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Abstract

The increasing context length in Large Lan-
guage Models (LLMs) introduces significant
memory overhead due to the rapid growth of
the Key-Value (KV) cache. Recent works have
explored KV cache eviction methods for KV
cache reduction in LLMs. However, these
methods typically rely on simplistic calcula-
tions for KV cache importance and apply rigid
cache allocation strategies across layers, re-
sulting in notable performance degradation.
To address these limitations, we propose an
Error-Driven Importance Estimation (EDIE)
method that rigorously quantifies token criti-
cality based on the output error of the atten-
tion, and build upon it a Task-Aware Dynamic
Allocation (TADA) mechanism that optimizes
the layer-specific allocation of KV cache ca-
pacity based on the task complexity and layer
importance. Experiments show consistent ac-
curacy gains on LongBench tasks, surpassing
prior methods across cache budgets. Notably,
on the Needle-in-a-Haystack task, our method
achieves up to 15.7% absolute accuracy gain
under extreme cache constraints.

1 Introduction

Large Language Models (LLMs) have achieved
significant success and have been widely applied
across various domains, such as text generation
(Wu, 2024), machine translation (Zhao et al., 2024),
and code generation (Wang and Chen, 2023). The
context size of LLMs represents the length of con-
text they can process, which is crucial for vari-
ous real-world applications, such as long-document
summarization and multi-turn conversations. Con-
sequently, the context size of LLMs has been con-
tinuously increasing, expanding from 2048 tokens
in models like GPT-3 (Dettmers et al., 2022) and
LLaMA1 (Touvron et al., 2023) to 128K tokens in
LLaMA3.1 (Grattafiori et al., 2024).

LLMs generate text sequentially (Vaswani et al.,
2017). Modern LLMs utilize the KV cache (Shi

et al., 2024), where key and value vectors from
previously processed tokens are stored and reused
during inference. However, the KV cache is pro-
portional to the context length, growing rapidly
as the context length increases. This leads to sub-
stantial requirements for GPU memory and band-
width, which can negatively impact the inference
efficiency of LLMs.

An approach to addressing the excessive size of
the KV cache is the KV cache eviction method.
This method reduces the KV cache size by prun-
ing the key-value pairs of less important tokens
and retaining only a limited number of key-value
pairs of important tokens in an attention layer. The
KV cache eviction method encompasses two inter-
dependent research components: (1) determining
the importance criteria of tokens; (2) deciding the
allocation scheme of KV cache capacity.

Recent works (Xiao et al., 2024; Zhang et al.,
2023; Li et al., 2024; Cai et al., 2024; Yang et al.,
2024; Feng et al., 2024; Guo et al., 2024a) have
focused on identifying which tokens should be re-
tained in the attention layer to improve efficiency.
These methods often prioritize tokens based on
heuristics, such as their position at the beginning of
the sequence, their presence within the recent de-
coding window, large accumulated attention scores
(AAS) or large products of the accumulated atten-
tion scores and value norms (PAASVN). Although
these metrics offer intuitive insights, they typically
consider only one aspect of token importance, such
as position, attention score, or value norm, and
thereby undermine the combined effects of these
elements. We argue that assessing token impor-
tance through the attention output error introduced
by token removal provides a more systematic and
holistic evaluation.

With regard to allocation schemes, several works
(Xiao et al., 2024; Zhang et al., 2023; Li et al., 2024;
Cai et al., 2024; Yang et al., 2024; Feng et al., 2024)
have been proposed to determine how many pairs
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Figure 1: KV cache capacity layer allocation methods.
In contrast to uniform and pyramid allocation, our allo-
cation is capable of adapting the layer allocation ratio
according to task differences, thereby achieving higher
average score across 16 tasks in the LongBench bench-
mark.

of key-value should be retained in different lay-
ers. These methods typically adopt a fixed alloca-
tion strategy that distributes the KV capacity either
uniformly or in a pyramid-shaped manner across
layers. However, such approaches lack flexibility
and fail to account for the distinct roles and com-
putational characteristics of different layers. Since
each layer processes information in a unique man-
ner, applying such allocation schemes across all
layers is an oversimplification that could hinder the
performance. In addition to layer-wise differences,
KV caches are typically maintained independently
for each attention head, suggesting that allocation
decisions should also be made at the head level
rather than uniformly across the model. Moreover,
the nature of the task should guide the retention of
KV pairs, as assuming all tasks require the same
memory budget for each layer in LLM can lead to
inefficient or suboptimal cache utilization.

To address these limitations, we propose a task-
aware dynamic allocation strategy that adaptively
distributes KV cache capacity along three dimen-
sions—layer, head, and task—guided by impor-
tance scores estimated from token removal error.
An illustration of our strategy is shown in Figure
1, our allocation strategy yields allocation patterns
that differ from those of uniform and pyramid al-
locations. It adapts its allocation based on the task
nature and layer error, demonstrating high flexibil-
ity and performance.

In summary, we propose: (1) A systematic
importance estimation method derived from the
perspective of minimizing attention output error,
which precisely characterizes the importance of
tokens; (2) A task-aware dynamic allocation strat-
egy for KV cache capacity that builds upon EDIE,

adapting to different tasks, attention layers, and
attention heads.

