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Abstract

We introduce a novel extension of the canonical multi-armed bandit problem that incorpo-
rates an additional strategic innovation: abstention. In this enhanced framework, the agent
is not only tasked with selecting an arm at each time step, but also has the option to abstain
from accepting the stochastic instantaneous reward before observing it. When opting for
abstention, the agent either suffers a fixed regret or gains a guaranteed reward. This added
layer of complexity naturally prompts the key question: can we develop algorithms that are
both computationally efficient and asymptotically and minimax optimal in this setting? We
answer this question in the affirmative by designing and analyzing algorithms whose regrets
meet their corresponding information-theoretic lower bounds. Our results offer valuable
quantitative insights into the benefits of the abstention option, laying the groundwork for
further exploration in other online decision-making problems with such an option. Extensive
numerical experiments validate our theoretical results, demonstrating that our approach not
only advances theory but also has the potential to deliver significant practical benefits.

1 Introduction

In online decision-making, the multi-armed bandit model, originally introduced by Thompson| (1933), has
long served as a quintessential benchmark for capturing the delicate interplay between exploration and
exploitation. In stochastic multi-armed bandit problems, the agent sequentially selects an arm from the
given set at each time step and subsequently observes a random reward associated with the chosen arm. To
maximize cumulative rewards, the agent must strike a balance between the persistent pursuit of the arm with
the highest estimated reward (exploitation) and the adventurous exploration of other arms to gain a deeper
understanding of their potential (exploration). This fundamental challenge finds applications across a wide
array of domains, ranging from optimizing advertising campaigns to fine-tuning recommendation systems.

However, real-world scenarios often come fraught with complexities that challenge the simplicity of the
canonical bandit model. One notable complexity arises when the agent is equipped with an additional
option to abstain from accepting the stochastic instantaneous reward before observing it. This added layer
of decision-making enriches the strategic landscape, altering how the agent optimally navigates the trade-off
between exploration and exploitation.

Consider, for example, the domain of clinical trials. When evaluating potentially hazardous medical treat-
ments, researchers can proactively deploy safeguards such as preemptive medications or consider purchasing
specialized insurance packages to shield against possible negative consequences. However, these protective
measures come with costs, which may be modeled as either fixed regrets or fixed rewards in the context of the
clinical study’s cumulative regret. In these scenarios, researchers have the option to observe the outcomes
of a treatment while abstaining from incurring the associated random regret through these costly prear-
ranged measures. Subsequently, these observed outcomes can be leveraged to inform more efficacious future
experimental designs. Consequently, opting for abstention has the potential to promote more responsible
decision-making and reduce the overall cumulative regret of the study.

To further illustrate our motivation, consider another concrete example in the realm of online advertising,
where companies frequently grapple with the challenge of allocating their advertising budget optimally across
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multiple platforms (Google Ads, LinkedIn, etc.) to promote their products. This scenario naturally parallels
the framework of multi-armed bandits, with each arm representing a distinct advertising platform. Typically,
these platforms operate on a cost-per-click pricing model, where payment is made for each click generated.
However, what companies truly care about is the outcome, such as conversions or purchases, which are
random variables sampled from unknown distributions. When faced with such uncertainty and the possibility
of underperformance, companies may opt instead for a cost-per-action (the action is the conversion or
purchase) strategy, which is a predetermined payment for a specific outcome. This strategy essentially serves
as an abstention option, where instead of risking uncertain returns (from unknown distributions), companies
choose to pay a fixed cost for a known outcome. By embracing the abstention option, companies can mitigate
the uncertainties associated with stochastic outcomes and ensure a deterministic result. Moreover, by opting
for abstention, the company still retains the ability to observe the advertising conversion rate of the platform,
enabling them to gather valuable insights for future decision-making.

Building upon this challenge, we introduce an innovative extension to the canonical multi-armed bandit
model that incorporates abstention as a legitimate strategic option. At each time step, the agent not only
selects which arm to pull but also decides whether to abstain. Depending on how the abstention option
impacts the cumulative regret, which is the agent’s primary optimization objective, our abstention model
offers two complementary settings, namely, the fixed-regret setting where abstention results in a constant
regret, and the fixed-reward setting where abstention yields a deterministic reward. Collectively, these
settings provide the agent with a comprehensive toolkit for adeptly navigating the complicated landscape of
online decision-making.

Main contributions. Our main results and contributions are summarized as follows:

(i) In Section [2| we provide a rigorous formulation of the multi-armed bandit model with abstention.
Our focus is on cumulative regret minimization across two distinct yet complementary settings: fixed-
regret and fized-reward. These settings give rise to different metrics, each offering unique analytical
insights. Importantly, both settings encompass the canonical bandit model as a particular case.

(ii) In the fixed-regret setting, we judiciously combine two abstention criteria into a Thompson Sampling-
based algorithm proposed by |Jin et al.|(2023). This integration ensures compatibility with the ab-
stention option, as elaborated in Algorithm [I] The first abstention criterion employs a carefully
constructed lower confidence bound, while the second is tailored to mitigate worst-case scenarios.
We establish both asymptotic and minimax upper bounds on the cumulative regret, requiring ap-
plication of analytical techniques inspired by both Thompson Sampling and UCB methodologies.
Furthermore, we derive corresponding lower bounds, thereby showcasing the concurrent attainment
of asymptotic and minimax optimality by our algorithm. Our approach entails extensive application
of analytical techniques inspired by both Thompson Sampling and UCB methodologies.

(iii) In the fixed-reward setting, we introduce a general strategy, outlined in Algorithm [2| This method
transforms any algorithm that is both asymptotically and minimax optimal in the canonical model
to one that also accommodates the abstention option. Remarkably, this strategy maintains its
universal applicability and straightforward implementation while provably achieving both forms of
optimality—asymptotic and minimax.

(iv) To corroborate our theoretical contributions, we conduct a series of numerical experiments in Ap-
pendix [E] These experiments substantiate the effectiveness of our algorithms and highlight the
performance gains achieved through the inclusion of the abstention option.

1.1 Related Work

Canonical multi-armed bandits. The study of cumulative regret minimization in canonical multi-armed
bandits has attracted considerable scholarly focus. Within this domain, two dominant paradigms for evaluat-
ing optimality metrics have emerged: asymptotic optimality and minimax optimality. In essence, the former
considers the behavior of algorithms as the time horizon approaches infinity for a specific problem instance,
while the latter seeks to minimize the worst-case regret over all possible instances. A diverse array of policies
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have been rigorously established to achieve asymptotic optimality across various model settings. Notable ex-
amples include UCB2 (Auer et al.,[2002), DMED (Honda & Takemuraj 2010), KL-UCB (Cappé et al., [2013)),
and Thompson Sampling (Agrawal & Goyal, [2012; [Kaufmann et al., 2012). In the context of the worst-case
regret, MOSS (Audibert & Bubeckl, [2009) stands out as the pioneering method that has been verified to be
minimax optimal. Remarkably, KL-UCB™ " (Ménard & Garivier, 2017) became the first algorithm proved
to achieve both asymptotic and minimax optimality. Recently, |Jin et al.| (2023)) introduced Less-Exploring
Thompson Sampling, an innovation that boosts computational efficiency compared to classical Thompson
Sampling while concurrently achieving asymptotic and minimax optimality. For a comprehensive survey of
bandit algorithms, we refer to |Lattimore & Szepesvari (2020)).

Machine learning with abstention. Starting with the seminal work of |Chow| (1957; [1970), the concept
of learning with abstention (also referred to as rejection) has been extensively explored in various machine
learning paradigms. These include classification (Herbei & Wegkamp) 2006; Bartlett & Wegkamp, [2008;
Cortes et al., 2016), ranking (Cheng et al., 2010; Mao et al.,|2023) and regression (Wiener & El-Yaniv} [2012;
Zaoui et al., 2020; |[Kalai & Kanade, 2021)).

Within this broad spectrum of research, our work is most directly related to those that explore the role
of abstention in the context of online learning. To the best of our knowledge, |Cortes et al. (2018) firstly
incorporated the abstention option into the problem of online prediction with expert advice (Littlestone &
Warmuth,, |1994). In their model, at each time step, each expert has the option to either make a prediction
based on the given input or abstain from doing so. When the agent follows the advice of an expert who
chooses to abstain, the true label of the input remains undisclosed, and the learner incurs a known fixed loss.
Subsequently, Neu & Zhivotovskiy| (2020)) introduced a different abstention model, which is more similar to
ours. Here, the abstention option is only available to the agent. Crucially, the true label is always revealed
to the agent after the decision has been made, regardless of whether the agent opts to abstain. Their findings
suggest that equipping the agent with an abstention option can significantly improve the guarantees on the
worst-case regret.

2 Problem Setup

Multi-armed bandits with abstention. We consider a K-armed bandit model, enhanced with an ad-
ditional option to abstain from accepting the stochastic instantaneous reward prior to its observation. Let
u € U := RE denote a specific bandit instance, where p; represents the unknown mean reward of arm i € [K].
We assume that arm 1 is the unique optimal arm, i.e., 1 = arg max;e g His and we define A; := p1 — p; as
the suboptimality gap for each arm i.

At each time step t € N, the agent chooses an arm A; € [K], and, simultaneously, decides whether or not
to abstain, indicated by a binary variable B;. Regardless of the decision to abstain, the agent observes
a random variable X; from the selected arm A;, which is drawn from a Gaussian distribution A (pa,,1)
independent of observations obtained from the previous time steps. Notably, the selection of both A,
and B; might depend on the previous decisions and observations, as well as on each other. Formally, let
Fi:=0(41,B1,X1,..., A, By, X;) denote the o-field generated by the cumulative interaction history up to
and including time t. It follows that the pair of random variables (A, B;) is F;—1-measurable.

