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Abstract

The generation of equilibrium samples of molecular systems has been a long-
standing problem in statistical physics. Boltzmann Generators are a generative
machine learning method that addresses this issue by learning a transformation via
a normalizing flow from a simple prior distribution to the target Boltzmann distri-
bution of interest. Recently, flow matching has been employed to train Boltzmann
Generators for small molecular systems in Cartesian coordinates. We extend this
work and propose a first framework for Boltzmann Generators that are transferable
across chemical space, such that they predict zero-shot Boltzmann distributions
for test molecules without being retrained for these systems. These transferable
Boltzmann Generators allow approximate sampling from the target distribution
of unseen systems, as well as efficient reweighting to the target Boltzmann distri-
bution. The transferability of the proposed framework is evaluated on dipeptides,
where we show that it generalizes efficiently to unseen systems. Furthermore, we
demonstrate that our proposed architecture enhances the efficiency of Boltzmann
Generators trained on single molecular systems.

1 Introduction

Generative models have demonstrated remarkable success in the physical sciences, including protein
structure prediction [1, 2, 3], generation of de novo molecules [4, 5, 6, 7], and efficiently generating
samples from the Boltzmann distribution [8, 9, 10]. In this work, we will focus on the latter for
molecular systems, which represents a promising avenue for addressing the sampling problem. The
sampling problem refers to the long-standing challenge in statistical physics to generate samples
from equilibrium Boltzmann distributions µ(x) ∝ exp (−U(x)/kBT ), where U(x) is the potential
energy of the system, kB the Boltzmann constant, and T the temperature. Traditionally, samples are
generated with sequential sampling algorithms such as Markov Chain Monte Carlo and Molecular
Dynamics (MD) simulations. However, these algorithms require a significant amount of time to
generate uncorrelated samples from the target distribution. This is due to the necessity of performing
small update steps, in the order of femtoseconds, for stability. This is especially challenging in
the presence of well-separated metastable states, where transitions are unlikely due to high energy
barriers. In recent years, numerous machine learning methods have emerged to address this challenge
[8, 11]. One such method is the Boltzmann Generators (BG) [8]. In this work, we refer to BGs
as a model that allows for the approximate sampling of the Boltzmann distribution of interest and
the subsequent reweighting to the unbiased target distribution. If the model is only capable of
generating approximate samples, which may stem from a subset of the Boltzmann distribution,
we refer to them as Boltzmann Emulators1. Boltzmann Generators transform a typically simple
prior distribution into an approximation of the target Boltzmann distribution through a normalizing
flow [12, 13, 14, 15]. Once generated, samples can be reweighted to align with the unbiased target

1To the best of our knowledge Bowen Jing introduced the name first.
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distribution. The effectiveness of this reweighting hinges on how closely the generated distribution
approximates the target. As a result, it is possible to obtain uncorrelated and unbiased samples from
the target Boltzmann distribution, potentially achieving significant speed-ups compared to classical
MD simulations.

There are numerous ways to construct a Boltzmann Generator due to the variety of realizations of
normalizing flows available. In this work, we concentrate on continuous normalizing flows (CNFs)
[16, 17], as opposed to coupling flows [18]. Recently, flow matching [19, 20, 21, 22] has emerged as
an alternative training method for CNFs. This approach is simulation-free, enabling more efficient
training of CNFs.

Thus far, Boltzmann Generators have been limited by the requirement to train them on the specific
system of interest. This training process demands a significant amount of time, making it difficult
to achieve substantial speed-ups over classical MD simulations. Consequently, there is a strong
desire for a transferable Boltzmann Generator that can be trained on one set of molecules and
effectively generalize to another, enabling efficient generation of Boltzmann samples at inference
time without the need for retraining. Recently, reliable Boltzmann Generators in Cartesian coordinates
for molecules have been introduced [23, 24], paving the way for transferable Boltzmann Generators.
This advancement is particularly significant because these models do not rely on molecule-specific
internal coordinate representations, which have traditionally made the construction of transferable
models challenging.

In this work, we present a framework for transferable Boltzmann Generators based on CNFs, enabling
effective sample generation from previously unseen Boltzmann distributions. Transferable Boltzmann
Generators are particularly advantageous as they do not require retraining for similar systems and can
be trained on shorter trajectories that may not fully capture all metastable states.

We make the following main contributions:

1. To the best of our knowledge, we introduce the first transferable Boltzmann Generator. We
demonstrate its transferability on dipeptides, successfully generating unbiased samples from
the Boltzmann distributions of unseen dipeptides.

2. We outline a general framework for training and sampling with transferable Boltzmann
Generators based on continuous normalizing flows, which also includes the post-processing
of generated samples.

3. We conduct several ablation studies to investigate the effects of different architectures,
training set sizes, and biasing of the training data. The results reveal that even small training
sets can suffice to train transferable Boltzmann Generators. Additionally, we compare
our model with Timewarp [11], which employs large time steps instead of generating
independent samples as our method does.

2 Related work

The initial work on Boltzmann Generators [8] has led to a great deal of subsequent research. The
most common application of BGs is to generate samples from Boltzmann distributions of molecules
[25, 26, 27, 28, 29, 30], as well as lattice systems [26, 31, 32, 33]. Most BGs for molecular systems
require system-specific featurizations such as internal coordinates [8, 34, 26, 27, 35, 36, 30]. Only
recently, BGs for small molecular systems in Cartesian coordinates were introduced [23, 24], using
CNFs and coupling flows, respectively. Equivariant normalizing flows [37, 38, 39, 28, 23, 40] played
a pivotal role in the success of Boltzmann Generators in Cartesian coordinates, not only for molecular
systems. The majority of BGs employ a Gaussian prior distribution, but it is also possible to start
from prior distributions close to the target distribution [41, 36, 42], which makes the learning task
simpler. However, all previous Boltzmann Generators are not transferable. Arguably, the work of [7]
represents an exception, as they are able to generate samples from unseen conditional (Boltzmann)
distributions in torsion space. However, the distribution is conditioned on a single local structure
for each molecule, namely fixed bonds and angles. Consequently, in contrast to our work, they
are unable to generate samples from the full Boltzmann distribution in Euclidean space. The first
transferable deep generative model that was able to generate asymptotically unbiased samples from
the Boltzmann distribution is [11]. Instead of generating independent samples, they learn large
time steps and combine these with Metropolis-Hastings acceptance steps, to ensure asymptotically
unbiased samples. However, in contrast to our work, they do not generate uncorrelated samples.
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Boltzmann Emulators are analogous to Boltzmann Generators, yet they are not designed to generate
unbiased equilibrium samples from the target Boltzmann distribution. Instead, they are intended
to generate approximate samples that do not undergo reweighting. Furthermore, the generation of
all metastable states may not be a necessary requirement, depending on the system. Boltzmann
Emulators do not need to be based on flow models, as they do not aim to do reweighing to the
target distribution. They are often similar to Boltzmann Generators and use normalizing flows or
diffusion models for the architecture, but due to removing the constraint of sampling the unbiased
Boltzmann distribution, they can target significantly larger systems or are transferable. One example
is [43], who propose a three stage transferable CNF model to learn peptide ensembles. [44] use
flow matching to learn distributions of proteins, while [45] utilize diffusion models. [46] build
a transferable Boltzmann Emulator for small molecules. Others aim to additionally also capture
the correct dynamics of the molecular systems, such as [47], who use a diffusion model to predict
transition probabilities. Scaling to larger systems often requires coarse graining [48, 49, 44], e.g.
describing amino acids by a single bead rather than the individual atoms. However, this approach
precludes the possibility of reweighting to the Boltzmann distribution.

