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Abstract

A multi-agent system (MAS) enhances its capacity to solve complex natural
language processing (NLP) tasks through collaboration among multiple agents,
where consensus-seeking serves as a fundamental mechanism. However, exist-
ing consensus-seeking approaches typically rely on voting mechanisms to judge
consensus, overlooking contradictions in system-internal beliefs that destabilize
the consensus. Moreover, these methods often involve agents updating their re-
sults through indiscriminate collaboration with every other agent. Such uniform
interaction fails to identify the optimal collaborators for each agent, hindering
the emergence of a stable consensus. To address these challenges, we provide a
theoretical framework for selecting optimal collaborators that maximize consensus
stability. Based on the theorems, we propose the Belief-Calibrated Consensus
Seeking (BCCS) framework to facilitate stable consensus via selecting optimal
collaborators and calibrating the consensus judgment by system-internal beliefs.
Experimental results on the MATH and MMLU benchmark datasets demonstrate
that the proposed BCCS framework outperforms the best existing results by 2.23%
and 3.95% of accuracy on challenging tasks, respectively. Our code and data are
available at https://github.com/dengwentao99/BCCS.

1 Introduction

With the rapid advancement of large language models (LLMs), reasoning capabilities have become
critical for tackling complex natural language processing (NLP) tasks. In multi-agent system (MAS),
consensus-seeking has emerged as an essential protocol for enhancing collective reasoning through
consensus evaluation and cooperative decision-making among agents [1]. Each agent may express
its opinion by forming distinct or overlapping stances and judgments on a given task. Existing
consensus-seeking approaches typically assess consensus by measuring the degree of agreement
among agents [2, 3], and agents update their views by aggregating the opinions received from others,
as illustrated in Figure 1(a). However, achieving robust collaboration in MAS consensus remains
challenging: (1) current methods often overlook the underlying beliefs of individual agents when
determining consensus, which may result in latent internal inconsistencies and compromise the overall
stability of the consensus [4]; (2) agents generally lack mechanisms to selectively identify optimal
collaborators, instead indiscriminately incorporating all received opinions. For instance, excessive
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reliance on supportive agents may expedite convergence but risk producing suboptimal outcomes [5],
while being overwhelmed by conflicting perspectives can impede consensus formation [6].
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Figure 1: Comparison between previous consen-
sus seeking methods and our proposed framework.
(a) Existing consensus seeking methods. (b) Belief-
Calibrated Consensus Seeking (BCCS).

In response to the above two challenges and
to facilitate stable consensus in MAS, we pro-
pose the Belief-Calibrated Consensus Seeking
(BCCS) framework to optimize the consensus-
seeking process, as illustrated in Figure 1(b). To
improve the accuracy of consensus determina-
tion, we introduce an enhanced consensus judge-
ment module that evaluates whether consensus
has been achieved across the entire MAS. A
key element often overlooked in existing meth-
ods is belief [7], the degree of confidence each
agent has in its own opinion. Hence, our con-
sensus judgement module not only considers the
agents’ outputs but also calibrates them based
on the associated belief levels. It categorizes the
system into one of three consensus states: full
consensus, partial consensus, or no consensus.
In the case of full consensus, collaboration ter-
minates and the consensus is output. When partial consensus occurs, which indicates the coexistence
of both supporting and opposing views, we invoke a collaborator assignment (CA) module that
automatically assigns optimal collaborators to agents, thereby fostering convergence and avoiding
suboptimal solutions. If the system enters a no consensus state with severe opinion divergence, the
BCCS framework engages a leader selection (LS) module to identify and appoint leaders for each
opinion group, guiding the direction of discourse and alleviating conflicts. Through repeated agent
interactions and iterative updates of their viewpoints, a stable consensus can ultimately be reached and
adopted as the final inference outcome. To ensure the theoretical soundness of BCCS, we formally
establish the conditions under which stable consensus is guaranteed, specifically when (1) agents
collaborate with both supportive and conflicting agents, and (2) agents follow leaders with diverse
belief systems. This provides a theoretical foundation for the proposed BCCS framework.

In the experimental implementation, we evaluate the effectiveness of belief-calibrated consensus
seeking (BCCS) on two widely-used benchmarks: MATH [8] and MMLU [9]. Results demonstrate
that BCCS improves accuracy by 2.23% on MATH and 3.95% on MMLU compared to existing best
results on challenge tasks. The main contributions of this study are summarized as follows:

• We propose the Belief-Calibrated Consensus Seeking (BCCS) method to enhance the consensus-
seeking process in multi-agent system (MAS). Specifically, BCCS incorporates a belief calibration
mechanism where consensus judgement is calibrated based on agents’ beliefs, and further integrates
collaborator assignment and leader selection modules to promote consensus formation while
mitigating suboptimal solutions.

• Theoretical guarantees are established for achieving stable consensus in two key scenarios: (i)
cooperation involving both supportive and conflicting agents, and (ii) coordination among leaders
with divergent beliefs. These theorems form the theoretical backbone of BCCS.

• Extensive experiments conducted on widely adopted benchmarks confirm the effectiveness of
BCCS. Additionally, ablation studies are performed to quantify the impact of each core component.

2 Preliminaries

2.1 Multi-Agent Collaboration

Task Formulation Consider a MAS comprising n agents A = {a1, · · · , an} and a user input
question q. At the k-th round, each agent ai generates the opinion oki = (eki , x

k
i ), where xki is the

answer to q, and eki represents the associated reasoning process. Following prior work [10], we adopt
the output probability of LLMs as a proxy for belief. Specifically, the belief bki = P (xki | q, eki ) of
agent ai can be regarded as the generation probability, which estimates the determinacy of the model’s
output [7], where P (·) indicates the probability function. While LLM’s output probabilities may not
always perfectly reflect uncertainty, this approximation is a widely used and practical method for belief
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Question: A and B
get 12 candies, A gets
2 more than B, how

many candies does B
get?

A and B get x+2 and x, (x+2)+x=12, x=5

A and B get x and x-2, x+(x-2)=12, x-2=5

Average value is 12/2=6, thus B gets 6

5

Agents

5

6

Opinion Groups Uncertainty

Figure 2: An illustration of the multi-agent system in NLP tasks, where each agent generates an
answer xki along with its reasoning process eki , the belief bki of ai is the generation probability.

estimation in large language models. When ai collaborates with other agents, it receives the opinions
from the previous round to update its own opinion ok+1

i = ai(q, {okj }nj=1). Subsequently, the agents
are clustered into m opinion groups G = {Gp}mp=1, where each group Gp contains a subset of agents
grouped by topical similarity inferred from keyword distributions [11]. The uncertainty within Gp

is estimated by the information entropy [12] as Up = −
∑

ai∈Gp
bki · log bki . Two groups are defined

as supportive when their opinions converge and conflicting when they diverge. Each opinion group
Gp can have nl agents as leaders, guiding the opinion trends. After collaboration, the MAS selects
the most frequently proposed answer as the final output. The illustration of multi-agent collaboration
is shown in Figure 2. A summary of all notations used in this paper is provided in Table 14.

Consensus Analysis We investigate the conditions for stable consensus in MAS through the lens
of opinion dynamics [13]. For each agent ai ∈ Gp, the answer and belief are updated according
to xk+1

i = xki + uki and bk+1
i = bki + vki , where uki and vki are the respective update increments.

Since the agents often employ averaging strategies to update their answers [14], we define uki =
α
∑

aj∈A∗
i
(xkj − xki ), where A∗

i refers to either the supportive agents As
i or conflicting agents

Ac
i which indicate the collaborated agents from corresponding opinion groups of Gp. Due to the

supportive agents tend to align the beliefs [15], the belief update is given by vki = β
∑

aj∈As
i
(bkj −bki ).

In contrast, conflicting agents drive belief divergence [16], resulting in vki = −β
∑

aj∈Ac
i
(bkj − bki ).

In this paper, we set the step sizes α and β as 2
n as in [13].

2.2 Consensus Judgment

The current consensus is primarily judged by Byzantine Consensus [3], which ensures that the
multi-agent system reaches consensus when more than 2

3 of the agents reach the same conclusion.
For the dominant consensus group As which indicates the group of agents with the largest number
of identical conclusion and other agents form the conflict group Ac, Byzantine Consensus can be
represented as follows:

pks =
|As|

|As|+ |Ac|
>

2

3
⇒ |As|

|Ac|
> 2, (1)

where pks indicates the proportion of the dominant consensus group. Therefore, existing methods only
take the agents’ answers as the basis for consensus judgment, neglecting the underlying beliefs that
carry important implicit information.

3 Theoretical Foundations of Stable Consensus

To analyze the consensus of MAS, we follow the definition of global stability in learning dynam-
ics [17] to formally define the stable consensus state. Then sufficient conditions for achieving such
consensus are derived accordingly, with detailed proofs provided in Appendix B.
Definition 3.1. (Stable Consensus) Given a MAS comprising n agents {ai}ni=1, and any initial
answers {x1i }ni=1, the system is said to reach a stable consensus answer if the following two conditions
are satisfied: (1) agents’ answers converge to consensus, and (2) each agent’s belief of the answer is
coherent with the beliefs of other agents.