The instantaneous regret at time ¢ is determined by both the binary abstention variable B; and the observa-
tion X;. Based on the outcome of the abstention option, we now discuss two complementary settings. In the
fized-regret setting, the abstention option incurs a constant regret. Opting for abstention (B; = 1) leads to a
deterministic regret of ¢ > 0, in contrast to the initial regret linked to arm A; when not selecting abstention
(B; = 0), which is given by u; — X;.

In the fized-reward setting, the reward of the abstention option is ¢ € RB Since the abstention reward c
may be larger than u, the highest expected reward at each time step is p1 V ¢ := max{u1, c}. If the agent

1With a slight abuse of notation, we use the symbol ¢ to represent the abstention regret and the abstention reward within
their respective settings. The surrounding context should elucidate the exact meaning of c.
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Figure 1: Interaction protocol for multi-armed bandits with fixed-regret and fixed-reward abstention.

decides to abstain (B; = 1), it is guaranteed a deterministic reward of ¢, leading to a regret of py Ve —e. If
B; = 0, the agent receives a reward of Xy, resulting in a regret of pu; V¢ — X;.

See Figure [I] for a schematic of our model in the two settings.

Remark 1. We note that if the agent cannot observe the sample from the chosen arm when opting for
abstention, then it is equivalent to skipping the time step, rendering the model trivial. In other words, the
learner gains no information from the time step but incurs an instantaneous regret. In view of this, our model
well aligns with that of Neu & Zhivotovskiy| (2020), which explored the role of abstention in the context of
online prediction with expert advice.

Regret minimization. Our overarching goal is to design and analyze online algorithms 7 that minimize
their expected cumulative regrets up to and including the time horizon TE| The regrets are formally defined

for the two distinct settings as follows:

+ Fixed-regret setting:

T
R;G(T,7) :=E lz (1 = X4) - 1{B; =0} +¢- 1{B; = 1})] . (1)

t=1

» Fixed-reward setting:

RYW(T,m) =T (uy Vec)—E

3y (Xt 1{B, =0} +¢-1{B, = 1})]. 2)

t=1

An online algorithm 7 consists of two interrelated components: the arm sampling rule that selects A;, and
the abstention decision rule that determines B, at each time step ¢ € [T]. Additionally, we use [IR¢ and TT8W
to denote the collections of all online policies for the fixed-regret and fixed-reward settings, respectively. For
the sake of analytical convenience, we also introduce the canonical regret RSA (T,m):=Tu, — E [ Zthl Xt],
which disregards the abstention option and remains well-defined within our abstention model. Furthermore,
when there is no ambiguity, we will omit the dependence of the regret on the policy. For example, we often
abbreviate RRG (T, ) as RYS(T).

Remark 2. It is worth mentioning that our model is a strict generalization of the canonical multi-armed bandit
model (without the abstention option). Specifically, it particularizes to the canonical model as the abstention
regret ¢ tends to positive infinity in the fixed-regret setting and as the abstention reward c tends to negative
infinity in the fixed-reward setting. Nevertheless, the incorporation of an extra challenge, the abstention
decision (denoted as By), offers the agent the potential opportunity to achieve superior performance in terms
of either regret.

Other notations. For z,y € R, we denote z A y := min{z,y} and = V y := max{z,y}. For any arm
i € [K], let Ni(t) := Yo', 1{A, = i} and f;(t) := Y\, Xs1{A; = i}/Ni(t) denote its total number of

s=1

2In certain real-world applications, the time horizon T' may be unknown to the agent. In fact, all of our proposed methods
are inherently anytime in nature, as they do not necessitate prior knowledge of the horizon.
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Algorithm 1 Fixed-Regret Thompson Sampling with Abstention (or FRG-TSwA)
Input: Arm set [K] and abstention regret ¢ > 0.

: Sample each arm once, and choose to abstain (B; = 1) if and only if \/g > c.
. Initialize fi;(K) and N;(K) =1 for all i € [K].

:fort=K+1,...,T do

For each arm i € [K], sample 6;(t) ~ N (fi;(t —1),1/N;(t — 1)) and set

gl}CAJl\D»—A

ai(t) = 0:(t) with probability 1/K
7l pa(t— 1) with probability 1 — 1/K.

5. Pull the arm A; = arg max; ¢k ai(t), and choose to abstain (B; = 1) if and only if

K
max LCB;(t) — fia,(t—1) > c or \/7 >c.

i€[K\{A:}

<@

Observe X, from the arm A;, and update f;(t) and N;(¢) for all ¢ € [K].
7: end for

pulls and empirical estimate of the mean up to time ¢, respectively. In particular, we set [i;(t) = +oo if
N;(t) = 0. To count abstention records, we also use Ni(o) (t) and Ni(l)(t) to denote its number of pulls
without and with abstention up to time ¢, respectively. That is, Ni(o)(t) ="' | 1{A, =i and B, =0} and

s=1
Ni(l)(t) = Zizl 1{A; =i and B, = 1}. Additionally, we define fi;s as the empirical mean of arm i based on
its first s pulls. Furthermore, we use «, a1, and so forth to represent universal constants that do not depend

on the problem instances (including p, ¢, T, K), with possibly different values in different contexts.

3 Fixed-Regret Setting

In this section, we focus on the fixed-regret setting. Specifically, we design a conceptually simple and
computationally efficient algorithm, namely Fixed-Regret Thompson Sampling with Abstention (or FRG-
TSWA), to minimize the cumulative regret while incorporating fixed-regret abstention. To evaluate the
performance of our algorithm from a theoretical standpoint, we establish both instance-dependent asymptotic
and instance-independent minimax upper bounds on the cumulative regret, as elaborated upon in Section [3.1]
Furthermore, in Section [3:2] we provide lower bounds for the problem of regret minimization in multi-armed
bandits with fixed-regret abstention. These findings substantiate that our algorithm achieves both asymptotic
and minimax optimality simultaneously. The pseudocode for FRG-TSWA is presented in Algorithm [I] and
elucidated in the following.

In terms of the arm sampling rule, our algorithm is built upon Less-Exploring Thompson Sampling (Jin et al.
2023)), a minimax optimal enhancement of the celebrated Thompson Sampling (TS) algorithm (Thompson,
1933). We refer to Remark (3| for the reason behind this choice. During the initialization phase, each arm is
sampled exactly once. Following that, at each time ¢, an estimated reward a;(t) is constructed for each arm
i € [K], which is either drawn from the posterior distribution N'(f;(t —1),1/N;(t — 1)) with probability 1/K
or set to be the empirical mean fi;(t — 1) otherwise. Subsequently, the algorithm consistently pulls the arm
Ay with the highest estimated reward.

To pursue the dual optimality properties, it is essential to carefully balance the simultaneous control of
asymptotic and worst-case regrets resulting from potential misjudgments in choosing the abstention option.
With regard to the abstention decision rule, we propose two abstention criteria that work in tandem (as
detailed in Step 5 of Algorithm . The first criterion is gap-dependent in nature. In particular, for each
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arm i € K|, we define its lower confidence bound as

LOBi(t) = fus(t — 1) — \/6logtj\—£é li)gl()cv 0 .

Then we choose to abstain if there exists an arm ¢ € [K]\ {A;} for which the difference between LCB;(¢) and
the empirical mean of the arm A; exceeds c¢. This condition signifies that the suboptimality gap A4, is at
least ¢ with high probability. The LCB in is custom-tailored for our specific application, which is unique in
the fact that it takes the value of the abstention regret ¢ into consideration. Notably, besides its asymptotic
optimality, our choice to employ this LCB rather than other natural types of upper or lower confidence
bounds in the abstention criteria (e.g., those that do not include ¢) is primarily due to the imperative to
constrain the minimax regret to be O(VKT).

The second abstention criterion is gap-independent. It is motivated from the construction of worst-case
scenarios as detailed in the proof of our lower bound. Under this criterion, we opt for the abstention option
if ¢ < 4/K/t, which implies that the abstention regret remains acceptably low at time ¢ in view of the
worst-case scenarios.

Remark 3. As previously highlighted, our model in the fixed-regret setting particularizes to the canonical
multi-armed bandit model as the abstention regret ¢ tends to infinity. Similarly, when ¢ tends to infinity,
the two abstention criteria are never satisfied, and the procedure of Algorithm [I] simplifies to that of Less-
Exploring Thompson Sampling. It is worth noting that this latter algorithm is not only asymptotically
optimal but also minimax optimal for the canonical model. This is precisely why we base our algorithm
upon it, rather than the conventional Thompson Sampling algorithm, which has been shown not to be
minimax optimal (Agrawal & Goyal, [2017)).

3.1 Upper Bounds

Theorem [I] below provides two distinct types of theoretical guarantees pertaining to our algorithm’s perfor-
mance on the cumulative regret RES' (T), defined in Equation for the fixed-regret setting.

Theorem 1. For all abstention regrets ¢ > 0 and bandit instances p € U, Algorithm 1| guarantees that

RRG(T ;
lim sup ”’C( ) <2 Aine

T— 00 lOg T - i>1 Ag

Furthermore, there exists a universal constant o > 0 such that

RRC(T) < T if c < \/K/T
BT T la(WKT + 3,0, 80 ife> E/T.