A distinct, though related, learning objective is to generate novel molecular conformations. However,
approximations from the Boltzmann distribution are not necessary; it is sufficient to generate a few
(or even a single) conformation per molecule. The utilized architectures are once again analogous, as
flow and diffusion models are employed [5, 6, 50, 51, 52, 7].

3 Boltzmann Generators and Normalizing Flows

Here, we describe Boltzmann Generators and normalizing flows, which are a central part of our
proposed transferable Boltzmann Generator framework. We follow the notation of [23].

3.1 Boltzmann Generators

Boltzmann Generators (BGs) [8] combine an exact likelihood deep generative model and a reweight-
ing algorithm to reweight the generated distribution to the target Boltzmann distribution. The exact
likelihood deep generative model is trained to generate samples from a distribution p̃(x) that is close
to the target Boltzmann distribution µ(x). A common choice for the exact likelihood model are
normalizing flows.

The Boltzmann Generator can be used to generate unbiased samples by first sampling x ∼ p̃(x) with
the exact likelihood model and then computing corresponding importance weights w(x) = µ(x)/p̃(x)
for each sample. These allow to reweight generated samples to the target Boltzmann distribution
µ(x). It is possible to estimate observables of interest (asymptotically unbiased) using the weights
w(x) with importance sampling via

⟨O⟩µ =
Ex∼p̃(x)[w(x)O(x)]

Ex∼p̃(x)[w(x)]
. (1)

Furthermore, these reweighting weights can be employed to assess the efficiency of trained BGs by
computing the effective sample size (ESS) with Kish’s equation [53]. In this work, we will compute
the relative ESS, rather than the absolute one, and refer to it as ESS.

3.2 Continuous Normalizing Flows (CNFs)

Normalizing flows [15, 54] are a type of deep generative model used to learn complex probability
densities µ(x) by transforming a prior distribution q(x) through an invertible transformation fθ :
Rn → Rn, resulting in the push-forward distribution p̃(x).

Continuous Normalizing Flows (CNFs) [16, 17] are a specific kind of normalizing flow. For CNFs,
the invertible transformation f t

θ(x) is defined by the ordinary differential equation
df t

θ(x)

dt
= vθ

(
t, f t

θ(x)
)
, f0

θ (x) = x0, (2)

where vθ(t, x) : Rn × [0, 1] → Rn is a time-dependent vector field. The solution to this initial value
problem provides the transformation equation

f t
θ(x) = x0 +

∫ t

0

dt′vθ

(
t′, f t′

θ (x)
)
, (3)
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with f1
θ (x) = p̃t(x). The corresponding change in log density from the prior to the push-forward

distribution is described by the continuous change of variable equation

log p̃(x) = log q(x)−
∫ 1

0

dt∇ · vθ
(
t, f t

θ(x)
)
. (4)

Equivariant flows The energy of molecular systems is typically invariant under permutations of
interchangeable particles and global rotations and translations. Consequently, it is advantageous for
the push-forward distribution of a Boltzmann Generator to possess the same symmetries as the target
system. In [37, 38] the authors demonstrate that the push-forward distribution p̃(x) of a permutation
and rotation equivariant normalizing flow with a permutation and rotation invariant prior distribution,
is again rotation and permutation invariant. Furthermore, [37] present a method to construct such
equivariant CNFs by using an equivariant vector field vθ.

3.3 Flow matching

Flow matching [19, 20, 21, 22] enables efficient, simulation-free training of CNFs. The conditional
flow matching training objective allows for the direct training of the vector field vθ(t, x) through

LCFM(θ) = Et∼[0,1],x∼pt(x|z) ||vθ(t, x)− ut(x|z)||22 . (5)

There are many possible parametrizations for the conditional vector field ut(x|z) and the conditional
probability path pt(x|z). One of the most simple, but powerful possible parametrization is

z = (x0, x1) and p(z) = q(x0)µ(x1) (6)

ut(x|z) = x1 − x0 and pt(x|z) = N (x|t · x1 + (1− t) · x0, σ
2), (7)

which we use in this work to train our models. For a more detailed description refer to [19, 22, 23, 50].

4 Transferable Boltzmann Generators

This section presents our proposed framework for transferable Boltzmann Generators (TBGs).

4.1 Architecture

Our proposed transferable Boltzmann Generator is based on a CNF. The corresponding vector
field vθ(t, x) is parametrized by an O(D)- and S(N)-equivariant graph neural network (EGNN)
[39, 55, 43], as commonly used in prior work, e.g. [23, 39]. Although, less expressive than other
equivariant networks such as [56, 57, 58, 59], it is faster to evaluate, which is important for CNFs as
there can be hundreds of vector field calls during inference.

The vector field vθ(t, x) consists of L consecutive layers. The position of the i-th particle xi is
updated according to the following equations:

h0
i = (t, ai, bi, ci), ml

ij = ϕe

(
hl
i, h

l
j , d

2
ij

)
, (8)

xl+1
i = xl

i +
∑
j ̸=i

(
xl
i − xl

j

)
dij + 1

ϕd(m
l
ij), (9)

hl+1
i = ϕh

(
hl
i,m

l
i

)
, ml

i =
∑
j ̸=i

ϕm(ml
ij)m

l
ij , (10)

vθ(t, x
0)i = xL

i − x0
i −

1

N

N∑
j

(xL
j − x0

j ), (11)

where ϕα represents different neural networks, dij is the Euclidean distance between particle i and
j, t is the time, ai is an embedding for the particle type, bi for the amino acid, and ci or the amino
acid position in the peptide. In the final step, the geometric center is subtracted to ensure that the
center of positions is conserved. When combined with a symmetric mean-free prior distribution, the
push-forward distribution of the CNF will be O(D)- and S(N)-invariant, as demonstrated in [60].

