
Task-Aware Dynamic KV Cache Eviction via Error-Driven Importance
Estimation for Efficient LLM Inference

Anonymous ACL submission

Abstract001

The increasing context length in Large Lan-002
guage Models (LLMs) introduces significant003
memory overhead due to the rapid growth of004
the Key-Value (KV) cache. Recent works have005
explored KV cache eviction methods for KV006
cache reduction in LLMs. However, these007
methods typically rely on simplistic calcula-008
tions for KV cache importance and apply rigid009
cache allocation strategies across layers, re-010
sulting in notable performance degradation.011
To address these limitations, we propose an012
Error-Driven Importance Estimation (EDIE)013
method that rigorously quantifies token criti-014
cality based on the output error of the atten-015
tion, and build upon it a Task-Aware Dynamic016
Allocation (TADA) mechanism that optimizes017
the layer-specific allocation of KV cache ca-018
pacity based on the task complexity and layer019
importance. Experiments show consistent ac-020
curacy gains on LongBench tasks, surpassing021
prior methods across cache budgets. Notably,022
on the Needle-in-a-Haystack task, our method023
achieves up to 15.7% absolute accuracy gain024
under extreme cache constraints.025

1 Introduction026

Large Language Models (LLMs) have achieved027

significant success and have been widely applied028

across various domains, such as text generation029

(Wu, 2024), machine translation (Zhao et al., 2024),030

and code generation (Wang and Chen, 2023). The031

context size of LLMs represents the length of con-032

text they can process, which is crucial for vari-033

ous real-world applications, such as long-document034

summarization and multi-turn conversations. Con-035

sequently, the context size of LLMs has been con-036

tinuously increasing, expanding from 2048 tokens037

in models like GPT-3 (Dettmers et al., 2022) and038

LLaMA1 (Touvron et al., 2023) to 128K tokens in039

LLaMA3.1 (Grattafiori et al., 2024).040

LLMs generate text sequentially (Vaswani et al.,041

2017). Modern LLMs utilize the KV cache (Shi042

et al., 2024), where key and value vectors from 043

previously processed tokens are stored and reused 044

during inference. However, the KV cache is pro- 045

portional to the context length, growing rapidly 046

as the context length increases. This leads to sub- 047

stantial requirements for GPU memory and band- 048

width, which can negatively impact the inference 049

efficiency of LLMs. 050

An approach to addressing the excessive size of 051

the KV cache is the KV cache eviction method. 052

This method reduces the KV cache size by prun- 053

ing the key-value pairs of less important tokens 054

and retaining only a limited number of key-value 055

pairs of important tokens in an attention layer. The 056

KV cache eviction method encompasses two inter- 057

dependent research components: (1) determining 058

the importance criteria of tokens; (2) deciding the 059

allocation scheme of KV cache capacity. 060

Recent works (Xiao et al., 2024; Zhang et al., 061

2023; Li et al., 2024; Cai et al., 2024; Yang et al., 062

2024; Feng et al., 2024; Guo et al., 2024a) have 063

focused on identifying which tokens should be re- 064

tained in the attention layer to improve efficiency. 065

These methods often prioritize tokens based on 066

heuristics, such as their position at the beginning of 067

the sequence, their presence within the recent de- 068

coding window, large accumulated attention scores 069

(AAS) or large products of the accumulated atten- 070

tion scores and value norms (PAASVN). Although 071

these metrics offer intuitive insights, they typically 072

consider only one aspect of token importance, such 073

as position, attention score, or value norm, and 074

thereby undermine the combined effects of these 075

elements. We argue that assessing token impor- 076

tance through the attention output error introduced 077

by token removal provides a more systematic and 078

holistic evaluation. 079

With regard to allocation schemes, several works 080

(Xiao et al., 2024; Zhang et al., 2023; Li et al., 2024; 081

Cai et al., 2024; Yang et al., 2024; Feng et al., 2024) 082

have been proposed to determine how many pairs 083
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Figure 1: KV cache capacity layer allocation methods.
In contrast to uniform and pyramid allocation, our allo-
cation is capable of adapting the layer allocation ratio
according to task differences, thereby achieving higher
average score across 16 tasks in the LongBench bench-
mark.

