversarial Training (AT) (Madry et al., 2018) remains one of the most widely adopted defenses, retraining models directly on adversarial examples. Despite its robustness improvements, AT is computationally costly, tends to reduce clean accuracy, and does not generalize well to unseen threat models. Several variants attempt to mitigate these issues, but the core trade-offs remain. Architectural modifications incorporate robustness into the model design itself. ANF (Suresh et al., 2025) inserts large-kernel convolutional filters and pooling layers at the input to denoise perturbations, but the approach is deterministic and static. Frequency-based strategies such as FFR (Lukasik et al., 2023) regularize filters in the Fourier domain to suppress high-frequency vulnerabilities. These methods improve robustness for CNNs but do not easily transfer to more diverse architectures such as Vision Transformers. Generative purification strategies, such as DiffPure (Nie et al., 2022), reverse adversarial perturbations by projecting inputs back onto the data manifold via score-based diffusion models. While highly effective on small datasets Silva et al. (2023), these approaches are computationally prohibitive for large-scale or real-time scenarios, limiting their practicality.

In contrast to these strategies, our defense **DRIFT** introduces a stochastic, differentiable front-end composed of an ensemble of learnable filters. Crucially, these filters are trained to maximize *gradient divergence* across members, directly disrupting adversarial transferability. Unlike BaRT, DRIFT does not rely on fixed randomness but learns diverse filters optimized for robustness. Unlike adversarial training or diffusion-based purification, DRIFT is lightweight, modular, and plug-and-play with any pretrained classifier, requiring no modification or retraining of the backbone. This makes DRIFT both practical and theoretically grounded against strong adaptive attacks such as BPDA and EOT.

3 GRADIENT CONSENSUS ANALYSIS

3.1 CORE COMPONENTS

Notation. Let $M: \mathbb{R}^d \to \mathbb{R}^K$ be a pretrained classifier that maps an input $x \in \mathbb{R}^d$ to logits $z = M(x) \in \mathbb{R}^K$, with supervised loss $\ell(z,y)$ for label $y \in \{1,\ldots,K\}$. We introduce a bank of lightweight, differentiable, dimension-preserving filters $\{f_i\}_{i=1}^n$, each $f_i: \mathbb{R}^d \to \mathbb{R}^d$, and define the filtered pipeline $F_i(x) = M(f_i(x))$. Throughout, $J_g(x) = \frac{\partial g(x)}{\partial x}$ denotes the Jacobian of g at x. **Chain rule and gradient factors.** By the chain rule, the input gradient of the loss through pipeline F_i decomposes as:

$$\nabla_x \ell(F_i(x), y) = J_{F_i}(x)^\top \nabla_z \ell(z, y) = J_{f_i}(x)^\top J_M(f_i(x))^\top \nabla_z \ell(z, y), \tag{1}$$

with $z=M(f_i(x))$. Eq. 1 makes explicit that adversarial directions are shaped jointly by: (i) the *logit-space* factor $\nabla_z \ell$, and (ii) the *input-output* Jacobians J_M and J_{f_i} . DRIFT exploits this factorization by *decoupling* these components across filters, so that shared (consensus) adversarial directions are disrupted.

Vector–Jacobian products (VJP). Forming full Jacobians is infeasible in high dimensions. Instead, reverse-mode AD computes $J_g(x)^\top v \in \mathbb{R}^d$, $v \in \mathbb{R}^m$, without ever materializing $J_g(x)$. These VJPs quantify how output directions v backpropagate to the input. Sampling v from Rademacher/Gaussian distributions (Hutchinson probing) yields scalable estimates of Jacobian (dis)similarity across filters without storing Jacobians.

Logit-space probing. For the composed mapping $x \mapsto z(x) = M(f_i(x)) \in \mathbb{R}^K$, probing with random $w \in \mathbb{R}^K$ gives the logit-space VJP: $g_i(x;w) = \nabla_x \langle z(x), w \rangle = J_{F_i}(x)^\top w$. This provides a tractable surrogate of how each f_i reshapes sensitivity of *decision-space* directions with respect to the input. In practice, $g_i(x;w)$ closely tracks adversarial update directions produced by first-order attacks.

Adversarial examples and transfer. An adversarial example $x'=x+\delta$ with $\|\delta\|_p \le \epsilon$ is typically found by iterative first-order methods (e.g., PGD). *Transferability* is the tendency of δ crafted on a surrogate to fool a different target. By minimizing cross-filter consensus in Eq. 1, DRIFT makes it harder for a single surrogate-induced direction to generalize across pipelines or models, thus reducing black-box success.

Dimension-preserving residual filters. Each filter f_i keeps the input shape and is implemented with a lightweight residual block so $J_{f_i}(x) \in \mathbb{R}^{d \times d}$ is square and M processes $f_i(x)$ without architectural changes. This design keeps runtime small while providing enough flexibility to steer gradient geometry.