Theorem 3.2. Let {xki }ni=1 denote the opinions and {bki }ni=1 denote the beliefs of a MAS with n agents
at the k-th step of collaboration. The collaboration between agents satisfies the following properties:
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1. When each agent in MAS collaborates with supportive agents, the MAS tends to reach the stable
consensus, converging to the state of the average opinion and belief of all collaborating agents.

2. When any agent in MAS collaborates with conflicting agents, the MAS tends to form the unstable
consensus, potentially leading to divergence or oscillation in group states.

Theorem 3.3. Let {xki }ni=1 and {bki }ni=1 represent the opinions and beliefs of a MAS with n agents
at the k-th step. Within each opinion group, the i-th agent follows nl leaders, and the collaboration
between followers and their respective leaders satisfies the following properties:

1. When each agent in an opinion group collaborates with its leaders, the MAS tends to reach the
stable consensus, converging to the average state of the leaders.

2. When the leaders’ average belief is higher than other agents’ beliefs, the leaders with higher
beliefs can expedite the convergence to the stable consensus.

4 Methodology

Collaborator Assignment

Leader Selection

Full Consensus

Iteration until reaching full consensus or maximum iteration number

Partial Consensus

No Consensus
Belief-Calibrated

Consensus JudgmentAgents Opinion
Groups Collaboration

Belief of  >

Belief of  >

Belief of  >

Leader:

Leader:

Leader:

Belief of  >

Belief of  >

Belief of  >

Most Uncertain Opinion Group Agent

and

and

Otherwise

Dominant Consensus Group Supportive Conflicting

Figure 3: An illustration of the Belief-Calibrated Consensus Seeking (BCCS) framework. The
arrows represent the workflows. After obtaining opinion groups, the belief-calibrated consensus
judgment (BCCJ) module judges the consensus state of MAS. If MAS reaches partial consensus,
the collaborator assignment (CA) module estimates the conflict levels between each two opinion
groups through conflict scores, then assigns the collaborators for agents in each opinion group. If
MAS reaches no consensus, the leader selection (LS) module selects leaders for each opinion group.
The processes above iterate until reaching full consensus or maximum iteration number.

We propose the BCCS framework, grounded in the emerging paradigm of LLM-driven MAS [18].
The overall architecture is illustrated in Figure 3, which process is shown in Algorithm 1. Motivated
by theoretical insights into the conditions required for achieving stable consensus, BCCS is designed
to enhance consensus-seeking by iteratively executing three core modules: (1) The belief-calibrated
consensus judgment (BCCJ) module judges the consensus status of the MAS based on agents’
individual answers and beliefs, classifying it as one of three states: full consensus, partial consensus,
or no consensus. (2) In the case of partial consensus, the collaborator assignment (CA) module
assigns the most suitable collaborator to each agent to encourage convergence. (3) When no consensus
is detected, the leader selection (LS) module designates the leaders for each opinion group to facilitate
consensus building. The iteration terminates when the MAS reaches full consensus or the maximum
number of iterations is exceeded. The final answer is determined as the most frequently agreed-upon
conclusion among all agents. Detailed implementations of each module are described below.

4.1 Belief Calibrated Consensus Judgment

In the k-th round of collaboration, agents generate the collaborative outputs {xki }ni=1 along with their
corresponding beliefs {bki }ni=1 in response to the input question q. Unlike prior studies that solely rely
on agents’ explicit answers to judge consensus, the BCCJ module also incorporates agents’ beliefs
for calibration. It categorizes the consensus state of the MAS into three levels as follows.
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Full Consensus A full consensus state is declared when a substantial majority of agents reach
consensus with high belief levels. Specifically, the proportion pks of agents in the dominant consensus
group must exceed 2

3 , as described in Section 2.2. Additionally, to avoid convergence to a suboptimal
consensus, the average beliefs within the dominant group must be at least twice that of the conflicting
group, according to the condition analogous to Equation (1):

pks >
2

3
,

∑
ai∈As

bki

|As|
> 2

∑
ai∈Ac

bki

|Ac|
⇒

∑
ai∈As

bki∑
ai∈Ac

bki
> 4 ⇒ pkb =

∑
ai∈As

bkj∑
ai∈As

bki +
∑

ai∈Ac

bki
> 0.8. (2)

Thus, the MAS state is recognized as full consensus only if pks >
2
3 and pkb > 0.8.

Partial Consensus When a subset of agents reaches consensus with moderate beliefs, the system is
considered to be in a partial consensus state. In this case, at least two agents must form a dominant
group whose aggregate belief in the consensus surpasses that of the conflicting group. The condition
is formally defined as:

pks ≥ 2

n
,

∑
ai∈As

bki >
∑

ai∈Ac

bki ⇒ pkb =

∑
ai∈As

bki∑
ai∈As

bki +
∑

ai∈Ac

bki
> 0.5. (3)

Therefore, when the preceding condition is satisfied but Equation (2) is not, the BCCJ module
categorizes the state as partial consensus.

No Consensus A no consensus state is identified when neither the full nor partial consensus
conditions (Equation (2) and (3)) are satisfied, indicating that no agents have reached agreement at a
sufficiently high belief level.

The BCCS framework adopts distinct strategies for each of these states. Upon achieving full
consensus, the collaboration terminates, and the resulting consensus is returned as the final output.
Otherwise, the collaboration continues until full consensus is achieved or the predefined maximum
number of interaction rounds is reached. For cases of partial or no consensus, two auxiliary modules
are subsequently activated to facilitate consensus among agents.

4.2 Collaborator Assignment

In a partial consensus state, agents in the MAS may exhibit both supportive and conflicting relation-
ships. Theorem 3.2 demonstrates that collaboration with supportive agents enables the MAS to reach
a stable consensus, whereas collaboration with conflicting agents leads to an unstable one. However,
relying solely on supportive agents may result in suboptimal solutions [5]. Therefore, agents with
uncertain opinions must interact with both supportive and conflicting agents to ensure balanced
decision-making. Within the BCCS framework, the most uncertain opinion group is identified as
Gu = argmaxGp

{Up}mp=1. To prevent least reliable agent with lowest belief in Gu from continu-
ously driving the collaboration toward suboptimal solutions, the CA module selects the agent with the
highest belief from the corresponding conflicting group to guide the opinion change. Conversely, to
ensure all other agents that are more reliable continue to guide the process toward optimal consensus,
the module selects the agents with the highest belief from the corresponding supportive groups to
collaborate. By tailoring collaboration strategies based on the belief levels of agents, the CA module
promotes convergence under partial consensus while effectively avoiding suboptimal outcomes.

To quantify the degree of conflict between opinion groups Gp and Gq , and to identify which groups
are supportive and which are conflicting with respect to a given group, we propose a conflict score ψpq

that captures both macro- and micro-level perspectives. It comprises the following two components.

Macro-Conflict The macro-conflict estimates the overall conflict level between Gp and Gq by
measuring the proportion of belief inconsistencies among all opinions in both groups. The calculation
of macro-conflict ψG

pq is shown in Equation (5), where Gp ⊕Gq represents the complementary set of
agents with the same answers. Notably, ψG

pq denotes the belief-weighted complement of the Jaccard
similarity [19]. Following the Jaccard similarity threshold [19], Gp and Gq are considered to be in
macro-conflict when ψG

pq ≥ 0.5.

Micro-Conflict The micro-conflict estimates the difference of local consistency betweenGp andGq .
According to Equation (2), we define the local consistency score as Θ∗ =

∑
ai∈Gs

∗
bki −4

∑
ai∈Gc

∗
bki
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and Θ∗ > 0 is the condition of full consensus. Gs
∗ and Gc

∗ indicate the opinion groups of agents
with the agreed answers and disagreed answers, where ∗ indicates p or q. The difference of local
consistency is estimated by the distance between the local consistency scores of Gp and Gq, and
the lower bound is given in Equation (4). When the lower bound is strictly positive, it indicates a
significant consensus difference between Gp and Gq, which implies a micro-conflict when ψL

pq > 4
in Equation (5).

|Θp −Θq| ≥
∣∣∣∣ ∑
ai∈Gs

p

bki −
∑

ai∈Gs
q

bki

∣∣∣∣− 4

∣∣∣∣ ∑
ai∈Gc

p

bki −
∑

ai∈Gc
q

bki

∣∣∣∣. (4)

ψG
pq =

∑
ai∈Gp⊕Gq

bki∑
ai∈Gp∪Gq

bki
, ψL

pq =

∣∣∣∣ ∑
ai∈Gs

p

bki −
∑

ai∈Gs
q

bki

∣∣∣∣∣∣∣∣ ∑
ai∈Gc

p

bki −
∑

ai∈Gc
q

bki

∣∣∣∣ , ψpq = ψG
pq · ψL

pq. (5)

The conflicting score ψpq incorporates both macro- and micro-conflicts. Accordingly, Gp and Gq are
considered to be in conflict when ψpq > 2. Besides, one opinion group is always self-supporting.

4.3 Leader Selection

When the multi-agent system reaches the no consensus state, there are no mutually supportive opinion
groups in the system. According to the Theorem 3.3, it follows that selecting the agent with the
highest belief value from each opinion group as a leader enables the opinions to converge most
rapidly to the average of the leaders’ beliefs. Accordingly, the LS module selects the nl agents with
the highest belief in each group, denoted as Al, to serve as leaders, while the remaining agents update
their opinions by interacting exclusively with these leaders.