We conducted extensive experiments on the
LLaMA3.1-8B-Instruct and Mistral-7B-Instruct-
v(0.2 models, evaluating our method in 16 long-
context tasks from the LongBench and Needle-In-
A-Haystack benchmarks. By accurately estimating
the importance of tokens and dynamically allocat-
ing KV cache capacity, our method achieves state-
of-the-art results. Code available soon.

2 Related Works

Recent studies have investigated methods for as-
sessing the importance of KV cache entries and
pruning less critical key-value pairs of tokens in
LLMs. H2O (Zhang et al., 2023) employ the accu-
mulated attention scores to estimate the importance
of the tokens and dynamically retains a combina-
tion of recent and important tokens in the KV cache.
StreamingLLLM (Xiao et al., 2024) addresses long-
context inference bottlenecks by preserving both
recent tokens and initial attention sinks in the KV
cache. SnapKV (Li et al., 2024) introduces a KV
cache compression method that identifies critical
tokens through the accumulated attention scores of
the observation tokens. VATP (Guo et al., 2024a)
combines attention scores and value vector norms
to estimate the importance of the tokens. These
methods lack rigorous theoretical derivation and
cannot identify important keys and values well,
leading to significant performance degradation.

Other recent studies have investigated methods
for determining the KV cache capacity. Pyra-
midKV (Cai et al., 2024) and PyramidInfer (Yang
et al., 2024) introduce a pyramid-shaped KV cache
compression method that dynamically allocates
larger cache budgets to lower layers (for dispersed
information) and smaller ones to higher layers.
AdaKV (Feng et al., 2024) dynamically allocates
the KV cache capacity of different attention heads
in the same layer based on their mean attention
scores. DynamicKV (Zhou et al., 2024) dynam-
ically adjusts the number of retained tokens per
layer based on attention scores for each task. (He
et al., 2025) allocate cache based on semantic differ-
entiation of attention heads. These methods either
rely on predefined KV cache allocation across lay-
ers or dynamic KV cache allocation based on atten-
tion scores , rather than using error-guided strategy
to assess the impact of token removal across layers,
tasks, and heads.
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Figure 2: Method overview. Left side shows our error-driven importance estimation method that rigorously quantifies
token importance based on the output error of the attention. Right side shows our task-aware dynamic allocation
strategy for KV cache capacity that adaptively distributes KV cache capacity along layer, head, and task dimensions.

3 Method

3.1 Preliminary

The output of an attention head at position j is
defined as follows:
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where g; is the query vector of token j, k; is the
key vector of token ¢, dj, is the attention head di-
mension, ag is the attention score between query
token with index j and previous token with index
1, and v; is the value vector of token in index .
Traditional methods typically measure importance
I based on attention scores (Zhang et al., 2023) or
a combination of attention scores and value states
(Guo et al., 2024b) using the following equations:
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In Equation (4), w represents the window size for
the observation window, and ¢ represents the latest
token in the input sequence.

3.2 Error-Driven Importance Estimation

An overview of the importance estimation is shown
on the left of Figure 2. Here we derive the im-
portance of tokens from the error of the attention
output step-by-step. We define the importance of a

token as the error of the attention output introduced
by its removal. If the key-value pair of m-th token
is removed, the new attention output og(m) thus
become:
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where dg (m) is the attention score between query
token with index j and previous token with index ¢
when the key-value pair of m-th token is removed.
Previous methods overlook the normalization of
Softmax and thus do not consider the denomina-
tor term 1 — aﬁn in the formula, which affects the
effectiveness of the methods. The L; norm of the
token removal error E, = |loj — of;(m)]|1 due to
the removal of the m-th token is:
Bl = i
1—al,
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Figure 3 presents the different token importance
estimation scores versus token removing error. The
most important tokens with the highest attention
output errors cannot be effectively estimated using
either AAS or PAASVN. They both miss a substan-
tial number of important tokens.

Computing directly using the error function in
Equation (7) for all pairs of i and j incurs overhead
O(wLD), where w is the size of the observation
window, L is the sequence length, D is the hidden
size. Instead, we can approximate it by its upper
error bound, with only O(LD) overhead. Using
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Figure 3: Token importance estimation from previous work vs. token removing error. Top-left figure presents the
top-16 most important tokens selected based on the output error caused by token removal. Top-right and bottom-left
figures show the tokens determined by the AAS method and the PAASVN method respectively. Bottom-right
figure presents the tokens selected based on our EDIE method. The AAS method and PAASVN method both miss
important tokens, while our EDIE method find all important tokens.

the triangle inequality, the upper bound of the error
is:
J
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where Uy, is the upper bound of the error of the
attention head at step j when removing the key and
value of token m. We introduce « in the denom-
inator to prevent overflow and excessively large
values. The revised formula is:
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The final form of the upper bound error U, is pre-
sented as a multi-factor approach, which includes
the attention score, the L1 norm of the value state,
the L; norm of the output state and attention renor-
malization when a token is removed.