The proof of Theorem [I] is deferred to Appendix The theoretical challenges arising from proving
Theorem [I] revolve around the quantification of the regret that results from inaccurately estimating the
suboptimality gaps associated with the abstention criteria. More precisely, it is crucial to establish upper
bounds on E[Ni(l) (T)] for arms @ with A; < ¢ (which, by definition, includes the best arm), and on E[Ni(o) (T)]
for arms i with A; > ¢. These bounds need to be derived from both asymptotic and minimax perspectives,
adding layers of complexity to the analytical process. To accomplish these tasks, we initially decompose
the target expectations into manageable components, and subsequently bound the resulting subterms in the
two respective regimes. Our approach, merging TS-based sampling rule with LCB-based abstention criteria,
necessitates a careful amalgamation of both TS-type and UCB-type analytical techniques.

Furthermore, for the asymptotic upper bound, we take a deeper exploration into the randomized arm sam-
pling dynamics inherent to Less-Exploring Thompson Sampling. A pivotal aspect of this exploration is a
characterization of a high probability lower bound on the number of pulls of the optimal arm, as detailed in
Lemma |5} inspired by the work of |Korda et al.| (2013]).

Finally, we remark that the numerous intricacies involved in these analyses preclude us from formulating a
generalized strategy akin to the forthcoming Algorithm [2] for the fixed-reward setting.
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3.2 Lower Bounds

In order to establish the asymptotic lower bound, we need to introduce the concept of RR%-consistency, which

rules out overly specialized algorithms that are tailored exclusively to specific problem instances. Roughly
speaking, a RRG-consistent algorithm guarantees a subpolynomial cumulative regret for any given problem
instance.

Definition 1 (RR®%-consistency). An algorithm 7 € TIRS is said to be RRG-consistent if for all abstention
regrets ¢ > 0, bandit instances y € U, and a > 0, RES(T, ) = o(T?).

Now we present both asymptotic and minimax lower bounds on the cumulative regret in Theorem |2, which
is proved in Appendix

Theorem 2. For any abstention regret ¢ > 0, bandit instance p € U and RRG-consistent algorithm =, it
holds that

RRG A;
lim inf ————— Z A C.

T—00 ogT
i>1

For any abstention regret ¢ > 0 and time horizon T > K, there exists a universal constant o > 0 such that

eurllgc 81615 RE‘E(T, ) > (VKT AcT).
& B

Comparing the upper bounds on the cumulative regret of our algorithm FRG-TSwWA in Theorem [I| with
the corresponding lower bounds in Theorem [2] it is evident that our algorithm exhibits both asymptotic and
minimax optimality.

Asymptotic optimality. For any abstention regret ¢ > 0 and bandit instance p € U, the regret of our
algorithm satisfies the following limiting behaviour:
RRG(T A A
lim Z c.
T—o0 logT

i>1

The above asymptotically optimal result yields several intriguing implications. First, the inclusion of the
additional fixed-regret abstention option does not obviate the necessity of differentiating between suboptimal
arms and the optimal one, and the exploration-exploitation trade-off remains crucial. In fact, to avoid the
case in which the cumulative regret grows polynomially, the agent must still asymptotically allocate the
same proportion of pulls to each suboptimal arm, as in the canonical model. This assertion is rigorously
demonstrated in the proof of the lower bound (refer to Appendixfor details). Nevertheless, the abstention
option does indeed reduce the exploration cost for the agent. Specifically, when exploring any suboptimal
arm with a suboptimality gap larger than ¢, our algorithm tends towards employing the abstention option to
minimize the instantaneous regret. This aspect is formally established in the proof of the asymptotic upper

bound (see Appendix |C.1)).

Minimax optimality. In the context of worst-case guarantees for the cumulative regret, we focus on the
dependence on ¢, K, and T'. Notably, the ) . , A; ternﬁ is typically considered as negligible in the literature
(Audibert & Bubeck! 2009; |Agrawal & Goyal, 2017} Lattimore & Szepesvari, [2020)). Therefore, Theorem I
demonstrates that our algorithm attains a worst-case regret of O(v/ KT A cT'), which is minimax optimal in
light of Theorem

A phase transition phenomenon can be clearly observed from the worst-case guarantees, which dovetails
with our intuitive understanding of the fixed-regret abstention setting. When the abstention regret c¢ is
sufficiently low, it becomes advantageous to consistently opt for abstention to avoid the worst-case scenarios.
On the contrary, when the abstention regret ¢ exceeds a certain threshold, the abstention option proves to
be inadequate in alleviating the worst-case regret, as compared to the canonical model.

3This term is unavoidable when the abstention regret c is sufficiently high, since every reasonable algorithm has to allocate
a fixed number of pulls to each arm.
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Algorithm 2 Fixed-Reward Algorithm with Abstention (or FRW-ALGWA)

Input: Arm set [K], abstention reward ¢ € R, and a base algorithm ALG that is both asymptotically

and minimax optimal for the canonical multi-armed bandit model.
- Initialize fi;(0) = +oo for all arms i € [K].
:fort=1,2,...,T do

Pull the arm A; chosen by the base algorithm ALG.

Choose to abstain (B; = 1) if and only if fia,(t — 1) <c.

Observe X; from the arm A;, and update fi;(t) for all ¢ € [K].
end for

—_

AN 4

Remark 4. Although our model allows for the selected arm A; and the abstention option B; to depend on
each other, the procedure used in both algorithms within this work is to first determine A; before By; this
successfully achieves both forms of optimality. Nevertheless, this approach might no longer be optimal beyond
the canonical K-armed bandit setting. In K-armed bandits, each arm operates independently. Conversely,
in models like linear bandits, pulling one arm can indirectly reveal information about other arms. Policies
based on the principle of optimism in the face of uncertainty, as well as Thompson Sampling, fall short of
achieving asymptotic optimality in the context of linear bandits (Lattimore & Szepesvari, |2017). Therefore,
the abstention option becomes particularly attractive if there exists an arm that incurs a substantial regret
but offers significant insights into the broader bandit instance.

Stochastic and heterogeneous abstention regret. If the regret incurred by the agent when opting for
abstention is not deterministic but stochastically generated from a distribution with known expectation c,
Algorithm [I] remains effective, and our analyses of the upper and lower bounds remain valid. Additionally,
another natural extension of our model is that the abstention regret is different for different arms. Specifically,
the agent incurs a regret of ¢; > 0 when pulling arm ¢ and choosing abstention. In this scenario, the abstention
criteria in Algorithm [I] can be adapted accordingly, and the same asymptotic and minimax optimality can
be established; see Appendix for details.

4 Fixed-Reward Setting

In this section, we investigate the fixed-reward setting. Here, the reward associated with the abstention
option remains consistently fixed at ¢ € R. When exploring a specific arm, the agent has the capability to
determine whether selecting the abstention option yields a higher reward solely based on its own estimated
mean reward. However, in the fixed-regret setting, this decision can only be made by taking into account
both its own estimated mean reward and the estimated mean reward of the potentially best arm. In this
regard, the fixed-reward setting is inherently less complex than the fixed-regret setting. As a result, it
becomes possible for us to design a more general strategy Fixed-Reward Algorithm with Abstention (or
FRW-ALGWA), whose pseudocode is presented in Algorithm Despite the straightforward nature of
our algorithm, we demonstrate its dual attainment of both asymptotic and minimax optimality through an
exhaustive theoretical examination in Sections 1] and

FRW-ALGWA leverages a base algorithm ALG that is asymptotically and minimax optimal for canonical
multi-armed bandits as its input. For comprehensive definitions of asymptotic and minimax optimality within
the canonical model, see Appendix [Al Notably, eligible candidate algorithms include KL-UCB*" (Ménard
& Garivier}, 2017), ADA-UCB (Lattimore} |2018), MOTS-7 (Jin et al, 2021) and Less-Exploring Thompson
Sampling (Jin et all [2023). In our algorithm, at each time step ¢, the base algorithm determines the
selected arm A; according to the partial interaction historical information (A, X7, As, Xo, ..., As—1, Xi—1).
Subsequently, the algorithm decides whether or not to abstain, indicated by the binary random variable By,
by comparing the empirical mean of the arm A;, denoted as fi4, (t — 1), to the abstention reward c.
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4.1 Upper Bounds

Recall the definition of the cumulative regret REYCV(TL as presented in Equation for the fixed-reward
setting. Theorem [3| establishes both the instance-dependent asymptotic and instance-independent minimax
upper bounds for Algorithm [2} see Appendix for the proof.

Theorem 3. For all abstention rewards ¢ € R and bandit instances p € U, Algorithm[g guarantees that

RW

R (T) pVe—piVe
li LA N AR ) YR A
e 22T m

?

Furthermore, there exists a universal constant o > 0 such that

RN(T) < a | VKT + Z (1 Ve — )
1€[K]

Remark 5. Tt is worth considering the special case where ¢ > 1, where opting for abstention results in a
reward even greater than, or equal to, the mean reward of the best arm. For this particular case, as per
Theorem since w1 V¢ —p; Ve =0 for all ¢ > 1, our algorithm achieves a regret of o(logT). This result, in
fact, is not surprising. In contrast to the fixed-regret setting where the regret associated with the abstention
option is strictly positive, in this specific scenario of the fixed-reward setting, selecting the abstention option
is indeed the optimal action at a single time step, regardless of the arm pulled. Therefore, there is no
necessity to distinguish between suboptimal arms and the optimal one, and the exploration-exploitation
trade-off becomes inconsequential. However, when the abstention reward is below the mean reward of the
best arm, i.e., ¢ < uj, maintaining a subpolynomial cumulative regret still hinges on the delicate balance
between exploration and exploitation, as evidenced by the forthcoming exposition of the asymptotic lower
bound.