It can be found that selecting leaders with lower beliefs compromises the system’s robustness by
reducing consensus reliability, while higher-belief leaders facilitate faster convergence. Our proposed
method selects the agent with the highest beliefs as the leaders in each iteration to avoid non-robust
outcomes, thereby preventing suboptimal agents from serving as long-term leaders. Situations where
all agents have relatively low belief are rare. If such a case does occur, it indicates that none of
the agents are capable of solving the problem, making it impossible to accomplish the task through
collaboration mechanism, instead it will complete the task through the voting mechanism.

5 Experiments

In the experiments, we seek to answer the following research questions:

• RQ1: How does the performance of BCCS compare to existing single-agent and multi-agent
methods in NLP tasks?

• RQ2: How does each functional component of BCCS contributes to the performance?
• RQ3: How do the supportive/conflicting agents and leaders impact the consensus in BCCS?

5.1 Baselines and Benchmarks

To validate the effectiveness of BCCS, we evaluate the single-agent and multi-agent methods for
comparsion. The single-agent methods include CoT [20], Reflection [21], CoT-SC [22]. The
mult-agent methods include EoT [23], GroupDebate [24], MAD [18], PARSE [25], DyLAN [3] and
CMD [26]. All experiments are conducted on two NLP benchmark datasets, including MATH [8] with
7 types of mathematical reasoning problems, and MMLU [9] with 4 primary types of natural language
understanding tasks. Further details on the baselines and datasets can be found in Appendix C.1 and
C.2. The performance of all methods is evaluated in terms of accuracy.

5.2 Implementation Details

For each datasets, we randomly sample three groups of 500 examples with random seeds 100, 200, and
300 to conduct three independent experiments. The final results present the mean performance across
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runs, along with the corresponding standard errors of mean (SEM) [27] shown as error bars. More
implementation details can be found in Appendix C.4. In the main experiments, the determination
for optimal number of agents and iteration rounds is consistent with common practices in the
existing multi-agent collaboration systems [18], where such hyperparameters are often set empirically.
Specifically, the number of agents is n = 7 and the maximum iteration rounds is 3 across all methods.
The number of leaders is set as nl = 2. A detailed ablation study of these hyperparameters is available
in Appendix D.2. Unless stated otherwise, each agent employs Qwen2.5-7B-Instruct as the backbone
model.

Table 1: Main results on the MATH dataset. Bold numbers indicate the best-performing results
among all methods.

Method Algebra Counting &
Probability

Geometry Intermediate
Algebra

Number
Theory

Prealgebra Precalculus #Avg

CoT 91.64±0.56 74.30±4.55 58.98±5.46 52.61±2.91 71.33±4.34 85.53±1.71 57.59±3.94 73.33±1.07
Reflection 91.83±1.88 76.98±1.98 61.55±3.85 52.58±2.33 72.57±0.29 87.65±1.26 59.89±5.73 74.67±0.81
CoT-SC 92.15±1.12 73.91±0.60 61.76±7.00 62.87±0.73 74.93±4.30 85.52±1.70 63.93±5.58 76.67±0.18

EoT 94.85±1.27 77.87±4.31 63.03±6.43 60.75±1.21 80.74±1.78 89.42±0.91 61.38±6.81 78.40±0.31
GroupDebate 94.07±1.35 78.37±2.73 67.70±6.51 59.98±1.62 75.33±3.81 89.08±0.94 61.89±5.35 77.93±0.84
MAD 94.05±0.39 78.37±1.76 66.14±7.16 62.09±1.99 79.57±1.36 90.15±0.81 62.01±3.68 78.87±0.18
PARSE 94.84±0.83 76.88±1.04 68.31±5.51 61.13±3.00 80.85±0.29 88.76±0.93 59.14±3.76 78.53±0.55
CMD 95.11±0.92 75.59±2.94 67.81±7.22 61.17±1.75 81.65±2.37 90.16±0.39 61.21±4.25 78.93±0.53
DyLAN 95.15±0.81 76.29±2.95 67.08±7.90 59.94±2.03 80.74±1.78 90.09±1.71 62.70±5.19 78.80±0.31

BCCS 95.41±0.76 79.07±1.12 68.64±7.39 64.28±1.60 82.81±1.74 90.88±0.14 64.93±5.17 80.60±0.23

Table 2: Main results on the MMLU dataset.

Method STEM Social Sciences Humanities Other #Avg

CoT 68.70±1.24 78.19±0.82 71.84±1.25 70.50±2.95 71.87±0.96
Reflection 70.93±1.94 78.81±1.56 72.99±1.52 70.79±1.84 73.07±1.67
CoT-SC 72.76±0.73 78.82±1.12 71.84±2.24 69.61±3.00 73.13±1.33

EoT 75.81±0.54 76.01±1.89 73.56±2.07 71.39±2.95 74.33±1.48
GroupDebate 77.03±0.81 78.50±1.08 71.26±2.74 71.98±2.81 74.87±1.54
MAD 78.46±1.66 78.50±1.62 73.85±2.01 72.86±1.80 76.13±1.46
PARSE 78.05±1.27 79.44±1.43 74.14±1.99 73.74±1.56 76.47±0.48
CMD 76.63±1.02 78.82±1.12 72.41±2.28 71.98±2.36 75.07±1.44
DyLAN 78.25±0.89 77.26±2.43 74.21±2.23 69.03±1.84 75.00±1.51

BCCS 79.47±0.81 80.69±1.65 78.16±3.20 75.22±2.66 78.47±1.22

6 Results and Discussions

6.1 Overall Performance

To address RQ1, we compare BCCS with several baselines on MATH and MMLU. The results
are reported in Table 1 and Table 2. BCCS outperforms the baselines consistently in both datasets.
Specifically, BCCS outperforms the strongest multi-agent methods by 1.67%/2.00% in terms of
average accuracy on MATH/MMLU. The improvements are more significant on more challenging
tasks, with a maximum increase of 2.23% and 3.95% on MATH and MMLU respectively. This is
because BCCJ can ensure a sufficiently high belief level in the consensus results, and CA and LS
can select the optimal agents as collaborators and leaders, which facilitate the MAS reaching stable
consensus and avoid the suboptimal results. Besides, the results in more scenarios of NLP tasks are
shown in Section D.1. For simple tasks, since the original model itself can already achieve relatively
stable consensus, the marginal benefit of further introducing collaborative mechanisms is relatively
limited.

Besides, the multi-agent methods are more effective than single-agent methods. This is because in
multi-agent collaboration, agents can refine their own answers by incorporating opinions from others,
making the system resilient to errors from individual agents.
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Table 3: Ablation study on the MATH dataset. Bold numbers indicate the best-performing results
among all conditions. “-” indicates removing the corresponding module, and “-Conflict” indicates
using supportive opinions only. “R.Leader” indicates selecting nl leaders randomly.

Method Algebra Counting &
Probability

Geometry Intermediate
Algebra

Number
Theory

Prealgebra Precalculus #Avg

BCCS 95.41±0.76 79.07±1.12 68.64±7.39 64.28±1.60 82.81±1.74 90.88±0.14 64.93±5.17 80.60±0.23

-CA 95.10±1.34 76.89±1.99 66.25±7.79 60.02±1.39 79.18±2.42 90.13±0.92 62.27±4.55 78.60±0.12
-Conflict 95.13±0.53 76.39±3.47 63.80±7.12 61.63±1.61 82.68±2.08 89.03±1.74 60.68±5.25 79.00±0.23
-LS 94.05±0.39 76.39±4.22 66.14±7.16 60.47±3.67 79.45±1.58 88.74±0.62 62.49±5.47 78.13±0.48
R.Leader 95.14±0.11 76.98±2.32 63.53±7.78 59.99±0.43 81.64±1.45 89.44±0.85 60.80±7.13 78.33±0.66
-BCCJ 94.86±0.38 76.09±0.60 64.42±6.24 58.49±2.20 79.18±2.42 89.84±0.51 62.21±3.54 78.00±0.53

Table 4: Ablation study on the MMLU dataset.

Method STEM Social Sciences Humanities Other #Avg

BCCS 79.47±0.81 80.69±1.65 78.16±3.20 75.22±2.66 78.47±1.22

-CA 78.25±1.24 79.13±0.82 75.28±2.87 73.45±1.84 76.67±0.29
-Conflict 78.66±1.61 80.37±0.54 76.43±3.24 72.86±2.57 77.20±0.81
-LS 77.03±1.33 79.44±0.93 77.87±2.35 72.57±3.11 76.73±1.20
R.Leader 79.27±1.06 79.13±0.82 73.85±3.16 73.16±3.40 76.60±1.06
-BCCJ 77.44±1.54 79.75±1.36 77.30±2.74 74.04±3.87 77.13±1.01

6.2 Ablation Study

To address RQ2, we ablate the functional modules to evaluate their impact on the performance,
including belief-calibrated consensus judgment (BCCJ) (w.r.t “-BCCJ”), collaborator assignment
(CA) (w.r.t “-CA”) and leader selection (LS) (w.r.t “-LS”). Specifically, “-BCCJ” replaces BCCJ
with Byzantine Consensus [3]. Besides, to evaluate the impact of conflicting agents and leaders with
highest beliefs, we also conduct experiments excluding conflicting agents (w.r.t “-Conflict”) and
randomly selected leaders (w.r.t “R.Leader”). The results are reported in Table 3 and Table 4.

