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ABSTRACT

We present a novel approach for differentially private data synthesis of protected
tabular datasets, a relevant task in highly sensitive domains such as healthcare and
government. Current state-of-the-art methods predominantly use marginal-based
approaches, where a dataset is generated from private estimates of the marginals.
In this paper, we introduce PrivPGD, a new generation method for marginal-based
private data synthesis, leveraging tools from optimal transport and particle gradi-
ent descent. Our algorithm outperforms existing methods on a large range of
datasets while being highly scalable and offering the flexibility to incorporate ad-
ditional domain-specific constraints.

1 INTRODUCTION

Differential privacy (DP) has gained prominence as a vital approach to mitigate privacy concerns. Its
adoption extends well beyond theoretical frameworks, finding practical utility across industries and
government organizations (Johnson et al., 2018; Abowd, 2018; Aktay et al., 2020). In this paper, we
target the problem of differentially private tabular data synthesis, a promising approach for creating
high-quality copies of protected tabular datasets that adhere to privacy constraints. Any further task
performed on these “private” copies is thus guaranteed to comply with these constraints.

Numerous differential privacy methods have emerged to synthesize tabular datasets with privacy
guarantees while preserving relevant statistics from the original dataset (Tao et al., 2021; Hu et al.,
2024). Marginal-based approaches are among the preferred methods for tabular data, dominant in
NIST challenges (McKenna et al., 2021) and top-ranked in benchmarks (Tao et al., 2021). These
approaches select a set of marginals and perturb them in a DP-compliant manner. Subsequently, a
synthetic dataset is generated from these noisy marginals through a generation method.

In this paper, we introduce PrivPGD1, a novel DP-data generation method based on particle gradient
descent. PrivPGD leverages an optimal transport-based divergence between the privatized and parti-
cle marginal distributions (Appendix C) to effectively integrate marginal information during gradient

∗These authors contributed equally
1Code is available at https://github.com/jaabmar/private-pgd.
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descent. This divergence can be approximated highly efficiently through parallel GPU processing,
which is crucial for handling large datasets. Our approach has several important characteristics:

• State-of-the-Art performance. PrivPGD outperforms state-of-the-art methods in a large
benchmark comparison (9 datasets) across a wide range of metrics, including downstream
task performance (Section 4).

• Scalability. PrivPGD leverages a highly optimized gradient computation that can be par-
allelized on GPU, enabling the algorithm to efficiently construct large datasets with over
100,000 data points while accommodating many marginals, e.g., all 2-Way marginals.

• Geometry preservation. Many datasets contain features with inherent geometry, such as
continuous features and some categorical features like age, which have rankings that should
be retained in the synthetic data. Unlike state-of-the-art methods, PrivPGD preserves this
geometric structure, aligning more naturally with the nuances of real-world datasets.

• Incorporation of domain-specific constraints. Since PrivPGD is a gradient-based method,
we can include any additive penalization term to the loss function. This way, we can enforce
the generation algorithm to respect additional domain-specific constraints and thereby offer
a simple and efficient way to incorporate requirements in the synthetic data (Appendix E).

2 PRELIMINARIES FOR DIFFERENTIALLY PRIVATE DATA SYNTHESIS

In this section, we summarize key concepts and introduce notation related to differentially private
data synthesis used in the paper.

In general, we consider our data to lie in a domain X = X1×· · ·×Xd that is discrete and has dimen-
sion d. This assumption is not restrictive since the vast majority of DP-data synthesis algorithms for
tabular data rely on a discretized version of the data even if it originally lies in a continuous domain2.
In particular, we can represent every dimension as an integer in the discrete set Xi = {1, · · · , ki}
with ki ∈ N+.

Differential privacy (Dwork, 2006) is an algorithmic property that guarantees that individual infor-
mation in the data is protected in the output of an algorithm; even when assuming that an adversary
has access to the information of all other individuals in the dataset. We now provide the formal
definition.

Definition 1 An algorithm A is (ϵ, δ)-DP with ϵ > 0 and δ > 0 if for any datasets D,D′ differing
in a single entry and any measurable subset S ⊂ im(A) of the image of A, we have

P (A (D) ∈ S) ≤ exp(ϵ)P (A (D′) ∈ S) + δ

The goal of differentially private data synthesis is to design a (randomized) algorithm A that, for any
dataset D ∈ Xn of size n, generates an output A (D) ∈ Xm that is a differentially private “copy”
of D, potentially of different size m ̸= n.

2.1 MARGINAL-BASED ALGORITHMS FOR PRIVATE DATA SYNTHESIS

Our approach falls in the general category of marginal-based methods. They follow Algorithm 1,
consisting of three steps: marginal selection, privatization, and generation.

Marginal selection For any subset S ⊂ {1, · · · , d} of the dimensions, we denote with DS ∈ Xn
S

the dataset containing only the dimensions in S. For each subset S we can define a corresponding
marginal.

Definition 2 We denote by νS [D] ∈ P(XS) the S-marginal of a dataset D, defined as the empirical
measure of DS over the domain XS .

In the first step of the algorithm, a set S of such subsets S is selected, and equivalently a set of
marginals. The problem of selecting marginals in a DP-way is an interesting problem on its own

2We refer the reader to (Zhang et al., 2016) for a discussion on how to optimally discretize in a DP-way.
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Algorithm 1 Standard data synthesis

Require: Dataset D, privacy parameters ϵ
and δ

1: select set S of subsets S of {1, · · · , d}
2: privatize marginals νS [D] to obtain

(ϵ, δ)-DP “copies” ν̂S
3: generate data from privatized marginals

ν̂S
return the DP dataset DDP

Algorithm 2 Sequential query selection

Require: Dataset D, privacy parameters ϵ and δ,
workload SW , rounds T

1: for t = 1, . . . , T do
2: select St ∈ SW

3: privatize the marginal νSt [D] to obtain the
DP-“copies” ν̂St

4: generate data from privatized marginals
{ν̂Sj

}j≤t to obtain D
(t)
DP

5: end for
6: return DP dataset D(T )

DP .

and has led to a significant amount of proposed methods (Cai et al., 2021; McKenna et al., 2021;
Zhang et al., 2021; McKenna et al., 2022). In an extension of Algorithm 1, sketched in Algorithm 2,
the marginals are not all selected in the beginning, but sequentially chosen from a pre-defined pool
of subsets SW of [d] (often referred to as the workload). More specifically, in every iteration t, we
select the marginals with the largest total variation distance TV

(
νS [D

(t−1)
DP ], νS [D]

)
, where D(t−1)

DP

is the DP-dataset from the previous iteration t− 1. This is done in a DP-way using the exponential
mechanism from McSherry & Talwar (2007). Such approaches fall under the general MWEM (Hardt
et al., 2012; Liu et al., 2021b) framework, which is the backbone of many DP synthesis methods. To
control the overall privacy budget, the framework from Algorithm 2 uses advanced compositional
theorems (see e.g., (Dwork & Roth, 2014)).

Marginal privatization After a set of marginals has been selected, both frameworks contain a
privatization and generation step. A common choice for privatization is to apply the Gaussian mech-
anism (McSherry & Talwar, 2007), where we simply add i.i.d. Gaussian noise to the empirical
marginal νS [D]. The variance σ2 of the Gaussian depends on the privacy parameters ϵ and δ. As a
result, we obtain the signed measures ν̂S :

∀x ∈ XS : ν̂S({x}) = νS [D]({x}) +N (0, σ2).