For the final importance estimation, we adopt a
weighted observation window approach, in contrast
to previous works that assign equal weights to all
tokens within the window (as shown in Equations
3—4). This is because not all tokens in the window
contribute equally. Tokens with larger attention
score tend to carry more information and should
be more heavily weighted. To measure this weight,
we use the maximum attention score of each token:

(10)

max a’
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c; s the weight for the token j within the observa-
tion window. Note that attention scores for tokens

at the beginning of the input or those close to the
observation tokens tend to be large, while more
informative scores reflecting detailed context are
often found in the middle of the sequence. Thus
we manually exclude these regions when determin-
ing the maximum attention score. We found that
excluding the (z < w) and (¢ > t — 2w) reaches
the best practice in experiment.

The final importance calculation accumulates
weighted U 7 in the observation window w:
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I; is the importance of the ¢-th token. This im-
portance is directly used for estimating the impor-
tance of each token within each attention head. For
grouped query attention (GQA), we compute the
importance of the i-th token by summing the values
of I; across different heads that belong to the same
key-value group.

3.3 Task-aware dynamic allocation of KV
Cache Capacity

Having established the importance estimation
based on token removal error, we first use it to
estimate layer-wise error, which in turn is used to
assess task difference. Together, these components
inform the final allocation of KV cache across lay-
ers, heads, and tasks. An overview is shown on the
right side of Figure 2.

For layer-wise error, we consider the direct out-
put error introduced by pruning a subset of tokens



within the layer. However, since each layer con-
tributes differently to the final output of the model,
we also account for its indirect impact on the over-
all model error, reflecting the layer’s significance
within the network. To estimate the direct output
error of the layer itself, we consider the output er-
ror of the layer, which can be approximated by the
sum of the upper bounds I; on the error of tokens
outside the observation window across all attention
heads. The layer internal error equation follows:

Einternal = Z Z I'Lh

h i<t—w

(12)

For the indirect impact, we quantify the influence
of each layer’s output error to the model output by
analyzing the angular change in the hidden states.
We consider the cosine dissimilarity between the
residual R from previous layer and the sum of the
residual and the current layer output (R + O) to
obtain the final output error of the model:
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Since the absolute values of hidden states are nor-
malized through layer normalization, the direc-
tional information of the hidden states becomes
the primary focus. Therefore, the impact of the
output error of each layer to the final model output
is reflected in its ability to alter the direction of the
hidden states. Thus, we employ cosine dissimilar-
ity to quantify the influence of each layer’s output
error on the model output.

Unlike previous methods that treat all inputs uni-
formly, we incorporate task context into the al-
location process, allowing KV cache capacity to
be dynamically distributed based on task-specific
characteristics. We reuse the sum of the layer-wise
errors across all layers to define the difficulty for a
given context:

Di=3_ By (14)
l

where k indicates the k-th input context. Note that
computing D;, directly requires summing the errors
across all layers, which is impractical as it would
require completing the full forward pass in advance.
To address this, we use an equivalent but more
computationally efficient task difficulty term — D,
which calculates the average value of D:

Dk:%ZDi
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Similarly, we use the average value of Ell ayer A8 the
layer difficulty of the layer in the task:

Lk 1 i
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The final number of KV cache capacity N,i as-
signed to layer [ for context k is then determined
by distributing the total KV cache capacity C' pro-
portionally to each layer’s difficulty:

Ek,l
N = gf’"o (17)
ZNZ =C (18)

After determining the per-layer capacity, we pro-
ceed to select which KV entries to retain at the
head level. Specifically, we preserve the top N ,i
token positions with the highest importance scores
from Equation(11), regardless of which heads they
belong to. This importance-based selection natu-
rally supports uneven allocation between heads, as
some heads may retain more tokens than others.
For GQA, only a single KV cache is maintained
for each key-value group. Our method thus enables
dynamic KV cache allocation across layers, heads,
and tasks based on token importance.

4 Experiments

4.1 Settings

Datasets: To assess the effectiveness of our
method in real-world scenarios, we evaluate our
methods on 2 open-source datasets. We adopt
LongBench (Bai et al., 2023), which comprises
16 English tasks, each containing between 150
and 500 samples, and covers a diverse range of
long-text applications including question answer-
ing, text summarization, etc. We also evaluate
our method on the Needle-in-a-Haystack task (Liu
et al., 2024) to assess key information identification
and in-context retrieval over long sequences.

Models&Baselines: We use two open-source
LLMs: LLaMA3.1-8B-Instruct(Grattafiori et al.,
2024) and Mistral-7B-Instruct-v0.2 (Jiang et al.,
2023) for experiments. We compare our works
with previous works: StreaminglL.LM(Xiao et al.,
2024), PyramidKV (Cai et al., 2024), and AdaKV
(Feng et al., 2024). Since AdaKV+SnapKV out-
performs AdaKV+PyramidKYV in its original paper,
we refer to AdaKV+SnapKV simply as AdaKV in



Table 1: Detailed results of LLaMA-3.1-8B-Instruct and Mistral-7B-Instruct-v0.2 on LongBench.

