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Abstract

Plug-and-Play (PnP) priors is a widely-used fam-
ily of methods for solving imaging inverse prob-
lems by integrating physical measurement models
with image priors specified using image denoisers.
PnP methods have been shown to achieve state-
of-the-art performance when the prior is obtained
using powerful deep denoisers. Despite extensive
work on PnP, the topic of distribution mismatch
between the training and testing data has often
been overlooked in the PnP literature. This paper
presents a set of new theoretical and numerical
results on the topic of prior distribution mismatch
and domain adaptation for the alternating direc-
tion method of multipliers (ADMM) variant of PnP.
Our theoretical result provides an explicit error
bound for PnP-ADMM due to the mismatch be-
tween the desired denoiser and the one used for
inference. Our analysis contributes to the work in
the area by considering the mismatch under non-
convex data-fidelity terms and expansive denois-
ers. Our first set of numerical results quantifies
the impact of the prior distribution mismatch on
the performance of PnP-ADMM on the problem
of image super-resolution. Our second set of nu-
merical results considers a simple and effective
domain adaption strategy that closes the perfor-
mance gap due to the use of mismatched denois-
ers. Our results suggest the relative robustness
of PnP-ADMM to prior distribution mismatch,
while also showing that the performance gap can
be significantly reduced with only a few training
samples from the desired distribution.
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1. Introduction

Imaging inverse problems consider the recovery of a clean
image from its corrupted observation. Such problems arise
across the fields of computational imaging, biomedical imag-
ing, and computer vision. As imaging inverse problems are
typically ill-posed, solving them requires the use of image
priors. While many approaches have been proposed for im-
plementing image priors, the current literature is primarily
focused on methods based on training deep learning (DL)
models to map noisy observations to clean images (McCann
et al., 2017; Lucas et al., 2018; Ongie et al., 2020).

Plug-and-Play (PnP) Priors (Venkatakrishnan et al., 2013;
Sreehari et al., 2016) have emerged as a class of iterative al-
gorithms that can use DL denoisers as implicit image priors
for solving inverse problems. PnP algorithms sequentially
minimize a data-fidelity term to improve data consistency
and then perform regularization through an image denoiser.
PnP has been successfully used in many applications such as
super-resolution, phase retrieval, microscopy, and medical
imaging (Metzler et al., 2018; Zhang et al., 2017; Mein-
hardt et al., 2017; Dong et al., 2019; Zhang et al., 2019; Wei
et al., 2020; Zhang et al., 2021). The success of PnP has re-
sulted in the development of its multiple variants (e.g., PnP-
PGM, PnP-SGD, PnP-ADMM. PnP-HQS) (Romano et al.,
2017; Buzzard et al., 2018; Yuan et al., 2020; Reehorst &
Schniter, 2019; Hurault et al., 2022a; Kamilov et al., 2023),
strong interest in its theoretical analysis (Chan et al., 2017;
Teodoro et al., 2019; Ahmad et al., 2020; Sun et al., 2019c¢;a;
Liu et al., 2021), as well as investigation of its connection
to other methods used in inverse problems, such as score
matching (Cohen et al., 2021; Reehorst & Schniter, 2019)
and denoising diffusion probabilistic models (Kadkhodaie
& Simoncelli, 2021; Laumont et al., 2022).

Despite extensive literature on PnP, the research in the area
has mainly focused on the setting where the distribution of
the inference data is perfectly matched to that of the data
used for training deep learning denoisers, used as image
priors in PnP. Little work exists for PnP under mismatched
deep learning-based priors, where a distribution shift exists
between the training and test data (Shoushtari et al., 2022;
Reehorst & Schniter, 2019). In this paper, we investigate the
problem of mismatched priors in PnP-ADMM. We present
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Figure 1: lllustration of domain adaptation in PnP-ADMM. The mismatched denoiser is pre-trained on source distribution (BreCaHAD)
and adapted to target distribution (MetFaces) using a few samples. Adapted prior is then plugged into PnP-ADMM algorithm to

reconstruct a sample from MetFaces.

a new theoretical analysis of PnP-ADMM that accounts for
the use of mismatched priors. Unlike most existing work
on PnP-ADMM, our theory is compatible with nonconvex
data-fidelity terms and expansive denoisers (Sun et al., 2021;
Tang & Davies, 2020; Gavaskar & Chaudhury, 2019; Chan,
2019; Ryu et al., 2019). Our analysis establishes explicit
error bounds on the convergence of PnP-ADMM under a
well-defined set of assumptions. We validate our theoretical
findings by presenting numerical results on the influence
of distribution shifts, where the denoiser trained on one
dataset (e.g., BreCaHAD or CelebA) is used to recover an
image from another dataset (e.g., MetFaces or RxRx1). We
additionally present numerical results on a simple domain
adaptation strategy for image denoisers that can effectively
address data distribution shifts in PnP methods (see Figure 4
for an illustration). Our work thus enriches the current
PnP literature by providing novel theoretical and empirical
insights into the problem of data distribution shifts in PnP.
All proofs and some details that have been omitted due
to space constraints of the main text are included in the
supplementary material.

2. Background

Inverse problems. Inverse problems involve the recovery
of an unknown signal € R™ from a set of noisy measure-
ments y = Ax + e, where A € R™*" is the measurement
model and e is the noise. Inverse problems are often formu-
lated and solved as optimization problems of form

Z € argmin f(x) with f(x) =g(x)+ h(z),

xeR™

ey

where g is the data-fidelity term that measures the consis-
tency with the measurements y and h is the regularizer that
incorporates prior knowledge on x. The least-squares func-
tion g(x) = £|| Az — y||3 and total variation (TV) function
h(x) = 7||Dz||1, where D denotes the image gradient and

7 > 0 a regularization parameter, are commonly used func-

The code for our numerical evaluation is available at ht tps :
//github.com/wustl-cig/MMPnPADMM.

tions for the data-fidelity term and the regularizer (Rudin
et al., 1992; Beck & Teboulle, 2009).

Deep Learning. DL has gained significant attention in the
context of inverse problems. DL methods seek to perform a
regularized inversion by learning a mapping from the mea-
surements to the target images parameterized by a deep
convolutional neural network (CNN) (McCann et al., 2017,
Lucas et al., 2018; Ongie et al., 2020). Model-based DL
(MBDL) refers to a sub-class of DL methods for inverse
problems that also integrate the measurement model as part
of the deep model (Ongie et al., 2020; Monga et al., 2021).
A class of MBDL that incorporates deep denoisers as im-
plicit image priors within iterative algorithms includes PnP,
regularization by denoising (RED), deep unfolding (DU),
and deep equilibrium models (DEQ) (Zhang & Ghanem,
2018; Hauptmann et al., 2018; Gilton et al., 2021; Liu et al.,
2022).

Plug-and-Play Priors. PnP is a popular MBDL approach
for solving imaging inverse problems by using denoisers
as image priors within iterative algorithms (Venkatakrish-
nan et al., 2013) (see also recent reviews (Ahmad et al.,
2020; Kamilov et al., 2023)). Motivated by proximal split-
ting algorithms, PnP can replace the proximal or gradient
descent updates with deep denoisers while simultaneously
minimizing the data-fidelity function to recover consistent
solutions. PnP methods can thus be viewed as MBDL ar-
chitectures that integrate measurement models and deep
denoisers. PnP has been extensively investigated, leading to
multiple PnP variants and theoretical analyses (Chan et al.,
2017; Buzzard et al., 2018; Sun et al., 2021; Ryu et al., 2019;
Hurault et al., 2022a; Laumont et al., 2022; Tirer & Giryes,
2019a; Teodoro et al., 2019; Sun et al., 2019c; Cohen et al.,
2021). Existing theoretical convergence analyses of PnP
differ in the specifics of the assumptions required to ensure
the convergence of the corresponding iterations. For exam-
ple, bounded, averaged, firmly nonexpansive, nonexpansive,
residual nonexpansive, or demi-contractive denoisers have
been previously considered for designing convergent PnP
schemes (Chan et al., 2017; Gavaskar & Chaudhury, 2019;
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Romano et al., 2017; Ryu et al., 2019; Cohen et al., 2021;
Sun et al., 2019a; 2021; Terris et al., 2020; Reehorst &
Schniter, 2019; Liu et al., 2021; Hertrich et al., 2021; Bohra
et al., 2021). The recent work (Xu et al., 2020) has used an
elegant formulation of an MMSE denoiser from (Gribon-
val, 2011) to perform a nonconvex convergence analysis of
PnP-PGM without any nonexpansiveness assumptions on
the denoiser. Another recent line of PnP work has explored
specification of the denoiser as a gradient-descent step on a
functional parameterized by a deep neural network (Hurault
et al., 2022a;b; Cohen et al., 2021).

PnP-ADMM is summarized in Algorithm 1 (Sreehari et al.,
2016; Venkatakrishnan et al., 2013), where D, is an additive
white Gaussian denoiser (AWGN) denoiser, v > 0 is the
penalty parameter, and o > 0 controls the denoiser strength.
PnP-ADMM is based on the alternating direction method
of multipliers (ADMM) (Boyd et al., 2011). Its formulation
relies on optimizing in an alternating fashion the augmented
Lagrangian associated with the objective function in (1)

¢(w7zjs) -
1 1
g(z) + h(z) + ;sT(w —2)+ 5 lle - zl5. @)

The theoretical convergence of PnP-ADMM has been ex-
plored for convex functions using monotone operator the-
ory (Ryu et al., 2019; Sun et al., 2021), for nonconvex
regularizer and convex data-fidelity terms (Hurault et al.,
2022b), and for bounded denoisers (Chan et al., 2017).