4



The embedding of each atom is constructed from three parts. The first part is the atom type ai, which
is a one-hot vector of 54 classes. The classes are defined based on the atom types in the peptide
topology. Therefore, only a few atoms are indistinguishable, such as hydrogen atoms that are bound
to the same carbon or nitrogen atom. The second part is the amino acid to which the atom belongs,
which is divided into 20 classes. The third part is the position of the amino acid in the peptide
sequence. This embedding is similar to the embedding used in [43] for the rotamer embeddings.
The amino acid and positional embeddings are only used for the transferable experiments. For more
details see Appendix B.5. In this study, we refer to this transferable Boltzmann Generator architecture
as TBG + full, and we use this name even when we apply it to a non-transferable setting.

The proposed architecture in [23] uses distinct encodings for all backbone atoms and the atom types
for all other atoms. This represents a special case of our architecture, wherein bi and ci are omitted
and ai encodes the atom type or a backbone atom. Hence, there are 13 classes for ai. We refer to this
architecture as TBG + backbone. Furthermore, we refer to the specific architecture employed in [23]
as BG + backbone for the alanine dipeptide experiments. Note that using only ai causes problems for
transferability, see Appendix A.4 for more details.

Moreover, we employ a model that utilizes the atom type as the sole encoding (there are only five
distinct atom types). This model is referred to as simply TBG.

4.2 Training transferable Boltzmann Generators

All transferable Boltzmann Generators utilize flow matching for training. Given the variation in
peptides across batches, the flow matching loss for each peptide is normalized by the number of
atoms it contains. This training procedure is applied to all different architectures. For further details,
refer to Appendix B.

4.3 Inference with transferable Boltzmann Generators

Sampling with a transferable Boltzmann Generator, especially on unseen peptides, poses multiple
challenges: (i) Some generated samples may not correspond to the molecule of interest, but rather
to a molecule that contains the same atoms but has a different bonding graph. Some of these
configurations might even be valid molecules. For some examples see Appendix A.4. However, as
we are in this work interested in sampling from the equilibrium Boltzmann distribution for a given
molecular bonding graph, rather than sampling distinct molecules, we would like to avoid these
cases. Nevertheless, this effect can be largely mitigated by our proposed TBG + full architecture. (ii)
When working with classical force fields, the correct ordering with respect to the topology is crucial
for evaluating energies. This is not a concern for semi-empirical force fields, as they respect the
permutation symmetry of particles of the same type. As we typically use a Gaussian prior distribution,
it is common that the generated samples are not arranged according to the topology. Consequently, in
order to evaluate the energy, it is necessary to reorder the generated samples according to the topology.
(iii) It is possible that the chirality of generated samples differs from that of the peptide of interest.

We resolve (i) and (ii) by generating a bond graph for the generated samples, based on empirical
bond distances and atom types. This graph is then compared with a reference bond graph. If the
two graphs are isomorphic, we can conclude that the configuration is correct. For more details, see
Appendix B.1. For (iii), we employ the code of [11] to check all chiral centers. If all chirality centers
of a peptide are flipped, this can be resolved by mirroring. Otherwise, these samples are assigned
high energies, as they are not from the target Boltzmann distribution of interest. It is important to
note that only generated samples with the correct configuration and chirality are considered valid
samples from the Boltzmann distribution of interest.

5 Experiments

In this section, we compare our model with similar previous work on equivariant Boltzmann Genera-
tors [23] for alanine dipeptide. Moreover, we show the transferability of our model on dipeptides,
where we compare our model with the transferable Timewarp model [11]. More experimental details,
such as dataset details, the specifics of the employed models, and the utilized computing infrastructure
can be found in Appendix B.
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Figure 1: Results for the alanine dipeptide system simulated with a classical force field (a) Ramachan-
dran plots for the biased MD distribution (left) and for samples generate with the TBG + full model
(right). (b) Energies of samples generated with different methods. (c) Free energy projection along
the slowest transition (φ angle), computed with different methods.

Table 1: Comparison of Boltzmann Generators with different architectures for the single molecular
system alanine dipeptide. Errors are computed over five runs. The results for the Boltzmann Generator
and backbone encoding (BG + backbone) for the semi-empirical force field are taken from [23].

Model NLL (↓) ESS (↑)
Alanine dipeptide - semi-empirical force field

BG + backbone [23] −107.56± 0.09 0.50± 0.13%
TBG + full (ours) −124.71± 0.08 1.03± 0.17%

Alanine dipeptide - classical force field

BG + backbone [23] −109.02± 0.01 1.56± 0.30%
TBG + full (ours) −127.06± 0.12 6.03± 1.34%

5.1 Alanine dipeptide

In our first experiment, we investigate the single molecule alanine dipeptide in implicit solvent,
described in Cartesian coordinates. The dataset was introduced in [23], for more details see Ap-
pendix B.2. The training trajectory was generated by sampling with respect to a classical force field,
and subsequently, 105 random samples were relaxed with respect to the semi-empirical GFN2-xTB
force-field [61] for 100fs each. The objective is to train a Boltzmann Generator capable of sampling
from the equilibrium Boltzmann distribution defined by the semi-empirical GFN2-xTB force-field
efficiently and to recover the free energy surface along the slowest transition, i.e. the φ angle.
Following the methodology outlined in [23], the training data is biased towards the less probable
(positive) φ state. It is evident that any trained model on this set will be biased in comparison to
the true Boltzmann distribution defined by the semi-empirical energy. However, the reweighting
technique allows for the debiasing of the samples. The model is trained in the same way as described
in [23]. Overall, the likelihoods and ESS values observed for the TGB + full model are superior to
those reported in [23] (Table 1). This is achieved with nearly the same amount of parameters and
maintaining comparable training and inference times (see Appendix B.3). Furthermore, the correct
free energy difference is recovered, as demonstrated in Appendix A.1.