Single-Doc. QA Multi-Doc. QA Summarization Few-shotLearning  Synthetic Code
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LLaMA-3.1-8B-Instruct, B=FULL
Full Cache 30.22 45.37 55.80 55.97 45.00 31.26 35.12 2538 27.20 72.50 91.64 43.57 9.41 99.50 62.8856.43 | 49.20
LLaMA-3.1-8B-Instruct, B=128
StreamingLLM 22.24 20.87 31.72 44.02 37.55 24.54 18.76 21.09 18.48 40.50 84.41 38.82 8.00 99.50 57.0247.29 | 38.43
PyramidKV 25.70 24.69 47.74 52.87 40.57 27.23 20.02 22.38 19.74 44.50 88.81 40.30 7.22 99.50 57.2549.90 | 41.78
AdaKV 24.90 24.41 49.95 53.15 41.73 28.55 20.54 23.21 20.28 50.50 89.49 40.71 7.45 99.00 58.7452.40 | 42.81
EDIE+TADA 28.93 35.19 54.16 56.47 45.90 30.65 21.19 23.08 20.94 56.50 91.11 38.87 9.25 99.50 59.8350.71 | 45.14
LLaMA-3.1-8B-Instruct, B=512
StreamingLLM 25.51 25.78 34.19 45.01 35.91 2493 23.61 21.26 23.57 57.50 87.86 41.44 6.98 96.50 60.8551.02 | 41.37
PyramidKV ~ 28.71 39.89 52.86 54.00 44.20 31.22 24.74 23.73 24.28 66.00 91.07 41.42 8.39 99.50 61.9953.44 | 46.59
AdaKV 29.07 40.16 52.44 53.90 43.05 31.10 25.75 24.39 24.85 69.00 92.34 42.05 7.98 99.50 63.4355.32 | 47.15
EDIE+TADA 29.70 43.35 56.95 57.62 48.65 31.13 25.34 24.17 24.80 70.50 91.73 41.76 8.50 99.50 64.4854.31 | 48.28
Mistral-7B-Instruct-v0.2, B=EFULL
Full Cache 26.74 32.84 50.00 43.45 27.77 1849 32.91 24.64 26.99 71.00 86.23 43.32 2.94 86.31 57.3954.32 | 42.83
Mistral-7B-Instruct-v0.2, B=128
StreamingLLM 18.02 13.32 27.41 30.49 21.81 11.85 15.49 19.42 17.84 44.00 80.74 37.35 3.57 22.93 49.0743.74 | 28.57
PyramidKV ~ 20.78 19.76 42.92 36.31 22.37 1391 18.84 21.84 20.42 46.50 84.55 40.23 2.79 65.46 51.4946.83 | 34.69
AdaKV 20.10 20.14 4420 37.32 2390 15.29 19.15 22.27 20.71 50.00 84.20 39.64 3.09 67.11 52.2648.25 | 35.48
EDIE+TADA 21.03 23.75 47.81 38.94 26.13 16.37 20.90 23.66 22.07 64.00 85.54 40.70 3.54 73.22 54.5551.39 | 38.35
Mistral-7B-Instruct-v0.2, B=512
StreamingLLM 21.12 15.99 30.82 30.39 22.32 10.92 21.43 19.98 22.88 61.50 82.11 41.89 3.21 17.32 53.4347.05 | 31.40
PyramidKV ~ 21.81 24.33 48.67 39.31 25.14 17.51 23.22 23.16 23.87 66.00 85.20 41.96 3.08 85.71 55.1050.98 | 39.69
AdaKV 23.62 27.34 48.70 39.81 2642 17.36 23.42 23.26 24.50 67.50 86.46 42.04 3.04 86.64 56.1153.05 | 40.58
EDIE+TADA 25.84 30.21 49.05 42.43 26.43 18.37 25.26 23.69 25.18 71.00 86.47 42.85 3.18 85.93 56.1553.69 | 41.61

the results that follow. The full KV cache is also
presented to assess performance degradation.

Parameters: Our method adopts an observation
window size w of 32 and a max-pooling kernel size
of 7, following the configuration settings in AdaKV
which also applies a similar window approach. The
« in Equation(9) is by default set to 0.1. The range
of 7 in Equation(10) is by default set to w to t — 2w.

4.2 LongBench
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Figure 4: Results of LLaMA-3.1-8B-Instruct and
Mistral-7B-Instruct-v0.2 on LongBench.

The results are presented in Figure 4 and Table
1. By combining EDIE and TADA, our method
demonstrates consistent superiority across both the
LLaMA3.1-8B-Instruct and Mistral-7B-Instruct-
v0.2 architectures under varying KV cache bud-

gets (128/256/512/1024), achieving higher average
scores than baselines on the LongBench bench-
mark. Under KV cache budget=128, our method
achieves SOTA performance on 13/16 LongBench
tasks for both LLaMA3.1-8B-Instruct and 15/16
LongBench tasks for Mistral-7B-Instruct-v0.2 mod-
els, and achieves near SOTA performance on the
remaining tasks. Our method also demonstrates
consistent performance superiority in other evalu-
ated cache budgets, which conforms its effective-
ness to different budgets.