All modules of BCCS have positive influence on performance on the two datasets. After removing the
modules of BCCJ, CA, and LS, the values of average accuracy decrease 2.60%/1.34%, 2.00%/1.80%
and 2.47%/1.74% on the MATH and MMLU benchmarks, respectively. These results indicate that
the modules of BCCJ, CA, and LS can facilitate the MAS reaches a consensus with the correct
answer. Moreover, both “-Conflict” and “R.Leader” exhibit performance decrease. This is because
collaborating solely with supportive agents can lead to suboptimal solutions and lead to incorrect
answers, while leaders with lower beliefs may cause other agents to converge on unreliable opinions,
ultimately reducing the system’s decision quality.

6.3 Analysis Experiments

Accuracy (%) CL (%) SCL (%) SCR Accuracy (%)
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Figure 4: (a) and (b): the results of the CL, SCL and accuracy for each supportive-to-conflicting
collaboration ratio (including “0:7”, “6:1” and “7:0”). (c) and (d): the results of the SCR and
accuracy for the lowest, random and highest leaders’ beliefs (denoted as “L”, “R”, “H”). (e): the
analysis of the parameter size, the x-axis denotes the LLMs for comparison.
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To address RQ3, we analyze the impact of supportive-to-conflicting collaboration ratio and the leader
belief on consensus and performance, with case studies in Appendix D.7. Inspired by agreement
level [2], we calculate the (success) consensus level (S)CL as the average ratio of (success) consensus
agents per case, and the success consensus rate SCR as the average number of success consensus
agents per round per case, which calculation are represented in Equation (6). ncase, n, nsu, nru
indicate the numbers of cases, agents, consensus agents in u-th case and rounds in u-th case, xu and
x∗u indicate the consensus answer and ground-truth of u-th case. 1[·] is indicator function.

CL =

ncase∑
u=1

ns
u

n

ncase
, SCL =

ncase∑
u=1

ns
u·1[xu=x∗

u]
n

ncase
, SCR =

ncase∑
u=1

ns
u·1[xu=x∗

u]
nr
u

ncase
.

(6)

Effect of supportive/conflicting collaboration for consensus We demonstrate the impact of the
supportive-to-conflicting collaboration ratios (we set “0:7”, “6:1”, “7:0”) on CL, SCL and accuracy
in Figure 4 (a) and (b). As the supportive collaboration ratio rises, the consensus level (CL) increases.
Collaborating with the supportive agents can facilitate the MAS reaching stable consensus as shown
in Theorem 3.2. The more agents collaborate with these supportive agents, the greater the consensus
achieved. Besides, as CL increases, the success consensus level (SCL) and accuracy demonstrate a
trend of increasing first and then decreasing. This is because collaborating solely with supportive
agents lead to suboptimal solutions, consequently causing a decline in SCL and accuracy.

Effect of leaders with different beliefs for consensus We demonstrate the impact of the leaders’
beliefs in Figure 4 (c) and (d). We analyze and compare the performance of BCCS of lowest,
random and highest leaders’ beliefs (denoted as “L”, “R”, “H”) on SCR and accuracy. As leaders’
beliefs increase, both the success consensus rate (SCR) and accuracy improve. Higher-belief leaders
expedite stable consensus convergence when their average belief exceeds other agents’, as shown in
Theorem 3.3, whereas those with lower average belief may reduce consensus reliability.

Analysis of Model Sizes To compare BCCS with different sized models on full datasets, we
use Qwen2.5-32B-Instruct as backbone model on MATH, and DeepSeek-R1-Distill-Qwen-32B on
MMLU. The results are shown in Figure 4 (e). BCCS outperforms same-scale models and matches
or surpasses larger-scale models, which demonstrate consistent scalability across varying model sizes,
with performance benefits persisting even at larger parameter sizes. Besides, we report the comparison
results between BCCS and state-of-the-art baselines with different model sizes in Appendix D.3.

7 Related Works

7.1 Multi-Agent Collaboration

The multi-agent collaboration [18, 28] refers to a system where multiple agents collaborate to achieve
a common goal, the dominant work focuses on updating the opinion of each agent based on those
opinions from other agents to reach the consensus result [29–33]. CMD [26] and EoT [23] share
opinions between agents and update results. SPP [34] and DyLAN [3] assume agents as distinct roles
to address different aspects, and integrate solutions for the final answer. The debate based methods [35–
37] adopt multiple agents engage in debates to solve problems. MADKE [38], MAD [18], Heter-
MAD [39], and GroupDebate [24] output results by reaching consensus or summarizing opinions
by another agent. PARSE [25] permanently assigns collaborators based on predefined collaboration
structure. BENCHFORM [40] explores the conformity in the multi-agent systems. However, these
methods can not identify the optimal collaborators for each agent, hindering the emergence of a stable
consensus. Different from existing methods, we establish the theoretical foundation for selecting
collaborators and leaders which can facilitate stable consensus in MAS, and propose the CA and LS
modules for selecting collaborators and leaders to facilitate stable consensus.

7.2 Multi-Agent Consensus Seeking

The multi-agent consensus seeking [14, 41] aims to facilitate the MAS’s consensus. Traditional
consensus seeking methods adopt the consensus protocol to facilitate and determine consensus [13,
42, 43] and adjust game strategies through belief [44, 45]. Existing LLM-based consensus seeking
methods rely on voting mechanisms for consensus judgment. AAD [2] outputs the consensus results
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via the majority voting [46, 47]. Byzantine consensus theorem [48–50] are widely used to determine
whether the MAS reaches consensus exceeds 2

3 [3, 51]. However, these methods overlook the
contradictions in system-internal beliefs that destabilize the consensus. Different from existing works,
we propose the BCCJ module to calibrate the consensus judgment by system-internal beliefs.

8 Conclusion and Future Work

In this paper, we provide a theoretical framework for selecting optimal collaborators that maximum
consensus stability. Based on the theorems, we propose the belief-calibrated consensus seeking
(BCCS) framework to facilitate stable consensus via selecting optimal collaborators and calibrating
the consensus judgment by system-internal beliefs. The experimental results confirm the effectiveness
of BCCS and demonstrate that BCCS can facilitate the MAS reaching consensus and avoid falling into
suboptimal solutions. In future work, we will explore the dynamic leader selection for enhancement.

Broader Impacts Our method requires no extra training or data, ensuring ease of use. While
current multi-agent systems face scalability limits and risks like harmful LLM behavior, BCCS
addresses this by selecting optimal agents as collaborators to ensure stable consensus.

9 Limitations

Although BCCS performs well in natural language processing tasks, we have not evaluated it in an
embodied intelligence environment.
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to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: We provide the link to access the data and code in Abstract.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/public/

guides/CodeSubmissionPolicy) for more details.
• While we encourage the release of code and data, we understand that this might not be

possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run
to reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: We provide the experimental details in Section 5 and Appendix C, and we also
provide the discussion of parameter settings in Appendix D.2.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: As described in Section 5.2, our experimental results are derived from average
of multiple runs and report the error bars through standard errors of mean.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).
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• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We provide the information on the computer resources needed to reproduce
the experiments in Appendix C.4.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: Our research conducted in this paper conform with the NeurIPS Code of Ethics,
and we provide the discussion of anonymity preservation in Appendix C.2.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: We discuss the potential positive and negative societal impacts in Section 8.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
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• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: We propose a consensus seeking framework, and our experiments concern
only standard models with publicly available benchmark datasets, thus our work poses no
such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We provide the license and websites of datasets in Appendix C.2 and models
in Appendix C.3.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.

18



• If assets are released, the license, copyright information, and terms of use in the package
should be provided. For popular datasets, paperswithcode.com/datasets has curated
licenses for some datasets. Their licensing guide can help determine the license of a
dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: We release our code with document in an open accessed link, which we provide
in the Abstract.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: Our work does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: Our work does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.
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• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [Yes]

Justification: As decribed in Appendix C.3, LLMs are used as backbone models of agents in
this paper.

Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM) for what
should or should not be described.

A Algorithm

Algorithm 1 Algorithm of belief-calibrated consensus seeking (BCCS)
repeat

Clustering opinions via KMeans and obtain opinion groups
Belief-calibrated consensus judgment (BCCJ) judges the consensus states:
Full consensus: pks >

2
3 and pkb > 0.8 ▷ Equation (2)

Partial consensus: pks ≥ 2
n and pkb > 0.5 ▷ Equation (3)

No consensus: Other conditions
if Reaching “partial consensus” then

Collaborator assignment (CA) selects the collaborators:
Calculate the conflict score for p-th and q-th opinion groups ψpq = ψG

pq · ψL
pq ▷ Equation (5)

for Each aj ∈ A do
if aj is the agent with lowest belief in most uncertain group Gu then

Select the agents with highest beliefs in conflicting opinion groups (ψpq > 2)
else

Select the agents with highest beliefs in supportive opinion groups (ψpq ≤ 2)
end if

end for
else if Reaching “no consensus” then

Leader selection (LS) selects the leaders:
for Each opinion group do

Select nl agents with highest beliefs in the opinion group
end for

end if
until Reaching “full consensus” or maximum iteration number

B Proofs of Theorems

Theorem 3.2. Let {xki }ni=1 denote the opinions and {bki }ni=1 denote the beliefs of a MAS with n agents
at the k-th step of collaboration. The collaboration between agents satisfies the following properties:

1. When each agent in MAS collaborates with supportive agents, the MAS tends to reach the stable
consensus, converging to the state of the average opinion and belief of all collaborating agents.
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2. When any agent in MAS collaborates with conflicting agents, the MAS tends to form the unstable
consensus, potentially leading to divergence or oscillation in group states.