In [23] the authors utilized a semi-empirical potential to avoid the required ordering of the atoms to
the topology for classical force fields. As the prior distribution of the Boltzmann Generator is usually
a multivariate standard Gaussian distribution, generated samples will almost certainly not have the
correct ordering. As we have introduced an efficient way to reorder samples in Section 4.3, we can
now also evaluate alanine dipeptide for a classical force field. Therefore, we retrain the model in [23]
on the classical MD trajectory and compare with our TBG + full architecture. We bias the training
data as before towards the unlikely φ state. As expected, the likelihood and ESS for the classical
force field are much better than for the semi-empirical one, as the training data stems from the target
distribution. Our proposed architecture again performs significantly better, as shown in Table 1 and
Figure 1. The majority of generated samples with the TBG + full model and the BG + backbone
sample nearly exclusively correct configurations, i.e. configurations with the correct bond graph,
namely nearly 100% and about 98%, respectively. As presented in Figure 1, both models recover the
free energy landscape correctly.
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Figure 2: Results for the KS dipeptide (a) Sample generated with the TBG + full model (b) Ra-
machandran plot for the weighted MD distribution (left) and for samples generate with the TBG +
full model (right). (c) TICA plot for the weighted MD distribution (left) and for samples generate
with the TBG + full model (right). (d) Energies of samples generated with different methods and
architectures. (e) Free energy projection along the φ angle. (f) Free energy projection along the
slowest transition (TIC0).

Figure 3: Results for the GN dipeptide (a) Sample generated with the TBG + full model (b) Ra-
machandran plot for the weighted MD distribution (left) and for samples generate with the TBG +
full model (right). (c) TICA plot for the weighted MD distribution (left) and for samples generate
with the TBG + full model (right). (d) Energies of samples generated with different methods and
architectures. (e) Free energy projection along the φ angle. (f) Free energy projection along the
slowest transition (TIC0).

5.2 Dipeptides (2AA)

In our second experiment, we evaluate our model on dipeptides and show transferability. The dataset
was introduced in [11]. The training set consists of 200 dipeptides, which were simulated each with a
classical force field for 50 ns and, therefore, may not have reached convergence. Nevertheless, as
previously demonstrated, it is not necessary to train on unbiased data in order to obtain unbiased
samples with a Boltzmann Generator.

We compare the three different transferable architectures described in Section 4.1 and use the same
training procedure for all of them. Similar to the alanine dipeptide experiments, we obtain significantly
better results for the TBG + full model in terms of ESS (Table 2 and Figure 4a), energies (Figure 2d),
the ratio of correct configurations (Table 2), and likelihoods of test set samples (Appendix A.5). In
particular, the extremely low number of correct configurations for numerous test peptides for the
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Figure 4: (a) Effective samples sizes (ESS) for the first 8 test peptides for different transferable
architectures and training sets. (b) Free energy projection along the φ angle for the TBG + full model
trained on the biased dataset for the KS dipeptide. The weighted free energy projection demonstrates
a superior fit compared to the TBG + full model (see Figure 2e). (c) Free energy projection along the
φ angle for the TBG + full model trained on the biased dataset for the GN dipeptide. The weighted
free energy projection demonstrates a superior fit compared to the TBG + full model (see Figure 3e).

TBG and TBG + backbone models renders them unsuitable as Boltzmann Generators for this setting
(Table 2 and Appendix A.5). Furthermore, the TBG + full model always finds all metastable states
for unseen test peptides (see also Appendix A.5).

The results for the well-performing TBG + full model are presented for two exemplary peptides from
the test set in Figure 2 and Figure 3. They were chosen as all architectures sample relevant amounts
of valid configurations. Detailed results for other evaluated test peptides are shown in Appendix A.5.

The TBG + full model is an exemplary Boltzmann Emulator, as it is capable of capturing all
metastable states of the target Boltzmann distribution (Figure 2b,c and Figure 3b,c). However, it is
furthermore also a capable Boltzmann Generator, as it allows for efficient reweighting (Figure 2d,e,f
and Figure 3d,e,f) with good ESSs (Table 2). To identify different metastable states, we employ
time-lagged independent component analysis (TICA) [62], a dimensionality reduction technique that
separates metastable states. We show this analysis in addition to the Ramachandran plots for the
dihedral angles.

Moreover, we investigate the influence of the training set in two ablation studies.

Training on a biased training set Our alanine dipeptide results as well as [23] indicate that it can
be advantageous to bias the training data towards states that are less probable, such as positive φ
states, to recover free energy landscapes. Therefore, we bias the training data by weighting positive
φ states for each training peptide, such that they have nearly equal weight to the negative states (see
also Appendix B.4). We show that a TBG + full model trained on this dataset (TBG + full (biased))
produces even more accurate free energy landscapes for both the Ramachandran and TICA projections
(Figure 4bc). Notably, the unweighted projection shows a clear bias, as expected. However, as the
training data is now biased, the effective sample size (ESS) is generally lower (Table 2 and Figure 4a).

Training on a smaller training set Additionally, we examine the impact of smaller training sets
on the generalization results. To this end, we train the TBG + full model on two smaller datasets with
shorter simulation times: (i) 5ns for each training simulation and (ii) only 500ps of each training
simulation. Consequently, the training trajectories are 10 times and 100 times smaller than before.
As we utilize only the initial portion of each trajectory, a greater number of metastable states are
missed during the brief simulations, as illustrated in Appendix A.2. Training on the tenfold smaller
trainings set, we refer to the model as TBG + full (smaller), shows slightly worse results compared
to training on the whole trainings set (Table 2 and Appendix A.5). The even smaller trainings set
leads to inferior results, with several metastable states being missed as presented inAppendix A.3.
Nevertheless, these findings show that transferable Boltzmann Generators can be effectively trained
using very small datasets, even when individual trajectories lack metastable states.

5.3 Comparison with Timewarp [11]

In this section, we compare our TBG model with the Timewarp model [11] on the dipeptide dataset.
Unlike our approach, which generates independent samples, the Timewarp model predicts large time
steps, which can be cobined with Metropolis-Hastings acceptance steps to ensure asymptotically
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Table 2: Effective samples size and correct configuration rate for unseen dipeptides across different
transferable Boltzmann Generator (TBG) architectures. The values are computed for 8 test dipeptides.
See Appendix A.5 for more results.