Data generation Finally, in the last step, we generate a dataset from the noisy estimates of the
marginals. For this purpose, existing methods typically aim to learn a distribution p̂ that minimizes
the squared loss: ∑

S∈S,x∈XS

(p̂S({x})− ν̂S({x}))2

and then release the private synthetic data DDP by sampling from p̂. The predominant generation
algorithm used by state-of-the-art methods (McKenna et al., 2021; Cai et al., 2021; McKenna et al.,
2022) is PGM (McKenna et al., 2019), which learns a graphical model using mirror descent. We
refer to Appendix B for further discussion.

3 PRIVPGD: A PARTICLE GRADIENT DESCENT-BASED GENERATION METHOD

We introduce PrivPGD (Algorithm 3), a novel approach for solving the generation step in marginal-
based tabular data synthesis (Algorithm 1). Unlike other marginal-based methods (Zhang et al.,
2017; McKenna et al., 2019), PrivPGD does not construct a dataset by sampling from a learned
distribution. Instead, it directly propagates particles in an embedding space to minimize the sliced
Wasserstein distance (see Appendix C for details). A distinct advantage is that, through particle
gradient descent, we can easily enforce domain-specific constraints by adding a penalization term
R̂ to the loss. We conduct experiments enforcing additional constraints in the synthetic data in
Appendix E.

In summary, our data generation method returns a DP-dataset DDP given the following inputs:
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Algorithm 3 Private Particle Gradient Descent

Require: DP marginals {ν̂S}S∈S , regularizer R̂ , number of particles m
1: projection: ∀S ∈ S, construct the empirical measures µ̂S from ν̂S
2: optimization: randomly initialize Z(0) ∈ Ωm

3: for t = 1, · · · , T do
4: select batch Sbatch ⊂ S
5: compute the gradient at Z(t−1) of

∑
S∈Sbatch

SW2
2(µS [Z], µ̂S) + λR̂(Z)

6: update Z(t) using any first order optimizer
7: end for
8: finalization step: construct DDP from Z(T )

return DDP

1. A set of differentially private finite signed measures {ν̂S}S∈S constructed as in Algo-
rithm 1.

2. A differentially private regularization loss R̂ incorporating domain-specific constraints.

3.1 PRELIMINARIES: EMBEDDING

PrivPGD crucially relies on an embedding Emb : X → Ω of the (discretized) domain X into a com-
pact Euclidean product space Ω = Ω1 × · · · × Ωd. We simply choose Ω = [0, 1]d and map every
x ∈ X to equally-spaced centers

Emb(x)i =
2xi − 1

2ki
∈ [0, 1]. (1)

This choice of embedding naturally preserves the order in X for variables like age or any discretized
continuous variables. In line with common practices in the literature (McKenna et al., 2021; Tao
et al., 2021), we discretize continuous data using equally spaced bins. This method ensures that the
embedding accurately represents the scaled distances between the centers.

We acknowledge that for features like race, where imposing an ordering might be inappropriate,
these could be embedded into the space [0, 1]2 in a way that ensures the centers are equidistant.
Similarly, when embedding categorical variables representing locations, an embedding that pre-
serves geographical distances might be preferable. While it would be interesting to explore other
embeddings, we leave it to future work.

Particles PrivPGD aims to construct m data points in the embedding space, ensuring their empiri-
cal distribution closely approximates the projection of the privatized signed measure ν̂S . For any set
of points Z ∈ Ωm, which we also refer to as the m particles, we define ZS ∈ Ωm

S as the projection
of these particles onto the embedding ΩS of XS . Moreover, we define S-marginals over Ω as:

Definition 3 We denote by µS [Z] ∈ P(ΩS) the S-marginal of the particles Z, defined as the em-
pirical measure of ZS over the domain ΩS .

3.2 PROJECTION STEP

The preliminary embedding step allows us to define the particles Z within a convenient domain Ω,
which we choose to be the hypercube with a fixed grid. In the projection step, the goal is to transform
the privatized signed measure ν̂S into a proper probability measure µ̂S that can be “plugged into”
the Wasserstein distance. Further, since we aim to find particles whose empirical distribution closely
approximates the signed measure, we quantize µ̂S using the same number of particles, m.

Projection First, note that the embedding Emb from Equation (1) defines corresponding finite
signed measures ω̂S over Emb(X )S ⊂ ΩS for each privatized signed measure ν̂S . By default, the
sliced Wasserstein distance that we minimize in the optimization step (Section 3.3) is defined for
probability measures. For q = 1 we can extend the sliced 1-Wasserstein distance from Equation (8)
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to signed measures and obtain a probability measure. Inspired by Boedihardjo et al. (2022) (see also
(Donhauser et al., 2023)), we transform by solving

ω̂S,P = arg min
w∈P(Emb(X )S)

SW1(w, ω̂S). (2)

We approximate this convex optimization problem using gradient descent. We also approximate the
integral in SW1 using Monte Carlo samples. Importantly, minimizing the objective in Equation (2)
allows for preserving the geometry from the signed measures in the probability measures.

Quantization We further quantize the finite probability measures ω̂S,P using m particles ẐS ∈
Ωm

S , i.e.,

µ̂S =
1

m

m∑
i=1

δ[Ẑi
S ], (3)

such that µ̂S ≈ ω̂S,P. This can be achieved by using any standard quantization technique with a
negligible error for a sufficiently large number of particles. We apply the quantization in Equation (3)
with m particles, thus ensuring that both µS [Z] and µ̂S are empirical measures over the same number
of particles.

3.3 OPTIMIZATION AND FINALIZATION STEP

In the optimization step, we now aim to generate a dataset by finding particles Z ∈ Ωm that are
close to the differentially private measure µ̂S constructed in the projection step. In particular, the
final particles should minimize the squared sliced Wasserstein distance SW2

2 (Equation (6)) between
the empirical marginal distributions of the particles µS [Z] and µ̂S We can additionally incorporate
domain-specific constraints via a DP differentiable penalty term R̂ : Ωm → R. Formally, for a
regularization strength λ, we run mini-batch particle gradient descent on

LS(Z) :=
∑
S∈S

SW2
2(µS [Z], µ̂S) + λR̂(Z), (4)

where SW2
2 is the squared sliced Wasserstein distance.

Computing the gradient of the SW2
2 distance For computing the gradient, we leverage the

fact that the 1-dimensional 2-Wasserstein distance between gθ#µS [Z] = 1
m

∑
i δ(yi) and gθ#µ̂S =

1
m

∑
i δ(y

′
i) with yi, y

′
i ∈ R has a closed-form expression

W 2
2 (g

θ
#µS [Z], gθ#µ̂S) =

1

m

∑
i

(y[i] − y′[i])
2, (5)

where y[i] (resp. y′[i]) denotes the i-th largest element. Equation (5) and its gradient can be computed
efficiently by running a sorting algorithm, which is parallelizable on modern GPU architectures.
We then approximate the SW2

2 using NMC Monte Carlo samples for θ. Consequently, we achieve
a runtime complexity of O(|S| · NMC · m logm) for obtaining the gradient of the first term in
Equation (4).