of key-value should be retained in different lay-084

ers. These methods typically adopt a fixed alloca-085

tion strategy that distributes the KV capacity either086

uniformly or in a pyramid-shaped manner across087

layers. However, such approaches lack flexibility088

and fail to account for the distinct roles and com-089

putational characteristics of different layers. Since090

each layer processes information in a unique man-091

ner, applying such allocation schemes across all092

layers is an oversimplification that could hinder the093

performance. In addition to layer-wise differences,094

KV caches are typically maintained independently095

for each attention head, suggesting that allocation096

decisions should also be made at the head level097

rather than uniformly across the model. Moreover,098

the nature of the task should guide the retention of099

KV pairs, as assuming all tasks require the same100

memory budget for each layer in LLM can lead to101

inefficient or suboptimal cache utilization.102

To address these limitations, we propose a task-103

aware dynamic allocation strategy that adaptively104

distributes KV cache capacity along three dimen-105

sions—layer, head, and task—guided by impor-106

tance scores estimated from token removal error.107

An illustration of our strategy is shown in Figure108

1, our allocation strategy yields allocation patterns109

that differ from those of uniform and pyramid al-110

locations. It adapts its allocation based on the task111

nature and layer error, demonstrating high flexibil-112

ity and performance.113

In summary, we propose: (1) A systematic114

importance estimation method derived from the115

perspective of minimizing attention output error,116

which precisely characterizes the importance of117

tokens; (2) A task-aware dynamic allocation strat-118

egy for KV cache capacity that builds upon EDIE,119

adapting to different tasks, attention layers, and 120

attention heads. 121

We conducted extensive experiments on the 122

LLaMA3.1-8B-Instruct and Mistral-7B-Instruct- 123

v0.2 models, evaluating our method in 16 long- 124

context tasks from the LongBench and Needle-In- 125

A-Haystack benchmarks. By accurately estimating 126

the importance of tokens and dynamically allocat- 127

ing KV cache capacity, our method achieves state- 128

of-the-art results. Code available soon. 129

2 Related Works 130

Recent studies have investigated methods for as- 131

sessing the importance of KV cache entries and 132

pruning less critical key-value pairs of tokens in 133

LLMs. H2O (Zhang et al., 2023) employ the accu- 134

mulated attention scores to estimate the importance 135

of the tokens and dynamically retains a combina- 136

tion of recent and important tokens in the KV cache. 137

StreamingLLM (Xiao et al., 2024) addresses long- 138

context inference bottlenecks by preserving both 139

recent tokens and initial attention sinks in the KV 140

cache. SnapKV (Li et al., 2024) introduces a KV 141

cache compression method that identifies critical 142

tokens through the accumulated attention scores of 143

the observation tokens. VATP (Guo et al., 2024a) 144

combines attention scores and value vector norms 145

to estimate the importance of the tokens. These 146

methods lack rigorous theoretical derivation and 147

cannot identify important keys and values well, 148

leading to significant performance degradation. 149

Other recent studies have investigated methods 150

for determining the KV cache capacity. Pyra- 151

midKV (Cai et al., 2024) and PyramidInfer (Yang 152

et al., 2024) introduce a pyramid-shaped KV cache 153

compression method that dynamically allocates 154

larger cache budgets to lower layers (for dispersed 155

information) and smaller ones to higher layers. 156

AdaKV (Feng et al., 2024) dynamically allocates 157

the KV cache capacity of different attention heads 158

in the same layer based on their mean attention 159

scores. DynamicKV (Zhou et al., 2024) dynam- 160

ically adjusts the number of retained tokens per 161

layer based on attention scores for each task. (He 162

et al., 2025) allocate cache based on semantic differ- 163

entiation of attention heads. These methods either 164

rely on predefined KV cache allocation across lay- 165

ers or dynamic KV cache allocation based on atten- 166

tion scores , rather than using error-guided strategy 167

to assess the impact of token removal across layers, 168

tasks, and heads. 169
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Figure 2: Method overview. Left side shows our error-driven importance estimation method that rigorously quantifies
token importance based on the output error of the attention. Right side shows our task-aware dynamic allocation
strategy for KV cache capacity that adaptively distributes KV cache capacity along layer, head, and task dimensions.

3 Method170

3.1 Preliminary171

The output of an attention head at position j is172

defined as follows:173

aji =
exp(qjk

T
i /

√
dh)∑

i exp(qjk
T
i /

√
dh)

(1)174

175
oj =

∑
i

ajivi (2)176

where qj is the query vector of token j, ki is the177

key vector of token i, dh is the attention head di-178

mension, aji is the attention score between query179

token with index j and previous token with index180

i, and vi is the value vector of token in index i.181

Traditional methods typically measure importance182

I based on attention scores (Zhang et al., 2023) or183

a combination of attention scores and value states184

(Guo et al., 2024b) using the following equations:185

IAAS
i =

∑
t−w<j≤t

aji (3)186

187
IPAASV N
i =

∑
t−w<j≤t

aji ∥vi∥1 (4)188

In Equation (4), w represents the window size for189

the observation window, and t represents the latest190

token in the input sequence.191

3.2 Error-Driven Importance Estimation192

An overview of the importance estimation is shown193

on the left of Figure 2. Here we derive the im-194

portance of tokens from the error of the attention195

output step-by-step. We define the importance of a196

token as the error of the attention output introduced 197

by its removal. If the key-value pair of m-th token 198

is removed, the new attention output o′j(m) thus 199

become: 200

âji (m) =
exp(qjk

T
m/

√
dh)∑

i ̸=m exp(qjk
T
m/

√
dh)

=
aji

1− ajm
(5) 201202

o′j(m) =
∑
i ̸=m

âji (m)vi =
∑
i ̸=m

aji
1− ajm

vi (6) 203

where âji (m) is the attention score between query 204

token with index j and previous token with index i 205

when the key-value pair of m-th token is removed. 206

Previous methods overlook the normalization of 207

Softmax and thus do not consider the denomina- 208

tor term 1− ajm in the formula, which affects the 209

effectiveness of the methods. The L1 norm of the 210

token removal error Ej
m = ||oj − o′j(m)||1 due to 211

the removal of the m-th token is: 212

Ej
m =

ajm

1− ajm
∥vm − oj∥1 (7) 213

Figure 3 presents the different token importance 214

estimation scores versus token removing error. The 215

most important tokens with the highest attention 216

output errors cannot be effectively estimated using 217

either AAS or PAASVN. They both miss a substan- 218

tial number of important tokens. 219

Computing directly using the error function in 220

Equation (7) for all pairs of i and j incurs overhead 221

O(wLD), where w is the size of the observation 222

window, L is the sequence length, D is the hidden 223

size. Instead, we can approximate it by its upper 224

error bound, with only O(LD) overhead. Using 225
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Figure 3: Token importance estimation from previous work vs. token removing error. Top-left figure presents the
top-16 most important tokens selected based on the output error caused by token removal. Top-right and bottom-left
figures show the tokens determined by the AAS method and the PAASVN method respectively. Bottom-right
figure presents the tokens selected based on our EDIE method. The AAS method and PAASVN method both miss
important tokens, while our EDIE method find all important tokens.