4.3 Needle-In-A-Haystack

We primarily compared the results with AdaKV
in Figure 5. The vertical axis shows the inser-
tion depth of the needle, and the horizontal axis
shows the context length. Each grid cell reflects
a test result: green for successful retrieval, yel-
low for failure. Our approach significantly out-
performs AdaKV for both LLaMA3.1-8B-Instruct
and Mistral-7B-Instruct-v0.2 models under dif-
ferent KV cache budgets (128/512), demonstrat-
ing its effectiveness in long-text processing. For
LLaMA3.1-8B-Instruct, when the budget is set to
128, our approach improves the accuracy from 72.6
to 88.3 compared to AdaKV, demonstrating its su-
perior performance. Notably, on both models, our
approach achieves accuracy comparable to AdaKV
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Figure 5: The evaluation results from Needle-In-A-Haystack across 128 and 512 cache sizes for LLaMA3.1-8B-
Instruct and Mistral-7B-Instruct-v0.2 in context size of 32k.

while using only a quarter of its KV cache budget.
This demonstrates our method’s ability to allocate
KV cache capacity more effectively across differ-
ent layers and more precisely identify important
tokens for KV cache storage.

4.4 Ablation Study

We conducted ablation experiments on EDIE,
TADA and the hyperparameter « using the Mistral-
7B-Instruct-v0.2 model with a budget of 128. The
results are presented in Table 2. Compared to the
baseline, the EDIE method alone, when combined
with Uniform and Pyramid allocation, improves
the model’s accuracy on LongBench and Needle-
in-a-Haystack, demonstrating its effectiveness. The
results also indicate that EDIE is not sensitive to
the hyperparameter o, and setting it to 0.1 yields
optimal performance. Finally, applying the TADA
method on top of EDIE further enhances the per-
formance, confirming the effectiveness of TADA.

To examine the observation window inclusion
range used in our weighting strategy as in Equa-
tion (10), we conducted ablation experiments using
various definitions of the weight coefficient c;. As
shown in Table 3, removing token weights alto-
gether ("None") already offers a strong baseline,
but incorporating attention-based weighting im-
proves performance on both tasks. Notably, assign-
ing weights using only tokens in the mid-sequence

Table 2: The Ablation study for EDIE and TADA with
Mistral-7B-Instruct-v0.2 in the budget of 128. The val-
ues 0.05, 0.1, and 0.2 are used as the hyperparameter o
in the EDIE method. The tw refers to the token weight-
ing mechanism in EDIE, which represents the weighting
coefficient ¢; in Equation (11). The ed denotes the co-
sine dissimilarity employed in the TADA method in
Equation (13).

LongBench  Needle in
Method Avg Score A Haystack
AAS + Uniform 35.48 78.5
PAASVN + Uniform 36.12 82.2
EDIE 1 4/ ¢ + Uniform 37.49 89.0
EDIEy 1,40 tw + Uniform 36.73 83.1
EDIEy 1,4/ tw + Uniform 37.49 89.0
EDIE(.05,w/ tw + Uniform 37.42 88.9
EDIEg 9,/ 1y + Uniform 37.43 88.9
EDIEy 1,4/ t + Uniform 37.49 89.0
EDIE 1,4/ t + Pyramid 37.61 87.0
EDIEq 1,0/ tw + TADAy /6 ca 37.37 92.6
EDIEg 1 4/ ¢ + TADA,/ cq 38.35 91.6

range (w < ¢ < t — 2w), where attention scores
are more likely to reflect contextually relevant in-
formation, achieves the best results. This confirms
that not all tokens contribute equally and limit the
observation range for maximum attention leads to
more reliable importance estimation.

To assess the role of cosine dissimilarity in
Equation (13) for modeling the influence of each
layer’s output on the final prediction, we compare
model performance with and without its inclusion.



Table 3: The Ablation study for the weight c; of tokens
within the observation window with Mistral-7B-Instruct-
v0.2 in the budget of 128.

LongBench  Needle in
€ Avg Score A Haystack
None 37.60 86.2
max;(a’) 36.20 85.0
max;<;—o,(al) 36.32 85.7
max;s. (a]) 37.16 89.3
Max,, <i<t—20(al) 38.35 91.6

For LLaMA3.1-8B-Instruct, it substantially boosts
8.6% Needle-in-a-Haystack accuracy, with only
a minimal drop of 0.06 in LongBench, suggest-
ing better selective retrieval. In contrast, Mistral-
7B-Instruct-v0.2 sees a notable LongBench gain
but a slight drop in Needle accuracy. Given the
complexity of LongBench, a 0.98 improvement
is particularly meaningful, suggesting enhanced
robustness on more challenging & diverse tasks.
These results show that cosine dissimilarity benefits
models differently—enhancing in-context retrieval
for LLaMA3.1 and overall robustness for Mistral.
Opverall, it supports more accurate layer importance
assessment for adaptive KV cache allocation.

Table 4: The Ablation study for the cosine dissimilarity
(cd) in Equation(13) with LLaMA3.1-8B-Instruct and
Mistral-7B-Instruct-v0.2 in the budget of 128.

LongBench  Needle in
Model TADA Avg Score A Haystack
w/o cd 45.22 79.7
LLaMAS.LS/ed 45016 88.3
. w/o cd 37.37 92.6
Mistral-v0.2 0 ca 3835 91.6

4.5 Computational Efficiency

We evaluated the computational efficiency of the
method using the Mistral-7B-Instruct-v(0.2 model,
tested on one AMD Instinct MI250 GPU. The con-
text size ranged from 4K to 128K, with the number
of generation tokens set to 256 and the batch-size
set to 1. The results are presented in Figure 6.
Compared to Full Cache, our method significantly
reduces memory overhead and inference latency
for longer sequences. Compared to AdaKV, our
method does not introduce additional memory over-
head or inference latency.