Model ESS (↑) Correct configurations (↑)
Mean Range Mean Range

TBG 0.48± 0.59% (0.0%, 1.47%) 13± 18% (1%,48%)
TBG + backbone 0.58± 1.04% (0.0%, 3.24%) 17± 21% (1%, 52%)
TBG + full 15.29± 9.27% (4.08%,31.93%) 98± 2% (94%,100%)
TBG + full (smaller) 6.13± 3.13% (1.93%, 11.16%) 96± 3% (88%, 100%)
TBG + full (biased) 10.24± 7.14% (3.21%,22.66%) 98± 2% (93%,100%)

Figure 5: TBG / Timewarp MCMC [23] sampling experiments. Wasserstein distance between the
generated Ramachandran plot and the MD Ramachandran plot for different computational budgets
for dipeptides. Lower is better. (a) After 30000 energy evaluations (b) After 12h wall-clock-time. (c)
After 24h wall-clock-time.

unbiased sampling. Additionally, Timewarp employs a coupling flow rather than a continuous flow.
Similar to our TBG + full model, the Timewarp model also treats most particles as distinguishable. It
does so by conditioning the learned probability on the current state, implicitly capturing the topology
information.

We compare the Wasserstein distance between the generated Ramachandran plot and the MD Ra-
machandran plot for different computational budgets for dipeptides: (a) 30,000 energy evaluations,
(b) 12 hours, and (c) 24 hours of wall-clock simulation time on an A-100 GPU. As shown in Figure 5
the TBG + full model outperformed the Timewarp model across all budgets, particularly in terms of
energy evaluations. Energy evaluations are especially critical, as they become a major computational
bottleneck with more complex force fields. Moreover, the unweighted samples of the TBG + full
model have lower energies, and are therefore closer to the actual target Boltzmann distribution,
than samples generated with Timewarp without Metropolis-Hastings acceptance (exploration mode).
Additional results and details can be found in Appendix A.7.

6 Discussion

For the first time, we demonstrated the feasibility of training transferable Boltzmann Generators.
We introduced a general framework for training and evaluating transferable Boltzmann Generators
based on continuous normalizing flows. Furthermore, we developed a transferable architecture
based on equivariant graph neural networks and demonstrated the importance of including topology
information in the architecture to enable efficient generalization to unseen, but similar systems. The
transferable Boltzmann Generator was evaluated on dipeptides, where significant effective sample
sizes were demonstrated on unseen test peptides and accurate sampling of physical properties, such
as the free energy difference between metastable states, was achieved. Moreover, we have shown
in ablation studies that transferable Boltzmann Generators can be extremely data efficient, with
even small training trajectories being sufficient. Future research will determine whether and how
transferable Boltzmann Generators can be scaled to larger systems.
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7 Limitations / Future work

Scaling transferable Boltzmann Generators to larger systems remains for future work. Notably, this
usually requires large amounts of computational resources, as e.g. shown in [11], where they are
able to train their transferable model on tetrapeptides, but use more than 100 times more parameters
than us. Scaling to larger systems often involves coarsegraining, which typically results in the loss of
an explicit energy function. In such cases, the transferable Boltzmann Generator would effectively
become a transferable Boltzmann Emulator. Depending on the specific application, samples from
a distribution close to the target Boltzmann distribution may be sufficient. Our results show that
unweighted samples from the TBG + full model already closely resemble the target Boltzmann
distribution.

Additionally, small systems can still be highly relevant, especially when paired with more expensive
force fields, such as semi-empirical or first-principles quantum-mechanical force fields. In these
scenarios, energy evaluations become a primary bottleneck. Boltzmann Generators are particularly
advantageous in this context, as they require several orders of magnitude fewer energy evaluations
compared to MD simulations or other iterative methods, such as Timewarp [11]. One potential real
world application would therefore be the simulation of small molecules with expensive force fields.

Instead of flow matching, one could use optimal transport flow matching [22] or equivariant optimal
transport flow matching [23, 50] for training, but as indicated in [23] the gains for molecular systems,
especially in the presence of many distinguishable particles, are small.

Throughout our work, we utilize a standard Gaussian prior distribution. However, as recently
introduced, an alternative is to use a Harmonic prior distribution [63, 64], where atoms that are close
in the bond graph are sampled in the vicinity of each other. Notably, We experimented with this
Harmonic prior but found no significant improvements for our transferable model. This aligns with
findings by [65], indicating that chemically informed priors do not enhance performance substantially
compared to simpler uninformed priors for flow matching in molecular systems. Instead, the network
architecture and inductive bias play a more crucial role.

Despite conducting a series of ablation studies, we did not pursue the impact of a training set
comprising a smaller number of peptides. Instead, we opted for investigating shorter trajectories.
Another potential direction could be relaxing the 2AA dataset using a semi-empirical force field
and training on this modified version, similar to the alanine dipeptide experiment. However, this
approach incurs additional computational costs, as the entire 2AA dataset would need to be relaxed
with respect to the semi-empirical force field.

We used the EGNN architecture for the vector field due to its fast evaluation capabilities. Future
research could explore alternative architectures for the vector field, such as those proposed by
[56, 57, 58, 59, 66, 67, 64], to determine if they improve performance and enable scaling to larger
systems. We hope that our framework will facilitate the scaling of transferable Boltzmann Generators
to larger systems in future research.

8 Broader Impact

This work represents foundational research with no immediate societal impact. However, if our
method is scalable to larger, more relevant systems, it could facilitate the acceleration of drug and
material discovery by replacing or enhancing MD simulations, which often play a crucial part in
the process. A potential risk is that this method then might be used to identify new diseases or
develop biological weapons. Another risk is the lack of a known convergence criterion, making it
impossible to confirm that all potential configurations have been identified, even with an infinite
number of samples. This could lead to false claims about the results, potentially affecting subsequent
applications.
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Table 3: Dimensionless free energy differences for the slowest transition of alanine dipeptide estimated
with various methods. Umbrella sampling yields a converged reference solution. Errors are calculated
over five runs. Values for BG + backbone and Umbrella sampling are taken from [23].

Umbrella sampling BG + backbone [23] TBG + full (ours)
Free energy difference / kBT 4.10± 0.26 4.10± 0.08 4.09± 0.05

Figure 6: Example Ramachandran plots for different trajectory lengths for the training data. It can
be observed that as the trajectory length decreases, the number of metastable states that are missed
increases, thereby making the learning task more challenging. (a) AY dipeptide (b) IH dipeptide.

Appendix

A Additional results and experiments

A.1 Semi-empirical force field for alanine dipeptide

We report the free energy differences for the slowest transitions of alanine dipeptide for a semi-
empirical force field in Table 3. See Section 5 for more details.

A.2 Dipeptide training data

When training on smaller training sets, i.e. with shorter trajectories, additional metastable states will
not be visited during the short simulation times. We show this for two example training peptides in
Figure 6. Nevertheless, the TBG + full (smaller) model trained on 10 times shorter trajectories, is
nearly as good as the model trained on the full trajectories, see Section 5. However, for the 100 times
smaller trajectories, the TBG + full model performs significantly worse, see Appendix A.3.