Finalization step Finally, after running particle gradient descent for T iterations, we obtain the
dataset DDP ∈ Xm by mapping every final particle in Z(T ) to the closest point in Emb(X ) ⊂ Ω.
We note that, assuming that both inputs {ν̂S}S∈S and R̂ together are (ϵ, δ)-differentially private, the
output dataset DDP is also (ϵ, δ)-differentially private.

4 EXPERIMENTS

In this section, we present a systematic large-scale experimental evaluation of our algorithm.
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Figure 1: Comparison of PrivPGD with all 2-Way marginals against SOTA methods based on metrics from
Section 4.1: 1) downstream error, 2) covariance error, 3) count. queries error, and 4) thresh. queries error, across
9 tabular datasets. For each method, we plot the log2 ratio of the errors, using PrivPGD’s average error as the
denominator, and report the mean and standard deviation over 5 runs. We cut at a log ratio of y = 3 (dashed
line) and list all methods exceeding this threshold above this line in order. We set ϵ = 2.5 and δ = 10−5.

4.1 EXPERIMENTAL SETTING

Dataset We use 9 real-world datasets from various sources, detailed in Appendix D.1. Each
dataset contains no fewer than 50, 000 data points, ranges from 3 to 22 dimensions and is linked
to a binary classification or regression task, which we use to evaluate the downstream error. For
these evaluations, we allocate 80% of the data as private data D and use the remaining 20% for
test data Dtest. We discretize every dimension containing real values or integer values exceeding a
range of 32 into 32 equally-sized bins.

Privacy Budget We use ϵ = 2.5 and δ = 10−5 as default choices. According to the National
Institute of Standards and Technology (NIST), ϵ values below 5 can be considered as strong privacy
protection and real-world applications commonly use values above 2.5 (Near & Darais, 2022).

Metrics We evaluate the statistical and downstream task performance of PrivPGD with the follow-
ing standard metrics for DP data synthesis: the downstream error (classification/test error in Dtest),
the covariance error, and the relative average difference for two common queries: counting and
thresholding queries (Vietri et al., 2022). We also compute the SW1 and TV distance over all 2-Way
marginals between the original and DP datasets. We give details on these metrics in Appendix D.

Algorithms used for benchmarking We benchmark PrivPGD against several baselines, includ-
ing representative PGM-based and query-based methods. The PGM-based methods include MST
(McKenna et al., 2021) and AIM McKenna et al. (2022). For AIM, we choose all 2-Way marginals
as workload. We consider as query-based algorithms Private GSD (Liu et al., 2023), RAP Aydore
et al. (2021) and GEM (Liu et al., 2021b), where we choose all 2-Way marginals as queries. We
detail the implementation and hyperparameters selected for each algorithm in Appendix D.

4.2 COMPARISON WITH BASELINES

We now present how the performance of PrivPGD compares against the SOTA algorithms for DP
data synthesis. Figure 1 illustrates the relative performance of PrivPGD compared to other methods.
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Figure 2: Comparison of average SW1 distance (left) and average TV distance (right) for PrivPGD against
state-of-the-art methods across 9 tabular datasets. Similar to Figure 1, we report the mean and standard devia-
tion (5 runs) of the log2 ratio of errors. We set ϵ = 2.5 and δ = 10−5.

PrivPGD consistently ranks as either the best or the second-best in most metrics and datasets, with
a few exceptions such as the covariance error in the Public Coverage dataset.

Comparison with PGM PrivPGD systematically outperforms both variants of PGM, which are
the SOTA for marginal-based tabular data synthesis, often by a significant margin. Specifically, it
is better than PGM+MST in covariance and query errors across datasets, except for thresholding
query errors in the Diabetes dataset, and performs at least as well as PGM+AIM, usually surpassing
it, with the notable exception of thresholding query errors in the Mobility dataset. For downstream
tasks, PrivPGD performs comparably to PGM+AIM and consistently better than PGM+MST.

Comparison with query-based algorithms Furthermore, PrivPGD is also the preferred method
in most scenarios when compared to query-based approaches, especially against GEM and RAP.
While Private GSD provides competitive performance and occasionally surpasses PrivPGD – for
instance, in the Public Coverage dataset – PrivPGD usually emerges as the best-performing method.
On many datasets it significantly outperforms Private GSD in all metrics, as exemplified by the Taxi,
Black Friday, and Traveltime datasets.

SW1 and TV distance Finally, Figure 2 illustrates a noticeable performance gap between
PrivPGD and other methods when comparing the average sliced Wasserstein distance and the to-
tal variation distance. PrivPGD effectively minimizes the former, while SOTA methods like PGM
primarily target the latter. Our experiments demonstrate the advantage of minimizing a geometry-
aware loss function like the sliced Wasserstein distance over the total variation distance.

5 CONCLUSION AND FUTURE WORK

We introduced PrivPGD, a novel generation method for marginal-based private data synthesis. Our
approach leverages particle gradient descent, combined with techniques from optimal transport, re-
sulting in improved performance in a large number of settings, enhanced scalability for handling nu-
merous marginals and larger datasets, and increased flexibility for accommodating domain-specific
constraints compared to existing methods.

Future work could develop regularization penalties that promote an inductive bias in PrivPGD to-
wards more favorable solutions, similar to the maximum entropy bias in PGM. Additionally, explor-
ing the design of domain-specific differentiable constraints and applying our method in practical
scenarios presents an exciting avenue for future research.
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A APPENDIX

B RELATED WORK

We discuss in this section related works on DP-data synthesis for tabular data and refer the reader
to Section 4 for an extensive benchmark comparison (for a more comprehensive overview, see the
recent survey (Hu et al., 2024)). We distinguish between marginal and query-based DP-data syn-
thesis algorithms. While the latter receives any general set of queries and releases a tabular dataset
that simultaneously answers all queries, the former only considers marginal queries and can thus be
viewed as a special case of query-based algorithms, optimized for marginal queries.

Marginal-based algorithms Marginal-based algorithms are prominent in the literature for
private tabular data release, achieving state-of-the-art performance on numerous benchmark
tasks (McKenna et al., 2021; Hu et al., 2024; Tao et al., 2021). These algorithms comprise two
main steps: the selection of marginals (McKenna et al., 2021; 2022; Cai et al., 2021) and the dataset
generation after adding noise to the selected marginals (McKenna et al., 2019; Zhang et al., 2017;
Li et al., 2021). A common approach in data generation is PGM, used by winning methods in the
NIST competitions (McKenna et al., 2021; 2022; Cai et al., 2021). However, PGM faces two major
limitations: it is highly sensitive to the number of selected marginals, easily resulting in memory and
runtime issues, and has limited capability in preserving domain-specific constraints. Other marginal-
based generation methods include PrivBayes (Zhang et al., 2017), where a Bayesian Neural Network
is trained, and Gradual Update Methods (GUM) (Li et al., 2021; Zhang et al., 2021), which initialize
a random dataset and iteratively update it to match the marginals.