Our method seamlessly adapt to multi-batchsize
setup. We benchmarked the efficiency of both full
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Figure 6: Computational Efficiency for Mistral-7B-
Instruct-v0.2 on the AMD Instinct MI250 GPU.

cache method and our method under an 64GB GPU
memory constraint using the Mistral-7B-Instruct-
v0.2 model. As shown in Table 5, our method
consistently supports larger maximum batch sizes
across all context lengths. It also achieves higher
throughput at longer context lengths, indicating
better utilization of computational resources. Over-
all, these results demonstrate that EDIE+TADA
offers superior efficiency for high-throughput, long-
sequence inference workloads.

Table 5: Comparison of maximum batch size and
throughput on Mistral-7B-Instruct-v0.2 under 64GB
GPU memory.

Full Cache EDIE+TADA
Context Max Throughput Max Throughput
Length Batch Size  (tokens/s)  Batch Size (tokens/s)
4k 32 56.64 64 127.15
8k 16 27.97 32 69.41
16k 8 13.22 16 34.42
32k 4 6.08 8 15.98
64k 2 2.77 4 6.95
128k 1 1.07 2 2.74
256k - - 1 0.95

5 Conclusion

In this study, we propose a task-aware KV cache
eviction strategy for large language models, where
dynamic allocation of KV cache capacity is guided
by error-driven importance estimation. Our method
precisely quantifies the importance of KV cache
entries via estimating token removal error, and
achieves full dynamic allocation of the KV cache
capacity by introducing task difference. Experi-
ments show our approach consistently outperforms
existing methods, achieving new SOTA results
on LongBench and Needle-In-A-Haystack bench-
marks. Our results highlight a promising direction
for reducing memory overhead in sigle/multi-batch
LLM inference while preserving top accuracy in
long context understanding.



6 Limitations

While our method demonstrates strong efficiency
and achieves state-of-the-art performance on long-
context benchmarks, it has not yet been integrated
into optimized attention kernels such as FlashAt-
tention. Incorporating our KV cache reduction
strategy into such kernels could potentially yield
further improvements in both speed and memory
efficiency, which we leave for future work.
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A Implementation Details

Consistent with AdaKV, our method adopts a win-
dow size of 32, utilizing mean pooling with a kernel
size of 7. AdaKYV is configured with a floor ratio of
0.2, a window size of 32, and also employs mean
pooling with a kernel size of 7. The keys and values
of tokens within the recent window size are uncon-
ditionally retained and are also counted toward the
budget.

B Dataset Details

We select the English subset from Longbench (Bai
et al., 2023). Table 6 shows the information on 16
tasks that we use in the experiments.

Dataset Avg len Metric  #data
NarrativeQA 18,409 F1 200
Qasper 3,619 F1 200
MultiFieldQA-en 4,559 F1 150
HotpotQA 9,151 F1 200
2WikiMultihopQA 4,887 F1 200
MuSiQue 11,214 F1 200
GovReport 8,734 Rouge-L 200
QMSum 10,614 Rouge-L 200
MultiNews 2,113 Rouge-L 200
TREC 5,177 Accuracy (CLS) 200
TriviaQA 8,209 F1 200
SAMSum 6,258 Rouge-L. 200
PassageCount 11,141 Accuracy (EM) 200
PassageRetrieval-en 9,289 Accuracy (EM) 200
LCC 1,235 Edit Sim 500
RepoBench-P 4,206 Edit Sim 500

Table 6: Dataset statistics in LongBench, including key
metrics. Avg len’ represents the average number of
words for English datasets (or code). *Accuracy (CLS)’
denotes classification accuracy, while * Accuracy (EM)’
refers to exact match accuracy.

C System Configuration Details

All experiments are conducted on a server equipped
with two AMD EPYC™ 73F3 16-Core proces-
sors, 1024 GB of system memory, and 8 AMD
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Instinct™ MI250 GPUs. The software environ-
ment includes ROCM™ 6.3.2 and Ubuntu 22.04.5
LTS. We use PyTorch 2.4.0 as the deep learning
framework, along with HuggingFace Transformers
4.44.2 and FlashAttention 2.6.3.

D Detailed Experiment Results

Table 7 presents the detailed results of LLaMA-
3.1-8B-Instruct on LongBench. Table 8 presents
the detailed results of Mistral-7B-Instruct-v0.2 on
LongBench. The EDIE+TADA method achieves
the highest average score across 16 tasks under all
four KV cache budget settings (128, 256, 512, and
1024).

Figure 7 shows the evaluation results from
the Needle-In-A-Haystack benchmark across KV
cache budgets of 64, 128, 256, and 512 for
LLaMA3.1-8B-Instruct with a context length of
32k. Our method consistently outperforms AdaKV
across all budget settings, achieving substantial
improvements. Notably, at a budget of 256, our
approach reaches an accuracy of 99.9%, com-
pared to only 86.4% achieved by AdaKV. Figure
8 presents the evaluation results from the Needle-
In-A-Haystack benchmark across cache sizes of
64, 128, 256, and 512 for Mistral-7B-Instruct-v0.2
with a context length of 32k. Our method consis-
tently outperforms AdaKV across all cache size
settings, demonstrating significant improvements.
Specifically, at a cache size of 128, our approach
achieves an accuracy of 91.6%, whereas AdaKV
attains only 78.5%.