4.2 Lower Bounds

We hereby introduce the concept of RFW-consistency for the fixed-reward setting, in a manner analogous
to the fixed-regret setting. Following this, we present two distinct lower bounds for the problem of regret
minimization in multi-armed bandits with fixed-reward abstention in Theorem [4] The proof for Theorem
is postponed to Appendix

Definition 2 (R®W-consistency). An algorithm 7 € is said to be

rewards ¢ € R, bandit instances € U, and a > 0, RFW (T, m) = o(T*).

Theorem 4. For any abstention reward c € R, bandit instance p € U and R®WY -consistent algorithm , it
holds that

HRW RRW

-consistent if for all abstention

REW(T, ) Ve —pi Ve
liminf -2~ > 2 _
s logT — ; A?

(2

For any abstention reward c € R and time horizon T > K, there exists a universal constant a > 0 such that

inf sup RSVCV(T, m) > aVKT.
rElRW ey 17

By comparing the upper bounds in Theorem [3] with the lower bounds in Theorem [ it is firmly confirmed
that Algorithm [2]is both asymptotically and minimax optimal in the fixed-reward setting.

Asymptotic optimality. For any abstention reward ¢ € R and bandit instance p € U, our algorithm
ensures the following optimal asymptotic behavior for the cumulative regret:

i Ve—p Ve
=2

i>1 g

e (T)
lim —&<
T—oo logT

Since it holds that pu, Ve — p; Ve < A; for all ¢ > 1, our algorithm effectively reduces the cumulative regret
in the asymptotic regime through the incorporation of the fixed-reward abstention option.



Under review as submission to TMLR

200 250
200 1
150
& 100 &b
2 & 100
——FRG-TSwA |
50 .
—— Less-Exploring TS 50
Asymp. Lower Bound
0 ‘ ‘ ‘ 0 ‘ ‘ ‘
0 0.5 1 1.5 2 0 0.5 1 1.5 2
T x10* T %104
(a) Instance pt (b) Instance puf

Figure 2: Empirical regrets with abstention regret ¢ = 0.1 for different time horizons 7.

Minimax optimality. Concerning the worst-case performance of our algorithm, disregarding the additive
term ;) (#1 V ¢ — p1;), it achieves an optimal worst-case regret of O(V KT'). While this worst-case regret
is the same as that for canonical multi-armed bandits, achieving it is non-trivial as we have to simultaneously
achieve the minimal asymptotic instance-dependent regret.

Moreover, there is no occurrence of the phase transition phenomenon in the fixed-reward setting. This
absence can be attributed to the intrinsic nature of the fixed-reward abstention option. For any abstention
reward ¢ € R and online algorithm, we can always construct a challenging bandit instance that leads to a
cumulative regret of Q(v KT'), as demonstrated in the proof of the minimax lower bound in Appendix

5 Numerical Experiments

In this section, we conduct numerical experiments to empirically substantiate our theoretical insights. To
reduce clutter, we report our results only for the fixed-regret setting here. Results pertaining to the fixed-
reward setting are deferred to Appendix [E] where we consider two particular realizations of our algorithm
based on Less-Exploring Thompson Sampling (Jin et al., 2023) and KL-UCB™" (Ménard & Garivier} 2017).
In each experiment, the reported cumulative regrets are averaged over 2,000 independent trials and the
corresponding standard deviations are displayed as error bars in the figures.

To confirm the benefits of incorporating the abstention option, we compare the performance of our proposed
algorithm FRG-TSWA (Algorithm (1)) with that of Less-Exploring Thompson Sampling (Jin et al.| 2023),
which serves as a baseline algorithm without the abstention option. We consider two synthetic bandit
instances. The first instance pf with K = 7 has uniform suboptimality gaps: p} =1 and uj = 0.7 for
all i € [K]\ {1}. For the second instance pu* with K = 10, the suboptimality gaps are more diverse:
/& =1, Mf = 0.7 for i € {2,3,4}, ,u;: = 0.5 for i € {5,6,7} and /Af = 0.3 for i € {8,9,10}. The empirical
averaged cumulative regrets of both methods with abstention regret ¢ = 0.1 for different time horizons T
are presented in Figure 2] To demonstrate their asymptotic behavior, we also plot the instance-dependent
asymptotic lower bound on the cumulative regret (refer to Theorem [2) in each sub-figure. It can be observed
that FRG-TSwWA is clearly superior compared to the non-abstaining baseline, especially for large values
of T. This demonstrates the advantage of the abstention mechanism. With regard to the growth trend,
as the time horizon T increases, the curve corresponding to FRG-TSwWA closely approximates that of the
asymptotic lower bound. This suggests that the expected cumulative regret of FRG-TSwWA matches the
lower bound asymptotically, thereby substantiating the theoretical results presented in Section [3]

To illustrate the effect of the abstention regret ¢, we evaluate the performance of FRG-TSwWA for varying
values of ¢, while keeping the time horizon T fixed at 10,000. The experimental results for both bandit
instances uf and pt are presented in Figure |3l Within each sub-figure, we observe that as c increases, the

10
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Figure 3: Empirical regrets with time horizon T' = 10,000 for different abstention regrets c.

empirical averaged cumulative regret initially increases but eventually saturates beyond a certain threshold
value of c. These empirical observations align well with our expectations. Indeed, when provided with
complete information about the bandit instance, if the abstention regret ¢ exceeds the largest suboptimality
gap, the agent gains no advantage in choosing the abstention option when selecting any arm. However, we
remark that the agent lacks this oracle-like knowledge of the suboptimality gaps and must estimate them
on the fly. Consequently, this results in the inevitable selection of the abstention option, even when the
abstention regret c is large.

6 Conclusions and Future Work

In this paper, we consider, for the first time, a multi-armed bandit model that allows for the possibility
of abstaining from accepting the stochastic rewards, alongside the conventional arm selection. This inno-
vative framework is motivated by real-world scenarios where decision-makers may wish to hedge against
highly uncertain or risky actions, as exemplified in clinical trials. Within this enriched paradigm, we address
both the fixed-regret and fixed-reward settings, providing tight upper and lower bounds on asymptotic and
minimax regrets for each scenario. For the fixed-regret setting, we thoughtfully adapt a recently developed
asymptotically and minimax optimal algorithm by |Jin et al. (2023) to accommodate the abstention op-
tion while preserving its attractive optimality characteristics. For the fixed-reward setting, we convert any
asymptotically and minimax optimal algorithm for the canonical model into one that retains these optimality
properties when the abstention option is present. Finally, experiments on synthetic datasets validate our
theoretical results and clearly demonstrate the advantage of incorporating the abstention option.

As highlighted in Remark [d] a fruitful avenue for future research lies in expanding the abstention model
from K-armed bandits to linear bandits. An intriguing inquiry is whether the inclusion of the abstention
feature can lead to enhanced asymptotic and minimax theoretical guarantees. Furthermore, in our work, the
abstention option exerts no influence on the stochastic observation from the selected arm. Delving into more
sophisticated and general approaches to model the effect of the abstention option promises as a captivating
future direction.
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A Asymptotic and Minimax Optimality in Canonical Multi-Armed Bandits

In the canonical multi-armed bandit model, there is no additional abstention option. Given a bandit instance
1 € U, at each time step ¢t € N, the agent employs an online algorithm 7 to choose an arm A; from the arm
set [K], and then observes a random variable X; from the selected arm A;, which is drawn from a Gaussian
distribution N (4,,1) and independent of observations from previous time steps. The choice of A; might
depend on the prior decisions and observations. To describe the setup formally, A; is FtC_Al—measurable,
where FFA = o(A1, X1, Ag, Xo, ..., A, X;) represents the o-field generated by the cumulative interaction
history up to and including time ¢t. Subsequently, the agent suffers an instantaneous regret of p; — Xj.

The agent aims at minimizing the expected cumulative regret over a time horizon T', which is defined as

RSA(T, m)=Tu — E

We refer to the collection of all online policies for the canonical multi-armed bandit model as TI€A.

Remark 6. It is worth noting that any algorithm designed for canonical multi-armed bandit model possesses
the capability to decide the arm A; to pull at each time step ¢, based on the partial interaction history
(A1,X1,A49,Xo,...,At—1,X;—1), within the abstention model. Conversely, any algorithm tailored for the
abstention model in the fixed-regret setting (or in the fixed-reward setting) can be applied to the canonical
multi-armed bandit model, provided that the abstention regret (or the abstention reward) has been prede-
termined. Specifically, the algorithm can determine both the selected arm A; and the binary abstention
variable By, although B, is purely auxiliary and exerts no influence on the cumulative regret RSA(T, ).

13
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Lower bounds. Both the asymptotic and minimax lower bounds for the canonical multi-armed bandit
model have been thoroughly established (Lai & Robbins| 1985} |Auer et all [1995). For a comprehensive
overview, refer to Sections 15 and 16 of [Lattimore & Szepesvari (2020)). Here, we summarize the results in
the following:

Definition 3 (R®“-consistency). An algorithm 7 € I is said to be R®A-consistent if for all bandit
instances p € Y and a > 0, RSA (T, m) = o(T).
Theorem 5. For any bandit instance j € U and R -consistent algorithm =, it holds that

RCA(T ) 2

liminf ———~- > —_—

T— 00 10 T T4 A;
i>1

For any time horizon T > K, there exists a universal constant o > 0 such that

inf sup RCA(T m) > avK

T€IlCA ey

Asymptotic and minimax optimality. According to Theorem [5| in the canonical bandit model, an
algorithm 7 € II®* is said to be asymptotically optimal if for all bandit instances p € U, it ensures that

RCA
lim
e logT log T Z AVE

Furthermore, it is said to be minimaz optimal if there exists a universal constant a > 0 such that

RSA(T,TF) <a <\/ﬁ+ZA1>

i>1

To the best of our knowledge, for canonical multi-armed bandits with Gaussian rewards, KL-UCB*™ (Ménard
& Garivier}, 2017), ADA-UCB (Lattimore} |2018), MOTS-7 (Jin et al 2021) and Less-Exploring Thompson
Sampling (Jin et al.l 2023]) exhibit simultaneous asymptotic and minimax optimality. As their names suggest,
the former two algorithms follow the UCB-style, while the latter two are rooted in Thompson Sampling.