Distribution Shift. Distribution shifts naturally arise in
imaging when a DL model trained on one type of data is
applied to another. The mismatched DL models due to distri-
bution shifts lead to suboptimal performance. Consequently,
there has been interest in mitigating the effect of mismatched
DL models (Sun et al., 2020; Darestani et al., 2021; 2022;
Jalal et al., 2021). In PnP methods, a mismatch arises when
the denoiser is trained on a distribution different from that of
the test data. The prior work on denoiser mismatch in PnP
is limited (Liu et al., 2020; Shoushtari et al., 2022; Reehorst
& Schniter, 2019; Laumont et al., 2022). Theoretical guar-
antees of RED with mismatched deep denoisers have been
previously investigated for convex data-fidelity terms and
nonexpansive denoisers (Shoushtari et al., 2022). A recent
line of research has also used approximate MMSE denoisers
in PnP (Reehorst & Schniter, 2019; Laumont et al., 2022).

Domain Adaptation. Distribution shift between training
and inference datasets leads to mismatched DL models. Do-
main adaptation is commonly used to address distribution
shift in DL. Domain adaptation has previously been used to
address distribution shift in deep learning (Tommasi et al.,
2012; 2013; Gopalan et al., 2011). Existing research in
imaging problems focuses on adapting DL models from the
source domain to the target domain by using the features

Algorithm 1 PnP-ADMM
0

. input: 2°,s° € R™, parameters o,y > 0.

1

2: fork=1,2,3,--- do

3 aF « prox ,(2F1 — P71
4. zF D, (wk + sk_lz

50 st syl — 2

6: end for

extracted during inference for various problems such as
image classification (Novi & Caputo, 2014), image recon-
struction (Tirer & Giryes, 2019a; Dou et al., 2019; Shocher
et al., 2018), and image segmentation (Dou et al., 2019).
In this work, we focus on scenarios where we have limited
paired data from the target domain. Our domain adapta-
tion fine-tunes pre-trained mismatched DL models using a
small number of samples from the target domain, which is
different from the inference-time domain adaptation.

Our contributions. (1) Our first contribution is a new
theoretical analysis of PnP-ADMM accounting for the dis-
crepancy between the desired and mismatched denoisers.
Such analysis has not been considered in the prior work
on PnP-ADMM. Our analysis is broadly applicable in the
sense that it does not assume convex data-fidelity terms
and nonexpansive denoisers (Section F in the appendices
provides a comprehensive comparison of our analysis with
existing research in PnP and ADMM). (2) Our second con-
tribution is a comprehensive numerical study of distribution
shifts in PnP through several well-known image datasets
on the problem of image super-resolution. (3) Our third
contribution is the illustration of simple data adaptation for
addressing the problem of distribution shifts in PnP-ADMM.
We show that one can successfully close the performance
gap in PnP-ADMM due to distribution shifts by adapting
the denoiser to the target distribution using very few sam-
ples. The numerical results from model adaptation validate
the theoretical analysis by showing that the error from mis-
matched priors directly translates to the reconstruction error
in the PnP-ADMM.

3. Proposed Work

This section presents the convergence analysis of PnP-
ADMM that accounts for the use of mismatched denois-
ers. It is worth noting that the theoretical analysis of PnP-
ADMM has been previously discussed in (Chan, 2019;
Teodoro et al., 2019; Ryu et al., 2019; Sun et al., 2021).
The novelty of our work can be summarized in two aspects:
(1) we analyze convergence with the mismatched priors;
(2) our theory accommodates nonconvex g and expansive
denoisers.

3.1. PnP-ADMM with Mismatched Denoiser
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Figure 2: Sample images from the datasets used for training the denoisers. From left to right: MetFaces (Karras et al., 2020), CelebA (Liu
etal, 2015), AFHQ (Choi et al., 2020), RxRxI (Sypetkowski et al., 2023), and BreCaHAD (Aksac et al., 2019).

We denote the target distribution as p, and the mismatched
distribution as p,,. The mismatched denoiser [A)U is a mini-
mum mean squared error (MMSE) estimator for the AWGN
denoising problem

e~ N(0,0%I). (3)

v=x+e with x~ Dy,

The MMSE denoiser is the conditional mean estimator
for (3) and can be expressed as

By (v) = o] :/Rn Thapo(@lv)de, (@)

where D, (2|v) < Go(v — )P (), with G, denoting
the Gaussian density. We refer to the MMSE estimator D,
corresponding to the mismatched data distribution py, as
the mismatched prior.

Since the integral (4) is generally intractable, in practice, the
denoiser corresponds to a deep model trained to minimize
the mean squared error (MSE) loss

£(Bs) = E ||l — Do (v)3] )

MMSE denoisers trained using the MSE loss are optimal
with respect to the widely used image-quality metrics in
denoising, such as signal-to-noise ratio (SNR), and have
been extensively used in the PnP literature (Xu et al., 2020;
Laumont et al., 2022; A. Bigdeli et al., 2017; Kadkhodaie &
Simoncelli, 2021; Gan et al., 2023).

When using a mismatched prior in PnP-ADMM, we replace
Step 4 in Algorithm 1 by

28« D, (aF +s"71), (6)

where 50 is the mismatched MMSE denoiser. To avoid
confusion, we denote by z* and Z* the outputs of the mis-
matched and target denoisers at the k iteration, respectively.
Consequently, we have 2 = D, (x* + s*~1), where D,, is
the target MMSE denoiser.

3.2. Theoretical Analysis
Our analysis relies on the following set of assumptions that

serve as sufficient conditions. (A comprehensive discussion
regarding the assumptions is provided in Section G.)

Assumption 1. The prior distributions pg and Dy, de-
noted as target and mismatched priors respectively, are
non-degenerate over R™.

A distribution is considered degenerate over R™ if its sup-
port is confined to a lower-dimensional manifold than the
dimensionality of n. Assumption 1 is useful to establish
an explicit link between a MMSE denoiser and its associ-
ated regularizer. For example, the regularizer h associated
with the target MMSE denoiser D, can be expressed as
(see (Gribonval, 2011; Xu et al., 2020) for background)

h(x) =

2
{—ana: - D1 (@)|3 + % ho(D; (x) @eX

—+00 x ¢ X, @

where X := Im(D, ), v > 0 denotes the penalty parame-
ter, D;l : X — R” represent a well defined and smooth
inverse mapping over X, and h,(-) = —log(py(-)), with
P, denoting the probability distribution over the AWGN
corrupted observations

e ~ N(0,0°1),

(the derivation is provided in Section E.1 for completeness).
Note that the smoothness of both D! and h, guarantees
the smoothness of the function h. Additionally, similar con-
nection exist between the mismatched MMSE denoiser E)U
and the regularizer (), with i, (-) == —log(Py(-)) char-
acterizing the relationship between mismatched denoiser
and shifted distribution.

u=x+e with =~ pg,

Assumption 2. The function g is continuously differen-
tiable.

This assumption is a standard assumption used in noncon-
vex optimization, specifically in the context of inverse prob-
lems (Li & Li, 2018; Jiang et al., 2019; Yashtini, 2021).
Assumption 3. The data-fidelity term and the implicit regu-
larizers are bounded from below.

Assumption 3 implies that there exists f* > —oo such that
f(x) > f* forall x € R™.

Assumption 4. The denoisers D, and 60 haye the same
range Im(D,). Additionally, functions h and h associated

with D, and D, are continuously differentiable with L-
Lipschitz continuous gradients over Im(D,).
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It is known (see (Gribonval, 2011; Xu et al., 2020)) that
functions h and h are infinitely differentiable over their
ranges. The assumption that the two image denoisers have
the same range is also a relatively mild assumption. Ideally,
both denoisers would have the same range corresponding
to the set of desired images. Assumption 4 is thus a mild
extension that further requires Lipschitz continuity of the
gradient over the range of denoisers.

Assumption 5. The mismatched denoiser BU satisfies

1Dy (v*) — Do (v")|l2 < 0k, k=1,2,3,...

where 6(, is given in (4) and v* = x¥ + s*~1 in Algo-

rithm 1.

Our analysis assumes that at every iteration, PnP-ADMM
uses a mismatched MMSE denoiser, derived from a shifted
distribution. We consider the case where at iteration k of
PnP-ADMM, the distance of the outputs of D, and D, is
bounded by a constant d.

Assumption 6. For the sequence {x*, z*, s*} generated by
iterations of PnP-ADMM with mismatched MMSE denoiser
in Algorithm 1, there exists a constant R such that

|25 = 2", <R, k=1,273,....

This assumption is a reasonable assumption since many

images have bounded pixel values, for example [0, 255] or
[0,1].

We are now ready to present our convergence result under
mismatched MMSE denoisers.

Theorem 1. Run PnP-ADMM using a mismatched MMSE
denoiser fort > 1 iterations under Assumptions 1-6 with
the penalty parameter 0 < v < 1/(4L). Then, we have

9z < ZHW

where A1 > 0 and As > 0 are iteration independent con-
stants and & = (1/t) (g1 + -+ + &) is the error term
that is an average of the quantities €5, = max{dy, 63 }.

min HVf

1<k<t H2 < t +A2Et

The proof of Theorem 1 is provided in the appendix A. For
the purpose of completeness and contextualizing the im-
pact of mismatch on the algorithm, a theoretical analysis
of PnP-ADMM using target MMSE denoiser (without mis-
matched) is included in Appendix C. Our analysis relies on
using the augmented Lagrangian ¢ as the Lyapunov func-
tion, where the augmented Lagrangian function value is
decreasing and lower bounded for the sequence generated
using Algorithm 1 (see (Wang et al., 2019) for additional
discussion). Theorem 1 provides insight into the conver-
gence of PnP-ADMM using mismatched MMSE denoisers.

