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ABSTRACT

Large language models (LLMs) are susceptible to generating hallucinated infor-
mation, despite the integration of retrieval-augmented generation (RAG). Parallel
context extension (PCE) is a line of research attempting to effectively integrating
parallel (unordered) contexts, while it still suffers from in-context hallucinations
when adapted to RAG scenarios. In this paper, we propose DePaC (Dehallucinating
Parallel Context Extension), which alleviates the in-context hallucination problem
with context-aware negative training and information-calibrated aggregation.
DePaC is designed to alleviate two types of in-context hallucination: fact fabri-
cation (i.e., LLMs present claims that are not supported by the contexts) and fact
omission (i.e., LLMs fail to present claims that can be supported by the contexts).
Specifically, (1) for fact fabrication, we apply the context-aware negative training
that fine-tunes the LLMs with negative supervisions, thus explicitly guiding the
LLMs to refuse to answer when contexts are not related to questions; (2) for fact
omission, we propose the information-calibrated aggregation which prioritizes
context windows with higher information increment from their contexts. The
experimental results on nine RAG tasks demonstrate that DePaC significantly
alleviates the two types of in-context hallucination and consistently achieves better
performances on these tasks.

1 INTRODUCTION

Retrieval-augmented generation (RAG) (Lewis et al., 2020; Gao et al., 2023) is nowadays a prevalent
paradigm for incorporating large language models (LLMs) (OpenAI, 2023; Touvron et al., 2023;
Jiang et al., 2023a) with outside knowledge. RAG employs a retriever to fetch documents that are
semantically closest to the question, and incorporates them into LLM’s prompt. Parallel Context
Extension (PCE) (Hao et al., 2022; Ratner et al., 2023; Su et al., 2024) is a line of research attempting
to effectively integrating parallel contexts through an aggregation function. PCE is highly compatible
with RAG scenarios, as the candidate retrieved documents of RAG are independ of each other.

However, existing PCE approaches still face two types of in-context hallucination issues (Ji et al.,
2023; Rawte et al., 2023; Yang et al., 2023): fact fabrication and fact omission. (1) fact fabrication
occurs when the model presents fabricated claims that are inconsistent with the contextual facts. As
shown in Figure 2a, LLM confidently produces a fabricated answer for the window with Doc2, caused
PCE to fabricate the wrong answer. (2) fact omission refers to windows lacking useful information
may disproportionately affect the aggregation function, leading it to omit critical information present
in other windows. This will make LLMs fail to present claims that can be supported by the contexts.
As shown in Figure 2b, Doc3 does not contain required information, makes LLM confidently generate

”Unknown” for the window with Doc3, further leading to the wrong final answer.

In this paper, we propose DePaC to alleviate the hallucination issue of parallel context extension
on RAG scenario. DePaC contains two parts: NegTrain (Context-aware Negative Training) to
address fact fabrication issue and ICA (Information-Calibrated Aggregation) to address fact omission
issue. (1) NegTrain guides the LLMs to refuse to answer when contexts are not related to the
question. NegTrain consists of two parts of training data: one part comprises useful documents
and questions as input, with corresponding answers as output. While the other part treats irrelevant
documents and questions as input, with a rejection token as output. (2) ICA prioritizes context
windows with higher information increment from their contexts. Specifically, we utilize Kullback-
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Leibler divergence (Kullback & Leibler, 1951) to measure the information increment of with-
document compared to non-document. This approach enhances DePaC’s capability to identify useful
information within parallel windows. Moreover, DePaC has lower computational complexity than
vanilla inference approach. The inference time of DePaC increases linearly with the number of
documents, while inference time of vanilla approach increases quadratically.
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Figure 1: DePaC significantly reduces the oc-
currence of hallucinations in responses within
RAG scenarios.

We conduct experiments on various RAG tasks,
demonstrate that DePaC significantly alleviates the
two types of hallucinations and consistently achieves
promising performances. Then we analyze the pro-
portion of hallucination produced by different ap-
proaches, demonstrating that DePaC can effectively
mitigate the two types of hallucinations (Figure
1). We also conducte ablation study to identify
that information-calibrated aggregation and context-
aware negative training are both essential for DePaC
performance.

The main contents of this paper are organized as
follows. Section 2 introduces the formalization of
PCE and two existing aggregation methods for PCE.
Section 3 introduces the methodology and implemen-
tation details of DePaC. Section 4 introduces the com-
plexity analysis of DePaC. Section 5 introduces our experimental results on information seeking and
DocQA. Section 6 discusses the related work. Finally, section 7 provides a conclusion regarding our
work.