A.3 Smaller dataset

We investigate the effect of 100 times smaller trainings trajectories, i.e. simulation time of only
500ps. As shown in Appendix A.2, these trajectories miss many metastable states. This can be also
observed for the so trained models, which we refer as TBG + full (smaller500), as they do not capture
especially unlikely metastable states well as presented in Figure 7 and Figure 8. In contrast, models
trained on larger trajectories find all metastable states and allow for efficient reweighting, as discussed
in Section 5 and Appendix A.5.

A.4 Sampled dipeptide configurations

For some amino acid combinations, both the TBG and TBG + backbone models sample only a
small number of correct configurations. Although the generated configurations are potentially valid
molecular configurations, they are not the one of the target dipeptide as shown in Figure 9. This
is often due to the encoding, which e.g. cannot distinguish between different orderings of amino
acids in a peptide. Only the various TBG + full architectures samples nearly exclusively correct
configurations.

A.5 Additional results for dipeptides

Inference is a costly process, and extensive sampling is necessary to obtain reliable estimates for the
expected sample size (ESS). Therefore, we only evaluate the transferable models on a subset of the
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Figure 7: Results for the KS dipeptide for TBG + full model trained on 100 times smaller training
trajectories. As can be seen in Figure 2, the results for the TBG + full model trained on the whole
trajectories are much better. (a) KS dipeptide (b) Ramachandran plot for the weighted MD distribution
(left) and for samples generate with the model (right). (c) TICA plot for the weighted MD distribution
(left) and for samples generate with the model (right). (d) Energies of samples generated with the
model. (e) Free energy projection along the φ angle. (f) Free energy projection along the slowest
transition (TIC0).

Figure 8: Results for the GN dipeptide for TBG + full model trained on 100 times smaller training
trajectories. As can be seen in Figure 3, the results for the TBG + full model trained on the whole
trajectories are much better. (a) GN dipeptide (b) Ramachandran plot for the weighted MD distribution
(left) and for samples generate with the model (right). (c) TICA plot for the weighted MD distribution
(left) and for samples generate with the model (right). (d) Energies of samples generated with the
model. (e) Free energy projection along the φ angle. (f) Free energy projection along the slowest
transition (TIC0).

test set. The dipeptides are randomly selected, but it is ensured that all amino acids are represented at
least once. However, we evaluate the best-performing model, namely TBG + full, for all 100 test
peptides. The results for the additional test peptides are in good agreement with the first ones as
presented in Table 4 and Figure 10.

We report individual results for the different architectures in Figure 10c,d.

To illustrate the performance of the TBG + full model, we present additional examples of dipeptides
from the test set in Figure 11a-f and Figure 12a-f. Furthermore, we also again show results for
training on the biased dataset in the same figures (Figure 11g,h,i and Figure 12g,h,i). As observed
previously, the TBG + full (biased) model recovers the free energy landscape better than the TBG +
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Figure 9: Sampled molecules with the TBG and TBG + backbone models, which do not have the
correct topology. (a) NY dipeptide reference (b) Generated molecule with NY atoms by the TBG
model. (c) IM dipeptide reference (d) Generated molecule with IM atoms by the TBG model. (e) TD
dipeptide reference (f) Generated molecule with TD atoms by the TBG + backbone model.

Figure 10: (a) Effective samples sizes for all 100 test dipeptides for the TBG + full model. (b)
Percentage of correct configurations for all 100 test dipeptides sampled with the TBG + full model.
(c,d) Performance comparison for different transferable architectures and training sets on 8 dipeptides
from the test set (c) Correct configuration rate (d) Likelihood per particle.

full model, especially for the φ projections. We present additional examples of dipeptides from the
test set for the TBG + full model in Figure 13, Figure 14, Figure 15, Figure 16, and Figure 17.

Furthermore, we present results for two example peptides from the test set for the TBG + full (smaller)
model, which is trained on trajectories that are tenfold smaller than those used for the TBG + full
model. These results are shown in Figure 18 and Figure 19.

A.6 Transferable Boltzmann Generators as Boltzmann Emulators

Given the high cost of sampling with CNFs, which necessitates integrating the Jacobian trace along
the positions, we did not evaluate all available test peptides for all models (see Appendix B.2).
However, since sampling without the Jacobian trace is less expensive and we do not require as many
samples as for estimating the ESS, we also employ the TBG + full (smaller) model as a Boltzmann
Emulator to ascertain whether we have identified all metastable states, despite the fact that it was
only trained on the 10 times smaller training set. The Boltzmann Emulator is evaluated on a diverse
set of test peptides, and nearly always finds all metastable states within less than one hour of wall
clock time. This is a notable improvement over MD simulations, which often take longer to explore
due to the iterative nature of MD. Some examples are shown in Figure 20. This experiment shares
similarities with the exploration mode of [11], where they employ their model without the acceptance

Table 4: Effective samples size and correct configuration rate for unseen dipeptides for the TBG +
full architecture for different numbers of test peptides.

Model ESS (↑) Correct configurations (↑)
Mean Range Mean Range

TBG + full (8 test peptides) 15.29± 9.27% (4.08%,31.93%) 98± 2% (94%,100%)
TBG + full (100 test peptides) 13.11± 8.59% (0.82%,36.78%) 98± 2% (92%,100%)
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Figure 11: Results for the IM dipeptide (a) Sample generated with the TBG + full model (b)
Ramachandran plot for the weighted MD distribution (left) and for samples generate with the TBG +
full model (right). (c) TICA plot for the weighted MD distribution (left) and for samples generate
with the TBG + full model (right). (d) Energies of samples generated with the TBG + full model.
(e) Free energy projection along the φ angle. (f) Free energy projection along the slowest transition
(TIC0). (g) Energies of samples generated with the TBG + full (biased) model. (h) Free energy
projection along the φ angle for the TBG + full (biased) model. (i) Free energy projection along the
slowest transition (TIC0) for the TBG + full (biased) model.

step and therefore also explore a potentially biased distribution rather than the unbiased Boltzmann
distribution.

A.7 Comparison with the Timewarp model [11]

Here, we provide additional results comparing our TBG + full model to the Timewarp model [11], as
discussed in Section 5.3. In this second scenario, the objective is to explore all meta-stable states
as given in the Ramachandran plot, aligning with the goals of a Boltzmann Emulator, where only
approximate sampling from the Boltzmann distribution is required. For the TBG + full model, we
do not apply reweighting, whereas in the Timewarp model, samples are rejected only if consecutive
samples show an significant energy increase to prevent divergence [11].