Table 1: PSNR (dB) and SSIM values for image super-resolution
using PnP-ADMM under different priors on a test set from the
MetFaces (Karras et al., 2020). We highlighted the best performing
and the performing priors. BreCaHAD is the worst prior
that is also the one visually most different from MetFaces.

Prior s=2 s=4 Avg
PSNR SSIM PSNR SSIM PSNR SSIM

BreCaHAD

RxRx1 32.83 0.8515 30.62 0.7927 31.73 0.8221

AFHQ 33.18 0.8553 30.72 0.7919 31.95 0.8236

CelebA 33.29 0.8567 30.96 0.7988 32.12 0.8277

MetFaces 33.46 0.8606 31.29 0.8071 32.37 0.8338

It shows that the behavior of PnP-ADMM is robust to the
mismatch in the denoisers, in the sense that the error in the
convergence of the gradient directly depends on the distance
between the target and mismatched denoisers. Additionally,
if the sequence of errors of mismatched denoiser {dj, }r>1
is summable, we have V f(z') — 0 as ¢t — 0. This implies
that we can recover the same solutions using the mismatched
denoiser as target denoiser when the sequence of denoiser’s
errors is summable.

Theorem 1 can be viewed as a more flexible alternative to
the convergence analyses in (Sun et al., 2021; Chan, 2019;
Ryu et al., 2019). While the analyses in the prior works as-
sume convex g and nonexpansive residual, nonexpansive or
bounded denoisers, our analysis considers that denoiser D,,
is a mismatched MMSE estimator, where the mismatched
denoiser distance to the target denoiser is bounded by Jy, at
each iteration.

To summarize our theoretical results, PnP-ADMM using a
mismatched MMSE denoiser approximates the solution ob-
tained by PnP-ADMM using the target MMSE denoiser up
to an error term that depends on the discrepancy between the
denoisers. One can control The accuracy of PnP-ADMM
using mismatched denoisers by controlling the error term
g¢. This error term can be controlled by using domain
adaptation techniques for decreasing the distance between
mismatched and target denoisers, thus closing the gap in the
performances of PnP-ADMM. We validate our theoretical
analysis in Section 4 through numerical experiments, inves-
tigating the performance of PnP-ADMM under mismatched
priors with varying levels of distribution shifts. Addition-
ally, we use domain adaptation to illustrate the dependency
of recovery errors in PnP-ADMM on the distance between
mismatched and target denoisers. In domain adaptation, we
fine-tune mismatched denoisers using a limited number of
samples to minimize the distance between the mismatched
and target distributions, consequently reducing errors in
recovering solutions.
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Figure 3: Visual evaluation of PnP-ADMM on super-resolution using denoisers trained on several datasets. Images are downsampled by
a scale of s = 4 and convolved with the blur kernel shown on the top left corner of the ground truth image. Note how the disparities in the
distributions directly affect the performance of PnP. The denoisers containing images most similar to MetFaces offer the best performance.
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Figure 4: [llustration of prior mismatch and adaption in PnP-ADMM, where a denoiser trained on one dataset (BreCaHAD (Aksac et al.,
2019) or CelebA (Liu et al., 2015)) is used to recover an image from another dataset (MetFaces (Karras et al., 2020) or RxRx1 (Sypetkowski
etal., 2023)). We plot the convergence of PnuP-ADMM in terms of PSNR (first and third figures) and the influence of adapted denoisers on
the performance of PnP-ADMM (second and fourth figures). Note how adaptation with even few samples is enough to nearly close the

performance gap in PnP-ADMM.

Table 2: PSNR (dB) and SSIM comparison of super-resolution
with mismatched, target, and adapted denoisers for the test set
from MetFaces, averaged for indicated kernels. We highlighted the
target, mismaiched, and the best adapted priors.

Prior s=2 s=4 Avg
PSNR SSIM PSNR SSIM PSNR SSIM
BreCaHAD 31.10 0.7798 28.70 0.7010 29.90 0.7404
4 imgs 32.05 0.8362 30.71 0.7945 31.38 0.8154
16 imgs 32.64 0.8472 30.85 0.7985 31.75 0.8232
32 imgs 32.82 0.8510 30.99 0.8022 31.90 0.8266
64 imgs 33.03 0.8547 31.05 0.8026 32.03 0.8287
MetFaces 33.46 0.8606 31.29 0.8071 32.37 0.8338

4. Numerical Validation

We consider PnP-ADMM with mismatched and adapted
denoisers for the task of image super-resolution and phase
retrieval. Our first set of results shows how distribution
shifts relate to the prior disparities and their impact on PnP
recovery performance. Our second set of results shows
the impact of domain adaptation on the denoiser gap and

PnP performance. We use the traditional /5-norm as the
data-fidelity term. To provide an objective evaluation of
the final image quality, we use two established quantitative
metrics: Peak Signal-to-Noise Ratio (PSNR) and Structural
Similarity Index (SSIM).

We use DRUNet architecture (Zhang et al., 2021) for all
image denoisers. To model prior mismatch, we train denois-
ers on five image datasets: MetFaces (Karras et al., 2020),
AFHQ (Choi et al., 2020), CelebA (Liu et al., 2015), BreCa-
HAD (Aksac et al., 2019), and RxRx1 (Sypetkowski et al.,
2023). Figure 2 illustrates test samples from the datasets.
Our training dataset consists of 1000 randomly chosen, re-
sized, or cropped image slices, each measuring 256 x 256
pixels. Unlike several existing PnP methods (Sun et al.,
2021; Liu et al., 2021) that suggest the inclusion of the
spectral normalization layers into the CNN to enforce Lips-
chitz continuity on the denoisers, we directly train denoisers
without any nonexpansiveness constraints.
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4.1. Impact of Prior Mismatch

Super-resolution. The observation model for single image
super-resolution is y = SHx + e, where S € R™*" is
a standard s-fold downsampling matrix with n = m x s2,
H € R™ " is a convolution with anti-aliasing kernel, and
e is the noise. To compute the proximal map efficiently
for the [o-norm data-fidelity term (Step 3 in Algorithm 1),
we use the closed-form solution outlined in (Zhang et al.,
2021; Zhao et al., 2016). Similarly to (Zhang et al., 2021),
we use four isotropic kernels with different standard devi-
ation {0.7,1.2, 1.6, 2}, as well as four anisotropic kernels
depicted in Table 1. We perform downsampling at scales of
s=2and s =4.

Figure 3 illustrates the performance of PnP-ADMM using
the target and four mismatched denoisers. Note the sub-
optimal performance of PnP-ADMM using mismatched
denoisers trained on the BreCaHAD, RxRx1, CelebA, and
AFHQ datasets relative to PnP-ADMM using the target de-
noiser trained on the MetFaces dataset. Figure 3 illustrates
how distribution shifts can lead to mismatched denoisers,
subsequently impacting the performance of PnP-ADMM.
It’s worth noting that the denoiser trained on the CelebA
dataset (Liu et al., 2015), which consists of facial images
similar to MetFaces, is the best-performing mismatched de-
noiser. Table 1 provides a quantitative evaluation of the PnP-
ADMM performance with the target denoiser consistently
outperforming all the other denoisers. Notably, the mis-
matched denoiser trained on the BreCaHAD dataset (Aksac
et al., 2019), containing cell images that are most dissimilar
to MetFaces, exhibits the worst performance.

Phase retrieval. The observation model for phase retrieval
in coded diffraction patterns (CDP) is y = |[FMz| + e,
where M is a random phase mask, F' is the 2D discrete
Fast Fourier Transform (FFT), and e is the noise. Similarly
to (Metzler et al., 2018; Wu et al., 2019), each entry of M
randomly drawn from the unit circle in the complex plane.
The measurement model for CDP leads to a non-convex
data-fidelity term

1
9(x) = 5lly — |FMa]]3. ®

The same mismatched, target, and adapted priors are used in
PnP-ADMM for the problem of phase retrieval. The simu-
lated measurements are corrupted by AWGN corresponding
to {15, 20,25} dB of input SNR.

Figure 6 (a) illustrates the performance PnP-ADMM in
phase retrieval with mismatched and target priors. Note
the performance drop when mismatched priors are used in
PnP-ADMM. Table 3 reports numerical results achieved
using PnP-ADMM with target and mismatched priors for
different input SNR, averaged for MetFaces testset.

Table 3: PSNR (dB) and SSIM comparison of phase retrieval

problem with mismatched and target denoisers for the test set from

MetFaces, for various input SNR. We highlighted the target and
priors.

InputSNR= 15 InputSNR= 20 InputSNR= 25

Prior

PSNR SSIM PSNR SSIM PSNR SSIM
BreCaHAD
AFHQ 27.35 0.8086 29.75 0.8760 30.76 0.8967
MetFaces 27.57 0.8123 29.88 0.8798 31.13 0.9005

Table 4: PSNR (dB) and SSIM comparison of phase retrieval
problem with mismatched, target, and adapted denoisers for the
test set from MetFaces, for various input SNR. We highlighted the

target, , and the best adapted priors.