Remark 7. One valuable byproduct derived from the proof of the asymptotic lower bound in Theorem [5] is
that, for any R®*-consistent algorithm 7, bandit instance p € U and suboptimal arm i > 1, we have

lim infM > l
T—o0 logT A?

Therefore, any algorithm that is asymptotically optimal ensures that for all suboptimal arms ¢ > 1,

- EIN(T)] 2
Th—r>noo logT A2

B Auxiliary Lemmas

Lemma 1 (Bretagnolle-Huber inequality (Tsybakov, [2009)). Let P and P’ be two probability distributions
on the same measurable space (Q, F). For any event A € F and its complement A¢ = Q\ A, the following
inequality holds:

P(A) + P'(A°) > %exp(—KLGP’, P)),

where KL(P,P’) denotes the Kullback—Leibler (KL) divergence between P and P’'.

14
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Lemma 2 (Divergence decomposition lemma). Consider both the fized-regret setting and the fized-reward
setting. Fix an arbitrary policy w. Let v = (P1,...,Pk) represent the reward distributions associated with one
bandit instance, and let v/ = (P},..., P} ) represent the reward distributions associated with another bandit
instance. Define P, . as the probability distribution of the sequence (A1, B1,Xu, ..., Ar, By, Xr) induced by
the algorithm m under the abstention regret ¢ in the fized-regret setting (or the abstention reward c in the
fized-reward setting) for the bandit instance v. Similarly, let P,/ . denote the same for the bandit instance

v'. Then the KL divergence between P, . and P,/ . can be decomposed as:

KL (P, Py c) = Y By o[Ni(T)KL (P, P)) .
i€[K]

The proof of Lemma [2| is similar to the well-known proof of divergence decomposition in the canonical
multi-armed bandit model (excluding abstention), and is therefore omitted. This proof can be located, for
instance, in |Garivier et al.| (2019, Section 2.1) and [Lattimore & Szepesvari (2020, Lemma 15.1).

Lemma 3 (Hoeffding’s inequality for sub-Gaussian random variables). Let X1,..., X, be independent o-
sub-Gaussian random variables with mean p. Then for any ¢ > 0,

2

ne ne?
0> < - < uyu—c)< _ =
P> pu+e) <exp ( 20_2) and P(p<p—e)<exp ( 20_2)

where fi ;== 13" | X;.

Lemma 4. Let {X;}ien be a sequence of independent o-sub-Gaussian random variables with mean p. Then
for any e >0 and N € N,

R 202 N R 202
ZP(unZqus)S—Q and Z]P’(unSufE)S—
n=1 € n=1

where fi,, = %Z?:l X;.

Proof. By symmetry, it suffices to prove the first part. According to Lemma [3] we have

N

N ne?
Zp(ﬂn >pu+e) < ZGXP <_%r2)
n=1

n=1
2
o (-5)
1 —-exp( 202)
v
exp (55z) — 1
202

2

where the last inequality follows from the fact that e* — 1 > « for any x > 0. O

C Analysis of the Fixed-Regret Setting

C.1 Upper Bounds

Proof of Theorem[1 Due to the law of total expectation, we can decompose the regret R}}?(T ) as

RYG(T, ) ZT: ) 1{By =0} +c-1{B; = 1})

t=1
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T
t=1
— e EINO(M)] + Y (8- EINO(D)] + - EIND (7)) n

For any arm ¢ with A; < ¢ (including the best arm), it holds that

E[N(T)]

N -

=K

> 1{A; =iand B, = 1}]
t=1

T
Z]I{At = ¢ and \/% Zc}]
t=1

T
, R 6logt + 2log(c V1) R
E I<{ A, =7and max (t—1)— —ni(t—1)>c¢

<E

+E

+

K
<E ZH{Atiand\/It{ZCH
t=1
T 6logt+ 2log(cV 1)
+E I4¢A;=4dand max | fa;(t—1)— & & > 1
t=K+1 JE[K] Nj(tfl)
T
+E Z H{At:iandul—ﬂi(t—l)zc}] (5)
t=K+1

where the last inequality arises from the observation that when A; =i,

. 6logt + 2log(cV 1) R
max (t—1) — A1) > e
{je[K]\{i} (’”( ) \/ N;(t—1) fii(t — 1)
A 6logt + 2log(c V1) )
= el (D7 > o U{p — At —1) > ¢
_{je[m\{i} (”J( ) \/ N;(t—1) > gy p U — it —1) = ¢}

N 6logt + 2log(c Vv 1) R
Q{;rel% (Nj(tl)\/ NG 1) >2u1}u{u1ui(tl)zc}~

For convenience, for any ¢ € [K] such that A; < ¢, we introduce three shorthand notations to represent the

terms in :
(%); :=E {Zle I {At =14 and \/g > c}]
(#);:=E {ZZ;K+1 I {At =i and max;¢(x) (ﬂj(t —-1) - w) > ,ul}}

N;(t—1)
m), =E {Zf:KH 1{A, =i and py — fu(t —1) > c}} .

We will deal with (&); and (#); later for the two forms of upper bounds.
On the other hand, for the term (H);, we have

(m); <E

T T-1
Z ZH{At =iand fi;s < p; — (c—A;) and N;j(t —1) = s}]

t=K+1 s=1
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T-—1

SE|Y T < pi— (e A))} (6)
s=1
2

SToaF g

Line (6) follows from the fact that for all s € [T — 1],
T
> I{A;=iand Ni(t—1) = s} < 1.
t=K+1

Line is due to Lemma

For any arm ¢ with A; > ¢, since arm 1 € [K] \ {i}, we have

E[N"(T)]
=E ZI[{AtiandBtO}]
t=1
T
<1+E Z H{At:iand
t=K+1
. 6logt + 2log(cV 1) R | K
ma. (t—1) — —i;(t—1)<cand {/ — <c¢
sl (MJ( : \/ N;(t = 1) pult =) t
T
SEIDY H{At_iand <g1(t1)\/Glogy(ilogl(;Vl)) ﬂi(t1)<cH. (8)
t=K+1 e

Minimax upper bound. Ife < %, then the abstention option is always invoked because 1/% >

\/g > ¢ for all ¢t € [T]. Consequently, it is straightforward to deduce that

RG
R, (T) < cT.

Next, consider the case that ¢ > \/g . Compared with the canonical multi-armed bandit model, at a single

time step, the agent in our abstention model incurs a greater (expected) regret only if an arm ¢ with A; < ¢
is pulled and the abstention option is selected. Thus, we have

RRG(T) < RSMT) + Y (e — Ay)-EIN(T)). 9)
A <c

Due to the minimax optimality of Less-Exploring Thompson Sampling (Jin et al., 2023]), there exists a
universal constant «; > 0 such that

ROMT) < oy <M+2Ai>. (10)

i>1

Recall the upper bound of E[Ni(l)(T)] for arm i with A; < ¢, as given in . Subsequently, we will establish
bounds for the following terms:

Dle=A)- (i, D> (c—A)- (M) and > (c—A;)- (W),

A <c A <c A <c

17



Under review as submission to TMLR

For the first term, we have

T
| K
Z(C—Az) (d); < c-E ZH{At:iand zc}]
) ) t
A <c A <c t=1
T
| K
<c-E Z]I{ - Zc}]
t=1
K
S N
c
< VKT. (11)
For the second term, we can obtain
Dole—A)- (M) D e (M)
A <c A <c
T
N 6logt + 2log(cV 1)
<c-E I< max i(t—1) — >
32 (- PR ) 2
T
N 6logt + 2log(cV 1)
< E I< f:i(t—1)— > .
JEIK]  Lt=K+1
For all j € [K], by a union bound over all possible values of N;(t — 1) and Lemma [3| we have
d 6logt + 2log(cV 1)
E I<a;(t—1)— >
R O )
t=K+1
G . 6logt + 2log(cV 1)
< D D Py , >
t=K+1 s=1
U= 6logt + 2log(cV 1)
< Z ZP Hjs — 5 2> Hj
t=K+1 s=1 (12)
<
- Z Z t3(cV1)
t=K+1s=1
v L
- t2c
t=K+1
1
< —
~ Kc
where the last inequality follows from the numerical fact that
Z —dx = —
2 —/ 2
t=K+1 K
Thus, we can bound the second term as
S (c—A) @i<e S =1 (13)
) - Kec
A <c JEIK]
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For the third term, in addition to the upper bound of (W); in , we can identify another straightforward
upper bound as follows:

(W), <E l §Tj I{A = z‘}] < E[N(T)].

t=K+1

By applying these two bounds separately for distinct scenarios,, we have

Sole—a)-m< Y (e—A)- i+ ) (e—A)-(m),

it A <c i:0<c—A7¢<\/§ NPV, S

K 2
<3/ = N; (T
SHEED D D D

i0<e— A</ & ie—A >/ K

K T
< — . —
N

i.C—Ai,Z %

< VET+ K2 L
=3VKT. (14)

By plugging Inequalities , and into , we have
3 (- Ay -EINM (D) <1+ 4VKT.