3.2 Gradient Consensus

Attack Success Probability. For an input (x,y), let $g_i(x) = \nabla_x \ell(M(f_i(x)), y)$ denote the gradient of the supervised loss through filter f_i and base model M. Given a perturbation δ with $\|\delta\|_{\infty} \leq \epsilon$, we define the attack success probability on pipeline $F_i(x) = M(f_i(x))$ as $p_i(x,\delta) = \mathbb{P}[\arg\max_c M(f_i(x+\delta))_c \neq y]$. A perturbation is transferable if $p_j(x,\delta)$ is high even when δ was optimized on f_i .

Definition 3.1 (Gradient Consensus). The gradient consensus between two filters f_i , f_j at input x is defined as

$$\Gamma(f_i, f_j; x) = \left(\frac{\langle g_i(x), g_j(x) \rangle}{\|g_i(x)\|_2 \cdot \|g_j(x)\|_2}\right)^2.$$

This squared cosine similarity lies in [0,1]. High values indicate that f_i and f_j share adversarially useful directions (high transferability), while low values indicate divergence of gradient subspaces (low transferability).

3.3 Assumptions

Assumption 3.2 (Smoothness). The base model M and filters $\{f_i\}$ are L-smooth: their gradients are Lipschitz continuous with constant L.

Assumption 3.3 (Bounded Gradients). There exists G > 0 such that $||g_i(x)||_2 \le G$ for all i and all inputs x.

3.4 THEORETICAL RESULTS

Lemma 3.4 (Transferability and Consensus). Let δ be an adversarial perturbation of size $\|\delta\|_{\infty} \leq \epsilon$ crafted using gradient g_i . Then, under Assumptions 1–2, the expected attack success probability on f_j satisfies $p_j(x,\delta) \leq C \cdot \epsilon G \cdot \Gamma(f_i,f_j;x)$, for some constant C depending on the Lipschitz constant L and the loss margin at x.

Proof sketch. A first-order Taylor expansion gives $\ell(M(f_j(x+\delta)),y) \approx \ell(M(f_j(x)),y) + \langle g_j(x),\delta \rangle$. Choosing δ aligned with $g_i(x)$ yields an inner product $\langle g_j(x),g_i(x)\rangle \|\delta\|_2/\|g_i(x)\|_2$. By normalizing and squaring the cosine similarity, the transfer effect is scaled by $\Gamma(f_i,f_j;x)$. Boundedness $(\|g_i(x)\| \leq G)$ and smoothness ensure the residual terms are controlled, leading to the probability bound up to a constant factor C.

Theorem 3.5 (Breaking Consensus Reduces Transferability). Suppose filters $\{f_1, \ldots, f_n\}$ satisfy Assumptions 1–2. If the expected consensus satisfies $\mathbb{E}_{i\neq j}[\Gamma(f_i, f_j; x)] \leq \rho$, $\rho \ll 1$, then for any adversarial perturbation δ crafted on a single filter f_i , its expected transfer success probability on the other filters satisfies $\mathbb{E}_{j\neq i}[p_j(x,\delta)] \leq O(\epsilon G\rho)$.

Remark 3.6 (Identity Path). Including the identity mapping $f_{id}(x) = x$ in training ensures that adversaries relying solely on M's gradients are also discouraged. This removes the "M-only" blind spot and forces robustness even against attacks that ignore filter structure.

Connection to DRIFT. This theory motivates the DRIFT objective: minimizing empirical gradient consensus. Concretely, the Jacobian separation loss \mathcal{L}_{JS} reduces alignment in feature space, and the logit-VJP separation loss \mathcal{L}_{LVJP} reduces alignment in decision space. Together, they enforce the low- ρ regime required by Theorem 3.5, thereby provably reducing transferability of adversarial examples across filters.

METHODOLOGY: DRIFT

216

217 218

219

220

221

222

223 224

225 226

227

228

229

230 231

232

233

234

235 236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252 253

254 255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

The consensus analysis of Section 3 shows that transferability is controlled by the alignment of gradients across filters. To make adversarial examples non-transferable, we must explicitly reduce this alignment. As shown in Figure 1, DRIFT (Divergent Response in Filtered Transformations) operationalizes this insight by introducing trainable preprocessing filters and losses that enforce Jacobianand logit-level divergence. Together with adversarial training on base gradients, this creates a system robust to both non-adaptive and adaptive attacks.

4.1 Loss Components

DRIFT integrates four complementary objectives designed to balance clean accuracy with robustness and gradient diversity:

Cross-Entropy Loss. To preserve baseline predictive performance, we apply standard supervised training across all filters: $\mathcal{L}_{CE} = \frac{1}{K} \sum_{i=1}^{K} \ell(M(f_i(x)), y)$. **Jacobian Separation Loss.** To reduce cross-filter transferability, we explicitly penalize alignment

between the vector–Jacobian products (VJPs) of different filters:

 $\mathcal{L}_{JS} = \mathbb{E}_{i < j} \mathbb{E}_v \left[\cos^2 \left(J_{f_i}(x)^\top v, \ J_{f_j}(x)^\top v \right) \right], \text{ where } v \text{ is a random probe vector. High } \mathcal{L}_{JS}$ implies shared adversarial directions, which DRIFT suppresses.