Proof. Firstly, when i-th agent collaborates with the supportive agents, its transmission of opinion
xk+1
i and the average opinion of the collaborative agents x̄k at k-th step are represented as Equation (7)

according to the definitions in Section 2.1.

xk+1
i = (1− nsiα)x

k
i +

∑
aj∈As

i

αxkj , x̄k =
1

nsi

∑
aj∈As

i

xkj . (7)

The transmission of belief bk+1
i and the average belief of the collaborative agents b̄k at k-th step are

represented as Equation (8) according to the definitions in Section 2.1.

bk+1
i = (1− nsiβ)b

k
i +

∑
aj∈As

i

βbkj , b̄k =
1

nsi

∑
aj∈As

i

bkj . (8)

For each i ∈ [1, n], the increment in the distance between i-th agent’s opinion and the average opinion
of the collaborative agents before and after the k-th collaboration step is represented as Equation (9).

(xk+1
i − x̄k)2 − (xki − x̄k)2

=((1− nsiα)x
k
i +

∑
aj∈As

i

αxkj − x̄k)2 − (xki − x̄k)2

=(xki − x̄k +
∑

aj∈As
i

αxkj − nsiαx
k
i )

2 − (xki − x̄k)2

=((xki − x̄k)(1− αnsi ))
2 − (xki − x̄k)2 = [(1− αnsi )

2 − 1](xki − x̄k)2 ≤ 0.

(9)

For each i ∈ [1, n], the increment in the distance between i-th agent’s belief and the average belief of
the collaborative agents before and after the k-th collaboration step is represented as Equation (10).

(bk+1
i − b̄k)2 − (bki − b̄k)2

=((1− nsiβ)b
k
i +

∑
aj∈As

i

βbkj − b̄k)2 − (bki − b̄k)2

=(bki − b̄k +
∑

aj∈As
i

βbkj − nsiβb
k
i )

2 − (bki − b̄k)2

=((bki − b̄k)(1− βnsi ))
2 − (bki − b̄k)2 = [(1− βnsi )

2 − 1](bki − b̄k)2 ≤ 0.

(10)

Due to 0 ≤ nsi ≤ n and α = β = 2
n , thus the conditions “≤ 0” in Equation (9) and (10) hold.

Therefore, when collaborates with the supportive agents, the opinion and belief of i-th agent converge
to the average opinion and belief of collaborators gradually, thus when each agent collaborates with
supportive agents, the opinions and beliefs of MAS converge, which can reach the stable consensus.
When the incremental values in the Equation (9) and (10) become to 0 for each i ∈ [0, n], the opinions
and beliefs of multi-agent system converge to the average opinion and belief of the collaborative
agents.

Secondly, when i-th agent collaborates with the conflicting agents, its transmission of opinion xk+1
i

and the average opinion of the collaborative agents x̄k are represented in Equation (11) according to
the definitions in Section 2.1.

xk+1
i = (1− nciα)x

k
i +

∑
aj∈Ac

i

αxkj , x̄k =
1

nci

∑
aj∈Ac

i

xkj . (11)

The transmission of belief bk+1
i and the average belief of the collaborative agents b̄k are represented

in Equation (12) according to the definitions in Section 2.1.

bk+1
i = (1 + nciβ)b

k
i −

∑
aj∈Ac

i

βbkj , b̄k =
1

nci

∑
aj∈Ac

i

bkj . (12)
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For each i ∈ [1, n], the increment in the distance between i-th agent’s opinion and the average belief
of the collaborative agents before and after the collaboration is represented as Equation (13).

(xk+1
i − x̄k)2 − (xki − x̄k)2

=((1− nciα)x
k
i +

∑
aj∈As

i

αxkj − x̄k)2 − (xki − x̄k)2

=((xki − x̄k)(1− nciα))
2 − (xki − x̄k)2 = [(1− αnci )

2 − 1](xki − x̄k)2 ≤ 0.

(13)

For each i ∈ [1, n], the increment in the distance between i-th agent’s belief and the average belief of
the collaborative agents before and after the collaboration is represented as Equation (14).

(bk+1
i − b̄k)2 − (bki − b̄k)2

=((1 + nciβ)b
k
i −

∑
aj∈As

i

βbkj − b̄k)2 − (bki − b̄k)2

=((bki − b̄k)(1 + nciβ))
2 − (bki − b̄k)2 = [(1 + βnci )

2 − 1](bki − b̄k)2 ≥ 0.

(14)

Due to 0 ≤ nsi ≤ n, thus the “≤ 0”in Equation (13) and the “≥ 0”in Equation (14) hold. Therefore,
when any agent collaborates with the conflicting agents, the opinion of i-th agent converge to the
average opinion gradually, thus the multi-agent system (MAS) can reach the consensus. However,
the belief of i-th agent can not converge to the average belief, thus MAS can not reach a stable
consensus.

Theorem 3.3. Let {xki }ni=1 and {bki }ni=1 represent the opinions and beliefs of a MAS with n agents
at the k-th step. Within each opinion group, the i-th agent follows nl leaders, and the collaboration
between followers and their respective leaders satisfies the following properties:

1. When each agent in an opinion group collaborates with its leaders, the MAS tends to reach the
stable consensus, converging to the average state of the leaders.

2. When the leaders’ average belief is higher than other agents’ beliefs, the leaders with higher
beliefs can expedite the convergence to the stable consensus.

Proof. Firstly, when the i-th agent collaborates with the leaders in one opinion group, since different
opinions within the same opinion group share similar topics, they support each other, its transmission
of opinion/belief and the average opinion/belief of the collaborative agents at k-th step are represented
as Equation (15)/(16) which are similar to Equation (7)/(8).

xk+1
i = (1− nsiα)x

k
i +

∑
aj∈Al

αxkj , x̄k =
1

nsi

∑
aj∈Al

xkj . (15)

bk+1
i = (1− nsiβ)b

k
i +

∑
aj∈Al

βbkj , b̄k =
1

nsi

∑
aj∈Al

bkj . (16)

For each i ∈ [1, n] If the i-th agent is a follower, the increment in the distance between i-th agent’s
opinion and the average opinion of the leaders at (k+1)-th and k-th steps are shown as Equation (17).

∆k+1
x = ∥ 1

nl

∑
aj∈Al

xkj − xk+1
i ∥ − ∥ 1

nl

∑
aj∈Al

xkj − xki ∥

=∥ 1

nl

∑
aj∈Al

xkj − ((1− nlα)xki +
∑

aj∈Al

αxkj )∥ − ∥ 1

nl

∑
aj∈Al

xkj − xki ∥

=∥ 1

nl

∑
aj∈Al

xkj − xki + nlαxki −
∑

aj∈Al

αxkj ∥ − ∥ 1

nl

∑
aj∈Al

xkj − xki ∥

=∥( 1
nl

− α)(
∑

aj∈Al

xkj − nlxki )∥ − ∥ 1

nl
(
∑

aj∈Al

xkj − nlxki )∥

=(| 1
nl

− α| − 1

nl
)∥

∑
aj∈Al

xkj − nlxki ∥ ≤ 0.

(17)
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The increment in the distance between i-th agent’s belief and the average belief of the leaders at
(k + 1)-th and k-th steps are shown as Equation (18).

∆k+1
b = ∥ 1

nl

∑
aj∈Al

bkj − bk+1
i ∥ − ∥ 1

nl

∑
aj∈Al

bkj − bki ∥

=∥ 1

nl

∑
aj∈Al

bkj − ((1− nlβ)bki +
∑

aj∈Al

βbkj )∥ − ∥ 1

nl

∑
aj∈Al

bkj − bki ∥

=∥ 1

nl

∑
aj∈Al

bkj − bki + nlβbki −
∑

aj∈Al

βbkj ∥ − ∥ 1

nl

∑
aj∈Al

bkj − bki ∥

=∥( 1
nl

− β)(
∑

aj∈Al

bkj − nlbki )∥ − ∥ 1

nl
(
∑

aj∈Al

bkj − nlbki )∥

=(| 1
nl

− β| − 1

nl
)∥

∑
aj∈Al

bkj − nlbki ∥ ≤ 0.

(18)

Similarly, if the i-th agent is a leader, ∆k+1
x = (| 1

nl−1
− α| − 1

nl−1
)∥

∑
aj∈Al

xkj − (nl − 1)xki ∥,

∆k+1
b = (| 1

nl−1
− β| − 1

nl−1
)∥

∑
aj∈Al

bkj − (nl − 1)bki ∥. Due to 0 < α ≤ 2
n <

2
nl <

2
nl−1

, the value

of ∆k+1
x and ∆k+1

b are not larger than 0 consistently, in which ∆k+1
x = 0 and ∆k+1

b = 0 indicate the
opinion and belief of leader or follower converge to the average opinion and belief of all leaders.

Secondly, given the condition that the belief bki is globally continuous on all tokens of generated
opinions xki [52], we can conclude that if bki does not converge, then xki can not converge either.
Therefore the convergence rate of bki determines the consensus rate of multi-agent system (MAS).