A <c
Together with @D and , we can conclude that

RET) < (an + )VET +on > A + 1.
i>1

Therefore, there must exist a universal constant o > 0 such that

RE(T) < a (Jﬁ+ ZAl) .

This completes the proof of the minimax upper bound.

Asymptotic upper bound. Consider any arm i with A; < ¢ (including the best arm). In the following,

we will further elucidate the upper bound of E[N, .(1)(T)] as given in (5)) within the asymptotic domain.

For the first term (é); in (5), we have

(/7o 4

For the second term (#);, using Inequality (12), we can get

(%) <E

a N 6logt +2log(cV 1)
(W) <E t_;lﬂ{;g% (uj(fl)\/ N - 1) >
T
<> El >, H{ﬂj(tl)\/GIOgth(ilfgl(;w) zulﬂ
JE[K] t=K+1 J

19



Under review as submission to TMLR

<

ol

Incorporating , we obtain

1 2

i Sa2Tte mZO(logT)-

Consider any arm i with A; > ¢. We will further explore the upper bound of E[Ni(o)(T)] in ().
According to the fact that

Y R =
oy o [T )

. 6logt+ 2log(cV 1) R
= — —ait—1)<
U {At 7 and <u1 2\/ Nt —1) Git—1)<cp,

we have
E[N" (T)]
T
) . 6logt + 2log(cV 1) R
<14+E 1A, = 1) - — =1
+ t:;l { t i and (Ml(t ) \/ Nl(tfl) :U’( )<C
T
. 6logt + 2log(c V1)
<1+4+E I —1 <
+ Z {Ml(t )+\/ NiE—1) < m
t=K+1
T
) 6logt + 2log(cV 1) N
= - — it -1 . 1
+E t_;ﬂn{At i and <u1 2\/ N ) fit—1) <e (15)

()i

Following a similar argument as in (12]), we can derive

T
Z ]I{ﬂl(t1)+\/Glogiv—:(ili)gl()c\/1) SMH SKLC' (16)

t=K+1

E

Now we focus on the last term in , which is denoted by (¥);.
For any fixed b € (0, 1), there must exist a constant t; (b, u,¢) > K + 1 such that for all ¢ > ¢4,

6logt+2log(cVvl) A;—c
2 < .
t—1)° =2

Notice that for all t > ¢,

iy 6logt+ 2log(cV 1) .
{At =4 and (Ml 2\/ No(t— 1) git—1)<c

C{M(t-1)<(t-1)"}

20



Under review as submission to TMLR

U{At:iand <u1—2\/61°g§v+(ilogl()c“)> —pi(t—1) < cand Ni(t — 1) > (t—l)b}
o

Q{Nl(t1)§(t1)b}U{At_iand,[Li(t1)2/“’1+Ai2_c}'

From the above, we deduce that

T

A, —
ZH{At:iandﬂi(t—l)Zul—l— 12 c}]

t=ty

(F)i<ti+ > P(Ni(t—1) < (t—1)")+E

t=t1

Using the approach similar to the one used to bound (M); in , we have

T ) R Ai—C 8
E Z]I Ay =dand f;(t —1) > py + 5 S(A-—c)2'

t=t1

By applying Lemma [5 we can get
8
7 <t b7 9 bu 7K A \92
(*)—1( MC)—f—ﬂ( H )+(Ai—8)2
where the term 5(b, i, K) is subsequently defined in Lemma
Substituting the above inequality and into , we arrive at

EN(T) <1+ % +t1(b, 1, ¢) + B(b, p, K) + B =02

=o(logT).

Due to the asymptotic optimality of Less-Exploring Thompson Sampling (Jin et al.; [2023)), for any suboptimal
arm ¢, we have
2logT

A?

(3

E[N;(T)] < + o(log T').

Finally, based on the regret decomposition in 7 we can conclude

RES(T) = c-EIN{ (1)) + 3 (A BV )]+C.E[N}1>(T)])

BN+ Y (A Ac) - E[Ni(T)]
>1
+ 3 (A= Acne) - BIVO(T)] + (- Acne) - ENO(T)
=S"(A A EN(D]+ Y (e—A)-EIND@+ Y (A - ¢) - EIN(T)]
i>1 A <c A >c
< (2logT) Z A2 ‘4 o(logT)

i>1

where the second equality is due to the fact that E[Ni(o)( )]+ E[N(l)( T)] = E[N;(T)] for all arms i € [K].

Therefore, it holds that
RG( )

C

i>1 g

as desired. O]

lim sup
T—o00 0og T
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Lemma 5. Consider Algorithm[il For any b€ (0,1), there exists a constant B(b, 1, K) such that

oo

> P (Ni(t) < ) < B(b, p, K).

Proof. The proof of Lemma [5| closely follows that of Proposition 5 in [Korda et al.[ (2013]), which was used to
analyze the classical Thompson Sampling algorithm. In fact, the only difference between our arm sampling
rule, which is built upon Less-Exploring Thompson Sampling (Jin et al.;|2023), and the classical Thompson
Sampling is how the estimated reward a;(t) is constructed for each arm 7 € [K]. Specifically, in our arm
sampling rule, a;(t) is either drawn from the posterior distribution N (ji;(t —1),1/N;(t — 1)) with probability
1/K or set to be the empirical mean fi;(t — 1) otherwise. In classical Thompson Sampling, a,(t) is always
drawn from the posterior distribution. Therefore, it suffices to verify the parts concerning the probability
distributions of a;(t); these correspond to Lemmas 9 and 10 in the proof of Proposition 5 in Korda et al.
(2013)).

It is straightforward to see that Lemma 9 in|Korda et al.|(2013) is applicable to our algorithm. For Lemma 10
therein, its counterpart is demonstrated in Lemma [6] below.

After establishing the counterparts of Lemmas 9 and 10 in the proof of Proposition 5 in |Korda et al.| (2013)),
we can extend the same analysis to our specific case. For the sake of completeness, we provide a proof sketch
in the following.

Let 7; denote the time of the j-th pull of the optimal arm (i.e., arm 1), with 79 := 0. Define ; =
(Tj4+1 — 1) — 75 as the random variable measuring the number of time steps between the j-th and (j + 1)-th
pull of the optimal arm. With this setup, we can derive an upper bound for P (Ny(t) < t°) as:

£*)
P(Ni(t) <t*) <P (e {0, [t"]}: &=t —1) <D P(g =P —1).
§=0

Consider the interval Z; := {Tj, T+ {tlfb — 1] } Ifg > t'= — 1, then no pull of the optimal arm occurs
on IZ;.

The subsequent analysis aims to bound the probability that no pull of the optimal arm occurs within the
interval Z;. It relies on two key principles:

e First, for a suboptimal arm, if it has been pulled a sufficient number of times, then, with high
probability, its estimated reward (sample) cannot deviate significantly from its true mean. This
observation is quantitatively characterized in Lemma 10 of Korda et al.| (2013)), corresponding to
Lemma [6] in our paper.

o Second, for the optimal arm, the probability that its estimated reward (sample) deviates significantly
below its true mean during a long subinterval of Z; is low. This observation is quantitatively
characterized in Lemma 9 of Korda et al.| (2013]), which directly applies to our case.

Lemma 6. Consider Algorithm [l For allt € N, it holds that

A; 128log t K
P<35§ta3i>1:ai(5)>ﬂi+2,Ni(s1)> 80g>§

A? 2’
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Proof. For any fixed s <t and i > 1, we have

&,Ni(s — 1) >

128logt
2

A2
1281logt
A2

A 128 log ¢ A;
2N(s—1) > 7A§g (s —1) < i + 4> .

P <ai(s) > +

A
<P<ﬂl(8—l) >ﬂi+z,Ni(S—1) >

+P (ai(s) >y + 5

For the first term in , by Lemma |3 we can bound it as

128 logt>

N A;
P(Mi(s_ 1) > lh“f—I,Ni(S— 1) > TAT

t

A;
Z P(ﬂim>ui+47Ni(51)z>
x=’7128Alzogt—‘
t
. A;
Z P (/uiac > Wi+ 4>
'_’712810gt—‘
T=| 7

IN

IN

AN
N
2~

<.

For the second term in , according to the construction of a;(s) in Algorithm |1|and Lemma |3] we can get

A 1281og ¢ A
P(ai(s) > pi+ 20 Ni(s — 1) > 22808 oo 1y <t 2
2 A? 4
A 128log t
<]P’<az‘(3) >/li(s_1)+z;Ni(s_1) > Agg )

IN

t

1 1
< X kw
mz”lQSl;gt—‘

- 1
- K3’

Thus, for any s <t and ¢ > 1, it holds that

A; 128 logt 1
— Ni(s—1) > o8 >§+

1  K+1
2 A? 3 Kt3 Kt

P (ai(s) > i +

Finally, by a union bound, we can conclude
K
t72.

<

A; 128logt K+1)(K-1
P<35§t73i>1:ai(5)>ui+2,]\],-(31)> 80g>§( + )

A? Kt?
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C.2 Lower Bounds

Proof of Theorem[3 In the following, we will establish the asymptotic and minimax lower bounds, respec-
tively.

Asymptotic lower bound. Consider any algorithm 7 that is RR“-consistent. Slne E[N; © 1 )]+
IE[N.(U(T)] = E[N;(T)] for all arms i € [K], we can utilize the regret decomposition in (4)) to derive

K2

RS m) 2 Y (A BN (D) + e BN (7))
>3 ((aine) - EN(D)).

i>1

Fix any abstention regret ¢ > 0. Then for all bandit instances p € U and a > 0, it holds that
R$M(T,m) = Ty — [Z X,

=3 (2 EN(T)))

i>1

< max
i>1 A Ac

S ((@aine) BN

>1
A;
< RG
max 1 B (1)
=o(T?).