Query-based algorithms In contrast to marginal-based algorithms, which can only preserve
marginal-based queries, query-based algorithms can handle a broader range of queries. Some ex-
amples include DualQuery (Gaboardi et al., 2014), FEM (Vietri et al., 2020), RAP (Aydore et al.,
2021), GEM (Liu et al., 2021b), RAP++ (Vietri et al., 2022), Private GSD (Liu et al., 2023), and
others (Wang et al., 2016; Liu et al., 2021a). These methods construct a private dataset to effi-
ciently answer a large set of pre-defined queries simultaneously, often relying on gradient descent
techniques (Aydore et al., 2021; Liu et al., 2021b). While our method, PrivPGD, also uses particle
gradient descent, unlike previous approaches, it does not require predefining a set of queries and is
optimized for preserving marginal queries.

Other algorithms Copula-based approaches (Li et al., 2014; Asghar et al., 2019; Gambs et al.,
2021) employ Gaussian and vine copulas to model the privatized marginal distributions. However,
these methods are computationally intensive, which limits their practical use. For instance, executing
a single iteration of Copula-Shirley (Gambs et al., 2021) on the ACS datasets (Ding et al., 2021) takes
over 24 hours on our cluster3. In addition, while Generative Adversarial Networks (GANs) have
been proposed for synthesising private data (Xie et al., 2018; Jordon et al., 2019; Torkzadehmahani
et al., 2019), they reportedly fail to preserve basic distributional statistics for tabular datasets (Tao
et al., 2021). DP-Sinkhorn (Cao et al., 2021), an optimal transport-based generative method, cannot
be easily extended to tabular data synthesis. Finally, DP-SWD (Rakotomamonjy & Liva, 2021),
a differentially private measure based on the sliced Wasserstein distance, has been leveraged for
training generative models (Rakotomamonjy & Liva, 2021; Sebag et al., 2023).

C SLICED WASSERSTEIN DISTANCE

The optimal transport literature offers a set of natural divergence measures that can be used for par-
ticle gradient descent, such as the Sinkhorn divergence or the Wasserstein distance. However, the
computational complexity of these divergences scales at least quadratically (resp. cubically) with
respect to the size of the support of the measures. This clearly defeats the purpose of a computation-
ally efficient generation algorithm that can represent rich datasets with a large number of data points.
Instead, a widely used (Wu et al., 2019; Kolouri et al., 2018; Deshpande et al., 2018; 2019), com-

3Our cluster consists of modern GPUs, at least of the NVIDIA GeForce RTX 2080 Ti type, and we used the
official implementation from https://github.com/alxxrg/copula-shirley.
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putationally efficient alternative is the squared sliced Wasserstein (SW2
2) distance (Bonneel et al.,

2015); that is, the averaged squared Euclidean transportation over all 1-dimensional projections.

Formally, for θ ∈ R, let gθ(x) = ⟨x, θ⟩ and gθ# be the pullback measure induced by gθ. Moreover,
let λp be the uniform distribution over the sphere Sp−1. For any Euclidean subspace Ω ⊂ Rp and
probability measures µ, ν ∈ P(Ω) with support Ω, the q-SW distance is defined as follows:

SWq(µ, ν) =

(∫
Sp−1

W q
q (g

θ
#µ, g

θ
#ν)dλ(θ)

)1/q

, (6)

where W q
q is the q-th power of the q-Wasserstein distance for q ≥ 1. The Wasserstein distance over

1-dimensional distributions, as it appears in Equation (6), has a well-known closed-form expression:

Wq(g
θ
#µ, g

θ
#ν) =

(∫
u

|F−1
gθ
#µ

(u)− F−1
gθ
#ν

(u)|qdu
)1/q

, (7)

where Fgθ
#µ(u) (resp. Fgθ

#ν(u)) represents the cumulative function and F−1 its inverse. Finally, in
the special case of q = 1, we have the following identity for the 1-Wasserstein distance by Vallender
(Vallender, 1974), which we will later leverage in our algorithm:

W1(g
θ
#µ, g

θ
#ν) = ∥Fgθ

#µ(u)− Fgθ
#ν(u)∥L1(R). (8)

Importantly, this identity allows us to naturally extend the definition of the (sliced) 1-Wasserstein
distance to signed measures, as demonstrated by Boedihardjo et al. (2022).

D EXPERIMENTAL SETTING

Metrics We evaluate the statistical and downstream task performance of our algorithm with the
following standard metrics for DP data synthesis:

1. downstream error: The classification/regression test error, i.e., the 0-1 (resp. mean squared)
error, of gradient boosting trained on the synthesized data DDP and evaluated on the (non-
privatized) test dataset Dtest.

2. covariance error: The Frobenius norm of the differences of the centered covariance matri-
ces of Emb(D) and Emb(DDP) divided by the Frobenius norm of the centered covariance
matrix of Emb(DDP). Since the embedding just rescales the (discretized) variables, this is
equivalent to computing the covariance matrix error of the normalized data, up to a con-
stant.

Moreover, we use the relative average over J = 200 query differences between DDP and D

1
J

∑
j |queryj(DDP)− queryj(D)|

1
J

∑
j queryj(D)

. (9)

We instantiate the query difference for two commonly used queries (see e.g., Vietri et al. (2022)):

3. count. queries: 3-sparse counting queries with queryj(D) = countj(D) = 1
n

∑
i 1[xi ∈

Aj ] with Aj the full hypercube ∀l : Al
j = 1, . . . , kl except for 3 random dimensions

where the Al
j is an interval with uniformly drawn lower bound and subsequently drawn

upper bound. We use rejection sampling to ensure that at least 5% and at most 95% of the
samples of the original dataset fall in this interval for every j.

4. thresh. queries: 3-sparse linear thresholding queries with queryj(D) = thrsj(D) =
1
n

∑
i 1⟨xi,θ⟩+bj>0; θ is a random 3-sparse direction and bj is uniformly drawn from the

interval [minx∈D⟨x, θ⟩,maxx∈D⟨x, θ⟩].

Finally, we compute the average sliced Wasserstein distance and the total variation distance. The for-
mer is approximately minimized by PrivPGD while the latter by existing marginal-based approaches
(e.g., (McKenna et al., 2022; 2021)):
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5. average SW1 dist.: The average SW1 distance over all 2-Way marginals between the em-
bedded empirical probability measures of the original dataset D and the DP dataset DDP;
µS [D], µS [DDP] ∈ P(Emb(X )S):(

d

2

)−1 ∑
S⊂[d];|S|=2

SW1 (µS [D], µS [DDP]) (10)

6. average TV dist.: The average total variation distance TV over all 2-Way marginals between
the original dataset D and the DP dataset DDP(

d

2

)−1 ∑
S⊂[d];|S|=2

TV (νS [D], νS [DDP]) (11)

Implementation of PrivPGD We implement PrivPGD using PyTorch on a GPU and use the same
hyperparameters for all experiments. We select all 2-Way marginals and use the Gaussian mecha-
nism to construct DP-copies of them (step 2 in Algorithm 1). We then generate a dataset by running
PrivPGD (Algorithm 3) with 100k particles.

For the projection step (Section 3.2), we use 200 MC random projections to approximate the SW1

distance. We construct the finite measure ω̂S,P by running gradient descent for 1750 iterations using
Adam with an initial learning rate of 0.1 and a linear learning rate scheduler with step size 100 and
multiplicative factor 0.8. As initialization, we use the probability measure obtained when setting all
negative weights of ω̂S to zero and subsequently normalize the positive finite measure.