Prior InputSNR= 15 InputSNR= 20 InputSNR= 25
PSNR SSIM PSNR SSIM PSNR SSIM

BreCaHAD

4 imgs 26.47 0.7833 28.80 0.8616 29.95 0.8904

16 imgs 26.84 0.7930 29.21 0.8673 30.34 0.8926

64 imgs 27.18 0.8015 29.60 0.8731 30.90 0.8983

MetFaces 27.57 0.8123 29.88 0.8798 31.13 0.9005

4.2. Domain Adaption

In domain adaptation, the pre-trained mismatched denoisers
are updated using a limited number of data from the target
distribution. We investigate two adaptation scenarios: in
the first, we adapt the denoiser initially pre-trained on the
BreCaHAD dataset to the MetFaces dataset, and in the sec-
ond, we use the denoiser initially pre-trained on CelebA for
adaptation to the RxRx1 dataset. Note that same denoisers
are used as priors in PnP-ADMM for both super-resolution
phase retrieval problems.

Super-resolution. Figure 4 illustrates the influence of do-
main adaptation on denoising and PnP-ADMM. The re-
ported results are tested on RxRx1 and MetFaces datasets
for the super-resolution task. The kernel used is shown on
the top left corner of the ground truth image in Figure 3 and
the images are downsampled at the scale of s = 4. Note
how the denoising performance improves as we increase
the number of images used for domain adaptation. This
indicates that domain adaptation reduces the distance of
mismatched and target denoisers. Additionally, note the di-
rect correlation between the denoising capabilities of priors
and the performance of PnP-ADMM. Figure 4 shows that
the performance of PnP-ADMM with mismatched denoisers
can be significantly improved by adapting the mismatched
denoiser to the target distribution, even with just four images
from the target distribution.

Figure 5 presents visual examples illustrating domain adap-
tation in PnP-ADMM for image super-resolution. The re-
covery performance is shown for two test images from Met-
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BreCaHAD

4 images
29.41/0.8763
S/

. " ‘- |
' A

16 images
29.67/0.8802
rd

MetFaces

64 images

Figure 5: Visual comparison on super-resolution with target (MetFaces), mismatched (BreCaHAD), and adapted priors on a MetFaces
test image. The image is downsampled by the scale of s = 4. The performance is reported in terms of PSNR (dB) and SSIM. Note how the
recovery performance increases by adaptation of mismatched priors to a larger set of images from the target distribution.

Ground Truth BreCaHAD AFHQ

PSNR/SSIM 27.32/0.8605

28.86/0.8890

a) Impact of Prior Mismatch

MetFaces

30.11/0.8922

64 images 16 images

~4
[

29.79/0.8863

29.46/0.8821

29.10/0.8749

b) Domain Adaptation

Figure 6: Visual comparison of target, mismatched, and adapted priors for the phase retrieval problem on a test image from MetFaces
dataset. Left figure (a) illustrate the impact of prior mismatch and the right figure present domain adaptation. The performance is reported
in terms of PSNR (dB) and SSIM. Note the performance drop by using mismatched priors. Also note that domain adaptation can shrink

the performance gap from using mismatched priors.

Faces using adapted denoisers against both target and mis-
matched denoisers. The experiment was conducted under
the same settings as those in Figure 3. Note the effectiveness
of domain adaptation in mitigating the impact of distribu-
tion shifts on PnP-ADMM. Table 2 provides quantitative
results of several adapted priors on the test data. The re-
sults presented in Table 2 show the substantial impact of
domain adaptation, using a limited number of data, in sig-
nificantly narrowing the performance gap that emerges as a
consequence of distribution shifts.

Phase retrieval. Figure 6 illustrates the performance of
PnP-ADMM with mismatched, target and adapted priors in
the problem phase retrieval. Note that adapting to larger set
of paired data from target domain can effectively close the
performance gap. Table 4 reports numerical results achieved
using PnP-ADMM with matched, mismatched, and target
priors for different input SNR, averaged for MetFaces test-
set.

5. Conclusion

The work presented in this paper investigates the influence
of using mismatched denoisers in PnP-ADMM, presents

the corresponding theoretical analysis in terms of conver-
gence, investigates the effect of mismatch on image super-
resolution, and shows the ability of domain adaptation to
reduce the effect of distribution mismatch. The theoretical
results in this paper extend the recent PnP work by accom-
modating mismatched priors while eliminating the need
for convex data-fidelity and nonexpansive denoiser assump-
tions. The empirical validation of PnP-ADMM involving
mismatched priors and the domain adaptation strategy high-
lights the direct relationship between the gap in priors and
the subsequent performance gap in the PnP-ADMM recov-
ery, effectively reflecting the influence of distribution shifts
on image priors.
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A. Proof of Theorem 1

Theorem. Run PnP-ADMM using a mismatched MMSE denoiser for t > 1 iterations under Assumptions 1-6 with the
penalty parameter 0 < v < 1/(4L). Then, we have

min ||V (a*)]]; < ZIIVf ), < S+ Asz
where Ay > 0 and As > 0 are iteration independent constants and g, = (1/t) (1 + -+ + &) is the error term that is
an average of the quantities €5, = max{dy, 0 }. In addition, if the sequence {8;};>1 is summable, ||V f(x")||2 — 0 as

t — oo.

Proof. Note that from Lemma 1, we have

2 = 21 < g g (0@ — o (a2 s)
3 ) 2R
T Ia - -2 %t 1z 27L — 2212 O- ©)

From the optimality conditions of the target MMSE denoiser D,—where D, = prox.,;, (see Section E.1)— and the proximal
operator, for zF e Im(D, ), we have

Vh(z") + % (zF—aF—s"')=0 and Vg(z")+ % (zF + "1 -2 =o.
From this equation, for the objective function defined in (1), we can write
V£ ()], = [V (=*) + VA (") ],
= |Vg (z¥) + % (zF + "1 =25 1) + VA (2F) + % (M1 —ah — ")
2
- wb(zk)%(zk_xk_s ) + Vh (z*) — Vh (29) %(zk_l—fk)
2
|Vh (@) = VR () + VA (25) - VR (2) + % (21— 2)
2
_ 1 1 -

< 9 (&) T ()], + 9 ()~ Th (), + L 1 2

Ly k1 k
ol A P
v
1 1
< ( +7L2> |2* — 21|, + ( + L> Sk
v g
where we used triangle inequality in the first and second inequality. We also used

l2* = 28], < [|s* = "7, = v [|VA(*) = VAT, < AL j=" - =],

_ 1
< Ll =28, + Lf|=" - ="||, + == ==,

and Assumption 5 in the last inequality. By squaring both sides and using (a + b)? < 2a? + 2b2, we get

2 2
Vs @l <2(5+022) -2 (4 2) o
By using the result from equation (9), we obtain

4(1+~2L12)° o
||Vf (CE )||2 — ,7(1_(2717_ 23/2112) (¢ (wk 17Zk 173k 1) _¢(xkak7sk;))

( 3(1+4212)° +2(1+7L)2>6i 4R (1++212%)° 5 10

272 (1 —29L — 292L?) 72 YA -2l —22L0%)"
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By averaging both sides of the bound over ¢ > 1 and using the definition of error in 5, := max{dy, d; }, we get
2 1
min [Vf (@), < 5 ; 1V "),
11 +7202)" (6 (2, 2% ) — (@t s)) 1
< (1= 29T — 2°12) ¥+A2€t

4(1—1—’}/2L2)2 (qS (wo,zo,so) —¢*) 1 _
= ~v(1—2vL —242L2) t Ao

A
<t Ao, (1)
where 2, = (1/t) (e1 + - + &),

A = 4(1+4°L)% (p(a°, 2, 8°) — ¢*)/ (v (1 — 29L — 292 L?))
Ay = ((3 +16R) (1+~2L2) / (29% (1 — 291 — 292L2)) + 2(1/ + L)2) ,

and we used the fact that ¢p* < ¢ (x?, 2¢, s*) from Lemma 2. Note that we used the following inequality to get the result in
equation (11)

14+~2L2)° 2 AR (1 +~2L2)°
3147717 +2<1+L) 62+ R(1+77L7) O
2y ) ¥

2(1 = 2yL — 2422 ¥2 (1 —2vL — 242L?)

3 (1 + 72[/2)2 1 2 4R (1 + ’YQLQ)Q
5.0 21 =-+1L
max{dg, k} (2 2(1—2yL —292L2) + <’Y+ ) +,72 (1_27[/—272[/2)

_ ( (3+8R)(1+72L2))+2(1+L> >€k

292 (1 — 2yL — 2422 v

IN

Note that if the sequence of distances of denoisers {8; };>1 is summable, then {&; = max{d;, 6} };>1 is also be summable.
Consequently, ||V f(z!)||2 — 0 as t — oc. O

Remark 1. Note that by using (9) when the sequence {d;};>1 is summable, we have
1 _1n2
I = <0 At oo, (12)

which ensures that || 2¥ — 2571||; — 0 as k — oc. Since
Is" ="M, <AL lz" =2, and st = St = 2t - 20, (13)

we conclude that ||z* — z*~1||y — 0 and ||s* — s¥71| — 0 as k — oo.