Therefore, in accordance with Definition [3, the algorithm 7 is also R®*-consistent for arbitrary abstention
regret c.

Subsequently, for any abstention regret ¢ and bandit instance p, we have

RRS(T, ) A; ANe) - E[N;(T
g FRST) 5 (A ) EIN(T))
T—oo  logT T—00 logT
E[N; (T
*ZA Ac) hmlnfu
T—oo logT
i>1
Ai/\C
22y —o
i>1 v

where the last inequality follows from the property of R°*-consistent policies as detailed in Remark

This concludes the proof of the instance-dependent asymptotic lower bound.

Minimax lower bound.  We extend the proof of the minimax lower bound from the canonical multi-
armed bandit model to the model incorporating fixed-regret abstention.

Consider any fixed abstention regret ¢ > 0, time horizon T > K and algorithm = € IIRG. We construct a
bandit instance p € U, where p1 = A and p; = 0 for all ¢ € [K]\ {1}. Here, A > 0 is some parameter whose
exact value will be determined later. We use IP,, . to represent the probability distribution of the sequence
(A1, B1,X1,...,Ar, By, X7) induced by the algorithm 7 for the abstention regret ¢ and bandit instance p.
Since ), | E, [Ni(T)] = T, according to the pigeonhole principle, there must exist an index j € [K]\ {1}

such that
T

K-1

By e[N;(T)] <
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Now we construct another bandit instance ' € U, where p; = A, p/; = 2A and pj = 0 for all i € [K]\ {1, }.
Let P,/ . denote the probability distribution of the sequence (A1, Bi, X1,..., Ar, By, Xr) induced by the
algorithm 7 for the abstention regret ¢ and bandit instance p'.

For the first bandit instance u, regardless of the abstention option, if Ny(7) < T'/2, then the cumulative
regret must be at least (A A ¢)T/2. Therefore, we have

(ANCST

RiC(T,m) 2 =

Pu,c(Nl (T) S T/2)

Similarly, for the second bandit instance p’, we can obtain

(ANC)T

RG
R,U,/,C(T7 7T) 2 2

P (N1 (T) > T/2).

By combining the aforementioned two inequalities and applying Lemma [l we obtain the following:

RS+ RS m) > B @, (vyr) < 179) 4By (D) > T2)
> % exp (KL (Pp,c, P ) -

Leveraging Lemma [2] and the KL divergence between Gaussian distributions, we can derive

(2A)? < 2T A?

KL (]P)/J,,C, Pu’,c) = EM,C[Nj (T)]

o
=
I

Altogether, we can arrive at

G RG (AAC)T 2T A2
RC(T,m) + R (T, m) > ~————exp | — .
Now, we set A = \/% A ¢, which leads to

K 2
VET A cT 2T(y/ 7 Ne)
VKT AT ( 2K )
> fexp Iy

K-1
> w(\/ﬁ/\cT).

Consequently, either RE‘S(T, 7) or RRC (T, 7) is at least W(\/ KT A cT), which completes the proof of

w,c
the instance-independent minimax lower bound. O

C.3 Heterogeneous Abstention Regret

In the scenario of heterogeneous abstention regret, for each arm i € [K], the agent incurs a regret of ¢; > 0
when pulling arm ¢ and choosing abstention. By the law of total expectation, the expected cumulative regret
up to the time horizon T can be expressed as:

RiC(T,m) =E ((u1 — Xy) - 1{By = 0} + ca, - 1{B, = 1})

t=1
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— e BN @]+ Y (8 EINO(D)] + ¢ - EIND (T)])
i>1

For ease of presentation, we define ¢ = max;¢ (k] ¢; as the maximum abstention regret level. The lower bound

part is straightforward. Specifically, we can obtain the following lower bounds.
Theorem 6. For any abstention regret ¢ = (¢;)ie(k], bandit instance y € U and RRG
it holds that

-consistent algorithm m,

RES(T, 7) A; Ne;
. - ,C ) > (] 1
Ty O D e

i>1 i

For any maximum abstention regret level ¢ > 0 and time horizon T > K, there exists a universal constant
a > 0 such that

inf sup RE%(T, 7) > (VKT AcT).

m€lRG ey c

With respect to the algorithm design, for each arm ¢ € [K], we redefine its lower confidence bound as

. 6logt + 2log(c; V1
LCBy(1) = fuslt — 1) —\/ T

Then in the abstention decision rule, we choose to abstain (B; = 1) if and only if

K
max }LCBi(t)—ﬂAt(t—l)zci or \/720. (18)

ie[K\{A;

Note that in , we compare \/% with ¢ = max;¢ (k] ¢i.

Theorem 7. For any abstention regret ¢ = (c;)ic(x] and bandit instance p € U, Algom'thm with the new
abstention criteria in guarantees that

RG( ) A; Ne
1 w,c 9 % 7
imsup o= <23 =

Furthermore, there exists a universal constant o > 0 such that

RRG(T)< cT if c< /KT
BT T\ a(WKT + Y0, 8i)  ife> K/T.

The proof of Theorem [7] closely follows that of Theorem[I]in Appendix[C.I] While many steps are analogous,
it is noteworthy that in this context, for any arm ¢ with A; < ¢;, we can upper bound ]E[Ni(l)(T)] as

T
) . 6logt+ 2log(c; V1)
E I A= d i(t—1)— >
o8] 30t g (i PR ) 2
T
+E Z H{At:iandul—ﬂi(t—1)>q}1.
t=K+1
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D Analysis of the Fixed-Reward Setting

D.1 Upper Bound

S

Proof of Theorem [§ Utilizing the law of total expectation, we can decompose the regret Ry (T, 7) in the

following:

RW
R (T, )

Recall that we define ji;(t) =

obtain

=T -(mVe)—E Z(Xt~1{Bt:0}+c-1{Bt:1})]
T -(uuVe)—E Z(MAt~1{Bt:O}+c~1{Bt:1})
> (G ve—p) - EINO@) + (Ve o) - EIN(T))). (19)
1€[K]

+o0 if N;(t) = 0 for all arms ¢ € [K]. Thus, for any arm ¢ with p; > ¢, we can

T
E|> 1{A; =iand B; = 1}]

Lt=1

r T
E Z]I{At:iand fi(t —1) <c}]

T T-1
<E Z H{At:iandﬂis<candNi(t—1):s}1
Lt=1 s=0
rT T-1
=K Z H{AtiandﬂisgcandNi(tl)3}1
Lt=1 s=1
rr—1
Ls=1
< 2
= Q=

where the penultimate inequality is derived from an argument analogous to that in @, and the last inequality
is a consequence of Lemma [

Similarly, for any arm ¢ with p; < ¢, we have

r T
=E ZH{At:iandBtzo}]
Lt=1
r T
=E ZH{At:iandﬂi(t—1)>c}]
t=1
T —
<E ZZH{Atziandms>candNi<t—1>:S}1
Lt=1 s=0
T —
<14E ZZH{At—zanduzs>candN(t—1) }]
t=1 s=1
2
S e
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Asymptotic upper bound. First, we consider the scenario where p; < c. In this case, based on the
regret decomposition in Equation , we can bound the regret as follows:

RW(T) = 3" (e i) - EINS(T)]

Next, we consider the scenario where u; > c¢. Due to the asymptotic optimality of the base algorithm, for
any suboptimal arm ¢, we have

BN (1)) < 25T 4 oflog 7).
Thus, we can bound the regret as:
R (T)
= > (G = ) - BINO (@] + (1 = ) -EIN(T)))
i€[K]
= > (G = Vet Ve ) EINO(T) + (o = i Vet i Ve = o) - EINI(T)])
i€[K]
=3 (1 = s v &) - BIN(D) + (i Ve — ) - EIN (D)) + (i v e — ) - BN (1))
1€[K]
=2 (= v e) ENAD) + 3 (o= ) ‘BN (D] + 37 (i =) - B[N (D)
1—u; Ve 2 | 2
= @loeT) DZIN ,u +Z§<c (Clul _Ni>+i;ulz>c/1’z—c+0(logT)
= (2logT) Z MIT + o(log T)

where the third equality is due to the fact that E[Ni(o)(T)] + E[Ni(l)(T)] = E[N;(T)] for all arms i € [K].
Altogether, in both scenarios, it holds that

RW( ) .
. c 1 VvVe—p; Ve
hmsu P«7<2 —_—.
T logT = Zm A2
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Minimax upper bound. First, if p1 < ¢, by utilizing the regret decomposition in Equation (20]), we
have
0
RW(T) = 37 (e — ) -EIN(T)]
i <c

= Y (-w) ENODI+ Y (e—w)-EIN(D)
:0<c— ,u1<\/7 i:cfmz\/?

< \/» N §<\rE[Ni<0> (T)] + Eﬁ (c —pi + —2u>

S\/f'T—F > <c—ui+2\/z>

i:c—uizx/?
T
< VKT + Z (C-Mi)-i-K-QHE

i€[K]

=3VKT+ ) (mVe—p).

i€[K]

(21)

Next, if u1 > ¢, then the best possible (expected) reward at a single time step is p1, which coincides with
the canonical multi-armed bandit problem. Consequently, compared with canonical multi-armed bandits, at
a single time step, the agent in our problem incurs a greater (expected) regret only if an arm ¢ with u; > ¢
is pulled and the abstention option is chosen. Thus, we have

REW(T) < RSA(T) + Y (i — o) - BN (D).

i >cC

Due to the minimax optimality of the base algorithm, there exists a universal constant a; > 0 such that

RMT) < oy <¢ﬁ+ > A,-) .

i>1
Furthermore, using a similar argument as in , we can derive
> (ui—o)-EIN{ (D)
i >cC
= Y (u-o-ENVYDI+ Y (o) -EINY(D)
i:0<p,i—c<\/? i:ui—cz\/?
2
<VKT+ )

I8 ,U.Z—(‘>\/7
<3VKT.