The convergence rate is represented by |∆k+1
b |, which indicates the absolute value of increment in

the distance between the i-th agent’s belief and leaders’ average belief from step k to k + 1. The
comparison of the convergence rate between |∆k+1

b | with higher belief bkj and |∆k+1
b |′ with lower

belief (bkj )
′ is shown in Equation (19).

|∆k+1
b | − |∆k+1

b |
′
= |wk

i |(∥
∑

aj∈Al

bkj − nlbki ∥ − ∥
∑

aj∈(Al)′

(bkj )
′
− nlbki ∥) > 0, (19)

where wk
i = (| 1

nl − β| − 1
nl ) when i-th agent is a follower, and wk

i = (| 1
nl−1

− β| − 1
nl−1

) when
i-th agent is a leader. Due to the average belief of leaders is higher than other agents’ beliefs, it can
derive that the condition of “> 0” holds, thus the convergence rate is higher when collaborating with
leaders who consistently maintain higher beliefs.

C Experimental Details

C.1 Baseline Details

• CoT [20] is a single-agent reasoning method, which conducts reasoning step-by-step.
• Reflection [21] is a single-agent reasoning method, which reflects on their errors and apply

self-directed strategies to strengthen the solutions.
• CoT-SC [22] is a single-agent reasoning method, which samples multiple reasoning paths and

select the majority result.
• EoT [23] is a collaboration method, in which each agent can receive opinion from its predecessor

and send its own opinion to the next agent.
• GroupDebate [24] is a collaboration method, which conducts internal discussions first and then

summarizes the results as the input for all agents in the next step.
• MAD [18] is a collaboration method, which enhances solutions through multi-agent debate to

refine the answer.
• PARSE [25] is a collaboration method, which conducts multi-agent collaboration with sparse

collaboration structure.
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• CMD [26] is a collaboration method, in which agents within the same group receive solutions with
explanations, while those in different groups receive solutions without explanations.

• DyLAN [3] is a collaboration method, which selects agents based on their contributions to problem-
solving.

C.2 Benchmark Datasets Details

• MATH [8] is a mathematical reasoning benchmark that contains 5,000 cases covered 7 types of
problems, including algebra, counting and probability, geometry, intermediate algebra, number
theory, prealgebra and precalcus. MATH dataset is released under MIT License, which can be
found in https://huggingface.co/datasets/HuggingFaceTB/MATH.

• MMLU [9] is an integrated reasoning benchmark that contains 57 subjects covered by the 4 main
types of problems, including STEM, social sciences, humanities and other. MMLU dataset is
released under MIT License, which can be found in https://people.eecs.berkeley.edu/~hendrycks/
data.tar.

The results of full data in Figure 4(e) are sourced from [53] and https://crfm.stanford.edu/helm/mmlu/
latest/, respectively. All datasets are from public sources, ethically reviewed by publishers, and the
cases have undergone anonymization to safeguard sensitive information.

C.3 Model Details

In the experiments, we use the large language models (LLMs) with different parameter sizes as
backbone models of agents, the details of the models are listed as follows:

• Qwen2.5-7B-Instruct [53] is released under Apache license 2.0, which can be found in https:
//huggingface.co/Qwen/Qwen2.5-7B-Instruct.

• Qwen2.5-14B-Instruct [53] is released under Apache license 2.0, which can be found in https:
//huggingface.co/Qwen/Qwen2.5-14B-Instruct.

• Qwen2.5-32B-Instruct [53] is released under Apache license 2.0, which can be found in https:
//huggingface.co/Qwen/Qwen2.5-32B-Instruct.

• DeepSeek-R1-Distill-Qwen-32B [54] is released under MIT License, which can be found in
https://huggingface.co/deepseek-ai/DeepSeek-R1-Distill-Qwen-32B.

C.4 Implementation Details

Experimental Setting To ensure the opinion diversity within MAS, we set the temperature as 0.7.
The number of leaders nl is set as 2 and to ensure that at least one opinion group contains more
than nl agents, and to allow for the potential coexistence of supportive and conflicting relationships
among opinion groups, thus we set the number of opinion group clustering for KMeans [55] in BCCS
as 3. The TF-IDF vectors capture the keyword distributions to represent the topics [56], enabling
KMeans clustering based to topical similarity. When an opinion group’s size is at most nl, each agent
updates their opinion based on all group members’ opinions. The answer probability is calculated by
multiplying the token probabilities of the final answer sentence. The prompts are listed in Table 15.

Computer Resources All experiments are conducted with Nvidia A800 GPUs with 80GB memory.
Specifically, for experiments based on 7B and 14B models, the experiments need one A800 GPU, and
the experiments based on 32B models, the experiments need two A800 GPUs. The average execution
time is about 1 minute per MMLU case and 3 minutes per MATH case.

D Supplementary Experiments

D.1 Additional Scenarios of NLP Tasks

We evaluate on two additional NLP benchmark datasets with two reasoning scenarios, including
FOLIO [57] of logical reasoning and CommonsenseQA [58] of commonsense reasoning. We compare
our proposed BCCS with three best performed baselines in Table 1 and Table 2 and we randomly
select 62 cases from FOLIO and 92 cases from CommonsenseQA for comparison, the results are
listed in Table 5, which demonstrate that our proposed BCCS performs better than the baselines on
the two scenarios.

24

https://huggingface.co/datasets/HuggingFaceTB/MATH
https://people.eecs.berkeley.edu/~hendrycks/data.tar
https://people.eecs.berkeley.edu/~hendrycks/data.tar
https://crfm.stanford.edu/helm/mmlu/latest/
https://crfm.stanford.edu/helm/mmlu/latest/
https://huggingface.co/Qwen/Qwen2.5-7B-Instruct
https://huggingface.co/Qwen/Qwen2.5-7B-Instruct
https://huggingface.co/Qwen/Qwen2.5-14B-Instruct
https://huggingface.co/Qwen/Qwen2.5-14B-Instruct
https://huggingface.co/Qwen/Qwen2.5-32B-Instruct
https://huggingface.co/Qwen/Qwen2.5-32B-Instruct
https://huggingface.co/deepseek-ai/DeepSeek-R1-Distill-Qwen-32B


Table 5: Main results on the FOLIO and CommonsenseQA datasets.

Dataset CMD MAD PARSE BCCS

FOLIO 79.03 80.65 77.42 82.26
CommonsenseQA 79.35 78.26 80.43 82.61

D.2 Analysis of Hyperparameters

In this section, we analyze the performance of the BCCS under different hyperparameters settings.
Specifically, we analyze the impact of three hyperparameters, including agent number n, maximum
rounds, leader number nl, and randomly select 500 cases from MATH and MMLU for analysis.
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Figure 5: The performance of BCCS with different agent numbers n.

Effect of Agent Number We evaluate the performance of BCCS with agent numbers ranging in
{3, 5, 7, 9}. The results are shown in Figure 5, as the agent number n increases, the accuracy of
BCCS improves. The performance gap between n = 7 and n = 9 is not significant. The results show
that using seven agents (n = 7) achieves an optimal balance between performance and efficiency in
BCCS’s execution as the execution efficiency declines with the number of agents increases.
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Figure 6: The performance of BCCS with different maximum rounds.

Effect of Maximum Rounds We evaluate the performance of BCCS with maximum rounds ranging
in {2, 3, 4}. The results are shown in Figure 6, as the number of maximum rounds increases, the
accuracy of BCCS improves. The performance of BCCS between 3 and 4 rounds is not significant.
The results indicate that a maximum of 3 rounds achieves the optimal balance between performance
and efficiency in BCCS’s execution, as the execution efficiency declines with the rounds increase.

Effect of Leader Number We evaluate the performance of BCCS with the number of leaders
nl ranging in {1, 2, 3}. The results are shown in Figure 7, as the number of leaders increases, the
accuracy of BCCS increases first and then descends, which increments are not significant. The reason
may be that two leaders can balance individual errors and excessive divergence, ensuring the system
converges correctly.
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Figure 7: The performance of BCCS with different leader numbers nl.

Besides, we also analyze the impact of three hyperparameters which optimal values are derived
mathematically in Section 4, including the thresholds for full consensus, partial consensus and
conflicting score, and randomly select 140 cases from MATH and 114 cases from MMLU for
analysis.
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Figure 8: The performance of BCCS with different thresholds for full consensus.

Effect of Threshold for Full Consensus To demonstrate the sensitivity of the threshold for full
consensus, we compare the performance of different values for the thresholds of full consensus
ranging in {0.7, 0.8, 0.9}, as shown in Figure 8. The results show that the mathematically derived
values of the threshold for full consensus as shown in Section 4.1 are optimal consistently.
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Figure 9: The performance of BCCS with different thresholds for partial consensus.

Effect of Threshold for Partial Consensus To demonstrate the sensitivity of the threshold for
partial consensus, we compare the performance of different values for the thresholds of partial
consensus ranging in {0.4, 0.5, 0.6}, as shown in Figure 9. The results show that the mathematically
derived values of the threshold for partial consensus as shown in Section 4.1 are optimal consistently.
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Figure 10: The performance of BCCS with different thresholds for conflicting score.

Effect of Threshold for Conflicting Score ψpq To demonstrate the sensitivity of the threshold
for conflicting score ψpq, we compare the performance of different values for the thresholds of
conflicting score ψpq ranging in {1, 2, 3}, as shown in Figure 10. The results show that the mathemat-
ically derived values of the threshold for conflicting score ψpq as shown in Section 4.2 are optimal
consistently.