In the optimization step (Section 3.3), we approximate the SW2
2 using NMC = 10 projections. We

minimize the objective in Equation (4) by running gradient descent for 1000 epochs (where in every
epoch every marginal is seen exactly once) using an initial learning rate of 0.1 and a linear learning
rate scheduler with step size 50 and multiplicative factor 0.75. We divide S into mini-batches of
size 5 and randomly set 80% of the gradient entries to zero. We use Sparse Adam from the PyTorch
package.

Implementation of the metrics We use the implementation from scikit-learn (Buitinck et al.,
2013) for Gradient Boosting using the standard hyperparameters. Since discretization is a separate
problem on its own, we use the discretized dataset in all experiments.

Implementation of AIM and MST. We implement MST and AIM using the code provided by
the authors4. We choose the initial learning rate to be 1.0 and run mirror descent for 3000 iterations.
We fix the hyperparameters for all experiments. Moreover, we slightly modify the code for MST
and AIM by increasing the sensitivity used in the Gaussian (Dwork & Roth, 2014) and exponential
mechanisms (McSherry & Talwar, 2007) to give accurate privacy guarantees for the differential
privacy model from Definition 1. We refer to (McKenna et al., 2022) for an overview of both
mechanisms in the context of DP data release.

Implementation of query-based algorithms. We use the one-shot version of Private GSD from
the paper with an elite size of 2 and early stopping, and tune the number of generations G ∈
{200k, 500k}, the mutation and crossover populations Pmut = Pcross ∈ {50, 100, 150, 200, 500},
and the number of synthesized data points m ∈ {2k, 100k}. For GEM, we keep the default hy-
perparameters, tuning the number of iterations T ∈ {3, 10, 30, 50, 100, 150, 200} and the model
architecture layersMLP ∈ {[512, 512, 1024], [128, 256]}. For RAP, we also keep the default hyper-
parameters and tune T ∈ {3, 10, 30, 50, 100, 150, 200}, the learning rate lr ∈ {0.0001, 0.001, 0.03}
and m ∈ {2k, 500k}. This hyperparameter optimization includes the configurations considered by
Liu et al. (2023). All methods are implemented using their official versions, with hyperparameters
fine-tuned for each dataset. GEM and RAP could not be run for the ACS Employment dataset due
to exceeding our memory constraint of 20 GB.

4https://github.com/ryan112358/private-pgm.

13

https://github.com/ryan112358/private-pgm


Published at the Privacy Regulation and Protection in Machine Learning Workshop at ICLR 2024.

D.1 DATASETS

Datasets We use a diverse range of real-world datasets, each with associated classification or
regression tasks. Notably, our data sources include the American Community Survey (ACS) and
various datasets from Grinsztajn et al. (2022).

• ACS Income classification dataset (Inc.) (Ding et al., 2021). The dataset focuses on
predicting whether an individual earns more than 50,000 dollars annually. It is derived from
the ACS PUMS data sample, with specific filters applied: only individuals aged above 16,
those who reported working for at least 1 hour weekly in the past year, and those with a
reported income exceeding 100 dollars were included. We take the data from California
over a 5-year horizon and survey year 2018, with d = 11 dimension and n = 760, 157 data
points.

• ACS Employment classification dataset (Emp.) (Ding et al., 2021). The dataset is de-
signed to predict an individual’s employment status. It’s derived from the ACS PUMS
data sample but only considers individuals aged between 16 and 90. We take the data
from California over a 5-year horizon and survey year 2018, with d = 17 dimension and
n = 1, 503, 938 data points.

• ACS Mobility classification dataset (Mob.) (Ding et al., 2021). The goal is to determine
if an individual retained the same residential address from the previous year using a filtered
subset of the ACS PUMS data. This subset exclusively includes individuals aged between
18 and 35. Filtering for this age range heightens the prediction challenge, as over 90% of
the broader population typically remains at the same address from one year to the next. We
take the data from California over a 5-year horizon and survey year 2018, with d = 22
dimension and n = 318, 332 data points.

• ACS Traveltime classification dataset (Tra.) (Ding et al., 2021). The objective is to
predict if an individual’s work commute surpasses 20 minutes using a refined subset of the
ACS PUMS data. This subset is limited to those who are employed and are older than
16 years. The 20-minute benchmark was selected based on its status as the median travel
time to work for the US population in the 2018 ACS PUMS data release. We take the data
from California over a 5-year horizon and survey year 2018, with d = 17 dimension and
n = 667, 132 data points.

• ACS Public Coverage classification dataset (Pub.) (Ding et al., 2021). The task is to
predict if an individual is enrolled in public health insurance using a specific subset of the
ACS PUMS data. This subset is narrowed down to individuals younger than 65 and with
an income below 30,000 dollars. By focusing on this group, the prediction centers on low-
income individuals who don’t qualify for Medicare. We take the data from California over
a 5-year horizon and survey year 2018, with d = 20 dimension and n = 583, 545 data
points.

• Medical charges regression dataset (Med.) (Grinsztajn et al., 2022). The dataset from
the tabular benchmark, part of the “regression on numerical features” benchmark, details
inpatient discharges under the Medicare fee-for-service scheme. Known as the Inpatient
Utilization and Payment Public Use File (Inpatient PUF), it provides insights into utiliza-
tion, total and Medicare-specific payments, and hospital-specific charges. The dataset en-
compasses data from over 3,000 U.S. hospitals under the Medicare Inpatient Prospective
Payment System (IPPS) framework. Organized by hospitals and the Medicare Severity Di-
agnosis Related Group (MS-DRG), this dataset spans from Fiscal Year 2011 to 2016. In
total, it contains n = 130, 452 data point with d = 3 features.

• Black Friday regression dataset (Fri.) (Grinsztajn et al., 2022). This dataset contains
purchases from n = 133, 456 buyers on black Friday. Each point is described by d = 9
features, including gender, age, occupation and marital status.

• NYC Taxi Green December 2016 regression dataset (Taxi) (Grinsztajn et al., 2022).
The dataset, utilized in the “regression on numerical features” benchmark from the tabular
data benchmark, originates from the New York City Taxi and Limousine Commission’s
(TLC) trip records for the green line in December 2016. In this processed version, string
datetime details have been converted to numeric columns. The goal is to predict the “tip
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amount”. Records exclusively from credit card payments were retained. The dataset con-
tains n = 465, 468 points with d = 9 features.

• Diabetes 130-US dataset classification dataset (Diab.) (Strack et al., 2014). The dataset
encapsulates a decade (1999-2008) of n = 56, 872 clinical observations from 130 US hos-
pitals and integrated delivery systems, comprising over d = 7 features denoting patient and
hospital results. The data was curated based on specific criteria: the record must be of an
inpatient hospital admission, be associated with a diabetes diagnosis, have a stay duration
ranging from 1 to 14 days, include laboratory tests, and involve medication administration.

E ENFORCING ADDITIONAL DOMAIN-SPECIFIC CONSTRAINTS

Section 4.2 shows that PrivPGD constructs a private dataset that successfully preserves the relevant
statistics of the original dataset. However, while differential privacy protects individual information,
many applications require the protection of specific population-level statistics, i.e., one would like
specific statistics from the DP-dataset DDP to have a large mismatch with statistics from the original
dataset D. This goal is in contrast to the utility loss that tries to match certain statistics of the
original dataset. One example is census data, where it might be desirable to hide religious or sexual
orientations at the subpopulation level to prevent potential discriminatory misuse of the data.