the triangle inequality, the upper bound of the error226

is:227

Ej
m ≤ U j

m =
ajm

1− ajm
(∥vm∥1 + ∥oj∥1) (8)228

where U j
m is the upper bound of the error of the229

attention head at step j when removing the key and230

value of token m. We introduce α in the denom-231

inator to prevent overflow and excessively large232

values. The revised formula is:233

Ũ j
m =

ajm

1 + α− ajm
(∥vm∥1 + ∥oj∥1) (9)234

The final form of the upper bound error Ũ j
m is pre-235

sented as a multi-factor approach, which includes236

the attention score, the L1 norm of the value state,237

the L1 norm of the output state and attention renor-238

malization when a token is removed.239

For the final importance estimation, we adopt a240

weighted observation window approach, in contrast241

to previous works that assign equal weights to all242

tokens within the window (as shown in Equations243

3–4). This is because not all tokens in the window244

contribute equally. Tokens with larger attention245

score tend to carry more information and should246

be more heavily weighted. To measure this weight,247

we use the maximum attention score of each token:248

cj = max
w<i≤t−2w

aji (10)249

cj is the weight for the token j within the observa-250

tion window. Note that attention scores for tokens251

at the beginning of the input or those close to the 252

observation tokens tend to be large, while more 253

informative scores reflecting detailed context are 254

often found in the middle of the sequence. Thus 255

we manually exclude these regions when determin- 256

ing the maximum attention score. We found that 257

excluding the (i ≤ w) and (i > t − 2w) reaches 258

the best practice in experiment. 259

The final importance calculation accumulates 260

weighted Ũ j
i in the observation window w: 261

Ii =
∑

t−w<j≤t

cjŨ
j
i (11) 262

Ii is the importance of the i-th token. This im- 263

portance is directly used for estimating the impor- 264

tance of each token within each attention head. For 265

grouped query attention (GQA), we compute the 266

importance of the i-th token by summing the values 267

of Ii across different heads that belong to the same 268

key-value group. 269

3.3 Task-aware dynamic allocation of KV 270

Cache Capacity 271

Having established the importance estimation 272

based on token removal error, we first use it to 273

estimate layer-wise error, which in turn is used to 274

assess task difference. Together, these components 275

inform the final allocation of KV cache across lay- 276

ers, heads, and tasks. An overview is shown on the 277

right side of Figure 2. 278

For layer-wise error, we consider the direct out- 279

put error introduced by pruning a subset of tokens 280
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within the layer. However, since each layer con-281

tributes differently to the final output of the model,282

we also account for its indirect impact on the over-283

all model error, reflecting the layer’s significance284

within the network. To estimate the direct output285

error of the layer itself, we consider the output er-286

ror of the layer, which can be approximated by the287

sum of the upper bounds Ii on the error of tokens288

outside the observation window across all attention289

heads. The layer internal error equation follows:290

Einternal =
∑
h

∑
i≤t−w

Ihi (12)291

For the indirect impact, we quantify the influence292

of each layer’s output error to the model output by293

analyzing the angular change in the hidden states.294

We consider the cosine dissimilarity between the295

residual R from previous layer and the sum of the296

residual and the current layer output (R + O) to297

obtain the final output error of the model:298

El
layer = (1− Rl · (Ol +Rl)