B. Useful results for Theorem 1

Lemma 1. Assume that Assumptions 1-6 hold and let the sequence {x*, z*, s*} be generated via iterations of PnP-ADMM
with mismatched MMSE denoiser using the penalty parameter 0 < v < 1/(4L). Then for the augmented Lagrangian
defined in (2), we have that

k b1 g1y _ 1—29L — 29°L? koook-12, 3o, R
¢ (xF, 2", %) < ¢ (2F 857 ( 2 |z* - = ||2+8fy§k+fy§k'

where R is defined in Assumption 6.
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Proof. From the smoothness of h for any z¥ € Im(D,) in Assumption 4, the optimality condition for the mismatched

MMSE denoiser, and the Lagrange multiplier update rule in the form of s* = s*~1 4 ¥ — 2* we have
Pk Lk k k L&
Vh(z") == (s""+a"-2")=-s
v Y

and

o = a1, = |29 () =9 (25 | < 2 o - 24 14

2 )

where we used L—Lipschitz continuity of Vh from Assumption (4) in the last inequality. From this equation and the
Lagrange multiplier update rule, we have

) (wk’zk73k) — ¢ (xk7zk7sk71) _ % (Sk _ Skfl)T (xk _ zk) _ % ||3k _ Sk71||z
< L2 |25 — 212 (15)

From the fact that h (regularizer associated with target MMSE denoiser D) has a L—Lipschitz continuous gradient over the
set Im(D, ) (Assumption 4), we have

h(Z") —h (") < Vh (Ek)T (2% - 25 1) + L

5 12 ==, (16)

where Z¥ = D, (z* + s*~1). From the smoothness of A for any Z* € Im(D,), the optimality condition for mismatched
MMSE denoiser (2° = D, (x* + s*~1) = prox., (€ + s*~1), see derivation in Section E.1), and the Lagrange multiplier

update rule s* = s*~! + % — 2¥, we have
Vh(Ek)—&-%(Ek—:ck—sk ) =o,
which implies that
1 1 1
Vh(z") = S (b + s 2" = ;sk + (zF —2). (17)
By combining equations (16) and (17), we obtain
BE) () < () ) F ) L A ay)

For the target MMSE denoiser D,,, we know that 2 € Im(D,,) minimizes
1 k E—1Y[|2
Py (2) = %Hz—(m +s )||2—|—h(z). (19)
From Assumption 4, we know that Vh is L—Lipschitz continuous over Im(D, ), which implies
1
196 (0) = T ), < (54 2) Juol, vu.v e m(D,)
From the smoothness of v.,;, and the fact that Zz" minimizes it, we have
k —k Sk\T (k _ Sk I L k_ k|2
Uyn (2%) S Wan (Z°) + Vion (2°) (2" =2°) + (5= + 5 ) 12" =25

2v 2
_ 1 L 2
=y (2¥) + <27 + 2) [EE
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By using the definition of function 1) in (19), the Lagrange multiplier update rule sk = k=1 4 &k — 2% and rearranging
the terms, we obtain

_ 1 ,_ 2 1 N 1 L )
B~ (3) < o [ - @+ - ot - (b s (o + ) I -
1 _ T 1 L )
g et 2@ )T @)+ (g ) I -
1, ,..\7 _ 1 2 1 L )
2@ ) g - () I -2
1 T _ 1 L k12
=1 @k—y7+(7+2>wk—ﬁm. 0)
Now for the augmented Lagrangian, we have
b (25, s51) — (@ 251 1) = h () — h (2571) + % (Sk_l)T (251 — 2%)
1 k k E-N\T (k=1 _ _k
+ o (23: z z ) (z z )
— (%) — h (21 + % ( k—l)T (251 — 2¥)
1 T e 1 . 1112
# (6 )T (A ) - o
=h(z") = h(EZ") +h(EZ)-n(z"T)
1 T _ 1 _1112
T2 () (T =) ol =2 @1

where we used the Lagrange multiplier update rule in the second equality. By plugging (18) and (20) into (21) and
rearranging the terms, we obtain

& (wk,zk7sk—1> — (:L,k-’zk—l’sk—l) < 1 (Zk' _Ek>T (Ek _ Zk—l) n g sz _ Z'HHE

1 112 1 L )
- gl = (5 5 ) et -

=2

2
= % (2" =2") (ZF -2 +2F -2 + é sz AR AR Z’“”Hi
gl (G ) I =

By using |la + b||? < 2||la||? + 2||b]|?, we can write

& (wk7zk,sk—1) — (wk’zk—l’sk—l) < % (zk _Ek)T (Ek _ zk) + % (zk _Ek)T (zk . zk—l)
_ 2 2 1 12 1 L 2
e e e -1 e R CRE S T B
e L M e R ) I A
1 a2 11 2
i~ EARE Ly S
LT - - (SRR - A - @)

where we used the fact that 0 < v < 1/(4L) in the second inequality. From Assumption 6, we have

|25 = 2", < R. (24)

17



Prior Mismatch and Adaptation in PnP-ADMM with a Nonconvex Convergence Analysis

Using this equation, Assumption 6, and the bound on denoiser distance in Assumption 5, we obtain

& (:Bk-’zk’ sk—l) o 21 Sk-—l) + % (Zk- _ Ek-)T (Zk _ Zk—l)

(””L) s - e
k

<ot 2t - (S ) -2
1

_ _ 3 2
T 1 APl I R

_(1-27L k12, 3o I
( ) Hz z H2 + 876’“ + vdk. (25)

< k k—1 _k—1
= ¢(113 ) % S 27

~—

( k—1

Note that from x* = prox. ,(z k=1

, we have

1 _ _1n2 _ _1n2
5 Il == s 1|I2+9(w’“):;ggn{g||w 2 s L g (@)

1 _ _ N2 _
§%Hmk 1,zk 1+8k 1H2+g(mk 1)7

which implies that
¢ (wk’zkfl’ Sk*l) S ¢ (wkflvzkfl’ Sk*l) ) (26)
By combining equations (15), (25) and (26), we obtain

1—2yL — 292172
2y

k SRl gh—=1) _ ko _k-12 , 3 o2 E
¢ (", zF s)<¢( 857 ( )Hz z H2+8’y(5k+75k'

O

Lemma 2. Assume that Assumptions 1-6 hold and let the sequence {x* z* s*} be generated via PnP-ADMM with
mismatched MMSE denoiser using penalty parameter 0 < ~ < 1/(4L). Then, the augment Lagrangian ¢ defined in (2) is
bounded from below

inf ¢ (x*, 2%, ") > ¢* > —co.

k>0

Proof. From the smoothness of  (regularizer associated with the target denoiser D) for any Z* € Im(D, ), the optimality

condition for the target MMSE denoiser, and the Lagrange multiplier update rule in the form of s* = s¥=1 + ¥ — 2% we
have
S N L R S NS S S
Vh(z):;(s +x —z)z;s +;(z -z"). 27)

From the Lipschitz continuity of VA in Assumption 4 and the fact that v < 1/(4L) < 1/L, we have

h(at) < h () + VR () (@ - 2) + 2 - 2

<h () + VR (M) (2 - 2%) + = ||t - 2F)2

- o
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By using this inequality and equation (27), we can write
0 (ah,#5%) = g (2) 4 h () 4 2 () (@ -2 4 o

=g (@) +h (M) + VR (2T (@F - =) + % (2 — 247 (a* - )

1 k 512
+ 5= [l =
— g (a") +h(2H) + Th (29 (@ = 25) + — [}k — 2|

2y
(VA () — VR () (@ — =) + % (25— 25T (a* — 2*)
> g (") +h(2*) = [Vh (") = Vh ()], [l=" - 2",

‘|

=L | [l - 2 (28)

~
where we added and subtracted the term Vh(z*)T (¥ — 2*) in the third line and used Cauchy-Schwarz inequality in the
last line.

From the Lagrange multiplier update rule s* = s*~! + 2* — 2*, equations (14) and (24), we obtain
a# — 2, = [ — "], < vE || — 2|, < 4L )
By using the bound on the distance of target and mismatched denoisers in Assumption 5, Lipschitz continuity of VA in
Assumption 4, equations (28) and (29), we get
¢ (z", 2", s") > g (z") + h (z*) — (1 +7L) RLG;. (30)

From the fact that both functions ¢ and h are bounded from below in Assumption 3 and the fact that ~, dx, R, and L
are finite constants, we conclude that the augmented Lagrangian is bounded from below. This implies the existence of
¢* = ¢(x*, z*,8*) > —oo such that we have almost surely ¢* < ¢(x*, 2¥, s*), for all k > 0. O

C. An special case of Theorem 1

When we replace the mismatched MMSE denoiser with the target MMSE denoiser, we recover the traditional PnP-ADMM,
where we assume that the MMSE denoiser is no longer mismatched. The theoretical analysis of PnP-ADMM with MMSE
estimators is analogous to the analysis of ADMM using nonconvex functions and could be derived from (Wang et al., 2019;
2018; Park et al., 2023).

Theorem 2. Run PnP-ADMM with the target MMSE denoiser for t > 1 iterations under Assumptions 1-4 with the penalty
parameter 0 < v < 1/(4L). Then, we have

min [V f (2*)]]; < ZHW s <

where C' > 0 is a constant independent of iteration.