2 BACKGROUND: PARALLEL CONTEXT EXTENSION (PCE)

The core idea of PCE involves aggregating information from multiple context windows into a unified
representation space. Such a representation aggregation can be formalized on either the probability
distributions of output tokens (Su et al., 2024), or the internal hidden states in attention layers (Hao
et al., 2022; Ratner et al., 2023). Su et al. (2024) claimed the above two formalizations have similar
practical performances. In this work, we adopt the formalization in (Su et al., 2024) that takes the
aggregation of output distributions.

Given an question Q, a set of retrieved documents D = {d1, d2, ..., dn}, and a language model with
parameters θ, PCE first computes the output distribution of each context window,

pi,j = pθ( · | dj ⊕Q⊕A1:i−1), (1)

where pi,j is the probability distribution of the i-th token for output A based on the dj document,
and ⊕ represents the concatenation of sequences. Subsequently, these individual distributions are
aggregated into a single distribution,

pi = AGG(pi,1, pi,2, ..., pi,n), (2)

where AGG(·) represents the aggregation method. Finally, the output token Ai will be sampled
based on the aggregated distribution pi,

Ai ∼ p̂i, p̂i = pi − α · pi,c, (3)

pi,c = pθ( · | Q ⊕ A1:i−1), (4)
where the p̂i is the calibrated distribution to facilitate generation. We set α = 0.2 following Su et al.
(2024).

The effectiveness of the PCE paradigm is significantly influenced by the design of the aggregation
method AGG(·). Here, we discuss two aggregation methods used in existing studies.

Average Aggregation (Hao et al., 2022; Ratner et al., 2023). The aggregated distribution is computed
as the average of n individual distributions,

pi =
1

n

n∑
j=1

pi,j. (5)
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Doc1: Alice’s father is Bob. 
Bob’s father is Charlie.

Doc2: Kathy’s mother is Alice. 
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(a) Fact fabrication example. Doc2 is useless to answer the question. The higher confidence in ”Wendy” on
Doc2 caused PCE to fabricate the answer ”Alice’s grandfather is Wendy.”
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(b) Fact omission example. Doc3 is useless to answer the question. The higher confidence in ”unknown” on
Doc3 caused PCE to omit the fact on Doc1, resulting an incorrect final answer after aggregation.

Figure 2: Existing PCE approaches face two types of in-context hallucination issues when applied to
RAG: (1) Fact fabrication. LLM generates fabricated answers that are inconsistent with the contextual
facts. (2) Fact omission. The absence of required information in certain windows disproportionately
influence the aggregation function, leading to disregard critical information in other windows.

In practice, the size of the retrieved document set D can be large, potentially containing only a few
relevant documents. Average aggregation treats each context window with equal importance, makes
it unable to seek critical information when applied to RAG.

Lowest-Uncertainty Aggregation (Su et al., 2024). This method selects the individual distribution
with the lowest uncertainty as the aggregation result,

pi = argmin
pi,j

H(pi,j), (6)

H(pi,j) = −pi,j(logpi,j)
T . (7)

Lowest-uncertainty aggregation addresses the limitations of average aggregation by filtering out
high-uncertainty windows. However, it remains a sub-optimal solution as it still suffers from the two
types of hallucinations illustrated in Figure 2.

3 DEHALLUCINATING PARALLEL CONTEXT EXTENSION (DEPAC)

As shown in Figure 3, we propose two methods to alleviate the fact fabrication and fact omission
hallucinations of PCE for RAG scenarios. First, we introduce Context-aware Negative Training to
enable the model to refuse to answer questions when the relevant information is missing in the context,
thereby mitigating fact fabrication. Then, we propose Information-Calibrated Aggregation to
measure the information increment given by the document, preventing the model from fact omission.

Context-aware Negative Training (NegTrain). We introduce context-aware negative training to
alleviate fact fabrication, which explicitly train the backbone model to determine whether a question
is answerable based on the provided document. If not, we hope the model to refuse to answer the
question rather than generating hallucinations.

Given an RAG example with a question Q, a ground-truth answer A, and a retrieved document dj ,
we fine-tune the backbone model θ according to the following loss function,

Loss(Q,A1:m, dj) =

{
CE[pθ( · | dj ⊕Q), A1:m], related(Q, dj),
CE[pθ( · | dj ⊕Q⊕A1:i), td], else,

(8)

where CE[·] represents the cross-entropy loss, td is a pre-defined rejection token, m refers to the
sequence length of the ground-truth answer, A1:m refers to the complete ground-truth answer with
all tokens, A1:i refers to the partial ground-truth answer the first tokens. As shown in Figure 3(1), to
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Doc1: Alice’s father is Bob. 
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Figure 3: DePaC consists of two key components: (1) a context-aware negative training technique
to alleviate fact fabrication, and (2) an information-calibrated aggregation method to alleviate fact
omission.

prevent DePaC from generating rejection token only at the beginning of the answer, we also include
the positive answer clauses as input. After context-aware negative training, we use td to explicitly
judge the usefulness of each context window. We set td as the UNK token to minimize interference
with normal tokens during training.