Logit-VJP Separation Loss. Beyond raw Jacobians, we also enforce divergence at the decision level. By probing the logit space with random directions $w \in \mathbb{R}^K$, we obtain gradients $\nabla_x \langle M(f_i(x)), w \rangle$. We then penalize their pairwise cosine similarity:

 $\mathcal{L}_{LVJP} = \mathbb{E}_{i < j} \mathbb{E}_w \left[\cos^2 \left(\nabla_x \langle M(f_i(x)), w \rangle, \nabla_x \langle M(f_j(x)), w \rangle \right) \right]$. This term ensures that filters remain diverse with respect to how input perturbations propagate into class decisions.

Adversarial Training Loss. To maintain robustness under direct attack, we craft adversarial perturbations δ_M using PGD on the base model M alone. The filters are then trained to resist these perturbations: $\mathcal{L}_{adv} = \max_i \ell(M(f_i(x+\delta_M)), y)$. This enforces that each filter can withstand attacks crafted in the base model's gradient space.

Total Objective. The complete training loss is a weighted combination:

 $\mathcal{L} = \alpha \mathcal{L}_{CE} + \beta_{JS} \mathcal{L}_{JS} + \beta_{LVJP} \mathcal{L}_{LVJP} + \lambda \mathcal{L}_{adv}$. By jointly optimizing these terms, DRIFT encourages filters that (i) preserve clean accuracy, (ii) diverge in Jacobian subspaces, and (iii) resist both base-model and cross-filter attacks.

Filter Architecture. Each filter f_i is implemented as a lightweight residual convolutional block: a 3×3 convolution expanding from 3 to 16 channels, a ReLU nonlinearity, and a second 3×3 convolution projecting back to 3 channels. The filter output is added to the input via a skip connection: $f(x) = x + \text{Conv}_{16 \to 3}(\text{ReLU}(\text{Conv}_{3 \to 16}(x)))$. This design ensures that each filter remains close to the identity mapping while still being capable of learning meaningful transformations that diversify adversarial gradients. A detailed exploration of the filter architecture (Appendix A.4) and the effect of ensemble size on robustness (Appendix A.5) further support the design decisions of DRIFT.

EXPERIMENTAL SETUP

Dataset. We conduct experiments on the ImageNet dataset (Krizhevsky et al., 2017). Following common practice, we use a randomly selected subset of the validation set for training the filter ensemble, while reserving the remaining portion exclusively for evaluation. This ensures that the filters are trained without access to test samples, thereby providing a fair assessment of robustness.

Models. We evaluate DRIFT across both convolutional and transformer-based architectures to highlight its generality. Specifically, we use two widely adopted CNN models: Inception-v3 (Inc-v3) and ResNet-v2-50 (Res-v2) (Szegedy et al., 2016; He et al., 2016). For transformer-based architectures, we include ViT-B/16 (Dosovitskiy et al., 2021) as a representative Vision Transformer and DeiT-S (Touvron et al., 2021), a data-efficient variant trained with distillation.

Baselines. We benchmark DRIFT against a comprehensive set of strong baseline defenses spanning multiple categories. Input preprocessing defenses include deterministic and stochastic transformations such as JPEG compression (Dziugaite et al., 2016) and BaRT (Raff et al., 2019). Generative defenses are represented by diffusion-based purification via DiffPure (Nie et al., 2022). Architecturelevel defenses include adversarial noise filtering (ANF) (Suresh et al., 2025) and frequency-based regularization strategies such as filter frequency regularization (FFR) (Lukasik et al., 2023). Finally, we include the widely adopted adversarial training (AT) (Madry et al., 2018) as a canonical robustness baseline.

Evaluation Metrics. We evaluate defense performance using the standard *Robust Accuracy* (RA), defined as the proportion of adversarial examples that are successfully classified by the target model. Higher RA (\uparrow) indicates stronger defense and baseline (standard) accuracy, performance of the model in a benign setting (i.e., no attack).

Parameter Settings. For training the set of filters, we use four filters formed by two convolution layers , we use $\epsilon=4/255$. The number of PGD iterations is set to T=10, with a step size of $\eta=\epsilon/T=0.4/255$. $\alpha=1$, $\beta_{js}=0.5$, $\beta_{lvjp}=0.5$, $\lambda=1$, $js_num_probs=5$, $lvjp_num_probs=5$, epochs=100. For the optimizer, we use AdamW with lr=1e-3, $weight_decay=1e-4$.

Attacks. We evaluate DRIFT under a comprehensive suite of strong white-box and black-box attacks. *Gradient-based attacks* include the canonical ℓ_{∞} Projected Gradient Descent (PGD) (Madry et al., 2018), momentum-based MI-FGSM (MIM) (Dong et al., 2018), variance-reduced VMI-FGSM (VMI) (Wang & He, 2021), and gradient-smoothing Skip Gradient Method (SGM) (Wu et al., 2020). To benchmark against state-of-the-art evaluation protocols, we also include AutoAttack (AA) (Croce & Hein, 2020b). *Gradient-free attacks* are represented by the Square Attack (Andriushchenko et al., 2020) and the Fast Adaptive Boundary Attack (FAB) (Croce & Hein, 2020a), which probe robustness without relying on gradient information. Finally, to model adaptive adversaries aware of the defense mechanism, we incorporate BPDA (Backward Pass Differentiable Approximation) and EOT (Expectation over Transformation) (Athalye et al., 2018), which are widely recognized for breaking obfuscated or randomized defenses. For completeness, Appendix A.1 presents the full threat model and a detailed implementation of our method, along with training pseudocode.