∥Rl∥2 ∥Ol +Rl∥2
)El

internal (13)299

Since the absolute values of hidden states are nor-300

malized through layer normalization, the direc-301

tional information of the hidden states becomes302

the primary focus. Therefore, the impact of the303

output error of each layer to the final model output304

is reflected in its ability to alter the direction of the305

hidden states. Thus, we employ cosine dissimilar-306

ity to quantify the influence of each layer’s output307

error on the model output.308

Unlike previous methods that treat all inputs uni-309

formly, we incorporate task context into the al-310

location process, allowing KV cache capacity to311

be dynamically distributed based on task-specific312

characteristics. We reuse the sum of the layer-wise313

errors across all layers to define the difficulty for a314

given context:315

Dk =
∑
l

El,k
layer (14)316

where k indicates the k-th input context. Note that317

computing Dk directly requires summing the errors318

across all layers, which is impractical as it would319

require completing the full forward pass in advance.320

To address this, we use an equivalent but more321

computationally efficient task difficulty term – D̄,322

which calculates the average value of D:323

D̄k =
1

k

∑
i<k

Di (15)324

Similarly, we use the average value of El
layer as the 325

layer difficulty of the layer in the task: 326

Ēl,k
layer =

1

k

∑
i<k

El,i
layer (16) 327

The final number of KV cache capacity N l
k as- 328

signed to layer l for context k is then determined 329

by distributing the total KV cache capacity C pro- 330

portionally to each layer’s difficulty: 331

N l
k =

Ēk,l
layer

D̄k
C (17) 332

333∑
l

N l
k = C (18) 334

After determining the per-layer capacity, we pro- 335

ceed to select which KV entries to retain at the 336

head level. Specifically, we preserve the top N l
k 337

token positions with the highest importance scores 338

from Equation(11), regardless of which heads they 339

belong to. This importance-based selection natu- 340

rally supports uneven allocation between heads, as 341

some heads may retain more tokens than others. 342

For GQA, only a single KV cache is maintained 343

for each key-value group. Our method thus enables 344

dynamic KV cache allocation across layers, heads, 345

and tasks based on token importance. 346

4 Experiments 347

4.1 Settings 348

Datasets: To assess the effectiveness of our 349

method in real-world scenarios, we evaluate our 350

methods on 2 open-source datasets. We adopt 351

LongBench (Bai et al., 2023), which comprises 352

16 English tasks, each containing between 150 353

and 500 samples, and covers a diverse range of 354

long-text applications including question answer- 355

ing, text summarization, etc. We also evaluate 356

our method on the Needle-in-a-Haystack task (Liu 357

et al., 2024) to assess key information identification 358

and in-context retrieval over long sequences. 359

Models&Baselines: We use two open-source 360

LLMs: LLaMA3.1-8B-Instruct(Grattafiori et al., 361

2024) and Mistral-7B-Instruct-v0.2 (Jiang et al., 362

2023) for experiments. We compare our works 363

with previous works: StreamingLLM(Xiao et al., 364

2024), PyramidKV (Cai et al., 2024), and AdaKV 365

(Feng et al., 2024). Since AdaKV+SnapKV out- 366

performs AdaKV+PyramidKV in its original paper, 367

we refer to AdaKV+SnapKV simply as AdaKV in 368
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Table 1: Detailed results of LLaMA-3.1-8B-Instruct and Mistral-7B-Instruct-v0.2 on LongBench.

Single-Doc. QA Multi-Doc. QA Summarization Few-shotLearning Synthetic Code

NrtvQA

Qasper

M
F-en

HotpotQA

2W
ikiM

QA

M
usique

GovReport

QM
Sum

M
ultiNews

TREC

TriviaQA

SAM
Sum

PCount
PRe

Lcc
RB-P

Ave.
Score

LLaMA-3.1-8B-Instruct, B=FULL
Full Cache 30.22 45.37 55.80 55.97 45.00 31.26 35.12 25.38 27.20 72.50 91.64 43.57 9.41 99.50 62.88 56.43 49.20

LLaMA-3.1-8B-Instruct, B=128
StreamingLLM 22.24 20.87 31.72 44.02 37.55 24.54 18.76 21.09 18.48 40.50 84.41 38.82 8.00 99.50 57.02 47.29 38.43
PyramidKV 25.70 24.69 47.74 52.87 40.57 27.23 20.02 22.38 19.74 44.50 88.81 40.30 7.22 99.50 57.25 49.90 41.78
AdaKV 24.90 24.41 49.95 53.15 41.73 28.55 20.54 23.21 20.28 50.50 89.49 40.71 7.45 99.00 58.74 52.40 42.81
EDIE+TADA 28.93 35.19 54.16 56.47 45.90 30.65 21.19 23.08 20.94 56.50 91.11 38.87 9.25 99.50 59.83 50.71 45.14

LLaMA-3.1-8B-Instruct, B=512
StreamingLLM 25.51 25.78 34.19 45.01 35.91 24.93 23.61 21.26 23.57 57.50 87.86 41.44 6.98 96.50 60.85 51.02 41.37
PyramidKV 28.71 39.89 52.86 54.00 44.20 31.22 24.74 23.73 24.28 66.00 91.07 41.42 8.39 99.50 61.99 53.44 46.59
AdaKV 29.07 40.16 52.44 53.90 43.05 31.10 25.75 24.39 24.85 69.00 92.34 42.05 7.98 99.50 63.43 55.32 47.15
EDIE+TADA 29.70 43.35 56.95 57.62 48.65 31.13 25.34 24.17 24.80 70.50 91.73 41.76 8.50 99.50 64.48 54.31 48.28

Mistral-7B-Instruct-v0.2, B=FULL
Full Cache 26.74 32.84 50.00 43.45 27.77 18.49 32.91 24.64 26.99 71.00 86.23 43.32 2.94 86.31 57.39 54.32 42.83

Mistral-7B-Instruct-v0.2, B=128
StreamingLLM 18.02 13.32 27.41 30.49 21.81 11.85 15.49 19.42 17.84 44.00 80.74 37.35 3.57 22.93 49.07 43.74 28.57
PyramidKV 20.78 19.76 42.92 36.31 22.37 13.91 18.84 21.84 20.42 46.50 84.55 40.23 2.79 65.46 51.49 46.83 34.69
AdaKV 20.10 20.14 44.20 37.32 23.90 15.29 19.15 22.27 20.71 50.00 84.20 39.64 3.09 67.11 52.26 48.25 35.48
EDIE+TADA 21.03 23.75 47.81 38.94 26.13 16.37 20.90 23.66 22.07 64.00 85.54 40.70 3.54 73.22 54.55 51.39 38.35