We now demonstrate how PrivPGD, while constructing a high-quality dataset, also allows the pro-
tection of statistics on a population level. As an example, we consider maximizing the distance of
a single linear (non-sparse) thresholding query thrsEmb(Z) = 1

m

∑
i 1⟨Zi,θ⟩+b>0 defined directly

in the embedding space. We approximate this query using a differentiable sigmoid approximation
and define R̂(Z) = 1

c+(△(Z))2 where △(Z) is the difference to a DP-estimate of the original data.
More precisely, we approximate the thresholding function thrsEmb(Z) = 1

m

∑
i 1⟨Zi,θ⟩+b>0 us-

ing the smooth sigmoid approximation s-thrshEmb(Z) = 1
m

∑
i (1 + exp(−σ(⟨θ, Zi⟩ − b)))

−1 with
σ = 5.0. We then split the privacy budget into two parts; the first part ϵ = 0.5 and δ = 2× 10−6 is
used for obtaining a DP estimate of s-thrshEmb(Emb(D)) using the Gaussian mechanism, which we
denote by ŝ-thrshEmb. Moreover, we use the remaining privacy budget ϵ = 2.0 and δ = 8× 10−6 to
privatize all 2-Way marginals using the Gaussian mechanism as in Algorithm 1. As a result, using
the simple composition theorem (see e.g., Dwork & Nissim (2004)), the overall algorithm is then
DP for ϵ = 2.5 and δ = 10−5.

Finally, we generate the differentially private dataset DDP by running Algorithm 3 with all privatized
2-Way marginals as inputs as well as the DP regularization loss

R̂(Z) =
0.01

0.0001 + (s-thrshEmb(Z)− ŝ-thrshEmb)2
. (12)

and regularization strength λ reaching from 10−2 to 10, as depicted in Figure 3.

Results We plot in Figure 3 the absolute thresholding error as a function of the regularization
strength λ. While the query is well approximated if no (or only little) regularization is used, we
see how increasing the regularization strength increasingly protects these statistics, as the domain-
specific counting query on DDP deviates strongly from the one on the original data D. We further
plot the downstream error and the absolute errors over random counting and thresholding queries
(only the numerator in Equation (9)). We observe that, even for larger regularization penalties, these
statistics are still preserved, comparable to the unregularized case.

F EXTENDED RESULTS FOR SECTION 4.2

We replicate Figure 1 with ϵ = 1.0 (see Figure 4) and ϵ = 0.2 (see Figure 5). At smaller values
of ϵ, PrivPGD is more frequently outperformed by PGM, especially in combination with AIM, and
also with MST at ϵ = 0.2, as well as more often by Private GSD. PGM-based methods benefit
from a strong inductive bias towards maximum entropy solutions, which becomes particularly ad-
vantageous when noise levels are high. Nevertheless, PrivPGD still maintains highly competitive
performance, especially in larger datasets and with fewer features. A similar trend is observed in the
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Figure 3: The absolute error of the domain-specific query (larger is better), the downstream classification error
(smaller is better), and the absolute error over counting and thresholding queries (smaller is better), i.e., only
the numerator in Equation (9), as a function of the log regularization strength λ. We plot the curves for (a) the
Income and (b) the Employment dataset.

total variation and Wasserstein distance, as shown in Figures 6 and 7. These results underscore that
PrivPGD’s performance edge diminishes as ϵ decreases.

Finally, Tables 1 to 6 provide the detailed metrics for all our results.
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Figure 4: Comparison of PrivPGD with all 2-way marginals against state-of-the-art methods based on metrics
from Section 4.1: 1) downstream error, 2) covariance error, 3) count. queries error, and 4) thresh. queries error,
across 9 tabular datasets. For each method, we plot the log2 ratio of the errors, using PrivPGD’s average error as
the denominator, and report the mean and standard deviation over 5 runs. We cut at a log ratio of y = 3 (dashed
line) and list all methods exceeding this threshold above this line in order. We set ϵ = 1.0 and δ = 10−5.
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Figure 5: Comparison of PrivPGD with all 2-way marginals against state-of-the-art methods based on metrics
from Section 4.1: 1) downstream error, 2) covariance error, 3) count. queries error, and 4) thresh. queries error,
across 9 tabular datasets. For each method, we plot the log2 ratio of the errors, using PrivPGD’s average error as
the denominator, and report the mean and standard deviation over 5 runs. We cut at a log ratio of y = 3 (dashed
line) and list all methods exceeding this threshold above this line in order. We set ϵ = 0.2 and δ = 10−5.
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Figure 6: Comparison of average SW1 distance (left) and average TV distance (right) for PrivPGD against
state-of-the-art methods across 9 tabular datasets. Similar to Figure 1, we report the mean and standard devia-
tion (5 runs) of the log2 ratio of errors. We set ϵ = 1.0 and δ = 10−5.
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Figure 7: Comparison of average SW1 distance (left) and average TV distance (right) for PrivPGD against
state-of-the-art methods across 9 tabular datasets. Similar to Figure 1, we report the mean and standard devia-
tion (5 runs) of the log2 ratio of errors. We set ϵ = 0.2 and δ = 10−5.
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dataset inference downstream covariance counting query thresholding query SW1 distance TV distance

Emp.

PrivPGD 0.19/0.19 0.02 0.00087 0.00043 0.00054 0.021
PGM+AIM 0.19/0.19 0.04 0.0025 0.0026 0.0019 0.026
PGM+MST 0.33/0.19 0.27 0.012 0.0075 0.0087 0.1
Private GSD 0.2/0.19 0.0083 0.0013 0.00073 0.00059 0.013

Inc.

PrivPGD 0.19/0.19 0.001 0.00078 0.00031 0.00043 0.028
PGM+AIM 0.19/0.19 0.014 0.0017 0.00034 0.0017 0.034
PGM+MST 0.24/0.19 0.051 0.0077 0.0024 0.0054 0.11
Private GSD 0.2/0.19 0.0049 0.0017 0.00083 0.00093 0.045

GEM 0.22/0.19 0.047 0.01 0.0038 0.0099 0.17
RAP 0.2/0.19 0.0078 0.0017 0.00056 0.0011 0.037

Tra.

PrivPGD 0.37/0.34 0.0026 0.00065 0.00014 0.00049 0.027
PGM+AIM 0.37/0.34 0.037 0.0023 0.00031 0.0019 0.035
PGM+MST 0.46/0.34 0.091 0.0058 0.00032 0.0038 0.061
Private GSD 0.38/0.34 0.011 0.0017 0.00037 0.00072 0.033

GEM 0.4/0.34 0.048 0.0052 0.0011 0.0041 0.076
RAP 0.38/0.34 0.015 0.0019 0.00047 0.0014 0.036

Pub.