Proof. Note that for PnP-ADMM with the MMSE denoiser, Lemma 3 states

27y X X
k k—1 k=1 k=1 k-1 kE ok Gk
—z “2§1—7L7272L2 (¢ (2" 2" 1 ") — ¢ (2,25, 8")). (31)
By averaging over ¢ > 1 iterations and using the fact that the augmented Lagrangian is bounded from below in Lemma 4,
we obtain

I=

t

>z ==

B
k=1 t
B
t

S
IN

IN

(¢ (x°,2°,8") — ¢*), (32)
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where B = 2y(¢(x?, 2%, s°) — ¢*)/(1 — vL — 242L?). Note that since ¢* is the infimum defined in Lemma 4 and
0 < v < 1/(4L), B is a positive constant. From the optimality conditions for the MMSE denoiser D, and z* =
prox.,, (2871 — s¥71), we have
1 , 1, &
Vg (:Ek) + — (a:k + skt — zk_l) =0 and Vh (zk) + — (zk — k- sk_l) =0. (33)
v v

By using the L-Lipschitz continuity of VA and the Lagrange multiplier update rule in the form of s¥ = sk=1 4+ 2% — ¥,

we can write

e e L e
=L||Vh (") = Vi (z" )],
<qL?||2F - zk*1||2 .

(8

By using this equation and equation (33), we have for the objective function in (1)
IVf @), = Vg (") + VA (@),

= HVg (z*) + % (" + 8" — 2" 1) + Vh (2F) + % (zF 1 —s*1 —2F)

VA (4) + % (2 — & — 1) £ Vh (&) - Vh () + % (21— 24) |,

1 _
< [[h (@) = Vb (), + [ - 51

< (3+922) I+ -2,
:

where we used triangle inequality in the first inequality. By squaring both sides, averaging over ¢ > 1 iterations, and usi
equation (32), we get the desired result

1?,C'Qt’|vf ||2 Zva ||2 =
where C' :== B(1 + v2L?)/~? is a positive constant. 0O

D. Useful results for Theorem 2

Lemma 3. Assume that Assumptions 1-4 hold and let the sequence {x*, z*, s*} be generated via iterations of PnP-ADMM
with the MMSE denoiser using the penalty parameter 0 < v < 1/(4L). Then for the augmented Lagrangian defined in 2,
we have that

_ B 1—7L—272L2 12
6 (a5 st) < ot bt o) - (AR ks

Proof. From the smoothness of & for any z* € Im(D, ), the optimality condition for the MMSE denoiser, and the Lagrange

multiplier update rule in the form of s* = s*~! + &% — 2*, we have
1 1
Vh (2%) = = (2% + gk — 2F) = 2 gk,
(z ) 5 (m s z ) ,ys
From this equality and the definition of the augmented Lagrangian in (2), we have
¢ (wk,zk’skz) % (mk’zkvskfl) _ % (sk B Skfl)T (mk _ zk)
Lok k12 k k—1Y]|2
=Lt = st = [V () - O ) )
<L [l - 34
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where in the last line we used L-Lipschitz continuity of V& in Assumption 4. Additionally, we have
E\ k—1 Nk k-1 £ k=12
h(z") =h(z77) < VA(2Y) (2" =2"0) + S []z8 =21
BT (K k—1 Lok k—1]|2
=L )Ty D
Now by using this equation and the definition of the augmented Lagrangian, we have

é (mk7zk’sk71) — (mkvqu’skq) —h (zk) _h (qu) + % (Sk—l)T (zk:—l . Zk)

1
2
= () = h () 2 ()T (-

kizk71||2
2

1 2
+ - ot =2 - - lle

+ % (ka _ ok zkfl)T (qu _ zk:)

= () = h () 2 () (-

+ % (" =4 ) (0 =) = ol -
< T  E A ) -
+ % (s" =) T (71 = =) - % [Et
<_(1;JL> = ==l (35)
Note that from z* = prox. ,(z*~1 — s*~1), we have

1 _ 12 . 1 _ 2
%Hmk—zk Ly sk 1||2+g(mk):mrr€1]|1€n{%||m—zk Ly gk 1H2+g(m)}

1 _ _ 112 _
g%”":k lizk 1+8k 1H2+g($k 1)7
which implies that
d) (xk’zkfl’ Skfl) S ¢ (mkfl’zkfl’ Sk*l) . (36)

Now by combining the results from equations (34), (35) and (36), we have

_ 9272
(b(wk’zk,sk) < ¢($k—17zk—1’sk—1) _ (1 “YLQW 2y°L ) sz _ zk—le.

O

Lemma 4. Assume that Assumptions 1-4 hold and let the sequence {x*, z* s*} be generated via PnP-ADMM with the
MMSE denoiser using the penalty parameter 0 < v < 1/(4L). Then the augmented Lagrangian ¢ defined in (2) is bounded
from below

inf ¢ (sr:k,zk,sk) > ¢F > —o0.

k>0

Proof. From the smoothness of h for any z¥ € Im(D,), the optimality condition for the MMSE denoiser, and the Lagrange

multiplier update rule in the form of s¥ = s*~1 4 ¥ — 2% we have

1

Vh (2F) = % (zF + 851 = 2F) = ;sk. 37)
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By using the L-Lipschitz continuity of VA in Assumption 4, we have that
k k T (ko o Lok k2
h(z") <h(2")+Vh(z*) (z —z)+§Hw —zHQ. (38)

From equations (37), (38) and the fact that v < 1, we have

(k25 8%) =g (@) () + 2 () (@ 24) + o ok - 2

> g (@) +h () + Vh () (@ — =) + © ||t — 2
>g (:ck) +h (wk) .

Note that since both functions g and h are bounded from below from Assumption 3, we conclude that the augmented
Lagrangian is bounded from below. This implies that there exists —co < ¢* < ¢(x¥, 2%, s¥), for all k > 0. O

E. Background material
E.1. MMSE denoising as proximal operator

The connection between MMSE estimation and regularized inversion was established by Gribonval in (Gribonval, 2011),
and this relationship has been explored in various contexts (Gribonval & Machart, 2013; Kazerouni et al., 2013; Gribonval
& Nikolova, 2021; Gan et al., 2023). This connection was formally linked to Plug-and-Play (PnP) methods in (Xu et al.,
2020), resulting in a novel interpretation of MMSE denoisers within the framework of PnP. In this section, we investigate
the fundamental argument that bridges MMSE denoising and proximal operators.

The MMSE estimator for the following AWGN denoising problem
u=x+e with =~p, e~N(0d5I), (39)

is expressed as

Dy(u) = E[z|u] = / TPy (T|u) d. (40)
From Tweedie’s formula, we can express the estimator (40) as
Dy(u) = u — 0*Vh,(u) with hy(u) = —log(pu(u)), 41)
which is derived by differentiating (40) using the expression for the probability distribution given by

Pu() = (P * ¢o)(u) = o b (u — x)pe () d, (42)

where

, 1 (el
¢o(x) = W exp ( 992 |
Since ¢, is infinitely differentiable, the same applies to p,, and D,. As demonstrated in Lemma 2 of (Gribonval, 2011), the
Jacobian of D, is positive definite:

D, (u) =1 —0?Hhy(u) = 0, uw€R”, 43)

where Hh, represents the Hessian matrix of the function h,. Additionally, Assumption 1 implies that D, is a one-to-one
mapping from R™ to Im(D, ). This implies that (D,)~* : Im(D,) — R™ is well defined and infinitely differentiable over
Im(D, ), as outlined in Lemma 1 of (Gribonval, 2011). Consequently, this indicates that the regularizer h in (7) is also
infinitely differentiable for any € Im(D,,).
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We will now establish that

. [1

Dy (u) = prox,,(u) = arg min {2||a: —ul? + ’yh(m)}
xcR"

where h is a (possibly nonconvex) function defined in (7). Our objective is to demonstrate that y* = w is the unique

stationary point and global minimizer of

oy) = 5IDs(y) ~ ul? +7h(Do(y)), y R

By using the definition of h in (7) and the Tweedie’s formula (41), we obtain

1, .. ol
#(y) = 5105 (w) = ul® = IV (W)|* + 0*ho (y)-
The gradient of ¢ is then given by

Vo(y) = [UDs(9)](Do(y) — u) + 0*[I — 0*Hhqo (y)]Vhe(y) = [JD6(y)](y — ),

where we used (43) in the second line and (41) in the third line. Consider a scalar function ¢(v) = ¢(u + vy) and its
derivative

qd(v)=Veo(u+rvy)'y=vy [JD:(u+vy)y.

The positive definiteness of the Jacobian (43) implies that ¢’(v) < 0 and ¢’(v) > 0 for v < 0 and v > 0. Thus, v = 0 is the
global minimizer of ¢. Since y € R" is arbitrary, we can conclude that ¢ has no stationary point other than y* = u, and
that p(u) < ¢(y) for any y # u (Xu et al., 2020).

F. Related works

The PnP-ADMM algorithm is widely recognized for its effectiveness in solving inverse problems. The exceptional
performance of PnP methods, particularly those using learned denoisers as priors, has led to their adoption across a variety
of fields (Ahmad et al., 2020; Zhang et al., 2019; Metzler et al., 2018; Dong et al., 2019; Sreehari et al., 2016). Additionally,
there has been significant theoretical exploration to understand and justify the use of PnP under various conditions. (Chan
et al., 2017; Meinhardt et al., 2017; Buzzard et al., 2018; Sun et al., 2019b; Tirer & Giryes, 2019b; Teodoro et al., 2019;
Ryu et al., 2019; Hurault et al., 2022a;b; Xu et al., 2020). Recent studies have aimed to establish theoretical convergence
guarantees of PnP algorithms. The existing works often requires specific assumptions about the properties of the data-fidelity
term and the denoisers used in the algorithms. Commonly, assumptions include the convexity, strong convexity, or the
presence of a bounded gradient in the data-fidelity term (Ryu et al., 2019; Hurault et al., 2022a; Chan et al., 2017). Similarly,
denoisers are typically assumed to exhibit certain properties, such as nonexpansiveness or boundedness, to ensure the
convergence of these algorithms (Chan et al., 2017; Ryu et al., 2019; Sun et al., 2021). Our work distinguishes itself in two
key ways: First, it addresses the issue of mismatched deep priors, a topic that has not been extensively explored in existing
literature. Second, it offers a theoretical analysis on the convergence of PnP-ADMM algorithms without the common
prerequisites of convexity in the data-fidelity term or nonexpansiveness in the denoisers. Instead, we adopt deep denoisers
that are MMSE estimators. This assumption encompasses a wide range of deep denoisers that are trained using the I, norm
loss. Table 5 provides a comparison between assumptions adopted in our work and recent PnP methods.