Mistral-7B-Instruct-v0.2, B=512
StreamingLLM 21.12 15.99 30.82 30.39 22.32 10.92 21.43 19.98 22.88 61.50 82.11 41.89 3.21 17.32 53.43 47.05 31.40
PyramidKV 21.81 24.33 48.67 39.31 25.14 17.51 23.22 23.16 23.87 66.00 85.20 41.96 3.08 85.71 55.10 50.98 39.69
AdaKV 23.62 27.34 48.70 39.81 26.42 17.36 23.42 23.26 24.50 67.50 86.46 42.04 3.04 86.64 56.11 53.05 40.58
EDIE+TADA 25.84 30.21 49.05 42.43 26.43 18.37 25.26 23.69 25.18 71.00 86.47 42.85 3.18 85.93 56.15 53.69 41.61

the results that follow. The full KV cache is also369

presented to assess performance degradation.370

Parameters: Our method adopts an observation371

window size w of 32 and a max-pooling kernel size372

of 7, following the configuration settings in AdaKV373

which also applies a similar window approach. The374

α in Equation(9) is by default set to 0.1. The range375

of i in Equation(10) is by default set to w to t−2w.376

4.2 LongBench377

Figure 4: Results of LLaMA-3.1-8B-Instruct and
Mistral-7B-Instruct-v0.2 on LongBench.

The results are presented in Figure 4 and Table378

1. By combining EDIE and TADA, our method379

demonstrates consistent superiority across both the380

LLaMA3.1-8B-Instruct and Mistral-7B-Instruct-381

v0.2 architectures under varying KV cache bud-382

gets (128/256/512/1024), achieving higher average 383

scores than baselines on the LongBench bench- 384

mark. Under KV cache budget=128, our method 385

achieves SOTA performance on 13/16 LongBench 386

tasks for both LLaMA3.1-8B-Instruct and 15/16 387

LongBench tasks for Mistral-7B-Instruct-v0.2 mod- 388

els, and achieves near SOTA performance on the 389

remaining tasks. Our method also demonstrates 390

consistent performance superiority in other evalu- 391

ated cache budgets, which conforms its effective- 392

ness to different budgets. 393

4.3 Needle-In-A-Haystack 394

We primarily compared the results with AdaKV 395

in Figure 5. The vertical axis shows the inser- 396

tion depth of the needle, and the horizontal axis 397

shows the context length. Each grid cell reflects 398

a test result: green for successful retrieval, yel- 399

low for failure. Our approach significantly out- 400

performs AdaKV for both LLaMA3.1-8B-Instruct 401

and Mistral-7B-Instruct-v0.2 models under dif- 402

ferent KV cache budgets (128/512), demonstrat- 403

ing its effectiveness in long-text processing. For 404

LLaMA3.1-8B-Instruct, when the budget is set to 405

128, our approach improves the accuracy from 72.6 406

to 88.3 compared to AdaKV, demonstrating its su- 407

perior performance. Notably, on both models, our 408

approach achieves accuracy comparable to AdaKV 409
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Figure 5: The evaluation results from Needle-In-A-Haystack across 128 and 512 cache sizes for LLaMA3.1-8B-
Instruct and Mistral-7B-Instruct-v0.2 in context size of 32k.

while using only a quarter of its KV cache budget.410

This demonstrates our method’s ability to allocate411

KV cache capacity more effectively across differ-412

ent layers and more precisely identify important413

tokens for KV cache storage.414

4.4 Ablation Study415

We conducted ablation experiments on EDIE,416

TADA and the hyperparameter α using the Mistral-417

7B-Instruct-v0.2 model with a budget of 128. The418

results are presented in Table 2. Compared to the419

baseline, the EDIE method alone, when combined420

with Uniform and Pyramid allocation, improves421

the model’s accuracy on LongBench and Needle-422

in-a-Haystack, demonstrating its effectiveness. The423

results also indicate that EDIE is not sensitive to424

the hyperparameter α, and setting it to 0.1 yields425

optimal performance. Finally, applying the TADA426

method on top of EDIE further enhances the per-427

formance, confirming the effectiveness of TADA.428

429

To examine the observation window inclusion430

range used in our weighting strategy as in Equa-431

tion (10), we conducted ablation experiments using432

various definitions of the weight coefficient cj . As433

shown in Table 3, removing token weights alto-434

gether ("None") already offers a strong baseline,435

but incorporating attention-based weighting im-436

proves performance on both tasks. Notably, assign-437

ing weights using only tokens in the mid-sequence438

Table 2: The Ablation study for EDIE and TADA with
Mistral-7B-Instruct-v0.2 in the budget of 128. The val-
ues 0.05, 0.1, and 0.2 are used as the hyperparameter α
in the EDIE method. The tw refers to the token weight-
ing mechanism in EDIE, which represents the weighting
coefficient cj in Equation (11). The cd denotes the co-
sine dissimilarity employed in the TADA method in
Equation (13).

Method
LongBench
Avg Score

Needle in
A Haystack

AAS + Uniform 35.48 78.5
PAASVN + Uniform 36.12 82.2
EDIE0.1,w/ tw + Uniform 37.49 89.0
EDIE0.1,w/o tw + Uniform 36.73 83.1
EDIE0.1,w/ tw + Uniform 37.49 89.0
EDIE0.05,w/ tw + Uniform 37.42 88.9
EDIE0.2,w/ tw + Uniform 37.43 88.9
EDIE0.1,w/ tw + Uniform 37.49 89.0
EDIE0.1,w/ tw + Pyramid 37.61 87.0
EDIE0.1,w/ tw + TADAw/o cd 37.37 92.6
EDIE0.1,w/ tw + TADAw/ cd 38.35 91.6

range (w < i ≤ t − 2w), where attention scores 439

are more likely to reflect contextually relevant in- 440

formation, achieves the best results. This confirms 441

that not all tokens contribute equally and limit the 442

observation range for maximum attention leads to 443

more reliable importance estimation. 444

To assess the role of cosine dissimilarity in 445

Equation (13) for modeling the influence of each 446

layer’s output on the final prediction, we compare 447

model performance with and without its inclusion. 448
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Table 3: The Ablation study for the weight cj of tokens
within the observation window with Mistral-7B-Instruct-
v0.2 in the budget of 128.