6 RESULTS AND ANALYSIS

6.1 Non-Adaptive Attacks

We first evaluate DRIFT in a non-adaptive setting: the adversary has full white-box access to the base classifier (architecture and weights) but is unaware of the deployed defense. Table 1 reports robust accuracy across four backbone models (ResNet-v2, Inception-v3, DeiT-S, and ViT-B/16) against eight commonly used attacks at a fixed perturbation budget of $\epsilon=4/255$ for ℓ_{∞} -based attacks and $\epsilon=1$ for ℓ_2 attacks. The results show that DRIFT consistently preserves baseline performance, unlike JPEG compression and BaRT, which significantly degrade accuracy even in the absence of attacks. For example, on ResNet-v2, DRIFT maintains 84.66% clean accuracy compared to only 44.97% with JPEG at q=50. At the same time, DRIFT provides substantially higher robustness across all attacks. Against AutoAttack, DRIFT achieves 74.30% robust accuracy on ResNet-v2, surpassing DiffPure (67.01%) and far exceeding JPEG (14.29% at q=75). These results demonstrate that DRIFT offers a favorable trade-off: it preserves clean accuracy while achieving state-of-the-art robustness across convolutional and transformer-based models. In contrast, existing preprocessing-based methods either distort the input distribution or over-regularize the model, leading to severe drops in standard performance.

6.2 Adaptive Attacks

Prior work has shown that many input-transformation defenses collapse under adaptive threat models. In particular, (Athalye et al., 2018) demonstrated that defenses relying on gradient masking or non-differentiability can be bypassed by BPDA (Backward Pass Differentiable Approximation), which substitutes the gradient of the transformation with the identity or Average Pool during backpropagation. Moreover, randomness-based defenses can be defeated with Expectation over Transformation (EOT), where the attacker averages gradients across multiple stochastic passes to approximate the true gradient. We evaluate DRIFT against such adaptive attacks by considering both BPDA and EOT settings. As shown in Table 2, classical input transformations like JPEG and BaRT collapse under adaptive PGD and AutoAttack, with robust accuracy dropping close to zero across all models. Adversarial training variants (AT, FFR+AT, ANF+AT) exhibit partial robustness but incur significant drops in clean accuracy and remain vulnerable when the attacker leverages EOT. DiffPure achieves moderate robustness but is highly sensitive to configuration. For DiffPure, computing full gradients under BPDA+EOT was infeasible on our hardware due to the prohibitive memory required

Table 1: Robust accuracy (%) of various defenses against seven attacks at noise budget $\epsilon = 4/255$ for ℓ_{∞} and $\epsilon = 1$ for ℓ_{2} attacks. Best results per row block (model) are in **bold**.

Model	Defense	Config.	No Attack	PGD ℓ_{∞}	PGD ℓ_2	MIM	VMI	SGM	AA	FAB	Square
	JPEG	q = 75	62.96	35.45	41.80	6.88	19.05	37.04	14.29	74.07	15.34
	JPEG	q = 50	44.97	41.27	62.43	23.81	29.63	40.74	8.99	65.61	8.47
ResNet-v2	BaRT	k = 5	50.79	23.28	37.57	13.76	24.34	21.87	12.70	43.39	15.34
Resnet-v2	BaRT	k = 10	38.10	24.34	31.22	18.52	19.05	22.22	9.52	43.39	12.17
	DiffPure	$t^* = 0.15$	67.79	65.43	70.64	48.73	45.66	47.20	67.01	63.12	62.88
	Ours	n=4	84.66	76.19	79.53	67.20	53.44	71.43	74.30	81.16	80.95
	JPEG	q = 75	78.31	6.88	28.77	2.65	3.17	5.82	1.23	58.90	6.30
	JPEG	q = 50	76.72	37.57	39.12	14.29	11.11	36.51	7.64	54.55	5.65
Inception-v3	BaRT	k = 5	61.38	27.51	29.31	17.46	20.11	26.46	8.77	34.32	9.12
inception-v5	BaRT	k = 10	50.79	29.63	31.20	23.28	22.21	24.87	6.45	35.65	8.44
	DiffPure	$t^* = 0.15$	NA	NA	NA	NA	NA	NA	NA	NA	NA
	Ours	n=4	80.96	76.83	78.74	73.50	65.00	77.83	76.50	80.10	79.89
	JPEG	q = 75	82.54	2.65	22.75	1.59	3.17	2.65	4.23	81.48	67.72
	JPEG	q = 50	80.95	19.05	51.85	8.99	10.05	17.99	28.57	81.48	66.14
DeiT-S	BaRT	k = 5	74.07	28.57	34.92	19.05	19.58	26.98	29.57	49.74	53.97
Del1-3	BaRT	k = 10	63.49	35.45	37.57	26.46	29.10	34.39	31.22	52.91	50.26
	DiffPure	$t^* = 0.15$	73.63	61.55	67.55	47.61	45.30	60.70	63.21	58.32	57.77
	Ours	n=4	82.42	76.67	78.89	69.37	62.49	71.48	76.24	81.23	80.07
	JPEG	q = 75	77.25	8.47	31.75	6.35	25.93	8.47	10.58	71.96	59.79
	JPEG	q = 50	74.07	35.45	57.67	21.69	35.45	35.98	38.10	69.31	58.73
ViT-B/16	BaRT	k = 5	68.78	31.22	38.10	25.40	36.51	34.39	26.98	50.79	50.26
V11-B/10	BaRT	k = 10	54.50	33.33	36.51	28.04	30.69	31.10	30.16	47.62	42.33
	DiffPure	$t^* = 0.15$	NA	NA	NA	NA	NA	NA	NA	NA	NA
	Ours	n=4	80.48	74.66	77.01	70.95	63.90	75.19	77.30	79.83	77.30