PrivPGD 0.28/0.27 0.06 0.00097 0.00033 0.00094 0.037
PGM+AIM 0.32/0.27 0.1 0.0051 0.0012 0.0042 0.048
PGM+MST 0.35/0.27 0.41 0.01 0.00074 0.0088 0.092
Private GSD 0.3/0.27 0.012 0.0016 0.00015 0.00057 0.013

GEM 0.29/0.27 0.035 0.0031 0.00042 0.0019 0.029
RAP 0.29/0.27 0.02 0.0015 0.00054 0.0012 0.02

Mob.

PrivPGD 0.23/0.22 0.0091 0.0014 0.00051 0.0011 0.056
PGM+AIM 0.23/0.22 0.05 0.0029 0.00036 0.0025 0.035
PGM+MST 0.24/0.22 0.29 0.0088 0.005 0.0095 0.096
Private GSD 0.24/0.22 0.0092 0.0013 0.00068 0.00055 0.015

GEM 0.24/0.22 0.063 0.0074 0.0022 0.006 0.082
RAP 0.23/0.22 0.016 0.0014 0.00066 0.0013 0.022

Table 1: The mean of the errors from Section 4.1 averaged over 5 runs. For the downstream error, we addi-
tionally show the test error when training on the original private dataset. We choose ϵ = 2.5 and δ = 10−5.

dataset inference downstream covariance counting query thresholding query SW1 distance TV distance

Taxi

PrivPGD 2.3/2.2 0.00048 0.00051 0.00011 0.00027 0.02
PGM+AIM 2.3/2.2 0.0013 0.00066 0.00011 0.0005 0.016
PGM+MST 2.3/2.2 0.0029 0.0011 0.0002 0.00058 0.028
Private GSD 2.3/2.2 0.004 0.0019 0.00061 0.00093 0.064

GEM 2.7/2.2 0.079 0.016 0.0037 0.018 0.36
RAP 2.3/2.2 0.0065 0.0021 0.0005 0.0013 0.078

Fri.

PrivPGD 1.5/1.4 0.00097 0.00064 0.00053 0.00033 0.015
PGM+AIM 1.5/1.4 0.0014 0.00064 0.00058 0.00054 0.011
PGM+MST 1.5/1.4 0.0057 0.0027 0.0008 0.0014 0.047
Private GSD 1.7/1.4 0.0032 0.0015 0.00083 0.0006 0.021

GEM 2.8/1.4 0.031 0.0066 0.0016 0.009 0.16
RAP 1.5/1.4 0.0038 0.0018 0.00075 0.0011 0.034

Med.

PrivPGD 2.2/2.1 0.00014 0.0012 0.00013 0.00036 0.023
PGM+AIM 2.1/2.1 0.00066 0.0012 0.00034 0.00076 0.013
PGM+MST 2.1/2.1 0.00061 0.0012 0.00035 0.0007 0.017
Private GSD 2.2/2.1 0.00013 0.0012 0.00014 0.00076 0.02

GEM 75/2.1 0.11 0.1 0.054 0.22 1.4
RAP 4.5/2.1 0.0048 0.013 0.0023 0.007 0.062

Diab.

PrivPGD 0.4/0.4 0.0013 0.0013 0.00042 0.00084 0.028
PGM+AIM 0.4/0.4 0.0045 0.0025 0.0015 0.0022 0.028
PGM+MST 0.41/0.4 0.0047 0.0083 0.00029 0.0017 0.045
Private GSD 0.41/0.4 0.0017 0.0017 0.00026 0.00067 0.026

GEM 0.41/0.4 0.042 0.032 0.0084 0.032 0.23
RAP 0.41/0.4 0.0034 0.0021 0.00097 0.0025 0.041

Table 2: The mean of the errors from Section 4.1 averaged over 5 runs. For the downstream error, we addi-
tionally show the test error when training on the original private dataset. We choose ϵ = 2.5 and δ = 10−5.
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dataset inference downstream covariance counting query thresholding query SW1 distance TV distance

Emp.

PrivPGD 0.19/0.19 0.0056 0.00077 0.00038 0.0006 0.027
PGM+AIM 0.2/0.19 0.063 0.0036 0.004 0.0042 0.057
PGM+MST 0.23/0.19 0.48 0.098 0.081 0.14 0.7
Private GSD 0.2/0.19 0.008 0.0014 0.00076 0.00059 0.013

Inc.

PrivPGD 0.19/0.19 0.0019 0.00092 0.00039 0.0006 0.042
PGM+AIM 0.19/0.19 0.014 0.0015 0.00042 0.0016 0.033
PGM+MST 0.24/0.19 0.052 0.0077 0.0024 0.0054 0.11
Private GSD 0.2/0.19 0.0061 0.0017 0.00089 0.00095 0.046

GEM 0.22/0.19 0.047 0.01 0.0037 0.0098 0.16
RAP 0.19/0.19 0.0074 0.0017 0.00054 0.001 0.041

Tra.

PrivPGD 0.37/0.34 0.0055 0.0011 0.00032 0.00091 0.05
PGM+AIM 0.37/0.34 0.036 0.0027 0.00033 0.0022 0.042
PGM+MST 0.44/0.34 0.073 0.0058 0.00017 0.0031 0.055
Private GSD 0.38/0.34 0.011 0.0017 0.00028 0.00072 0.033

GEM 0.4/0.34 0.048 0.0051 0.00091 0.004 0.074
RAP 0.38/0.34 0.016 0.0019 0.0005 0.0016 0.041

Pub.

PrivPGD 0.28/0.27 0.011 0.0015 0.00061 0.0014 0.061
PGM+AIM 0.28/0.27 0.058 0.0024 0.00041 0.0023 0.028
PGM+MST 0.35/0.27 0.29 0.024 0.0092 0.04 0.21
Private GSD 0.29/0.27 0.012 0.0014 0.00012 0.00055 0.013

GEM 0.29/0.27 0.031 0.0029 0.00056 0.0017 0.025
RAP 0.29/0.27 0.022 0.0018 0.00055 0.0014 0.023

Mob.

PrivPGD 0.23/0.22 0.021 0.0029 0.00085 0.0026 0.13
PGM+AIM 0.23/0.22 0.054 0.0028 0.00051 0.0024 0.034
PGM+MST 0.24/0.22 0.13 0.0077 0.0027 0.013 0.093
Private GSD 0.24/0.22 0.0096 0.0012 0.00049 0.0006 0.016

GEM 0.24/0.22 0.062 0.0077 0.0021 0.0062 0.083
RAP 0.23/0.22 0.021 0.0018 0.00066 0.0017 0.031

Table 3: The mean of the errors from Section 4.1 averaged over 5 runs. For the downstream error, we addi-
tionally show the test error when training on the original private dataset. We choose ϵ = 1.0 and δ = 10−5.

dataset inference downstream covariance counting query thresholding query SW1 distance TV distance

Taxi

PrivPGD 2.3/2.2 0.0013 0.00077 0.00018 0.00062 0.033
PGM+AIM 2.3/2.2 0.0014 0.00057 0.00011 0.00046 0.018
PGM+MST 2.3/2.2 0.003 0.0011 0.00018 0.00055 0.029
Private GSD 2.4/2.2 0.0043 0.0018 0.00055 0.00092 0.066

GEM 2.8/2.2 0.081 0.017 0.0045 0.021 0.36
RAP 2.3/2.2 0.0061 0.0021 0.00052 0.0014 0.08

Fri.