The PnP-ADMM algorithm is inspired by the ADMM, which has been thoroughly researched in the field of nonsmooth
composite optimization (Parikh & Boyd, 2014). The convergence of ADMM for convex functions was initially investigated
in (Glowinski, 2013). Subsequent works also investigated the convergence of ADMM for closed, proper, and convex
data-fidelity term (Boyd et al., 2011; Nishihara et al., 2015). The convergence of ADMM has also been investigated for
nonconvex functions (Hong et al., 2016; Li & Pong, 2015). Many studies have aimed to expand the convergence analysis of
ADMM to cover more complex optimization scenarios including multiblock optimization problems (Lin et al., 2015; Wang
et al., 2018) and stochastic ADMM (Ouyang et al., 2013; Suzuki, 2013; Wang et al., 2012; Wang & Banerjee, 2012; Zhong
& Kwok, 2014; Zhao et al., 2015; Sedghi et al., 2014). The concept of inexact ADMM has also been a major focus in (Xie
& Shanbhag, 2019; Chen et al., 2017; Zhou & Li, 2023; Hager & Zhang, 2020; Bai et al., 2022; Chen et al., 2021). Inexact
ADMM often involves linearizing the ADMM data-fidelity subproblem to simplify its solution (Hager & Zhang, 2020; Bai
et al., 2022) or using stochastic approximation schemes in solving ADMM subproblems (Xie & Shanbhag, 2019; Bai et al.,
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Table 5: Assumption Comparison in Convergence of PnP Methods

Variant data-fidelity term denoiser mismatch (Y/N)
PnP-FBS (Ryu et al., 2019) strongly convex residual nonexpansive X
PnP-ADMM (Chan et al., 2017) bounded gradient bounded X
GS-PnP (Hurault et al., 2022a) convex gradient step X
PnP-PGM (Sun et al., 2019a) convex «a—averaged X
PnP-ADMM (Sun et al., 2021) convex residual nonexpansive X
RED (Shoushtari et al., 2022) convex nonexpansive v
PnP-ADMM (ours) nonconvex MMSE v

Table 6: Assumption Comparison in Convergence of ADMM

Variant data-fidelity term regularization term note

ADMM (Boyd et al., 2011) convex convex no mismatch/inexactness
ADMM (Wang et al., 2018) nonconvex nonconvex no mismatch/inexactness
ADMM (Li & Pong, 2015) nonconvex nonconvex no mismatch/inexactness
I-ADMM (Hager & Zhang, 2020) convex - inexact (stochastic)
SI-ADMM (Xie & Shanbhag, 2019) convex convex inexact (stochastic)
AS-ADMM (Bai et al., 2022) convex convex inexact (linearized penalty term)

2022). Our work stands out in this context. Unlike existing inexact ADMM algorithms, where inexactness stems from
stochastic solutions or linearization of subproblems, our approach derives inexactness from mismatched priors, specifically
MMSE estimators. This unique approach can be further linked to the error in proximal operators for regularization terms.
Notably, while current inexact ADMM typically assumes convexity in both data-fidelity and regularization terms, our work
allows for nonconvex data term and non-convex regularization term associted with the MMSE denoiser. This distinction
marks a significant departure from traditional approaches in the field. Table 6 provides a comparison between assumptions
adopted in recent ADMM algorithms.

G. On the assumptions of Theorem 1

In this section, we present the list of assumptions required for Theorems 1. Assumptions required for Theorems are
typically employed when using MMSE estimators as PnP priors, engaging in nonconvex optimization, or dealing with
mismatched/inexact PnP priors.

Assumptions of Theorem 1:

e Prior distributions pg and Dy, denoted as target and mismatched distributions are non-degenerate over R™.

As discussed in Section 3.2, this assumption is commonly adopted to establish a relation between regularized inversion
and MMSE estimation (Gribonval, 2011; Gribonval & Machart, 2013; Kazerouni et al., 2013). The MMSE estimators
have been previously used as priors in PnP methods (Xu et al., 2020; Gan et al., 2023; Laumont et al., 2022).

e Function g (data-fidelity term) is continuously differentiable.

This assumption is an standard assumption commonly adopted in nonconvex optimization, specifically in the context
of inverse problems (Li & Li, 2018; Jiang et al., 2019; Yashtini, 2021). It is worth noting that the majority of well-
established data-fidelity terms for image restoration tasks fall under the umbrella of this assumption. Importantly,
this framework does not necessitate the convexity of data-fidelity terms, making it versatile for handling non-linear
measurement models. Furthermore, our result can be extended to a non-differentiable data-fidelity term g by using
subdifferentials, making it applicable to applications like phase retrieval (Metzler et al., 2018).

* The explicit data-fidelity term g and the implicit regularizer h are bounded from below.

This assumption is standard in optimization and ensures that the optimization problem is well-posed and has a meaning
full solution. This Assumption is commonly adopted in optimization algorithms (Yashtini, 2021; Hurault et al., 2022b;a;
Xu et al., 2020).
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Figure 7: Assumption 5 is investigated by visualizing || D, (v®) — Do (v*)||2 against the iterations of the PnP-ADMM algorithm for test
image depicted in Figure 3. This visualization reveals that the error of using mismatched denoiser is not only upper bounded but also
decreases through iterations. Additionally, it highlights the effectiveness of domain adaptation in further reducing the error.

e The denoisers D, and 60 have the same range Im(D, ). Additionally, functions h and h associated with D, and 60,
are continuously differentiable with L-Lipschitz continuous gradients over Im(D,,).

For the image denoisers that share the same architecture and employ the same loss function, it is reasonable to assume
that their output range would be consistent, given that it aligns with the range of natural color images. Furthermore,
due to the smoothness properties of both D! and h,, as described in equation 7, it follows that the function h is also
smooth and continuously differentiable. A similar property holds for the function h corresponding to the mismatched
denoiser 60. Consequently, this assumption is a mild requirement, only necessitating that regularization functions have
L-Lipschitz continuous gradients over their shared range. While the assumption of Lipschitz continuous gradients is a
standard one in nonconvex optimization, it is typically enforced over the entire space R™, whereas here, we specifically
enforce it over the range of the denoisers. (Hurault et al., 2022a; Yashtini, 2021).

* The distance between the target and mismatched denoisers are bounded at each iteration of the algorithm.

This assumption bounds the distance between the mismatched and target denoisers, which serves as a measure of the
distribution shift. As the distributions used to train the mismatched denoisers diverge from the target distribution, we
anticipate the bound on denoisers’ distance will also increase. This assumption is a common one in the context of
dealing with approximate, inexact, or mismatched priors (Laumont et al., 2022; Shoushtari et al., 2022; Gan et al.,
2023). Figure 7 visualizes the empirical result for this assumption by plotting distance of mismatched and adapted
priors to target prior at each iteration. Note that the distance is bounded and decreases as the algorithm advances.

o The distance of sequence (z*) given by the Algorithm I to stationary point z* is bounded by a constant.

As depicted in Algorithm 1, sequence z* is the output of mismatched denoiser at each iteration. Since many denoisers
have bounded range spaces, the existence of bound R often holds. Specifically, this is true for such image denoisers
whose output live within the bounded subset [0, 255]™ C R™ or [0, 1]™ C R™ (Sun et al., 2021; Sun et al., 2019).

H. Additional Technical Details

We present here some technical details and results that were not included in the main paper. In our quantitative comparisons
of different priors, we utilized the Peak Signal-to-Noise Ratio (PSNR) metric, which is defined as follows:

~ 1
PSNR(z,z) = 20log;, <||£ — :c2> ,
where x represents the ground truth and Z denotes the estimated image. Additionally, we include SSIM, a widely used
metric in image processing and computer vision, to measure the similarity between two images. SSIM takes into account
three components of an image: luminance, contrast, and structure. It compares local patterns of pixel intensities and is
particularly useful for evaluating the perceived quality of compressed or processed images. For our PnP-ADMM algorithm,
we performed 15 iterations for all denoisers. In all experiments, the algorithm is initialized with 20 = s° = 0. All denoisers
(Adapted, matched, and mismatched) were trained using the DRUNet architecture (Zhang et al., 2021) with Mean Squared
Error (MSE) loss, employing the Adam optimizer (Kingma & Ba, 2015) with a learning rate of 10~%. We incorporated a
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Figure 8: Ground truth images from MetFaces dataset used for generating measurements.
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Figure 9: The Left figure compares the empirical results of denoising for retrained and adapted priors vs. the number of training
samples, as well as target (MetFaces) and mismatched (BreCaHAD) denoisers. The right figure compares PnP performance using target,
mismatched, and adapted priors on super-resolution task. The results in both figures are reported for the test set from MetFaces dataset,
averaged for scaling factor of s = 4. It’s worth highlighting the noticeable performance improvement of denoisers achieved through
domain adaptation. Additionally, observe the relationship between PnP performance and adapted denoiser performance.

noise level map strength that decreases logarithmically from oopim to o = 0.01 over 15 iterations, where ogpiim is fine-tuned
for optimal performance for each test image and prior individually. To prepare the training and testing images from datasets
such as MetFaces (Karras et al., 2020), AFHQ (Choi et al., 2020), CelebA (Liu et al., 2015), and RxRx1 (Sypetkowski et al.,
2023), we randomly selected 1000 images and resized them to 256 x 256 slices. For the BreCaHAD (Aksac et al., 2019)
dataset, we cropped the images to 512 x 512 and subsequently resized them to 256 x 256 slices for both the training and
testing datasets.