Table 2: Robust accuracy (%) of various defenses against adaptive PGD, and AutoAttack (AA) ($\epsilon = 4/255$, 40 steps) across four models. The best results in each column are highlighted in **bold**.

1 /								<u> </u>					
Defense	Adaptive	ResNet-v2		Inception-v3		DeiT-S			ViT-B/16				
		Clean	PGD	AA	Clean	PGD	AA	Clean	PGD	AA	Clean	PGD	AA
JPEG	BPDA + EOT	44.97	0	0	76.72	0	0	80.95	0	0	74.07	0	0
BaRT	BPDA + EOT	50.79	6.0	0	61.38	11.23	9.4	74.07	5.2	3.1	68.78	7.31	4.67
AT	EOT	64.37	16.32	3.12	74.4	2.4	7.3	NA	NA	NA	NA	NA	NA
FFR+AT	EOT	56.85	20.53	13.24	NA	NA	NA	NA	NA	NA	NA	NA	NA
ANF+AT	EOT	61.67	25.12	24.63	NA	NA	NA	NA	NA	NA	NA	NA	NA
DiffPure	EOT	67.79	36.43	40.93	NA	NA	NA	73.63	37.55	43.18	NA	NA	NA
DiffPure	BPDA + EOT	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Ours	EOT	84.66	53.78	50.12	80.96	50.40	49.66	82.42	48.15	47.97	80.48	56.74	54.90
Ours	BPDA + EOT	84.66	60.19	58.73	80.96	53.68	51.11	82.42	57.22	55.43	80.48	64.17	61.23

to backpropagate through the diffusion sampler (Nie et al., 2022). In contrast, DRIFT maintains both clean accuracy and strong robustness across convolutional and transformer-based models. For example, on ResNet-v2, DRIFT achieves 60.19% robust accuracy against BPDA+EOT PGD and 58.73% against BPDA+EOT AutoAttack, outperforming all baselines by a large margin. On Inception-v3 and DeiT-S, DRIFT sustains over 50% robust accuracy against both PGD and AutoAttack, while JPEG and BaRT collapse below 10%. On ViT-B/16, DRIFT achieves 64.17% and 61.23% robust accuracy under PGD and AutoAttack respectively, again substantially higher than all competitors.

6.3 DRIFT vs. Randomized Smoothing Baselines

Randomized smoothing (RS) reports *certified* top-1 accuracy for an ℓ_2 ball of radius r, i.e., attackagnostic guarantees that the prediction is invariant to any perturbation $\|\delta\|_2 \le r$ (Cohen et al., 2019; Salman et al., 2019). In contrast, **DRIFT** is an empirical defense evaluated with adaptive white-box attacks (ℓ_2 PGD-EOT); the numbers below are *empirical robust accuracies* under ℓ_2 attacks at the same radii r. Table 3 juxtaposes the standard RS baselines with DRIFT on ImageNet-1K for *ResNet-50* and *ViT-B/16*. On ResNet-50, DRIFT exceeds SmoothAdv RS by +9.1 to +19.5 points as r grows from 0.5 to 3.0. On ViT-B/16, DRIFT outperforms CAF from r=0.5 to 3.0 with gains between +0.2 and +13.4 points. We stress that RS values are *certificates*, whereas DRIFT values are *empirical* and should not be interpreted as certified guarantees.