PrivPGD 1.6/1.4 0.0022 0.00086 0.00053 0.00068 0.028
PGM+AIM 1.5/1.4 0.0016 0.00071 0.00056 0.00061 0.014
PGM+MST 1.5/1.4 0.0058 0.0027 0.00081 0.0015 0.049
Private GSD 1.6/1.4 0.0031 0.0015 0.00096 0.00065 0.024

GEM 2.8/1.4 0.031 0.0068 0.0014 0.0092 0.16
RAP 1.6/1.4 0.0048 0.002 0.00078 0.0016 0.046

Med.

PrivPGD 2.4/2.1 0.00032 0.0015 0.00019 0.00061 0.03
PGM+AIM 2.3/2.1 0.00076 0.0024 0.00053 0.00088 0.027
PGM+MST 2.1/2.1 0.00088 0.0018 0.00051 0.001 0.023
Private GSD 2.2/2.1 0.00041 0.0014 0.00024 0.00095 0.022

GEM 75/2.1 0.11 0.1 0.054 0.22 1.4
RAP 4.7/2.1 0.0051 0.013 0.0024 0.007 0.066

Diab.

PrivPGD 0.4/0.4 0.0033 0.0026 0.001 0.002 0.052
PGM+AIM 0.4/0.4 0.0031 0.0019 0.0014 0.0019 0.03
PGM+MST 0.41/0.4 0.0042 0.0067 0.00056 0.0019 0.045
Private GSD 0.41/0.4 0.0036 0.0024 0.00096 0.0022 0.039

GEM 0.41/0.4 0.04 0.031 0.0078 0.03 0.22
RAP 0.41/0.4 0.0073 0.0043 0.002 0.0054 0.071

Table 4: The mean of the errors from Section 4.1 averaged over 5 runs. For the downstream error, we addi-
tionally show the test error when training on the original private dataset. We choose ϵ = 1.0 and δ = 10−5.
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dataset inference downstream covariance counting query thresholding query SW1 distance TV distance

Emp.

PrivPGD 0.19/0.19 0.015 0.0022 0.00078 0.0023 0.11
PGM+AIM 0.19/0.19 0.049 0.0027 0.0031 0.0024 0.035
PGM+MST 0.23/0.19 0.1 0.0067 0.0047 0.0043 0.05
Private GSD 0.2/0.19 0.0088 0.0014 0.00083 0.00063 0.014

Inc.

PrivPGD 0.19/0.19 0.0098 0.0027 0.00086 0.0024 0.15
PGM+AIM 0.19/0.19 0.019 0.0025 0.00053 0.0022 0.048
PGM+MST 0.24/0.19 0.052 0.0077 0.0024 0.0056 0.11
Private GSD 0.2/0.19 0.0058 0.0018 0.0008 0.001 0.052

GEM 0.22/0.19 0.046 0.0099 0.0035 0.0096 0.16
RAP 0.2/0.19 0.011 0.0024 0.001 0.0019 0.072

Tra.

PrivPGD 0.38/0.34 0.027 0.0043 0.0012 0.004 0.19
PGM+AIM 0.37/0.34 0.05 0.0028 0.00027 0.0024 0.048
PGM+MST 0.44/0.34 0.07 0.0058 0.00018 0.003 0.057
Private GSD 0.38/0.34 0.012 0.0019 0.00033 0.00097 0.041

GEM 0.4/0.34 0.048 0.0051 0.00093 0.004 0.073
RAP 0.39/0.34 0.026 0.003 0.00093 0.0033 0.074

Pub.

PrivPGD 0.29/0.27 0.048 0.0058 0.0021 0.0064 0.24
PGM+AIM 0.29/0.27 0.1 0.0039 0.00093 0.0037 0.043
PGM+MST 0.31/0.27 0.16 0.0062 0.00031 0.0045 0.05
Private GSD 0.29/0.27 0.014 0.0017 0.0002 0.00085 0.019

GEM 0.29/0.27 0.044 0.0039 0.00053 0.0025 0.035
RAP 0.29/0.27 0.037 0.0033 0.0013 0.003 0.049

Mob.

PrivPGD 0.24/0.22 0.085 0.014 0.003 0.011 0.46
PGM+AIM 0.23/0.22 0.14 0.0052 0.0019 0.0049 0.068
PGM+MST 0.24/0.22 0.12 0.006 0.0019 0.0037 0.054
Private GSD 0.24/0.22 0.018 0.0019 0.00076 0.0016 0.035

GEM 0.24/0.22 0.062 0.0076 0.0018 0.0058 0.078
RAP 0.24/0.22 0.048 0.0043 0.0012 0.0048 0.08

Table 5: The mean of the errors from Section 4.1 averaged over 5 runs. For the downstream error, we addi-
tionally show the test error when training on the original private dataset. We choose ϵ = 0.2 and δ = 10−5.

dataset inference downstream covariance counting query thresholding query SW1 distance TV distance

Taxi

PrivPGD 2.4/2.2 0.0055 0.0025 0.00072 0.0026 0.11
PGM+AIM 2.3/2.2 0.0032 0.0011 0.00022 0.0013 0.037
PGM+MST 2.3/2.2 0.003 0.0014 0.0002 0.00087 0.046
Private GSD 2.4/2.2 0.0071 0.0022 0.00068 0.0015 0.087

GEM 2.8/2.2 0.082 0.017 0.0042 0.02 0.36
RAP 2.4/2.2 0.011 0.0036 0.00086 0.0036 0.17

Fri.

PrivPGD 2.5/1.4 0.011 0.0031 0.00071 0.0031 0.11
PGM+AIM 1.5/1.4 0.0048 0.0015 0.00061 0.0015 0.036
PGM+MST 1.6/1.4 0.0069 0.003 0.00082 0.0021 0.065
Private GSD 1.8/1.4 0.0077 0.0023 0.00088 0.0023 0.061

GEM 2.8/1.4 0.031 0.0065 0.0014 0.0083 0.15
RAP 2.1/1.4 0.017 0.0042 0.001 0.0055 0.12

Med.

PrivPGD 3/2.1 0.0013 0.0048 0.00082 0.0024 0.076
PGM+AIM 3.1/2.1 0.0027 0.013 0.0018 0.0033 0.12
PGM+MST 2.2/2.1 0.0026 0.0053 0.0013 0.0031 0.055
Private GSD 2.3/2.1 0.0028 0.0078 0.0017 0.0067 0.056

GEM 76/2.1 0.11 0.1 0.054 0.21 1.4
RAP 4.1/2.1 0.0084 0.018 0.0039 0.01 0.1

Diab.

PrivPGD 0.42/0.4 0.01 0.013 0.0045 0.0082 0.17
PGM+AIM 0.41/0.4 0.011 0.0085 0.0042 0.0056 0.071
PGM+MST 0.41/0.4 0.012 0.01 0.0044 0.008 0.1
Private GSD 0.41/0.4 0.014 0.0083 0.0041 0.011 0.12

GEM 0.41/0.4 0.043 0.033 0.0076 0.032 0.23
RAP 0.42/0.4 0.021 0.014 0.0061 0.018 0.19

Table 6: The mean of the errors from Section 4.1 averaged over 5 runs. For the downstream error, we addi-
tionally show the test error when training on the original private dataset. We choose ϵ = 0.2 and δ = 10−5.
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