Information-Calibrated Aggregation (ICA). As discussed in Section 2, merely measuring the
uncertainty of the final output distribution can be heavily influenced by fact omission hallucination.
We propose to measure the changes of uncertainty from the non-document output distribution to the
with-document output distribution, reflecting the information increment provided by the retrieved
document.

Specifically, we apply the Kullback-Leibler (KL) divergence to measure the information increment,
∆(pi,j,pi,c) = DKL(pi,j || pi,c), (9)

pi,c = pθ( · | Q ⊕ A1:i−1), (10)
where pi,c is the non-document output distribution.

Finally, we integrate the above two methods as two penalty terms to inject into Equation 6,

pi = argmin
pi,j

[C(pi,j,pi,c)− γ · I(argmax
k

pi,j
k = td)], (11)

C(pi,j,pi,c) = H(pi,j)− β ·∆(pi,j,pi,c), (12)

where I[·] represents the indicator function, pi,j
k is the output probability on k-th token in the

vocabulary, and β > 0 and γ < 0 are hyper-parameters. Equation 11 and 12 mean that the selected
context window should have low uncertainty and high information increment, and should not be
aligned to the rejection token. Finally, the output token Ai will be sampled based on the aggregated
distribution pi. For ease of implementation, we provide a simplified form of DePaC in Appendix B.

Implementation Details Following previous work (An et al., 2024), we use the C4 (Raffel et al.,
2020) corpus to construct our context-aware negative training dataset. For a segment of text from C4,
we first split it into text fragments with a maximum length of 4k tokens. We first sample a fragment
serves as oracle document, and use GPT-4-Turbo to generate questions and answers based on the
oracle document as positive training data. Then we sample unrelated fragment serves as distractor
document to construct context-aware negative training data based on the positive ones. To prevent the
model from overfitting on td, we control td occurrence to match the average frequency of the 2,000
most frequent tokens in NegTrain. Finally, we construct 19K samples for context-aware negative
training. We fine-tune three open-source models (introduce in Section 5.3) using 8x80G A100 GPUs,
set the global batch size as 128 and trained for two epochs. We use Flash Attention-2 (Dao, 2023) to
enhance the training speed. The entire training process takes about 4 hours.
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Figure 4: Attention pattern and execution time comparison between DePaC and vanilla inference.
The execution time of DePaC increases linearly with context length, while vanilla’s complexity grows
quadratically.

4 COMPLEXITY ANALYSIS

Considering that RAG scenarios have high expectations for execution efficiency and previous PCE-
style work lacked analysis of the execution efficiency, we present the inference complexity of DePaC
compared with vanilla inference approach. Figure 4 shows the attention pattern and execution time
comparison between DePaC and vanilla inference. As the length of the question is much smaller than
the length of the document, the complexity of processing the question is ignored. Given a LLM with
m layers, we assume that the context consists of k documents, each with n tokens.

Vanilla complexity. Vanilla inference directly concatenates the k documents as the input to LLM,
with a sequence length of kn. The attention of each layer is calculated by Attention(Q,K, V ) =
softmax

(
QKT

)
V , where Q,K, V ∈ R(kn)×d is the query, key and value matrix. The complexity of

QKT is O((kn)2 · d). So the complexity of Attention(Q,K, V ) for m layers is O(k2 · n2 · d ·m).

DePaC complexity. In DePaC, k documents are inputted to LLM in parallel, the sequence length
for each input is n. This is akin to k times Attention(Q,K, V ) computations, but with smaller
Q,K, V ∈ Rn×d, so the complexity of Attention(Q,K, V ) for m layers is O(k · n2 · d ·m).

The complexity of Vanilla increases quadratically with k, while DePaC’s complexity grows linearly.
Figure 4 shows the average execution time of DePaC and vanilla inference approach with different
context length, DePaC has faster inference speed than vanilla approach. Moreover, DePaC can place
all documents in a single batch for parallel processing, further enhancing DePaC’s inference speed.

5 EXPERIMENTS

We conduct experiments on various tasks to assess DePaC’s performance on RAG and alleviate the
two types of in-context hallucination.

5.1 TASKS

We conduct evaluations on nine RAG tasks, including six information seeking tasks and three
document-based question-answering tasks.