6.4 ABLATION STUDIES

To better understand the contribution of each component in DRIFT, we conduct ablation experiments by selectively including or excluding loss terms during training. Table 4 reports robust accuracy under both non-adaptive and adaptive PGD attacks for four different models. We begin with a baseline that combines standard cross-entropy loss \mathcal{L}_{CE} with adversarial training \mathcal{L}_{adv} . While this setup provides reasonable non-adaptive robustness (e.g., 75.66% on ResNet-v2), it collapses almost completely under adaptive attacks (below 10% across all models). Introducing Jacobian-Space Separation (\mathcal{L}_{JS}) substantially improves adaptive robustness, boosting performance to 39.80\% on ResNet-v2 and similar gains across other architectures. Logit-VJP Separation (\mathcal{L}_{LVJP}) proves even more effective, further elevating

378

379

380

381

382

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400 401 402

403

411 412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430 431

Table 3: Robust Accuracy (%) at ℓ_2 radius r on ImageNet-1K. ResNet-50 uses SmoothAdv randomized smoothing (Salman et al., 2019; Cohen et al., 2019); ViT-B/16 uses Certifying Adapters (CAF) (Deng et al., 2024). *DRIFT* rows are empirical ℓ_2 robustness at the same radii (not certificates).

		ℓ_2 radius r							
Model	Method	0.5	1.0	1.5	2.0	3.0			
ResNet-50	SmoothAdv RS	56.00	45.00	38.00	28.00	20.00			
ResNet-50	DRIFT	65.13	55.34	50.78	45.66	27.45			
ViT-B/16	CAF (RS-style)	71.80	53.60	45.80	34.20	21.20			
ViT-B/16	DRIFT	71.96	64.55	51.23	47.62	30.51			

Notes. RS entries (SmoothAdv/CAF) are certified accuracies; DRIFT entries are empirical accuracies under ℓ_2 PGD-EOT attacks at the same radii. Certified and empirical numbers should not be compared as if equivalent guarantees.

adaptive robustness to 47.61% on ResNet-v2 and consistently outperforming \mathcal{L}_{JS} across models. Finally, combining all three components (\mathcal{L}_{CE} , \mathcal{L}_{JS} , \mathcal{L}_{LVJP} , and \mathcal{L}_{adv}) yields the strongest defense. This full configuration achieves the highest adaptive robustness across all architectures, with ResNet-v2 at 53.78%, Inception-v3 at 50.40%, DeiT-S at 48.15%, and ViT-B/16 at 56.74%. Importantly, this robustness comes at no cost to non-adaptive performance, which remains on par with or slightly better than the baselines.

Table 4: Robust accuracy (%) of different loss component configurations against adaptive PGD across four models.

Loss Components	ResNet	-v2	Inceptio	n-v3	DeiT-S		ViT-B/16	
Loss Components	Non-adaptive	Adaptive	Non-adaptive	Adaptive	Non-adaptive	Adaptive	Non-adaptive	Adaptive
$\mathcal{L}_{CE} + \mathcal{L}_{adv}$	75.66	3.70	77.25	2.65	79.55	9.52	76.12	8.47
\mathcal{L}_{CE} + \mathcal{L}_{JS} + \mathcal{L}_{adv}	77.21	39.80	78.64	38.54	77.90	36.71	75.34	40.12
$\mathcal{L}_{CE} + \mathcal{L}_{LVJP} + \mathcal{L}_{adv}$	76.43	47.61	77.53	45.11	78.65	40.87	76.50	49.73
$\mathcal{L}_{CE} + \mathcal{L}_{LVJP} + \mathcal{L}_{JS} + \mathcal{L}_{adv}$	76.19	53.78	78.83	50.40	78.67	48.15	74.66	56.74

6.5 Gradient-norm sanity & finite-difference check

To rule out gradient obfuscation, we follow the diagnostic in Athalye et al. (2018); Tramer et al. (2020): for each (x, y) we measure $\|\nabla_x \mathcal{L}(x,y)\|_2$ (defense ON) and compare the directional derivative $\mathbf{v}^{\top}\nabla_{x}\mathcal{L}$ against a finite-difference slope. We use BPDA (identity surrogate), EOT over the defense's stochasticity, common randomness (CRN) across paired evaluations, and centered differences, $\frac{\dot{\mathcal{L}}(x+\eta\mathbf{v},y)-\mathcal{L}(x-\eta\mathbf{v},y)}{2\eta}$, with $\eta \in$ $\{10^{-2}, 10^{-3}, 10^{-4}\}$ and 10 random unit L_2 directions per sample. Table 5 summarizes the results (medians/means and 5/95 percentiles across the evaluated subset). Gradients are neither vanishing nor exploding (median 1.67, 5-95% 0.44-5.72). The directional mismatch remains in the 10^{-3} – 10^{-2} range with tight tails $(p95 < 4.12 \times 10^{-2})$, indicating informative, non-masked gradients under our defense.

Table 5: D1 diagnostic on ViT-B/16 for ImageNet (subset). Gradients are well-behaved; the directional-derivative mismatch $\Delta_{\mathbf{v}}$ is small across step sizes with tight tails.

Input-gradient norms ($\ \nabla_x \mathcal{L}\ _2$)							
median	p05	p95					
1.6677	0.4392	5.7156					
Directional mismatch $\Delta_{\mathbf{v}} = \left \mathbf{v}^{\top} \nabla_{x} \mathcal{L} - \frac{\mathcal{L}(x + \eta \mathbf{v}) - \mathcal{L}(x - \eta \mathbf{v})}{2\eta} \right $							
η	median	mean	p05	p95			
1×10^{-2}	0.00562	0.01184	0.00205	0.02630			
1×10^{-3}	0.00773	0.01229	0.00106	0.02513			
1×10^{-4}	0.00477	0.01570	0.00133	0.04114			

Setup. Identity BPDA surrogate; expectation-over-transforms (EOT) with common randomness; centered finite differences; 10 random unit L_2 directions per sample. Lower $\Delta_{\mathbf{v}}$ is better.