Although reweighting is not strictly needed, we evaluate the energy of all samples generated by the
TBG + full model, filtering out any rare, high-energy samples. We then compare both models based
on the mean number of energy evaluations and the mean wall-clock time needed to explorae all states.
As shown in Figure 21, the Timewarp model generally finds all states more quickly but requires more
energy evaluations. Additionally, as illustrated in Figure 22, the Timewarp model’s generated samples
tend to exhibit higher energies compared to those from the TBG + full model. Consequently, the
distribution produced by the TBG + full model more accurately approximates the target Boltzmann
distribution.

For all Timewarp experiments, we used a proposal batch size of 100, as recommended in [11] for
A-100 GPUs.
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Figure 12: Results for the NY dipeptide (a) Sample generated with the TBG + full model (b)
Ramachandran plot for the weighted MD distribution (left) and for samples generate with the TBG +
full model (right). (c) TICA plot for the weighted MD distribution (left) and for samples generate
with the TBG + full model (right). (d) Energies of samples generated with the TBG + full model.
(e) Free energy projection along the φ angle. (f) Free energy projection along the slowest transition
(TIC0). (g) Energies of samples generated with the TBG + full (biased) model. (h) Free energy
projection along the φ angle for the TBG + full (biased) model. (i) Free energy projection along the
slowest transition (TIC0) for the TBG + full (biased) model.

B Technical details

B.1 Code libraries

We primarily use the following code libraries: PyTorch (BSD-3) [68], bgflow (MIT license) [8, 37],
torchdyn (Apache License 2.0) [69], and NetworkX (BSD-3) [70] for validating graph isomorphisms.
Additionally, we use the code from [39] (MIT license) for EGNNs, as well as the code from [11]
(MIT license) and [23] (MIT license) for datasets and related evaluation methods.

Our code is available here: https://osf.io/n8vz3/?view_only=
1052300a21bd43c08f700016728aa96e.

B.2 Benchmark systems

The investigated benchmark systems were created in prior studies [23, 11].

Alanine dipeptide The alanine dipeptide datasets were created in [23] (CC BY 4.0), we refer
to them for detailed simulation details. The classical trajectory was created at T = 300K with
the classical Amber ff99SBildn force-field. The subsequent relaxation was performed with the
semi-empirical GFN2-xTB force-field [61].

Dipeptides (2AA dataset) The original dipeptide dataset as introduced in [11] (MIT License) is
available here: https://huggingface.co/datasets/microsoft/timewarp. As this includes
a lot of intermediate saved states and quantities, like energies, we create a smaller version with is
available here: https://osf.io/n8vz3/?view_only=1052300a21bd43c08f700016728aa96e.
For a comprehensive overview of the simulation details, refer to [11]. All dipeptides were simulated
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Figure 13: Results for the ET dipeptide (a) Sample generated with the TBG + full model (b)
Ramachandran plot for the weighted MD distribution (left) and for samples generate with the TBG +
full model (right). (c) TICA plot for the weighted MD distribution (left) and for samples generate
with the TBG + full model (right). (d) Energies of generated samples (e) Free energy projection along
the φ angle. (f) Free energy projection along the slowest transition (TIC0).

Figure 14: Results for the RV dipeptide (a) Sample generated with the TBG + full model (b)
Ramachandran plot for the weighted MD distribution (left) and for samples generate with the TBG +
full model (right). (c) TICA plot for the weighted MD distribution (left) and for samples generate
with the TBG + full model (right). (d) Energies of generated samples (e) Free energy projection along
the φ angle. (f) Free energy projection along the slowest transition (TIC0).

with a classical amber-14 force-field at T = 310K. The simulation of the training peptides were run
for 50ns, while the test set peptides were run for 1µs.

Choice of test set peptides Inference is a costly process with CNFs (see Appendix B.7), and
extensive sampling is necessary to obtain reliable estimates for the relative effective sample size
(ESS). Therefore, we evaluate most of the transferable models on a subset of the test set. The
dipeptides are randomly selected, but it is ensured that all amino acids are represented at least once.
Only the best performing model (TBG + full) is evaluated on the whole test set of 100 dipeptides.

B.3 Hyperparameters

We report the model hyperparameters for the different model architectures as describes in Section 4.1
in Table 5. As in [23] all neural networks ϕα have one hidden layer with nhidden neurons and SiLU
activation functions. The input size of the embedding nembedding depends on the model architecture.
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Figure 15: Results for the AC dipeptide (a) Sample generated with the TBG + full model (b)
Ramachandran plot for the weighted MD distribution (left) and for samples generate with the TBG +
full model (right). (c) TICA plot for the weighted MD distribution (left) and for samples generate
with the TBG + full model (right). (d) Energies of generated samples (e) Free energy projection along
the φ angle. (f) Free energy projection along the slowest transition (TIC0).

Figure 16: Results for the NF dipeptide (a) Sample generated with the TBG + full model (b)
Ramachandran plot for the weighted MD distribution (left) and for samples generate with the TBG +
full model (right). (c) TICA plot for the weighted MD distribution (left) and for samples generate
with the TBG + full model (right). (d) Energies of generated samples (e) Free energy projection along
the φ angle. (f) Free energy projection along the slowest transition (TIC0).

We report training hyperparameters for the different model architectures in Table 6. It should be
noted that all TBG models are trained in an identical manner if the training set is identical. We use
the ADAM optimizer for all experiments [71]. For the dipeptide training, each batch consists of three
samples for each peptide.

B.4 Biasing target samples

As introduced in [23], it can be beneficial to bias the training data in such a way that unlikely states
are more prominent. For alalnine dipeptide and many dipeptides, the positive φ states at φ = 1 are
often the unlikely ones and transition between the positive and negative φ states are slow. For the
alanine dipeptide dataset, the biasing methodology proposed in [23] is employed. Similarly, we bias
the dipeptides based on the von Mises distribution fvM. The weights ω are computed along the φ
dihedral angle as

ω(φ) = r · fvM (φ|µ = 1, κ = 10) + 1, (12)
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Figure 17: Results for the GP dipeptide (a) Sample generated with the TBG + full model (b)
Ramachandran plot for the weighted MD distribution (left) and for samples generate with the TBG +
full model (right). (c) TICA plot for the weighted MD distribution (left) and for samples generate
with the TBG + full model (right). (d) Energies of generated samples (e) Free energy projection along
the φ angle. (f) Free energy projection along the slowest transition (TIC0).