cj
LongBench
Avg Score

Needle in
A Haystack

None 37.60 86.2
maxi(a

j
i ) 36.20 85.0

maxi≤t−2w(a
j
i ) 36.32 85.7

maxi>w(a
j
i ) 37.16 89.3

maxw<i≤t−2w(a
j
i ) 38.35 91.6

For LLaMA3.1-8B-Instruct, it substantially boosts449

8.6% Needle-in-a-Haystack accuracy, with only450

a minimal drop of 0.06 in LongBench, suggest-451

ing better selective retrieval. In contrast, Mistral-452

7B-Instruct-v0.2 sees a notable LongBench gain453

but a slight drop in Needle accuracy. Given the454

complexity of LongBench, a 0.98 improvement455

is particularly meaningful, suggesting enhanced456

robustness on more challenging & diverse tasks.457

These results show that cosine dissimilarity benefits458

models differently—enhancing in-context retrieval459

for LLaMA3.1 and overall robustness for Mistral.460

Overall, it supports more accurate layer importance461

assessment for adaptive KV cache allocation.462

Table 4: The Ablation study for the cosine dissimilarity
(cd) in Equation(13) with LLaMA3.1-8B-Instruct and
Mistral-7B-Instruct-v0.2 in the budget of 128.

Model TADA
LongBench
Avg Score

Needle in
A Haystack

LLaMA3.1
w/o cd 45.22 79.7
w/ cd 45.16 88.3

Mistral-v0.2
w/o cd 37.37 92.6
w/ cd 38.35 91.6

4.5 Computational Efficiency463

We evaluated the computational efficiency of the464

method using the Mistral-7B-Instruct-v0.2 model,465

tested on one AMD Instinct MI250 GPU. The con-466

text size ranged from 4K to 128K, with the number467

of generation tokens set to 256 and the batch-size468

set to 1. The results are presented in Figure 6.469

Compared to Full Cache, our method significantly470

reduces memory overhead and inference latency471

for longer sequences. Compared to AdaKV, our472

method does not introduce additional memory over-473

head or inference latency.474

Our method seamlessly adapt to multi-batchsize475

setup. We benchmarked the efficiency of both full476

(a) Memory Overhead (b) Runtime Efficiency

Figure 6: Computational Efficiency for Mistral-7B-
Instruct-v0.2 on the AMD Instinct MI250 GPU.

cache method and our method under an 64GB GPU 477

memory constraint using the Mistral-7B-Instruct- 478

v0.2 model. As shown in Table 5, our method 479

consistently supports larger maximum batch sizes 480

across all context lengths. It also achieves higher 481

throughput at longer context lengths, indicating 482

better utilization of computational resources. Over- 483

all, these results demonstrate that EDIE+TADA 484

offers superior efficiency for high-throughput, long- 485

sequence inference workloads. 486

Table 5: Comparison of maximum batch size and
throughput on Mistral-7B-Instruct-v0.2 under 64GB
GPU memory.

Full Cache EDIE+TADA
Context
Length

Max
Batch Size

Throughput
(tokens/s)

Max
Batch Size

Throughput
(tokens/s)

4k 32 56.64 64 127.15
8k 16 27.97 32 69.41
16k 8 13.22 16 34.42
32k 4 6.08 8 15.98
64k 2 2.77 4 6.95

128k 1 1.07 2 2.74
256k - - 1 0.95

5 Conclusion 487

In this study, we propose a task-aware KV cache 488

eviction strategy for large language models, where 489

dynamic allocation of KV cache capacity is guided 490

by error-driven importance estimation. Our method 491

precisely quantifies the importance of KV cache 492

entries via estimating token removal error, and 493

achieves full dynamic allocation of the KV cache 494

capacity by introducing task difference. Experi- 495

ments show our approach consistently outperforms 496

existing methods, achieving new SOTA results 497

on LongBench and Needle-In-A-Haystack bench- 498

marks. Our results highlight a promising direction 499

for reducing memory overhead in sigle/multi-batch 500

LLM inference while preserving top accuracy in 501

long context understanding. 502
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6 Limitations503

While our method demonstrates strong efficiency504

and achieves state-of-the-art performance on long-505

context benchmarks, it has not yet been integrated506

into optimized attention kernels such as FlashAt-507

tention. Incorporating our KV cache reduction508

strategy into such kernels could potentially yield509

further improvements in both speed and memory510

efficiency, which we leave for future work.511
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A Implementation Details620

Consistent with AdaKV, our method adopts a win-621

dow size of 32, utilizing mean pooling with a kernel622

size of 7. AdaKV is configured with a floor ratio of623

0.2, a window size of 32, and also employs mean624

pooling with a kernel size of 7. The keys and values625

of tokens within the recent window size are uncon-626

ditionally retained and are also counted toward the627

budget.628

B Dataset Details629

We select the English subset from Longbench (Bai630

et al., 2023). Table 6 shows the information on 16631

tasks that we use in the experiments.632

Dataset Avg len Metric #data

NarrativeQA 18,409 F1 200
Qasper 3,619 F1 200
MultiFieldQA-en 4,559 F1 150

HotpotQA 9,151 F1 200
2WikiMultihopQA 4,887 F1 200
MuSiQue 11,214 F1 200

GovReport 8,734 Rouge-L 200
QMSum 10,614 Rouge-L 200
MultiNews 2,113 Rouge-L 200

TREC 5,177 Accuracy (CLS) 200
TriviaQA 8,209 F1 200
SAMSum 6,258 Rouge-L 200

PassageCount 11,141 Accuracy (EM) 200
PassageRetrieval-en 9,289 Accuracy (EM) 200