Table 7: Detailed results of LLaMA-3.1-8B-Instruct on LongBench.

Single-Doc. QA Multi-Doc. QA Summarization Few-shotLearning ~ Synthetic Code
%,k G %, 4

%‘p Q?% %0 0%[ ’6,1? 47%. o,,(% O/%% %, ’f’@ O,,/(? '7/9 %, % (ﬁ%o SAve.

¥ <. 2 QY p g 0@ 000( 23 Glffp (&4 Q7 U core

Full Cache 30.22 45.37 55.80 55.97 45.00 31.26 35.12 25.38 27.20 72.50 91.64 43.57 9.41 99.50 62.8856.43 | 49.20
B=128

StreamingLLM 22.24 20.87 31.72 44.02 37.55 24.54 18.76 21.09 18.48 40.50 84.41 38.82 8.00 99.50 57.0247.29 | 38.43

PyramidKV ~ 25.70 24.69 47.74 52.87 40.57 27.23 20.02 22.38 19.74 44.50 88.81 40.30 7.22 99.50 57.2549.90 | 41.78

AdaKV 2490 24.41 4995 53.15 41.73 28.55 20.54 23.21 20.28 50.50 89.49 40.71 7.45 99.00 58.7452.40 | 42.81

EDIE+TADA 28.93 35.19 54.16 56.47 45.90 30.65 21.19 23.08 20.94 56.50 91.11 38.87 9.25 99.50 59.8350.71 | 45.14
B=256

StreamingLLM 22.71 23.79 31.80 43.43 36.55 25.55 21.29 20.68 20.67 46.00 87.11 40.82 7.20 99.50 59.8949.19 | 39.76

PyramidKV ~ 25.53 33.15 51.44 55.03 42.42 28.62 22.57 23.37 22.33 56.50 91.19 41.28 6.97 99.50 60.3651.18 | 44.47

AdaKV 26.11 33.39 51.44 54.94 42.15 29.54 23.01 23.85 22.88 63.50 91.57 40.94 8.00 99.50 61.9554.33 | 45.44

EDIE+TADA 28.23 39.82 56.52 57.89 48.21 30.27 23.60 24.01 23.27 65.00 91.89 41.42 8.49 99.50 63.9453.66 | 47.23
B=512

StreamingLLM 25.51 25.78 34.19 45.01 35.91 24.93 23.61 21.26 23.57 57.50 87.86 41.44 6.98 96.50 60.8551.02 | 41.37

PyramidKV ~ 28.71 39.89 52.86 54.00 44.20 31.22 24.74 23.73 24.28 66.00 91.07 41.42 8.39 99.50 61.9953.44 | 46.59

AdaKV 29.07 40.16 52.44 53.90 43.05 31.10 25.75 24.39 24.85 69.00 92.34 42.05 7.98 99.50 63.4355.32 | 47.15

EDIE+TADA 29.70 43.35 56.95 57.62 48.65 31.13 2534 24.17 24.80 70.50 91.73 41.76 8.50 99.50 64.4854.31 | 48.28
B=1024

StreamingLLM 24.97 30.22 37.06 46.57 39.14 25.24 26.01 21.08 25.72 63.50 88.87 42.28 6.98 89.00 61.3053.40 | 42.58

PyramidKV ~ 29.62 43.66 54.10 55.06 44.22 31.30 27.27 24.30 25.68 68.50 91.27 41.96 7.73 99.50 63.1355.85 | 47.70

AdaKV 29.23 44.09 53.82 54.80 44.01 31.40 28.86 24.73 26.04 72.50 91.72 42.56 7.82 99.50 63.2256.33 | 48.16

EDIE+TADA 31.14 45.72 57.36 57.71 48.39 31.42 27.22 24.84 2571 72.00 92.04 42.32 8.47 99.50 65.2855.70 | 49.05

Table 8: Detailed results of Mistral-7B-Instruct-v0.2 on LongBench.
Single-Doc. QA Multi-Doc. QA Summarization Few-shotLearning ~ Synthetic Code
% <, G . 2

Yo, G T, T iy M a, Y My, R % “’47 C, % o b, N

% S 9 O’Y O‘Y % 00(7 % e% (& Q7 o core

Full Cache 26.74 32.84 50.00 43.45 27.77 1849 3291 24.64 26.99 71.00 86.23 43.32 2.94 86.31 57.3954.32 | 42.83
B=128

StreamingLLM 18.02 13.32 27.41 30.49 21.81 11.85 1549 19.42 17.84 44.00 80.74 37.35 3.57 22.93 49.0743.74 | 28.57

PyramidKV ~ 20.78 19.76 42.92 36.31 22.37 1391 18.84 21.84 20.42 46.50 84.55 40.23 2.79 65.46 51.4946.83 | 34.69