6.6 Loss-landscape smoothness

To assess whether our defense induces masking artifacts, we visualize the loss surface around input x along two random, orthonormal directions (\mathbf{u}, \mathbf{v}) in input space, plotting $\mathcal{L}(x +$ $a\mathbf{u} + b\mathbf{v}, y$, $(a, b) \in [-\tau, \tau]^2$, on a 41×41 grid with $\tau = 3/255$. For stochastic components, we evaluate the *expected* loss via EOT-128 and use common randomness (CRN) so every grid point shares the same random filter sequence. This follows best-practice diagnostics for ruling out gradient obfuscation (Athalye et al., 2018; Tramer et al., 2020). Figure 2 shows a smooth, near-planar surface with monotone shading (yellow-purple) and a mild anisotropy (slope larger along one axis), with no checkerboard or plateau artifacts. Reading the colorbar, the total loss variation across the square is small ($\Delta L \approx 4 \times 10^{-5} - 5 \times 10^{-5}$), consistent with informative (non-vanishing) but well-behaved gradients. The landscape around

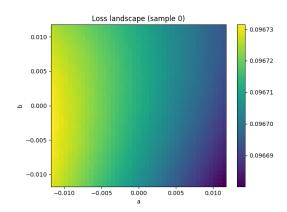


Figure 2: Loss-landscape smoothness. The surface is smooth and nearly planar over $[-3/255,\,3/255]^2$ with a coherent slope and no staircase/plateau artifacts.

x is smooth and free of quantization barriers or randomness-induced plateaus, indicating that our defense does not rely on gradient obfuscation per this diagnostic. Further analysis and discussion are provided in appendix A.3.

6.7 RUNTIME EFFICIENCY: DRIFT VS. PURIFICATION DEFENSES

Table 6 reports per-image inference cost on ImageNet (ResNet-50). DiffPure Nie et al. (2022) requires 5.52 s, 11.06 s, or 17.07 s per image at timesteps $t^* \in \{0.05, 0.10, 0.15\}$, with $\sim \! 7.0\, \mathrm{GB}$ GPU memory. In contrast, DRIFT takes only 0.0004 s (0.4 ms) and 0.03 GB. This corresponds to speedups of roughly $1.4\times 10^4,\ 2.8\times 10^4,\ \mathrm{and}\ 4.3\times 10^4$ over DiffPure at $t^*=0.05,0.10,0.15,$ respectively, while using about $\sim 233\times$ less memory. In sum, DRIFT delivers adaptive robustness with a latency and memory footprint compatible with real-time and resource-constrained

Table 6: Inference latency and memory comparison between DiffPure and DRIFT on ImageNet (ResNet-50).

	Timestep	Latency	Memory
Defense	(t^*)	(s)	(GB)
DiffPure	0.05	5.52	~7.0
DiffPure	0.10	11.06	~ 7.0
DiffPure	0.15	17.07	~ 7.0
DRIFT	N/A	0.0004	0.03

settings, whereas diffusion-based purification is orders of magnitude costlier.

7 CONCLUSION

We introduced **DRIFT**, a lightweight and architecture-agnostic defense framework designed to break *gradient consensus*, a central vulnerability of transformation-based defenses. Unlike prior preprocessing or smoothing methods that preserve coherent gradients and thus remain exploitable under adaptive attacks, DRIFT leverages ensembles of differentiable and learnable filters trained to maximize gradient divergence while preserving clean accuracy. Our theoretical analysis established a formal link between gradient consensus and adversarial transferability, showing that reducing alignment among filters directly limits the success of transferable attacks. Building on this insight, we proposed a principled training strategy that combines cross-entropy, Jacobian separation, logit-VJP separation, and adversarial robustness objectives. Extensive experiments on ImageNet-scale CNN and ViT architectures demonstrated that DRIFT consistently outperforms state-of-the-art preprocessing, adversarial training, and diffusion-based purification defenses. Notably, DRIFT preserved baseline performance under non-adaptive attacks, achieved strong robustness against semi-adaptive and adaptive attacks (including BPDA and EoT), and scaled effectively to both convolutional and transformer backbones. These results underscore DRIFT's practicality as a defense that is efficient, modular, and deployable without retraining or modifying the base classifier.