LCC 1,235 Edit Sim 500
RepoBench-P 4,206 Edit Sim 500

Table 6: Dataset statistics in LongBench, including key
metrics. ’Avg len’ represents the average number of
words for English datasets (or code). ’Accuracy (CLS)’
denotes classification accuracy, while ’Accuracy (EM)’
refers to exact match accuracy.

C System Configuration Details633

All experiments are conducted on a server equipped634

with two AMD EPYC™ 73F3 16-Core proces-635

sors, 1024 GB of system memory, and 8 AMD636

Instinct™ MI250 GPUs. The software environ- 637

ment includes ROCM™ 6.3.2 and Ubuntu 22.04.5 638

LTS. We use PyTorch 2.4.0 as the deep learning 639

framework, along with HuggingFace Transformers 640

4.44.2 and FlashAttention 2.6.3. 641

D Detailed Experiment Results 642

Table 7 presents the detailed results of LLaMA- 643

3.1-8B-Instruct on LongBench. Table 8 presents 644

the detailed results of Mistral-7B-Instruct-v0.2 on 645

LongBench. The EDIE+TADA method achieves 646

the highest average score across 16 tasks under all 647

four KV cache budget settings (128, 256, 512, and 648

1024). 649

Figure 7 shows the evaluation results from 650

the Needle-In-A-Haystack benchmark across KV 651

cache budgets of 64, 128, 256, and 512 for 652

LLaMA3.1-8B-Instruct with a context length of 653

32k. Our method consistently outperforms AdaKV 654

across all budget settings, achieving substantial 655

improvements. Notably, at a budget of 256, our 656

approach reaches an accuracy of 99.9%, com- 657

pared to only 86.4% achieved by AdaKV. Figure 658

8 presents the evaluation results from the Needle- 659

In-A-Haystack benchmark across cache sizes of 660

64, 128, 256, and 512 for Mistral-7B-Instruct-v0.2 661

with a context length of 32k. Our method consis- 662

tently outperforms AdaKV across all cache size 663

settings, demonstrating significant improvements. 664

Specifically, at a cache size of 128, our approach 665

achieves an accuracy of 91.6%, whereas AdaKV 666

attains only 78.5%. 667
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Table 7: Detailed results of LLaMA-3.1-8B-Instruct on LongBench.

Single-Doc. QA Multi-Doc. QA Summarization Few-shotLearning Synthetic Code

NrtvQA

Qasper

M
F-en

HotpotQA

2W
ikiM

QA

M
usique

GovReport

QM
Sum

M
ultiNews

TREC

TriviaQA

SAM
Sum

PCount
PRe

Lcc
RB-P

Ave.
Score

Full Cache 30.22 45.37 55.80 55.97 45.00 31.26 35.12 25.38 27.20 72.50 91.64 43.57 9.41 99.50 62.88 56.43 49.20
B=128

StreamingLLM 22.24 20.87 31.72 44.02 37.55 24.54 18.76 21.09 18.48 40.50 84.41 38.82 8.00 99.50 57.02 47.29 38.43
PyramidKV 25.70 24.69 47.74 52.87 40.57 27.23 20.02 22.38 19.74 44.50 88.81 40.30 7.22 99.50 57.25 49.90 41.78
AdaKV 24.90 24.41 49.95 53.15 41.73 28.55 20.54 23.21 20.28 50.50 89.49 40.71 7.45 99.00 58.74 52.40 42.81
EDIE+TADA 28.93 35.19 54.16 56.47 45.90 30.65 21.19 23.08 20.94 56.50 91.11 38.87 9.25 99.50 59.83 50.71 45.14

B=256
StreamingLLM 22.71 23.79 31.80 43.43 36.55 25.55 21.29 20.68 20.67 46.00 87.11 40.82 7.20 99.50 59.89 49.19 39.76
PyramidKV 25.53 33.15 51.44 55.03 42.42 28.62 22.57 23.37 22.33 56.50 91.19 41.28 6.97 99.50 60.36 51.18 44.47
AdaKV 26.11 33.39 51.44 54.94 42.15 29.54 23.01 23.85 22.88 63.50 91.57 40.94 8.00 99.50 61.95 54.33 45.44
EDIE+TADA 28.23 39.82 56.52 57.89 48.21 30.27 23.60 24.01 23.27 65.00 91.89 41.42 8.49 99.50 63.94 53.66 47.23

B=512
StreamingLLM 25.51 25.78 34.19 45.01 35.91 24.93 23.61 21.26 23.57 57.50 87.86 41.44 6.98 96.50 60.85 51.02 41.37
PyramidKV 28.71 39.89 52.86 54.00 44.20 31.22 24.74 23.73 24.28 66.00 91.07 41.42 8.39 99.50 61.99 53.44 46.59
AdaKV 29.07 40.16 52.44 53.90 43.05 31.10 25.75 24.39 24.85 69.00 92.34 42.05 7.98 99.50 63.43 55.32 47.15
EDIE+TADA 29.70 43.35 56.95 57.62 48.65 31.13 25.34 24.17 24.80 70.50 91.73 41.76 8.50 99.50 64.48 54.31 48.28