The information seeking tasks serve to explicitly probe the information awareness of DePaC. Each
test case in these tasks contains an information query question and a large amount of contexts. Based
on the given question, the model is required to seek for some textual pieces within the contexts. The
information seeking tasks include: Function name retrieve (FuncNR) (An et al., 2024), Entity label
retrieve (EntLR) (An et al., 2024), Multi-values Needle-in-a-Haystack (MVIH) (Hsieh et al., 2024),
TensorHub APIBench(Tens) (Patil et al., 2023), TorchHub APIBench(Torc) (Patil et al., 2023), and
Huggingface APIBench(Hugg) (Patil et al., 2023). Appendix C shows the detailed description of
information seeking tasks.
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Table 1: Comparison of DePaC with baselines across three models and nine tasks.

Model Method FuncNR EntLR MVIH Tens Torc Hugg Qasper MulQA NarQA Avg

Mistral-7B

Vanilla (Jiang et al., 2023a) 25.4 44.1 21.9 37.1 14.5 1.4 15.0 39.7 10.2 23.3
AVP (Hao et al., 2022) 2.3 0.3 0.3 38.8 3.2 0.2 6.7 16.7 8.6 8.6
NBCE (Su et al., 2024) 36.2 83.1 27.9 43.3 3.8 1.3 11.7 31.0 15.9 28.2
CLeHe (Qiu et al.) 38.4 82.6 28.4 43.6 4.2 3.2 13.4 30.8 15.8 28.9
DePaC (ours) 72.8 87.4 41.6 44.8 16.7 7.5 17.3 40.7 16.4 38.4
ICA (DePaC w/o NegTrain) 69.7 85.1 35.9 44.2 14.5 6.2 16.2 40.1 16.1 36.4

Llama3-8B

Vanilla (Grattafiori et al., 2024) 24.3 42.3 22.3 34.6 12.6 1.6 7.2 9.6 6.4 17.9
AVP (Hao et al., 2022) 2.1 0.4 0.2 36.9 2.9 0.4 6.9 17.3 8.2 8.4
NBCE (Su et al., 2024) 32.8 84.2 24.8 40.3 6.5 2.1 9.9 15.6 13.9 25.6
CLeHe (Qiu et al.) 37.2 84.0 26.2 41.7 13.3 2.7 11.5 19.6 14.3 27.8
DePaC (ours) 69.5 86.6 40.2 43.9 17.4 8.2 17.6 41.0 14.1 37.6
ICA (DePaC w/o NegTrain) 64.8 85.0 33.8 43.2 15.2 6.8 16.4 40.3 14.0 35.5

Phi3-3.8B

Vanilla (Abdin et al., 2024) 29.7 43.5 21.2 35.7 12.3 1.3 13.2 30.2 11.3 22.0
AVP (Hao et al., 2022) 3.4 0.3 0.5 37.9 2.3 0.7 6.3 15.9 9.4 8.5
NBCE (Su et al., 2024) 45.4 80.3 28.3 42.2 8.6 2.2 13.8 32.5 14.7 29.8
CLeHe (Qiu et al.) 42.2 81.2 27.6 43.6 10.1 3.8 13.1 33.1 15.7 30.0
DePaC (ours) 71.4 87.0 43.2 45.3 15.5 7.2 17.5 39.1 15.3 37.9
ICA (DePaC w/o NegTrain) 68.6 85.2 36.3 44.5 14.0 6.1 16.5 37.9 15.1 36.0
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Figure 5: Hallucination percentage in responses for the information seeking tasks.

The document-based question-answering (DocQA) tasks can further reflect how well our DePaC
uses the retrieved documents in real-world RAG scenarios. Specifically, we take three real-world
long-document tasks to mimic the process of RAG: given a document-specific question, we provide
the model several candidate documents, containing one ground-truth document and other unrelated
documents. The DocQA tasks include: Qasper (Dasigi et al., 2021), MultifieldQA (MulQA) (Bai
et al., 2023), NarrativeQA (NarQA) (Kočiskỳ et al., 2018). Appendix D shows the detailed
description of DocQA tasks.

For the evaluation metrics, we use exact-match accuracy in the information seeking tasks and F1
score in the DocQA tasks. On information seeking tasks, we set context window number k=8 and
evenly divide all items into k windows for all PCE approaches. On DocQA tasks, we augmented
the original QA dataset by expanding the number of documents k= 5,10,20 in the context. To avoid
exceeding window length when concating documents, we treat each document as a context window
for PCE approaches.

5.2 BASELINES

We compare DePaC with four baselines: Vanilla, AVP (Hao et al., 2022; Ratner et al., 2023),
NBCE (Su et al., 2024) and CLeHe (Qiu et al.).

• Vanilla refers to directly using the vanilla inference approach for a context-limited model (Bai
et al., 2023), i.e., concatenating all candidate contexts into input sequence and applying the middle
truncation strategy to meet the maximum context length of the model.

• AVP (Hao et al., 2022; Ratner et al., 2023) takes the average aggregation (defined in Equation 5) to
aggregate the parallel context windows.