Figure 18: Results for the LW dipeptide for the TBG + full (smaller) model, which is trained on
tenfold smaller trajectories than the TBG + full model. (a) Sample generated with the TBG + full
(smaller) model (b) Ramachandran plot for the weighted MD distribution (left) and for samples
generate with the TBG + full (smaller) model (right). (c) TICA plot for the weighted MD distribution
(left) and for samples generate with the TBG + full (smaller) model (right). (d) Energies of generated
samples. (e) Free energy projection along the φ angle. (f) Free energy projection along the slowest
transition (TIC0).

where r is computed based on the ratio of positive and negative φ states, such that both have nearly
the same weight after the biasing.

B.5 Encoding of atom types

The atom type embedding ai is a one-hot vector of 54 classes. The classes are mostly defined by
the atom type in the peptide topology. Therefore, only a few atoms are indistinguishable, such as
hydrogen atoms that are bound to the same carbon or nitrogen atom. Moreover, we also treat oxygen
atoms bound to the same carbon atom as indistinguishable, unless they are in the carboxyl group.
Notably, we never treat particle groups as indistinguishable, such as two CH3 groups bound to the
same carbon atom.
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Figure 19: Results for the TD dipeptide for the TBG + full (smaller) model, which is trained on
tenfold smaller trajectories than the TBG + full model. (a) Sample generated with the TBG + full
(smaller) model (b) Ramachandran plot for the weighted MD distribution (left) and for samples
generate with the TBG + full (smaller) model (right). (c) TICA plot for the weighted MD distribution
(left) and for samples generate with the TBG + full (smaller) model (right). (d) Energies of generated
samples (e) Free energy projection along the φ angle. (f) Free energy projection along the slowest
transition (TIC0).

Table 5: Model hyperparameters

Model L nhidden nembedding Num. of parameters

alanine dipeptide

BG + backbone 5 64 8 147599
TBG + full 5 64 15 149147

Dipeptides (2AA)

TBG 9 128 5 1044239
TBG + backbone 9 128 13 1046295
TBG + full 9 128 76 1062486

B.6 Effective samples sizes

The relative effective sample sizes (ESS) are computed with Kish’s equation [53] as in prior work.
For the alanine dipeptide experiments we use 2×105 samples for the forward ESS and 1×104 for the
negative log likelihood computation. A total of 3× 104 samples were used for each dipeptide in the
forward ESS, while 4.5× 103 samples were employed for the negative log likelihood computation.

Table 6: Training hyperparameters

Mdoel Batch size Learning rate Epochs Training time
Alanine dipeptide

BG + backbone 256 5e-4/5e-5 500/500 3.5h
TBG + full 256 5e-4/5e-5 500/500 3.5h

Dipeptides (2AA)

TBG 600 5e-4/5e-5/5e-6 7/7/7 4d
TBG + backbone 600 5e-4/5e-5/5e-6 7/7/7 4d
TBG + full 600 5e-4/5e-5/5e-6 7/7/7 4d
TBG + full (smaller) 600 5e-4/5e-5/5e-6 30/30/30 2.5d
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Figure 20: Comparison of classical MD runs for 1 hour (MD - 1h) and the sampling with the TBG +
full (smaller) model without weight computation for 1 hour (TBG + full (smaller) - 1h). The TICA
plots of different peptides from the test set are shown. It is important to note that the TICA projection
is always computed with respect to the long MD trajectory (MD). All peptides stem from the test
set. (a) CS dipeptide (b) EK dipeptide (c) KI dipeptide (d) LW dipeptide (e) RL dipeptide (f) TF
dipeptide.

Figure 21: Boltzmann Emulator / Timewarp exploration experiments. Errors over 5 runs. Lower
is better. (a) Number of energy evaluations until all states are found. (b) Wall-clock-time until all
states are found. (c) Energy difference between the mean MD energy and the mean sample energy
generated by the two methods.

B.7 Computing resources

All training and inference was performed on single NVIDIA A100 GPUs with 80GB of RAM.

The training time for the models is reported in Appendix B.3, although it should be noted that a
significant amount of time was required for hyperparameter tuning. It is estimated that at least ten
times the compute time reported in Appendix B.3 was necessary to identify suitable hyperparam-
eters. Furthermore, inference with CNFs is expensive, especially if one requires the reweighting
weights. Generating 3× 104 samples with the large transferable models for the dipeptides requires
approximately four days, whereas generating 2× 105 samples for the alanine dipeptide experiments
takes less than one day. However, generating samples without corresponding weights significantly
accelerates the sampling process. In the case of the dipeptides, the generation of 2× 105 samples can
be completed in less than one day. However, it should be noted that sampling can be done fully in
parallel, as Boltzmann Generators generate independent samples.
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Figure 22: Comparison of energies of generated samples with a long MD simulation, Timewarp
exploration, and TBG + full without reweighting. The energy distribution of the TBG + full model
matches the Boltzmann distribution generated with MD better. (a) For the dipeptide KS. (b) For the
dipeptide AT.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The claims made in the abstract and introduction are all based on the results of
our work, as shown in Section 5 and Appendix A .
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We discuss the limitations in Section 7.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]
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Justification: We only utilize theorems of prior work, which we reference accordingly.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We explain how we performed our experiments in Section 5 and Appendix B.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]
Justification: Code, data, model checkpoints as well as detailed instructions are available
here: https://osf.io/n8vz3/?view_only=1052300a21bd43c08f700016728aa96e,
as stated in Appendix B.1. Nevertheless, high level training, evaluation and implementation
details are described in Appendix B and Section 4.1.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: We discuss the dataset details in Appendix B and refer to related work for
datasets introduced in prior work.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: We provide error bars for the alanine dipeptide experiments. In contrast, for the
much more expensive transferable experiments, we utilize our computational resources to
sample a multitude of different peptides from the test set, rather than training and sampling
distinct instances of the same architecture for the same peptide. Consequently, we obtain
error bounds by averaging results over different test dipeptides rather than runs.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: We discuss the required computational resources for this work for the training
and inference in Appendix B.3 and Appendix B.7.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: The research conducted conforms with the NeurIPS Code of Ethics. All
authors have read the NeurIPS Code of Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: We discuss the broader impact of our work in Section 8.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
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• If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: Our models do not pose such a risk, as they are for molecular data.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: We give credit to used assets in this work in Appendix B.1 and Appendix B.2.
Our assets will be available under the MIT / CC BY 4.0 license.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
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• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: We document our models in Appendix B.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: No crowdsourcing nor human subjects

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: No crowdsourcing nor human subjects

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.
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• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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