AdaKV 20.10 20.14 4420 37.32 23.90 15.29 19.15 22.27 20.71 50.00 84.20 39.64 3.09 67.11 52.2648.25 | 35.48

EDIE+TADA 21.03 23.75 47.81 38.94 26.13 16.37 20.90 23.66 22.07 64.00 85.54 40.70 3.54 73.22 54.5551.39 | 38.35
B=256

StreamingLLM 19.08 15.30 28.27 31.87 22.26 11.37 18.08 19.37 19.99 51.00 80.92 39.62 3.57 15.90 51.7445.22 | 29.60

PyramidKV ~ 20.39 22.63 46.67 38.64 23.73 15.82 21.34 22.30 22.01 57.50 83.63 40.49 2.99 75.84 53.5650.03 | 37.35

AdaKV 20.97 23.71 47.52 38.48 24.77 15.76 21.89 22.94 22.70 63.50 86.25 40.75 2.46 80.24 54.4251.46 | 38.61

EDIE+TADA 23.00 25.90 49.31 39.43 24.91 16.46 23.40 23.54 23.73 68.50 86.50 41.74 2.83 83.34 54.9852.62 | 40.01
B=512

StreamingLLM 21.12 15.99 30.82 30.39 22.32 10.92 21.43 19.98 22.88 61.50 82.11 41.89 3.21 17.32 53.4347.05 | 31.40

PyramidKV ~ 21.81 24.33 48.67 39.31 25.14 17.51 23.22 23.16 23.87 66.00 85.20 41.96 3.08 85.71 55.1050.98 | 39.69

AdaKV 23.62 27.34 48.70 39.81 26.42 17.36 23.42 23.26 24.50 67.50 86.46 42.04 3.04 86.64 56.1153.05 | 40.58

EDIE+TADA 25.84 30.21 49.05 42.43 26.43 18.37 25.26 23.69 25.18 71.00 86.47 42.85 3.21 85.93 56.1553.69 | 41.61
B=1024

StreamingLLM 22.15 18.64 31.03 32.94 22.45 11.93 23.89 20.60 25.48 64.00 84.71 41.59 3.49 22.15 53.7249.19 | 33.00

PyramidKV ~ 24.12 29.44 48.83 40.30 25.94 19.42 2529 23.52 25.77 68.00 86.30 41.62 2.84 86.07 56.0652.57 | 41.01

AdaKV 25.11 29.98 49.27 40.62 27.05 18.54 25.85 23.46 26.08 68.50 86.30 42.77 2.92 88.27 56.8854.16 | 41.61

EDIE+TADA 26.99 32.11 49.46 42.74 27.26 19.11 28.51 23.76 26.60 71.00 86.54 43.38 2.82 86.14 57.4753.92 | 42.36

11



AdaKV

EDIE+TADA

e e e e
(a) KV cache size=64, Acc.=67.5

FELORIPFIEIIIPOPPICEIII SRV

(b) KV cache size=128, Acc.=72.6

20,
no

pu
3o

e e e
(c) KV cache size=256, Acc.=86.4

H

R N A R PPy

(a) KV cache size=64, Acc.=75.2

B L e e
(b) KV cache size=128, Acc.=88.3

m”’\ﬁ-‘%‘if/’lf’f»’”ff»’/’”fff!xﬁ~"3’3%‘fv‘f&ff;’-{’ﬁfﬁ{Wa’ﬁ%"i&%‘%%‘f&ﬁ%‘i’fw’ﬁ%’f!&ﬁff&"

(c) KV cache size=256, Acc.=99.9

PESIEIPEPPIPIPOPPOIORPEE IR BRI

B A SO
(d) KV cache size=512, Acc.=98.2

R e
=512, Acc.=100.0

(d) KV cache size

Figure 7: The evaluation results from Needle-In-A-Haystack across 64, 128, 256, and 512 cache sizes for LLaMA3.1

8B-Instruct in context size of 32k.

AdaKV

mm,
Frezicice

P P P I PP ORISR orevarss
(a) KV cache size=64, Acc.=72.1

N [
E232ELENES

B R s e e
(b) KV cache size=128, Acc.=78.5

N [
EBa2ELENES

PR PRI RO I PRSI IOss
(c) KV cache size=256, Acc.=88.6

_ R
2Ba3EtElEe

P AP
(d) KV cache size=512, Acc.=91.7

Figure 8: The evaluation results from Needle-In-A-Haystack across 64, 128, 256, and 512 cache sizes for Mistral-

7B-Instruct-v(.2 in context size of 32k.

12

EDIE+TADA

R T e R ey
(a) KV cache size=64, Acc.=87.2

PELEELOEIIPISIILIE IS A OISO IS
(b) KV cache size=128, Acc.=91.6

B
(c) KV cache size=256, Acc.=97.6

g
(d) KV cache size=512, Acc.=99.6




	Introduction
	Related Works
	Method
	Preliminary
	Error-Driven Importance Estimation
	Task-aware dynamic allocation of KV Cache Capacity

	Experiments
	Settings
	LongBench
	Needle-In-A-Haystack
	Ablation Study
	Computational Efficiency

	Conclusion
	Limitations
	Implementation Details
	Dataset Details
	System Configuration Details
	Detailed Experiment Results