• NBCE (Su et al., 2024) employs the lowest-uncertainty aggregation (defined in Equation 6) to
aggregate the parallel context windows.
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Table 2: DocQA results with different candidate document numbers.

Method
Qasper MulQA NarQA

k=5 k=10 k=20 k=5 k=10 k=20 k=5 k=10 k=20

Vanilla (Jiang et al., 2023a) 15.0 13.3 8.6 39.7 33.4 31.6 10.2 9.1 9.6
AVP (Hao et al., 2022) 6.7 6.6 6.7 16.7 15.3 15.4 8.6 8.5 8.3
NBCE (Su et al., 2024) 11.7 9.9 9.8 31.0 29.0 26.9 15.9 15.8 15.1
CLeHe (Qiu et al.) 13.4 10.3 10.1 30.8 28.8 26.2 15.8 15.5 14.9
DePaC (ours) 17.3 16.0 14.8 40.7 40.6 40.9 16.4 16.3 16.0
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Figure 6: Performance of DePaC without NegTrain or ICA. w/o NegTrain refers to DePaC with
positive training, while w/o ICA refers to replace ICA with lowest-uncertainty aggregation of NBCE.

• CLeHe (Qiu et al.) ensemble the logits of multiple windows to aggregate the parallel context
windows.

5.3 MODELS

We conduct experiments on three open-source language models: Mistral-7B (Jiang et al., 2023a),
Llama3-8B (Grattafiori et al., 2024) and Phi3-3.8B (Abdin et al., 2024). And we use Mistral-7B (Jiang
et al., 2023a) as the default backbone model for the ablation study and analysis.

5.4 RESULTS AND ANALYSIS

DePaC consistently achieves promising performances across nine tasks. As shown in Table 1,
DePaC achieves better performance than baselines across six information seeking tasks and three
DocQA tasks. Since the baselines do not require additional training, we also compare solely ICA
(DePaC w/o NegTrain) with them in Table 1. The results indicate that using ICA alone outperforms
the baselines, and combining ICA with NegTrain further improves performance. The results also
show that AVP performs much worse than vanilla. This is because AVP averages the logits across
parallel windows, giving equal weight to each window’s contribution to the final answer. This makes
it underform for RAG scenarios, where it is crucial for the model to identify and focus on the most
relevant information from the context.

DePaC significantly alleviates fact fabrication and fact omission hallucinations. We analyze
the proportion of hallucinations produced by different approaches on three information seeking tasks
(FuncNR, EntLR and MVIH). As shown in Figure 5, DePaC significantly reduces the occurrence
of both types of hallucinations. DePaC even completely avoids fact omission on EntLR and fact
fabrication on MVIH. The detailed hallucination evaluation setup is shown in Appendix G.

DePaC maintains promising performance with candidate documents number increases. On
DocQA tasks, as the number of documents increases, more redundant information in the context. As
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Doc1: 
... One of the special magic numbers for 
muddy-tolerance is: 8962302.....

Q: What are all the special magic 
numbers for zonked-ordinary 
mentioned in the provided text?

Information
Calibrated

Aggregation

A: 8962302, 1447065 and 
5454861.

NegTrained
LLM

P1

P2

P3

Pc

DKL(Pi||Pc)
Doc2: 
... One of the special magic numbers for 
muddy-tolerance is: 1447065.....

Doc3: 
... One of the special magic numbers for 
muddy-tolerance is: 5454861.....

Q: What are all the special magic 
numbers for zonked-ordinary 
mentioned in the provided text?

Q: What are all the special magic 
numbers for zonked-ordinary 
mentioned in the provided text?

Q: What are all the special magic 
numbers for zonked-ordinary 
mentioned in the provided text?

Figure 7: DePaC can switch context window for multi-hop questions.

shown in Table 2, DePaC still achieves promising performance. DePaC’s performance with k=20
even surpasses NBCE with k=5 (23.9 vs. 19.5), further demonstrating DePaC’s capability to identify
key information from redundant context.

Both information-calibrated aggregation and context-aware negative training are essential for
DePaC performance. We compare DePaC with two ablation setting: (1) DePaC w/o NegTrain.
(2) DePaC w/o ICA, where we only replace the information-calibrated aggregation function of
DePaC with lowest-uncertainty aggregation. We conducte ablation study on the six information
seeking datasets. As shown in Figure 6, the ablation results indicate that both parts of DePaC are
essential for its performance.

Table 3: Effectiveness of NegTrain and ICA in
mitigating hallucinations.