Therefore, we can bound the regret as

RIV(T) < (a1 +3) (Jﬁ +3 Ai>

i>1

=(a1+3) | VET+ Y (1 Ve—p)

1€[K]

As a result, the desired minimax upper bound holds in both scenarios. O
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D.2 Lower Bounds

Proof of Theorem[j) The proof structure for Theorem [ closely parallels that of Theorem [2]in Appendix
although certain specific details contain significant variations. Therefore, we will streamline the shared
components and elaborate on the distinctions.

Asymptotic lower bound. Consider any RfW-consistent algorithm 7 and bandit instance p € U. The
case that ¢ > p; is trivial, as REYCV(T, ) is non-negative, and p; Ve—p; Ve =0 for all 4 > 1. Thus, it suffices
to demonstrate that for any abstention reward ¢ < uq,

RRW
lim inf ————- Z = m v C.

T—o0

When ¢ < pq, we can establish a lower bound on RE‘YCV(T, 7) as follows:

BT m) = 3 (= i) - BNV (D)) + (1 = ) - BN (7))

1€[K]
>3 (G =) -EINO (@) + (1 = o) - BN (7))
>3 (1 = s v o) - EINA(T))).

Therefore, we only need to show for all suboptimal arms ¢ > 1,

BV(D)] 2

i

lim inf (22)
T—oo logT

However, unlike the asymptotic lower bound part of the proof of Theorem [2] we cannot apply the properties
of R®A-consistency here, as R®W-consistency does not imply R°*-consistency in general. Instead, we will
demonstrate the desired result directly.

Fix an index j > 1 and take ¢ > 0. We now proceed to create an alternative bandit instance p’ € U,
where p; = py + ¢ and p; = p; for all i € [K]\ {j}. Note that for the new bandit instance, it holds that
maX;e(r) H; = py > p1 > c. To distinguish between the two scenarios, we will refer to the probability
distribution associated with the sequence (Aj, B1, X1,..., Ar, By, Xr), generated by the algorithm 7 for
the abstention reward ¢ and the original bandit scenario u, as P, ., and for the new bandit instance p', we
denote the corresponding distribution as P ..

A straightforward computation yields

w1 —pi V)T

RY(T,m) > ( 5 P,..(N;(T) > T/2)

and T
9
RiNUT,7) 2 =P o(N(T) < T/2).

Employing a similar approach to the one used in the minimax lower bound part of the proof of Theorem [2]
utilizing Lemmas [T] and 2] we can derive:

R (T ) + R (T, ) > W Z YO NET (o my s 79 4B, (N5 (T) < T/2))

2
> (1 — Mi;/ ¢) Ae)T exp (=KL (Py.c, P c))
_ (G — Mi;/ ) ne)T exp <— Eu,c[Nj(T)](Aj;E)Q> '
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By rearranging the above inequality and taking the limit inferior, we have

10g ( (p1—piVe)Ae )
.. JE[N;(T)] 2 , 4(REW (T,m)+ RV (T,m)
lim inf —2 > 141 u e
[ logT  — (A +¢)? + l;n_ilip logT

2 . log (RN (T, m) + RIVL(T, 7))
=———|1—limsup : : .
(A +e)? T—o00 logT

Recall the definition of R®W-consistency. For all a > 0, both R} (T',7) and RE‘,Y‘Z(T, m) are on the order of
o(T?), and hence,

log (RPW(T, 7) + REW (T, =
lim sup g( e ( ) H ’C( )) <a.
T— o0 IOgT

By letting both a and € approach zero, we can establish the desired result , thereby concluding the proof
of the asymptotic lower bound.

Minimax lower bound. The construction employed in the fixed-reward setting here is analogous to the
one utilized in the proof of Theorem [2}

Consider any fixed abstention reward ¢ € R, time horizon 7' > K and algorithm 7 € II™W. Let A > 0 be a
parameter to be determined later. We construct a bandit instance p € U, where p1 = A + ¢ and u; = ¢ for

all i € [K]\ {1}. Note that there must exist an index j € [K]\ {1} such that E, .[N;(T)] < z£5. We then

construct another bandit instance p’ € U, where 3 = A +c¢, p’; = 2A + cand i = c for all i € [K]\ {1, }.
Similarly, by applying Lemmas [I] and [2] we can derive that

R (T, ) + RE(T, 7) > 5L (B (Mo (T) < 7/2) + B o(N(T) > T/2))

AT
> —exp (=KL (P, Pur.c))

! 2
28) )

= % exp (— Ey,e[N;(T)]

>£ 2T A?
2P~ 1)

we have

: _ /K
By choosing A = /=,

fRe JIaNe

R™W(T, ) + RRWY.(T, ) > %8*4)\/1@.

Consequently, either RE}’CV(T , ) or Rf},‘i‘é(ﬂ ) is at least 6’(13(87—‘1)@.

Therefore, we have established the instance-independent minimax lower bound. O

E Numerical Experiments

E.1 Results for the Fixed-Reward Setting

In this subappendix, we present the empirical results pertaining to the fixed-reward setting. Specifically,
we examine the empirical performances of two particular realizations of our algorithm FRW-ALGWA (as
outlined in Algorithm [2): FRW-TSwWA and FRW-UCBWA. The former uses Less-Exploring Thompson
Sampling (Jin et al., [2023) as its base algorithm, while the latter employs KL-UCB*" (Ménard & Garivier,
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Figure 4: Empirical regrets with abstention reward ¢ = 0.9 for different time horizons 7'
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Figure 5: Empirical regrets with time horizon 7" = 10, 000 for different abstention rewards c.

2017). Note that KL-UCB'™ is not an anytime algorithm; that is, it requires the prior knowledge of the
time horizon T as an input parameter. In the following experiments, we continue to utilize the two bandit
instances puf and pf, as previously defined in Appcndix

In a manner analogous to our methodology for the fixed-regret setting, we adopt the original versions of
Less-Exploring TS and KL-UCB™'™" as baseline algorithms without the abstention option. The experimental
results of the different methods with abstention reward ¢ = 0.9 for different time horizons T are presented
in Figure Additionally, we plot the instance-dependent asymptotic lower bound (ignoring the limit in
T) on the cumulative regret (see Theorem [4)) within each sub-figure. From Figure [4] we have the following
observations:

e Both realizations of our algorithm, FRW-TSwWA and FRW-UCBWA, exhibit marked superiority
over the two non-abstaining baselines.

e Concerning the observed growth trend, as the time horizon T increases, the performance curves
for both FRW-TSwA and FRW-UCBWA approximate the asymptotic lower bound closely. This
behavior indicates that the expected cumulative regrets of FRW-TSwWA and FRW-UCBWA attain
the instance-dependent lower bound asymptotically, validating the theoretical findings discussed in
Section (4

e While both FRW-TSwWA and FRW-UCBWA represent implementations of our general algorithm
and share identical theoretical guarantees, FRW-TSWA demonstrates superior empirical perfor-
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Figure 6: Empirical regrets with abstention regret ¢ = 0.1 for different time horizons 7.
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Figure 7: Empirical regrets with time horizon T' = 10,000 for different abstention regrets c.

mance. This is particularly evident in the first instance ', suggesting its enhanced applicability for
real-world applications.

Next, we examine the impact of the abstention reward ¢ by assessing the performance of FRW-TSwA and
FRW-UCBWA for different ¢, while keeping the time horizon T fixed at 10,000. The experimental results
for bandit instances pf and p* are shown in Figure

Within each sub-figure, a pattern emerges. As the abstention reward c increases, the empirical average
cumulative regret initially remains relatively stable and starts to decline once ¢ crosses a certain threshold,
eventually stabilizing around a small value. These observations are consistent with our theoretical expecta-
tions. Specifically, when the abstention reward c is lower than the smallest mean reward among the arms,
the agent derives no benefit from opting for the abstention action over selecting an arm. On the other hand,
when the abstention reward ¢ exceeds the highest mean reward of the arms, abstention becomes the optimal
decision and its reward is even superior to choosing the best arm. In this specific scenario, it is possible to
achieve a regret of o(logT'); see Remark [5| for further insights.

E.2 Random Instances

In this subappendix, we present additional numerical experiments, using random instances with large num-
bers of arms. The construction of these random instances mirrors the method in (2023)). Specifically,
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for a given number of arms denoted by K > 10, we set u; = 1 and p; = 0.7 for i € {2,3,...,10}, while
w; ~ Unif[0.3,0.5] for ¢ € [K]\ [10].

For the sake of simplicity in presentation, we focus on the fixed-regret setting, examining two choices of K,
namely, K = 20 and K = 30. The empirical averaged cumulative regrets with abstention regret ¢ = 0.1 for
different time horizons T are shown in Figure[6] while the experimental results with time horizon 7' = 10, 000
for different abstention rewards c are illustrated in Figure [7]

It is evident that the findings in Figures [6] and [7] closely resemble those in Figures [2] and Notably,
FRW-TSwA outperforms Less-Exploring TS which is not tailored to the setting with the abstention option.
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