D.3 Analysis of Different Model Sizes
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Figure 11: The comparison between BCCS and the strongest baselines on MATH and MMLU
datasets with model sizes of 7B, 14B and 32B.

In this section, we compare the performance of the BCCS with the state-of-the-art baselines based
on different model sizes, including 7B, 14B and 32B on MATH and MMLU, using 100 randomly
sampled cases for each dataset. Specifically, we use Qwen2.5-7B-Instruct, Qwen2.5-14B-Instruct
and Qwen2.5-32B-Instruct as backbone models of BCCS and CMD on MATH, Qwen2.5-7B-Instruct,
Qwen2.5-14B-Instruct and DeepSeek-R1-Distill-Qwen-32B as backbone models of BCCS and
PARSE on MMLU.

For all sizes of models, BCCS outperforms the state-of-the-are baselines consistently, which demon-
strate the generalization capability of BCCS across models of varying sizes. For the smaller backbone
model with 7B parameters, BCCS delivers significant improvements, demonstrating its ability to
maintain strong performance with fewer computational requirements.

D.4 Analysis of Computational Scalability

To better understand the computational scalability, we randomly select 500 cases from MATH
and MMLU for analysis and separately count the average number of tokens per case (denoted by
“#Token”) as an estimate of computational cost for both our proposed BCCS and the SOTA baseline
on each dataset of MATH and MMLU, as shown in Table 6. The results demonstrate that BCCS
achieves better performance with lower computational cost. Besides, although the conflict score
calculation requires additional time, it is a lightweight operation that does not require GPU resources,
thus the computation time is practically negligible.
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Table 6: Anslysis results of computational scalability on the MATH and MMLU datasets.

MATH BCCS CMD

#Token 6554 9224

MMLU BCCS PARSE

#Token 2981 6349

D.5 Analysis of Performance in Adversarial Scenarios

Table 7: The performance in the adversarial scenarios on the MATH and MMLU datasets.

MATH BCCS AdvNoise CMD

Accuracy 80.00 79.29 78.57

MMLU BCCS AdvNoise PARSE

Accuracy 78.07 76.32 70.18

To simulate adversarial and noisy scenarios, we conduct an analysis experiment by misreporting
beliefs. Specifically, we introduce adversarial conditions of misreporting beliefs by perturbing the
belief of one randomly selected agent in each round (denoted as “AdvNoise”), either by increasing
lower beliefs or decreasing higher beliefs. In experiments, we randomly select 140 cases from MATH
and 114 cases from MMLU for analysis. The results are shown in Table 7, which demonstrate that
misreporting beliefs can lead to some performance degradation, yet the overall performance remains
higher than the SOTA baseline on each dataset. This is because the remaining correct beliefs are still
capable of calibrating the inaccurate or misreported answers, demonstrating the robustness of our
proposed BCCS in adversarial scenarios involving noisy agents.

D.6 Analysis of Performance with Heterogeneous Backbones

Table 8: The performance with heterogeneous backbones on the MATH and MMLU datasets.

MATH BCCS CMD

Accuracy 77.86 73.57

MMLU BCCS PARSE

Accuracy 72.81 68.42

To demonstrate the effectiveness of our approach with heterogeneous backbones, we utilize Qwen2.5-
7B-Instruct, Phi-3-mini-4k-Instruct (3.8B), and Llama-3.2-1B-Instruct as backbones. In experiments,
we randomly select 140 cases from MATH and 114 cases from MMLU for analysis. The results are
presented in Table 8, which showcase that our proposed BCCS outperforms the SOTA baseline on
each dataset when applied to heterogeneous backbones.

D.7 Case Study

Effect of Collaborator Assignment (CA) Table 9 shows a case study demonstrating the effec-
tiveness of collaborator assignment (CA) module in the BCCS. In this case, BCCS convergences
to consensus with correct answer, while the strongest baseline PARSE converges to the suboptimal
consensus with incorrect answer. For both BCCS and PARSE in Round 1, Agent 1 and Agent 2
generate a correct and an incorrect answer respectively.
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For BCCS in the Round 2, Agent 1 collaborates with its conflicting collaborator, Agent 2, and updates
its answer to the correct one. Agent 2 receives its own correct opinion, which is self-supporting, and
maintains the correct answer.

For PARSE in Round 2, both Agent 1 and Agent 2 receive all opinions from Round 1. Agent 1 adopts
the stubborn strategy [14] to remain its own incorrect answer and Agent 2 adopts the suggestible
strategy [14] to follow the Agent 1 to update its answer to the incorrect one, thus PARSE converges
to suboptimal consensus with incorrect answer.

Effect of Leader Selection (LS) Table 10 shows a case study demonstrating the effectiveness
of leader selection (LS) module in the BCCS. In this case, BCCS convergences to consensus with
correct answer, while the baseline MAS converges to the suboptimal consensus with incorrect answer.
For both BCCS and MAD in Round 1, Agent 1 and Agent 2 generate a correct and an incorrect
answer respectively.

For BCCS in the Round 2, Agent 1 follow the leader Agent 2 to update its answer to the correct one.
Agent 2 is selected as the leader, and it remains its own correct answer.

For MAD in the Round 2, both Agent 1 and Agent 2 receive all opinions from round 1. Agent 1 adopts
the stubborn strategy [14] to remain its own incorrect answer and Agent 2 adopts the suggestible
strategy [14] to follow the Agent 1 to update its answer to the incorrect one, thus MAD converges to
suboptimal consensus with incorrect answer.

Effect of Belief-Calibrated Consensus Judgment (BCCJ) Table 11 shows a case study demon-
strating the effectiveness of belief-calibrated consensus judgment (BCCJ) module in the BCCS. In
this case, “-BCCJ” indicates replacing the BCCJ with Byzantine consensus judgment method. BCCS
convergences to consensus with correct answer, while the baseline “-BCCJ” outputs the incorrect
answer. For both BCCS and “-BCCJ” in Round 1, the major results (the most frequent voting results
in Table 11) are incorrect. “-BCCJ” judges that p1s = 0.86 > 2

3 , thus terminating the collaboration
and outputs the incorrect answer.

BCCS in Round 1 judges that p1s = 0.57 < 2
3 and p1b = 0.13 < 0.5, thus it reaches the state of

no consensus. In the Round 2, BCCS selects the leaders for collaboration and updates the major
result to the correct one. Both p2s and p2b improve from Round 1, reaching p2s = 0.86 > 2

3 and
p2b = 0.97 > 0.8 from Round 1, which indicates the system reaches full consensus, yielding correct
answer.

Error Analysis We demonstrate the error cases of BCCS in Table 12 and Table 13. In Table 12,
Leader 1 and Follower generate a correct answer and Leader 2 generates an incorrect answer in
Round 1. In Round 2, Follower receives the opinions from Leader 1 and Leader 2 in Round 1, the
disagreement between the two leaders leads the follower to modify its own original opinion to align
with the two leaders’ opinions, thus ultimately shifting from the correct answer in Round 1 to the
incorrect answer in Round 2. The case in Table 13 demonstrates that BCCS is able to correctly
identify the incorrect result produced by the agent as unreliable and appropriately selects a conflicting
agent as the collaborator. However, due to limitations in model performance, all agents fail to generate
the correct answer, thus the agent can not update a correct answer in the next round.
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Table 9: Case study of collaborator assignment (CA), (✓) indicates correct answer and (✗) indicates
incorrect answer.

Question: The encomienda system was used during the colonization of the Americas to regulate
the indigenous people, was not ended by which of the following?: A) The protests of the Catholic
missionaries against abuses of forced labor, B) The lack of new land to assign to well-connected
Spaniards and conquistadores, C) The Spanish royal crown’s desire to control the estates more
directly, D) An increase in the number of mestizos, who by law were forbidden from working on the
encomiendas.

Method Round Opinions Results

BCCS
1

Agent 1: No evidence of an increase in the number of mestizos or
any specific laws forbidding them from working on encomiendas. The
answer is D.

D (✗)

Agent 2: There was still land available for assignment, as the en-
comienda system required land grants to manage indigenous popula-
tions. The answer is B.

B (✓)

2

Agent 1: (Receive conflicting opinion from Agent 2 in round 1) There
was still land available for assignment, as the encomienda system
required land grants to manage indigenous populations. The answer is
B.

B (✓)

Agent 2: (Receive own supporting opinion from Agent 2 in round
1) There was still land available for assignment, as the encomienda
system required land grants to manage indigenous populations. The
answer is B.

B (✓)

PARSE
1

Agent 1: It is more about the demographic changes and social dynamics
rather than a direct cause for the termination of the encomienda system.
The answer is D.

D (✗)

Agent 2: There was still land available to assign, at least in the short
term. Therefore, the lack of new land would not have been a reason to
end the system. The answer is B.

B (✓)

2

Agent 1: (Receive opinions from Agent 1 and Agent 2 in round 1) The
most accurate answer is that the increase in the number of mestizos,
who by law were forbidden from working on the encomiendas. The
answer is D.

D (✗)

Agent 2: (Receive opinions from Agent 1 and Agent 2 in round 1)
The least likely reason is the increase in the number of mestizos, who
by law were forbidden from working on the encomiendas. The answer
is D.