Method Fact Omission ↓ Fact Fabrication ↓

Vanilla 35.4 39.2
ICA 2.7 36.8
NegTrain 33.5 27.3
DePaC (ours) 1.3 25.9

ICA reduces fact omission, while NegTrain
mitigates fact fabrication. We conduct abla-
tion studies on FuncNR to analyze the effective-
ness of NegTrain and ICA in mitigating hallu-
cinations. As shown in the table below, ICA
effectively reduces fact omission, while Neg-
Train mitigates fact fabrication. Combining both
ICA and NegTrain yields the best overall perfor-
mance.

Table 4: Comparison results on multi-hop DocQA
tasks.

Method 2WikimQA HotPotQA

Vanilla (Jiang et al., 2023a) 19.04 12.01
NBCE (Su et al., 2024) 17.45 10.52
CLeHe Qiu et al. 18.32 14.64
DePaC (ours) 29.72 30.95

DePaC with CoT maintains performance ad-
vantage on multi-hop DocQA. We evalu-
ate on 2WikimQA (Ho et al., 2020) and Hot-
PotQA (Yang et al., 2018) datasets using Mistral-
7B. The results in Table 4 show that DePaC
still maintains its performance advantage on
multi-hop QA datasets. We make the prompt
for multi-hop QA datasets end with ”Let’s think
step by step, ”, this Chain-of-Thought (CoT)
prompt (Wei et al., 2022) helps DePaC first
seeks useful information across different contexts before generate the final answer. Figure 7 shows a
multi-hop example, where DePaC perform context window switching and successfully locate relevant
information spread across multiple documents.

DePaC also outperforms baselinse on summarization tasks. We also compare DePac on Mistral-
7B with baselines on summarization tasks (GovReport (Huang et al., 2021), QMSum (Zhong et al.,
2021), and MultiNews (Fabbri et al., 2019)), which better assess the ability of LLMs to integrate
information across entire documents. The results in Table 5 demonstrate that DePaC consistently
outperforms the baselines on these summarization tasks.

DePaC performs better than aggregation approaches for RAG. We also compare DePaC with
previous aggregation approaches specific to RAG (Asai et al., 2023) or can be applied to RAG

8
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Table 5: Comparison results on summarization tasks.

Method GovReport QMSum MultiNews

Vanilla (Jiang et al., 2023a) 12.4 14.8 17.5
NBCE (Su et al., 2024) 22.3 19.6 21.3
CLeHe (Qiu et al.) 22.2 20.4 21.7
DePaC (ours) 29.1 25.7 28.4

Table 6: Comparison results between DePaC and aggregation approaches for RAG.

Method NaturalQuestions TriviaQA RGB

SelfRAG (Asai et al., 2023) 28.67 74.33 75.33
CoVe (Dhuliawala et al., 2023) 26.67 68.67 76.33
COMPETE (Feng et al., 2024) 22.67 69.00 74.00
DePaC (ours) 33.67 88.33 94.33

(Dhuliawala et al., 2023; Feng et al., 2024), the results in Table 6 show that DePaC outperforms other
aggregation approaches on different datasets (Kwiatkowski et al., 2019; Joshi et al., 2017; Chen
et al., 2024).

6 RELATED WORK

Retrieval-Augmented Generation (RAG) for LLM. To address hallucination issue of LLM,
Retrieval-augmented generation (Lewis et al., 2020; Gao et al., 2023; Cheng et al., 2024; Asai
et al., 2023) has been applied in many fields, including question answering (Zhang et al., 2024),
code generation (Zhou et al., 2022; Ma et al., 2024) and recommendation (Zeng et al., 2024). The
performance of RAG is limited by the effectiveness of retriever and the information utilization
capability of LLM. Some work focus on enhancing the retriever’s capabilities (Wang et al., 2023;
Lewis et al., 2020). Shi et al. (2024) compresses the retrieved information for LLM. Some work
proposes iterative RAG (Jiang et al., 2023b; Shao et al., 2023; Cheng et al., 2024) to help the model
progressively utilize document information. Some work (Asai et al., 2023; Dhuliawala et al., 2023;
Feng et al., 2024) utilizes prompt engineer to aggregate information from multiple documents to
generate a final answer. These methods often lead to information omission during the aggregation
process. In this work, we utilize PCE to directly aggregate information from multiple documents
when predicting the next token, enhance the accuracy and efficiency of information utilization.

LLM with Parallel Context Extension (PCE). Recent research has proposed some PCE ap-
proaches to aggregate multiple context windows into a unified representation space, extending context
length of LLM. Some research (Hao et al., 2022; Ratner et al., 2023; Li et al., 2024) aggregates by av-
erage aggregation mechanisms. Su et al. (2024) proposes NBCE to aggregates by lowest-uncertainty
aggregation mechanisms. Previous PCE work primarily focuses on increasing in-context learning
examples, and faces hallucination issues when applied for RAG (Yang et al., 2023). Beyond parallel
context extension for existing LLM, Yen et al. (2024) also proposes encoder-decoder architecture to
implement parallel context. In this work, we propose DePaC to alleviate the hallucination issues of
PCE for RAG scenarios. To the best of our knowledge, we are the first work to apply PCE to RAG
scenarios.