B=1024
StreamingLLM 24.97 30.22 37.06 46.57 39.14 25.24 26.01 21.08 25.72 63.50 88.87 42.28 6.98 89.00 61.30 53.40 42.58
PyramidKV 29.62 43.66 54.10 55.06 44.22 31.30 27.27 24.30 25.68 68.50 91.27 41.96 7.73 99.50 63.13 55.85 47.70
AdaKV 29.23 44.09 53.82 54.80 44.01 31.40 28.86 24.73 26.04 72.50 91.72 42.56 7.82 99.50 63.22 56.33 48.16
EDIE+TADA 31.14 45.72 57.36 57.71 48.39 31.42 27.22 24.84 25.71 72.00 92.04 42.32 8.47 99.50 65.28 55.70 49.05

Table 8: Detailed results of Mistral-7B-Instruct-v0.2 on LongBench.

Single-Doc. QA Multi-Doc. QA Summarization Few-shotLearning Synthetic Code

NrtvQA

Qasper

M
F-en

HotpotQA

2W
ikiM

QA

M
usique

GovReport

QM
Sum

M
ultiNews

TREC

TriviaQA

SAM
Sum

PCount
PRe

Lcc
RB-P

Ave.
Score

Full Cache 26.74 32.84 50.00 43.45 27.77 18.49 32.91 24.64 26.99 71.00 86.23 43.32 2.94 86.31 57.39 54.32 42.83
B=128

StreamingLLM 18.02 13.32 27.41 30.49 21.81 11.85 15.49 19.42 17.84 44.00 80.74 37.35 3.57 22.93 49.07 43.74 28.57
PyramidKV 20.78 19.76 42.92 36.31 22.37 13.91 18.84 21.84 20.42 46.50 84.55 40.23 2.79 65.46 51.49 46.83 34.69
AdaKV 20.10 20.14 44.20 37.32 23.90 15.29 19.15 22.27 20.71 50.00 84.20 39.64 3.09 67.11 52.26 48.25 35.48
EDIE+TADA 21.03 23.75 47.81 38.94 26.13 16.37 20.90 23.66 22.07 64.00 85.54 40.70 3.54 73.22 54.55 51.39 38.35

B=256
StreamingLLM 19.08 15.30 28.27 31.87 22.26 11.37 18.08 19.37 19.99 51.00 80.92 39.62 3.57 15.90 51.74 45.22 29.60
PyramidKV 20.39 22.63 46.67 38.64 23.73 15.82 21.34 22.30 22.01 57.50 83.63 40.49 2.99 75.84 53.56 50.03 37.35
AdaKV 20.97 23.71 47.52 38.48 24.77 15.76 21.89 22.94 22.70 63.50 86.25 40.75 2.46 80.24 54.42 51.46 38.61
EDIE+TADA 23.00 25.90 49.31 39.43 24.91 16.46 23.40 23.54 23.73 68.50 86.50 41.74 2.83 83.34 54.98 52.62 40.01

B=512
StreamingLLM 21.12 15.99 30.82 30.39 22.32 10.92 21.43 19.98 22.88 61.50 82.11 41.89 3.21 17.32 53.43 47.05 31.40
PyramidKV 21.81 24.33 48.67 39.31 25.14 17.51 23.22 23.16 23.87 66.00 85.20 41.96 3.08 85.71 55.10 50.98 39.69
AdaKV 23.62 27.34 48.70 39.81 26.42 17.36 23.42 23.26 24.50 67.50 86.46 42.04 3.04 86.64 56.11 53.05 40.58
EDIE+TADA 25.84 30.21 49.05 42.43 26.43 18.37 25.26 23.69 25.18 71.00 86.47 42.85 3.21 85.93 56.15 53.69 41.61

B=1024
StreamingLLM 22.15 18.64 31.03 32.94 22.45 11.93 23.89 20.60 25.48 64.00 84.71 41.59 3.49 22.15 53.72 49.19 33.00
PyramidKV 24.12 29.44 48.83 40.30 25.94 19.42 25.29 23.52 25.77 68.00 86.30 41.62 2.84 86.07 56.06 52.57 41.01
AdaKV 25.11 29.98 49.27 40.62 27.05 18.54 25.85 23.46 26.08 68.50 86.30 42.77 2.92 88.27 56.88 54.16 41.61
EDIE+TADA 26.99 32.11 49.46 42.74 27.26 19.11 28.51 23.76 26.60 71.00 86.54 43.38 2.82 86.14 57.47 53.92 42.36
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Figure 7: The evaluation results from Needle-In-A-Haystack across 64, 128, 256, and 512 cache sizes for LLaMA3.1-
8B-Instruct in context size of 32k.

Figure 8: The evaluation results from Needle-In-A-Haystack across 64, 128, 256, and 512 cache sizes for Mistral-
7B-Instruct-v0.2 in context size of 32k.

12


	Introduction
	Related Works
	Method
	Preliminary
	Error-Driven Importance Estimation
	Task-aware dynamic allocation of KV Cache Capacity

	Experiments
	Settings
	LongBench
	Needle-In-A-Haystack
	Ablation Study
	Computational Efficiency

	Conclusion
	Limitations
	Implementation Details
	Dataset Details
	System Configuration Details
	Detailed Experiment Results