REFERENCES

- Maksym Andriushchenko, Francesco Croce, Nicolas Flammarion, and Matthias Hein. Square attack: a query-efficient black-box adversarial attack via random search. In *European conference on computer vision*, pp. 484–501. Springer, 2020.
- Anish Athalye, Nicholas Carlini, and David Wagner. Obfuscated gradients give a false sense of security: Circumventing defenses to adversarial examples. In *International Conference on Machine Learning (ICML)*, 2018.
- Jeremy Cohen, Elan Rosenfeld, and Zico Kolter. Certified adversarial robustness via randomized smoothing. In *international conference on machine learning*, pp. 1310–1320. PMLR, 2019.
- Francesco Croce and Matthias Hein. Minimally distorted adversarial examples with a fast adaptive boundary attack. In *International conference on machine learning*, pp. 2196–2205. PMLR, 2020a.
- Francesco Croce and Matthias Hein. Reliable evaluation of adversarial robustness with an ensemble of diverse parameter-free attacks. In *International conference on machine learning*, pp. 2206–2216. PMLR, 2020b.
- Jieren Deng, Hanbin Hong, Aaron Palmer, Xin Zhou, Jinbo Bi, Kaleel Mahmood, Yuan Hong, and Derek Aguiar. Certifying adapters: Enabling and enhancing the certification of classifier adversarial robustness. *arXiv preprint arXiv:2405.16036*, 2024.
- Yinpeng Dong, Fangzhou Liao, Tianyu Pang, Hang Su, Jun Zhu, Xiaolin Hu, and Jianguo Li. Boosting adversarial attacks with momentum. In *Proceedings of the IEEE conference on computer vision and pattern recognition*, pp. 9185–9193, 2018.
- Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit, and Neil Houlsby. An image is worth 16x16 words: Transformers for image recognition at scale. In 9th International Conference on Learning Representations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021. OpenReview.net, 2021. URL https://openreview.net/forum?id=YicbFdNTTy.
- Gintare Karolina Dziugaite, Zoubin Ghahramani, and Daniel M. Roy. A study of the effect of jpg compression on adversarial images, 2016. URL https://arxiv.org/abs/1608.00853.
- Chuan Guo, Mayank Rana, Moustapha Cissé, and Laurens van der Maaten. Countering adversarial images using input transformations. In 6th International Conference on Learning Representations, ICLR 2018, Vancouver, BC, Canada, April 30 May 3, 2018, Conference Track Proceedings. OpenReview.net, 2018. URL https://openreview.net/forum?id=SyJ7ClWCb.
- Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition. In *Proceedings of the IEEE conference on computer vision and pattern recognition*, pp. 770–778, 2016.
- Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep convolutional neural networks. *Communications of the ACM*, 60(6):84–90, 2017.
- Jovita Lukasik, Paul Gavrikov, Janis Keuper, and Margret Keuper. Improving native cnn robustness with filter frequency regularization. *Transactions on Machine Learning Research*, 2023:1–36, 2023.
- Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and Adrian Vladu. Towards deep learning models resistant to adversarial attacks. In *International Conference on Learning Representations (ICLR)*, 2018.
- Weili Nie, Brandon Guo, Yujia Huang, Chaowei Xiao, Arash Vahdat, and Anima Anandkumar. Diffusion models for adversarial purification. In *International Conference on Machine Learning (ICML)*, 2022.
- Edward Raff, Jared Sylvester, Steven Forsyth, and Mark McLean. Barrage of random transforms for adversarially robust defense. In *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*, pp. 6528–6537, 2019.

- Hadi Salman, Jerry Li, Ilya Razenshteyn, Pengchuan Zhang, Huan Zhang, Sebastien Bubeck, and Greg Yang. Provably robust deep learning via adversarially trained smoothed classifiers. *Advances in neural information processing systems*, 32, 2019.
- Hondamunige Prasanna Silva, Lorenzo Seidenari, and Alberto Del Bimbo. Diffdefense: Defending against adversarial attacks via diffusion models. In *International Conference on Image Analysis and Processing*, pp. 430–442. Springer, 2023.
- Janani Suresh, Nancy Nayak, and Sheetal Kalyani. First line of defense: A robust first layer mitigates adversarial attacks. In *Proceedings of the AAAI Conference on Artificial Intelligence*, volume 39, pp. 7176–7183, 2025.
- Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jon Shlens, and Zbigniew Wojna. Rethinking the inception architecture for computer vision. In *Proceedings of the IEEE conference on computer vision and pattern recognition*, pp. 2818–2826, 2016.
- Hugo Touvron, Matthieu Cord, Matthijs Douze, Francisco Massa, Alexandre Sablayrolles, and Hervé Jégou. Training data-efficient image transformers & distillation through attention. In *International conference on machine learning*, pp. 10347–10357. PMLR, 2021.
- Florian Tramer, Nicholas Carlini, Wieland Brendel, and Aleksander Madry. On adaptive attacks to adversarial example defenses. *Advances in neural information processing systems*, 33:1633–1645, 2020.
- Xiaosen Wang and Kun He. Enhancing the transferability of adversarial attacks through variance tuning. In *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*, pp. 1924–1933, 2021.
- Dongxian Wu, Yisen Wang, Shu-Tao Xia, James Bailey, and Xingjun Ma. Skip connections matter: On the transferability of adversarial examples generated with resnets. In 8th International Conference on Learning Representations, ICLR 2020, Addis Ababa, Ethiopia, April 26-30, 2020. OpenReview.net, 2020. URL https://openreview.net/forum?id=BJlRs34Fvr.