7 CONCLUSION

In this paper, we propose DePaC to address two types of in-context hallucination issues of parallel
context extension on RAG. DePaC consists of two key components: (1) a context-aware negative
training technique to mitigate fact fabrication, and (2) an information-calibrated aggregation method
to address fact omission issue. Both experiments on information seeking and DocQA tasks show the
effectiveness of DePaC.
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This is the Appendix of the paper: Dehallucinating Parallel Context Extension for Retrieval-
Augmented Generation.

A MORE FORMULA DETAILS

The Kullback-Leibler (KL) divergence for discrete probability distributions P1 and P2 is defined as:

DKL(P1 || P2) =
∑
i

P1(i) log
P1(i)

P2(i)
(13)

The cross-entropy loss function is defined as:

CE[pθ( · | dj ⊕Q), A] = −
n∑

i=1

log pθ(Ai | dj ⊕Q⊕A1:i−1) (14)

where Ai is the i-th token in g round-truth answers, n is the sequence length of ground-truth.
pθ(Ai|dj ⊕Q⊕A1:i−1) is the probability of generating Ai given the input dj ⊕Q⊕A1:i−1.

B DEPAC SIMPLIFIED FORM

Notice that one implicate constraint in Equation 11 is γ ≫ C(pi,j,pi,c) as we hope to directly
filter out irrelevant context windows. To simplify this constraint for implementation, we rewrite
Equation 11 as the product of two terms and modify Equation 12 to make sure Ĉ(pi,j,pi,c) ≥ 0,

pi = argmax
pi,j

Ĉ(pi,j,pi,c) · I(argmax
k

pi,j
k = td), (15)

Ĉ(pi,j,pi,c) = max
k

pi,j
k + β ·∆(pi,j,pi,c), (16)

where we use maxk pi,j
k to estimate the output certainty, and β > 0 is hyper-parameter. For

the output of deep learning models, a higher maxk pi,j
k always indicates a higher certainty in

practice (Ghoshal & Tucker, 2022). We set β = 0.2 by default and analyze the choice of β in
Appendix E.

C INFORMATION SEEKING TASK DETAILS

Below shows the detailed description of information seeking tasks:

• Function name retrieve (FuncNR) (An et al., 2024). The contexts in FuncNR contain a large
number of Python functions, all of which are sampled from the training data of Starcoder (Li et al.,
2023). The questions in FuncNR ask for retrieving the function names based on the given code
snippets. We extend the original context length in An et al. (2024) from 32K to 128K.

• Entity label retrieve (EntLR) (An et al., 2024). The contexts in EntLR contain a large number of
entities, all of which are sampled from Wikidata. Each entity is a triplet in the form of (id, label,
description). The questions in EntLR ask for retrieving the labels corresponding to the given entity
ids from the contexts. We extend the original context length in An et al. (2024) from 32K to 128K.

• Multi-values Needle-in-a-Haystack (MVIH) (Hsieh et al., 2024). The contexts in MVIH contain
multiple values for a certain key, along with other unrelated text pieces. The questions in MVIH
require the model to seek for all the associated values for the given key.

• APIBench (Patil et al., 2023). The contexts in APIBench consist of many real-world APIs, each
of which includes an API name, an API call and an API description. The questions in APIBench
require to retrieve the API calls based on the given development requirements. Due to the ambiguity
in the requirements, APIBench serves as the most challenging evaluation task for information
seeking. We take three sub-tasks from APIBench for evaluations: TensorHub (Tens), TorchHub
(Torc), and Huggingface (Hugg). In each sub-task, we regard all the candidate APIs as the
contexts.
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D DOCQA TASK DETAILS

Below shows the detailed description of DocQA tasks:

• Qasper (Dasigi et al., 2021). The documents in Qasper are academic research papers and the
questions in Qasper are written by NLP practitioners. Specifically, after reading only the title and
abstract of each paper, the annotators are required to ask an in-depth question which need the
information from the full text to get a comprehensive answer.

• MultifieldQA (Bai et al., 2023). The MultifieldQA task aims to test long-document understanding
of the model on across diverse fields. The contexts in MultifieldQA are collected from various data
sources, including legal documents, government reports, encyclopedias, and academic papers.

• NarrativeQA (Kočiskỳ et al., 2018). The NarrativeQA task evaluates how well the model
understands the entire long books or movie scripts. Answering the questions in NarrativeQA
requires the understanding of the underlying narratives in the given document.