Figure 8 shows the images that were used to generate measurements for super-resolution task.

I. Additional experiments
L.1. Super-resolution

We present additional image super-resolution results for a more comprehensive understanding. Figure 9 illustrates the
performance comparison of denoising and super-resolution using different priors. On the left side of Figure 9, the denoising
performance of target (trained on MetFaces), mismatched (trained on BreCaHAD), adapted, and retrained priors is displayed.
Meanwhile, on the right side, the reconstruction performance of target, mismatched, and adapted priors is presented. Note
the improvement achieved by using adapted priors in both denoising and super-resolution tasks.
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Table 7: PSNR (dB) and SSIM values for image super-resolution using PnP-ADMM under different priors on a test set from the
MetFaces (Karras et al., 2020) averaged for all kernels. We highlighted the best performing and the performing priors. BreCaHAD

is the worst prior that is also the one visually most different from MetFaces. Measurement noise is set to 0.03.

Prior s=2 s=4 Avg
PSNR SSIM PSNR SSIM PSNR SSIM

BreCaHAD

RxRx1 29.86 0.7599 28.14 0.7197 29.00 0.7398

AFHQ 30.04 0.7622 28.47 0.7194 29.34 0.7408

CelebA 30.11 0.7650 28.57 0.7235 29.34 0.7442

MetFaces 30.42 0.7754 28.88 0.7367 29.65 0.7560

Table 8: PSNR (dB) and SSIM comparison of super-resolution with mismatched, target, and adapted denoisers for the test set from

MetFaces, averaged for all kernels. We highlighted the target,

, and the best adapted priors. Measurement noise is set to 0.03.

Prior s=2 s=4 Avg
PSNR SSIM PSNR SSIM PSNR SSIM

BreCaHAD

4 imgs 30.03 0.7713 28.26 0.7319 29.14 0.7516

16 imgs 30.36 0.7786 28.85 0.7411 29.60 0.7598

64 imgs 30.39 0.7775 28.90 0.7410 29.64 0.7592

MetFaces 30.42 0.7754 28.88 0.7367 29.65 0.7560

Table 9: PSNR (dB) and SSIM values for image super-resolution using PnP-ADMM under different priors on a test set from the
MetFaces (Karras et al., 2020). We highlighted the best performing and the performing priors. BreCaHAD is the worst prior that is
also the one visually most different from MetFaces (Extended version of Table 1).

K . s=2 s=4 Avg
ernels Prior
PSNR SSIM PSNR SSIM PSNR SSIM
BreCaHAD
RxRx1 33.45 0.8683 30.45 0.7906 31.95 0.8294
AFHQ 33.74 0.8697 30.38 0.7825 32.06 0.8261
CelebA 33.96 0.8731 30.62 0.7906 32.29 0.8318
MetFaces 34.07 0.8755 31.15 0.8053 32.61 0.8404
BreCaHAD
RxRx1 32.22 0.8348 30.80 0.7948 31.51 0.8148
AFHQ 32.63 0.8410 31.06 0.8014 31.84 0.8212
CelebA 32.62 0.8404 31.30 0.8070 31.96 0.8237
MetFaces 32.85 0.8457 31.44 0.8089 32.14 0.8273

I.2. Single-coil subsampled MRI

We present additional numerical results for subsampled Fourier measurements y = Az € C™, where A = PF performs
radial Fourier subsampling (Shoushtari et al., 2022), F' denotes Fourier transform and P is a diagonal sampling matrix.
We follow the setting from (Shoushtari et al., 2022) and train a matched/target prior on MRI dataset (Zhang & Ghanem,
2018), a mismatched prior on dataset (Agustsson & Timofte, 2017) by taking grayscale images, and three adapted priors
using 4, 16, and 64 images from the target distribution (MRI dataset). We use similar network architecture as previous
experiments. Sampling matrix is chosen to correspond to m/n = 20% and m/n = 30%. Table 11 presents results on using
PnP-ADMM for reconstructing MRI images with domain adapted natural-image priors. Note how these results align with
the observations made throughout the rest of the paper.

1.3. Deblurring

We present additional visual results for deblurring image restoration. Figure 10 presents a visual comparison of a test image
from the MetFaces dataset using the target denoiser and four different mismatched denoisers. The images are convolved with
the indicated blur kernel and subjected to Gaussian noise with a noise level of v = 0.01. Note the suboptimal performance of

27



Prior Mismatch and Adaptation in PnP-ADMM with a Nonconvex Convergence Analysis

Table 10: PSNR (dB) and SSIM comparison of super-resolution with mismatched, target, and adapted denoisers for the test set from

MetFaces, averaged for indicated kernels. We highlighted the target, , and the best adapted priors (Extended version of
Table 2).
Kernels Prior §=2 s=4 Avg
PSNR SSIM PSNR SSIM PSNR SSIM
BreCaHAD

4 imgs 32.51 0.8510 30.57 0.7934 31.54 0.8222
16 imgs 33.10 0.8611 30.65 0.7961 31.89 0.8293
32 imgs 33.30 0.8649 30.81 0.8001 32.05 0.8325
64 imgs 33.59 0.8698 30.84 0.7994 32.21 0.8346

MetFaces 34.07 0.8755 31.15 0.8053 32.61 0.8404
BreCaHAD

4 imgs 31.59 0.8215 30.86 0.7957 31.22 0.8086
16 imgs 32.19 0.8334 31.05 0.8009 31.62 0.8171
32 imgs 32.34 0.8371 31.18 0.8044 31.76 0.8207

64 imgs 32.47 0.8397 31.26 0.8059 31.86 0.8228
MetFaces 32.85 0.8457 31.44 0.8089 32.14 0.8273

Table 11: PSNR (dB) and SSIM comparison of subsampled MRI reconstruction with mismatched, target, and adapted denoisers for the
test set from brain MRI (Zhang & Ghanem, 2018). We highlighted the target, , and the best adapted prior.

20% 30%
PSNR SSIM  PSNR SSIM

Prior

Natural

41imgs 34.88 0.9708 37.30 0.9803
16 imgs 35.07 0.9716 37.41 0.9805
64 imgs 35.15 0.9733 37.74 0.9816
MRI 35.41 0.9746 37.80 0.9821

RxRx1 CelebA

GT BreCaHAD AFHQ MetFaces

Figure 10: Visual comparison of various mismatched denoisers for deblurring on an image from MetFaces dataset. The performance is
reported in terms of PSNR (dB). The image is convolved with the indicated blur kernel and Gaussian noise with v = 0.01 is added. Note
that regardless of the PnP image restoration task, the discrepancies in training distributions result in mismatched priors and suboptimal
performance in PnP.

mismatched priors in the deblurring task. As it is evident in Figure 10, the discrepancy between the mismatched distributions
directly affects the PnP performance. Figure 11 illustrates a visual comparison for adapted priors in the deblurring task.
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BreCaHAD 2 images 16 images 32 images 64 images MetFaces

Figure 11: Visual comparison of several adapted prior for image deblurring on a test image from MetFaces dataset. The performance is
reported in terms of PSNR (dB). The experiment setting is similar to that of Figure 10. Note how adapting the mismatched prior with a
larger set of data from the target distribution results in a better performance in PnP.

CelebA MetFaces AFHQ RxRx1 GT

32.79/0.8822 36.30/0.9412 PSNR/SSIM

32.66/0.8886

== =1 &1 &0

Figure 12: Visual evaluation of several priors on the image super-resolution task reported in terms of PSNR (dB) and SSIM for an image
from RxRx1. Images are downsampled with the scale of s = 4 and convolved with the indicated blur kernel in Figure 3. Note the influence
of mismatched priors on the performance of PnP.

I.4. Various Distributions Experiment

We present additional visual results for mismatched priors and domain adaptation using various distributions for image
super-resolution. In the following Figures, we demonstrate the effect of mismatched priors and prior adaptation tested on an
image from RxRx1 (Sypetkowski et al., 2023) dataset. Figure 12 presents a visual comparison for PnP on super-resolution
task using the target and three mismatched priors on an image from the RxRx1 test set. The images are convolved with the
blur kernel indicted in Figure 3. Figure 13 illustrates visual results for domain adaptation of mismatched prior trained on
CelebA dataset and adapted to RxRx1 distribution. Note the improvement in PnP performance by using adapted priors.
Also, note the relation between PnP performance and the number of samples from the target distribution used for adaptation.

GT
PSNR/SSIM

CelebA
32.66/0.8886

16 images
35.48/0.9322

64 images
35.88/0.9369

4 images

= = = (|

Figure 13: Visual comparison of image super-resolution with target (RxRx1), mismatched (CelebA), and adapted priors on a test image
from RxRx1. The images are downsampled by the scale of s = 4. The performance is reported in terms of PSNR (dB) and SSIM. Note
how the recovery performance increases by adaptation of mismatched priors to a larger set of images from the target distribution.
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