D (✗)
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Table 10: Case study of leader selection (LS), (✓) indicates correct answer and (✗) indicates incorrect
answer.

Question: A scientist, using electrodes, is stimulating a group of neurons in the hypothalamus and
recording their membrane potential changes. She observes a sharp rise in membrane potential when
she first stimulates them, the the difference of 100mV. When she tries another stimulation immediately
after the first, there is no response. However, when she increase the amount of voltage she supplies
to the second shock, she observes a similar response to the first. What time period of stimulation
would the second shock be characterized in regards to membrane potential?: A) Depolarization, B)
Repolarization, C) Hyperpolarization, D) Resting potential.

Method Round Opinions Results

BCCS
1

Agent 1: Given that the neuron responded to a stronger stimulus but
not to a normal one, it suggests that the membrane potential was still
moving towards the resting state but had not fully reached it. The
answer is B.

B (✗)

Agent 2: Given that the neuron showed a response only with increased
voltage, indicating it was not at the resting potential, but rather in a
state where it required more stimulus to reach the threshold for an
action potential, the most appropriate term is hyperpolarization. The
answer is C.

C (✓)

2

Agent 1: (Receive the opinion from the leader Agent 2 in the round 1)
Given the context and the need for the neuron to require more stimulus
to respond, the most accurate characterization of the second shock is
hyperpolarization. The answer is C.

C (✓)

Agent 2: (Agent 2 is selected as the leader) Given the observations
and the need for increased voltage to achieve a response, the correct
characterization of the membrane potential during the second shock is
hyperpolarization. The answer is C.

C (✓)

MAD
1

Agent 1: The most likely explanation is that the neurons underwent
repolarization and then hyperpolarization after the initial depolarization.
The answer is B.

B (✗)

Agent 2: The second shock would be characterized by the neuron being
in a state of hyperpolarization, which is a state where the membrane
potential is more negative than the resting potential. The answer is C.

C (✓)

2

Agent 1: (Receive opinions from Agent 1 and Agent 2 in round 1) It
correctly identifies that the second shock occurs during the refractory
period, specifically during the phase of repolarization but still within
the refractory period where the cell is less responsive. The answer is B.

B (✗)

Agent 2: (Receive opinions from Agent 1 and Agent 2 in round
1) Increasing the voltage for the second stimulation allows a similar
response, suggesting the neuron has repolarized and is closer to its
resting potential but still in a refractory state. The answer is B.

B (✗)
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Table 11: Case study of belief-calibrated consensus judgment (BCCJ), (✓) indicates correct answer
and (✗) indicates incorrect answer, and ↑ indicates the corresponding value increases compared to the
previous round.

Question: Question: What is the magnetic moment of 205Tl? A) γ(205Tl) = 1.569× 108 T−1s−1,
I = 1

2 , B) 0.717× 10−26 J T−1, C) 0.827× 10−26 J T−1, D) 1.433× 10−26 J T−1.

Method Round Opinions Major Results

BCCS
1

Agent 1: . . . Our calculated value is 0.7845×108 J T−1, which
is closest to option B when considering the magnitude. The
answer is B.

B (✗)
p1s = 0.57
p1b = 0.13Agent 2: . . . The calculated magnetic moment is 0.827 ×

10−26 J T−1, which matches option C. The answer is C.

2

Agent 1: (Receive the opinion from the leader Agent 2 in
the round 1) . . . The calculated magnetic moment (0.827 ×
10−26 J T−1) matches Option C. The answer is C.

C (✓)
p2s = 0.86 ↑
p2b = 0.97 ↑Agent 2: (Agent 2 is selected as the leader) . . . Option C:

(0.827× 10−26 J T−1) matches our calculated value. The an-
swer is C.

-BCCJ 1

Agent 1: . . . The correct value for the magnetic moment should
be around (0.7845× 108 J T−1), which is closest to option B.
The answer is B.

B (✗)
p1s = 0.86

Agent 2: . . . The closest option to (5.197 × 10−26 J T−1) is
(0.717× 10−26 J T−1). The answer is B.

Table 12: Error case analysis of belief-calibrated consensus seeking (BCCS).

Question: Which of the following is a true statement about optical isomerism of complexes containing
achiral ligands?: A) Square planar complexes can display optical isomerism only if all four ligands
are identical, B) Tetrahedral complexes never display optical isomerism, C) Linear complexes can
display optical isomerism when both ligands are different, D) Octahedral complexes of monodentate
ligands can display optical isomerism only when they have at least three different ligands.

Round Opinions Results

1

Leader 1: Octahedral complexes can have optical isomerism through “enan-
tiomers” when they contain chiral centers. For an octahedral complex with
monodentate ligands, having at least three different ligands can create chiral
centers leading to optical isomerism. However, it is not a strict requirement

that there must be at least three different ligands for optical isomerism to oc-
cur. The answer is D.

D (✓)

Leader 2: Tetrahedral complexes can display optical isomerism if they contain
chiral centers . Answer is B.

B (✗)

Follower: (D) correctly states that three different ligands can lead to optical
isomerism. The answer is D. D (✓)

2

Follower: (Receive opinions from Leader 1 and Leader 2 in round
1) Let’s re-examine each option . . . The (B) provided solution correctly
notes that tetrahedral complexes can display optical isomerism if they con-
tain chiral centers . . . However, geometric isomerism (cis-trans isomerism)
can occur with just two different ligands . Therefore, (D) is not entirely accu-

rate. The answer is B.

B (✗)
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Table 13: Error case caused by model performance limitations.

Question: A cannon is mounted on a truck that moves forward at a speed of 5 m/s. The operator
wants to launch a ball from a cannon so the ball goes as far as possible before hitting the level surface.
The muzzle velocity of the cannon is 50 m/s. At what angle from the horizontal should the operator
point the cannon? A) 5◦, B) 41◦, C) 45◦, D) 49◦.

Opinions Results

[Initial Opinion] Agent: ...the angle that maximizes the range is 45◦. C (✗)
[Initial Opinion] Conflicting Agent: The optimal angle from the horizontal for the
cannon to achieve the maximum range, considering the truck’s speed, is approximately
41 degrees.

B (✗)

[Update Opinion] Agent: The provided solution acknowledges that the truck’s speed
adds more to the horizontal component at lower angles, leading to an optimal angle of
41 degrees.

B (✗)

E Notations

Table 14: Summary of the main notations.

Notation Description

ncase The number of cases.
n The total number of agents.
i, j The subscripts for agent, opinion and belief.
A A indicates the agent set, which contains n agents.

aj ∈ A aj indicates j-th agent in A.
xkj , bkj The opinion and belief of agent aj in k-th step.
m The total number of opinion groups.
p, q The subscripts for opinion group.
G The opinion group set, which contains m opinions groups.

Gp ∈ G The k-th opinion group in G.
Gu The most uncertain opinion group in G = {Gp}mp=1.
np The number of agents in Gp.

aj ∈ Gp Agent aj belongs to the opinion group Gp.
uki , vki The outcome increment of opinion and belief for i-th agent in k-th step.
α, β Step sizes for analyzing opinion and belief updating.

As, Ac
As indicates the dominant consensus group, in which contain the largest number
of same opinions in A. Ac indicates the conflict group, in which the opinions are
different from As.

As
i , Ac

i
As

i is a set of agents which contains the supportive opinions for agent aki . Ac
i is a

set of agents which contains the conflicting opinions for agent aki .

ψpq
The conflict score between opinion group Gp and Gq, which considers two
aspects of macro- and micro-conflict scores.

ψG
pq , ψL

pq ψG
pq indicates the macro-conflict score and ψL

pq indicates the micro-conflict score.

pks , pkb
pks indicates the proportion of the dominant consensus group in A. pkb indicates
the proportion of the beliefs of dominant consensus group in all beliefs of A.

u The subscripts of case index.

nsu, nru
nsu indicates the number of consensus agents in u-th case. nru indicates the
iteration rounds in u-th case.

xu, x∗u xu and x∗u indicate the consensus results and the ground-truth of u-th case.
Θp, Θq Local consistency scores of opinion groups Gp and Gq .
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F Prompts

Table 15: The prompts of BCCS

MATH Prompts

System Please reason step by step, and put your final answer within \boxed{}.

CA

These are the solutions to the problem from other agents: One supporting agent
solution:{}, One conflicting agent solution:{} Selecting and using the trustable
solutions from current collaboration as additional information, can you provide
your answer to the problem? {Question}

LS
These are the solutions to the problem from other agents: One leader solution:{}
Selecting and using the leading solutions from current collaboration as additional
information, can you provide your answer to the problem? {Question}

MMLU Prompts

System Please reason step by step, and answer the question.

CA

Here is the question: {Question} These are the solutions to the problem from
other agents: One supporting agent solution {}, One conflicting agent solution {}
Judging which solutions are trustable and using the solutions from other agents
as additional advice, can you give an updated answer? Examine your solution
and that other agents step by step. Put your answer in the form (answer) at the
end of your response. (answer) represents choice (A), (B), (C), or (D).

LS

Here is the question: {Question} These are the solutions to the problem from
other agents: One leader solution {} Judging which solutions can lead the trend
of thought and using the solutions from other agents as additional advice, can
you give an updated answer? Examine your solution and that other agents step by
step. Put your answer in the form (answer) at the end of your response. (answer)
represents choice (A), (B), (C), or (D).
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