E HYPERPARAMETER SETTINGS

We conducted β ablation study on the EntLR dataset. The result in Figure 8 indicates that β ∈
[0.2, 0.3] achieves better trade-off between information entropy and KL divergence. We set β = 0.2
in our experiments.
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Figure 8: DePaC performance with different β

F ANALYSIS ON NEGTRAIN

Context-aware Negative training can improve the ability of refusing to answer questions with
unrelated documents. We constructed an additional 4.4K positive samples (PosEval) and negative
samples (NegEval), using the same data construction method as NegTrain, but with different seed
documents. PosEval represents the situation that documents are related to the question, while NegEval
represents the opposite. We compare the rejection token td prediction loss on PosEval and NegEval
datasets with different NegTrain steps. Figure 9 shows that NegTrain can increase the probability
difference between refusing to answer questions with unrelated document and related document.

G HALLUCINATION DEFINITION AND EVALUATION SETUP

Previous work (Weng, 2024) categorizes hallucination into two types: (1) extrinsic hallucination,
where the output of LLM is not grounded by the pre-training dataset or external world knowledge.
(2) in-context hallucination, where the output of the model is inconsistent with the source content in
context. In this work we focus on two types of in-context hallucination: (1) fact fabrication, where
LLMs present claims that are not supported by the contexts. (2) fact omission, where LLMs fail to
present claims that are supported by the contexts.
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Figure 9: Rejection token prediction loss on PosEval and NegEval over context-aware negative
training steps.

not provided, not mentioned, not given,
not stated, not available, not included,
not specified, not reported, not
recorded, not found, not applicable,
not clear, not known, not indicated,
not listed, not present, not provided,
not reported, not shown, not tested,
not directly provided, not explicitly
mentioned, not explicitly given,
cannot be determined, not have a
specific, not been mentioned, not
contain, not include, not explicitly
stated

Fact Omission Phrases

Figure 10: Fact omission phrases.

We done in-context hallucination evaluation on three information seeking tasks (FuncNR, EntLR and
MVIH), as they are evaluated by exact-match score, makes them easier to analyze than QA tasks.
Since these tasks have clear answers in the document and all incorrect outputs are hallucinations, we
manually analyzed the data to define 27 fact omission phrases (shown in Figure 10), counted the
incorrect outputs that appeared with these phrases as fact omission, and classified other errors as fact
fabrication.

H WINDOW NUMBER ANALYSIS

To analyze DePaC’s performance with different numbers of windows, we conduct experiments on the
FuncNR dataset, keeping the total number of candidate functions constant while varying the number
of windows into which the context is divided. The results in Figure 11 show that as the number of
windows increases (form 4 to 128), DePaC’s information-seeking ability improves; however, when the
number of windows becomes too large (larger than 256), there may be a slight performance decline.
All DePaC with split-window outperforms the single-window, further validating the effectiveness of
DePaC with parallel context windows.

I EFFECTIVENESS OF NEGTRAIN

As shown in Table 7, to further show the effectiveness of NegTrain, we compare NegTrain-Llama2-
13B with SlefRAG-Llama2-13B Asai et al. (2023) (which enhance model’s ability of abstaining
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Figure 11: DePaC performance at different degrees of context window parallelism.

Table 7: FactCheckQA results.

Model FactCheckQA

Llama2-13B-Chat Touvron et al. (2023) 73
SlefRAG-Llama2-13B Asai et al. (2023) 76.5
NegTrain-Llama2-13B 78.5

irrelevant information from context) on FactCheckQA Bashlovkina et al. (2023) benchmark (which
requires LLM to answer the question based on the provided context). The results show that NegTrain
outperforms SelfRAG and original Llama2 model on FactCheckQA dataset.

J BROADER IMPACTS

This work used GPT-4-Turbo to generate training data. Therefore, our fine-tuned model may inherit
the potential risks of GPT-4-Turbo in terms of ethical and safety issues.

K LIMITATIONS

Data generation cost. We rely on GPT-4-Turbo to generate our training data, which cost around
90$ for API calling. Future work should attempt to generate data using cheaper models without
compromising data quality.

Training cost. Our training process consumes some computational resources, but it’s a one-time
effort. Given the advantages of our method in terms of inference efficiency and accuracy, we believe
these offline costs are justified.

L FUTURE WORK

As shown in Figure 1, though our DePaC significantly reduces the occurrence of hallucinations in
responses, the hallucination phenomenon still exists. For example, in some scenarios, both windows
may contain relevant content, but only one is helpful for answering the question. DePaC may
mistakenly select the relevant but unhelpful window. LLMs may fail to utilize useful information
even within windows containing relevant documents. Combining DePaC with previous work Xiong
et al. (2023); An et al. (2024) that enhances LLMs’ ability to processing context should further
improve DePaC’s performance.
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