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ABSTRACT

We propose a simple and natural generalization of standard and empirically suc-
cessful decision tree learning algorithms such as ID3, C4.5, and CART. These
classic algorithms, which have been central to machine learning for decades, are
greedy in nature: they grow a decision tree by iteratively splitting on the “best”
attribute. We augment these algorithms with an additional greediness parameter k
and our resulting algorithm, Top-k, considers the k best attributes as possible splits
instead of just the single best attribute.
We demonstrate, theoretically and empirically, the power of this simple gener-
alization. We first prove a sharp greediness hierarchy theorem showing that for
every k ∈ N, Top-(k + 1) can be much more powerful than Top-k: there are
data distributions for which the former achieves accuracy 1− ε, whereas the latter
only achieves accuracy 1

2 + ε. We then show, through extensive experiments, that
Top-k compares favorably with the two main approaches to decision tree learning:
classic greedy algorithms and more recent “optimal decision tree” algorithms. On
one hand, Top-k consistently enjoys significant accuracy gains over the greedy
algorithms across a wide range of benchmarks, at the cost of only a mild training
slowdown. On the other hand, Top-k is markedly more scalable than optimal deci-
sion tree algorithms, and is able to handle dataset and feature set sizes that remain
beyond the reach of these algorithms.
Taken together, our results highlight the potential practical impact of the power of
choices in decision tree learning.

1 INTRODUCTION

Decision trees are a fundamental workhorse in machine learning. Their logical and hierarchical
structure makes them easy to understand and their predictions easy to explain. Decision trees are
therefore the most canonical example of an interpretable model: in his influential survey (Breiman,
2001b), Breiman writes “On interpretability, trees rate an A+”; much more recently, the sur-
vey Rudin et al. (2022) lists decision tree optimization as the very first of 10 grand challenges for
the field of interpretable machine learning. Decision trees are also at the heart of modern ensemble
methods such as random forests (Breiman, 2001a) and XGBoost (Chen & Guestrin, 2016), which
achieve state-of-the-art accuracy for a wide range of tasks.

Greedy algorithms such as ID3 (Quinlan, 1986), C4.5 (Quinlan, 1993), and CART (Breiman et al.,
1984) have long been the standard approach to decision tree learning. These algorithms build a
decision tree from labeled data in a top-down manner, growing the tree by iteratively splitting on
the “best” attribute as measured with respect to a certain potential function (e.g. information gain).
Owing to their simplicity, these algorithms are highly efficient and scale gracefully to handle mas-
sive datasets and feature set sizes, and they continue to be widely employed in practice and enjoy
significant empirical success. For the same reasons, these algorithms are also part of the standard
curriculum in introductory machine learning and data science courses.

The trees produced by these greedy algorithms are often reasonably accurate, but can nevertheless
be suboptimal. There has therefore been a separate line of work, which we overview in Section 2, on
algorithms that optimize for accuracy, and in fact, seek to produce optimally accurate decision trees.
These algorithms employ a variety of optimization techniques (including dynamic programming,
integer programming, and SAT solvers) and are completely different from the simple greedy algo-
rithms discussed above. Since the problem of finding an optimal decision tree has long been known
to be NP-hard (Hyafil & Rivest, 1976), any algorithm must suffer from the inherent combinatorial
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explosion when the instance size becomes sufficiently large (unless P=NP). Therefore, while this
line of work has made great strides in improving the scalability of algorithms for optimal decision
trees, dataset and feature set sizes in the high hundreds understandably remain out of reach.

This state of affairs raises a natural question:

Can we design decision tree learning algorithms that improve significantly on the
accuracy of classic greedy algorithms and yet inherit their simplicity and scalabil-
ity?

In this work, we propose a new approach and make the case that it provides a strong affirmative
answer to the question above. We further show that it opens up several new avenues for exploration
in both the theory and practice of decision tree learning.

1.1 OUR CONTRIBUTIONS

1.1.1 TOP-k: A SIMPLE AND EFFECTIVE GENERALIZATION OF CLASSIC GREEDY DECISION
TREE ALGORITHMS

We introduce an easily interpretable greediness parameter to the class of all greedy decision tree
algorithms, a broad class that encompasses ID3, C4.5, and CART. This parameter, k, represents
the number of features that the algorithm considers as candidate splits at each step. Setting k = 1
recovers the fully greedy classical approaches, and increasing k allows the practitioner to produce
more accurate trees at the cost of only a mild training slowdown. The focus of our work is on the
regime where k is a small constant—preserving the efficiency and scalability of greedy algorithms is
a primary objective of our work—although we mention here that by setting k to be the dimension d,
our algorithm produces an optimal tree. Our overall framework can thus be viewed as interpolating
between greedy algorithms at one extreme and “optimal decision tree” algorithms at the other, pre-
cisely the two main and previously disparate approaches to decision tree learning discussed above.

We will now describe our framework. A feature scoring function H takes as input a dataset over d
binary features and a specific feature i ∈ [d], and returns a number quantifying the “desirability” of
this feature as the root of the tree. The greedy algorithm corresponding to H selects as the root of the
tree it builds the feature that has the largest score under H; our generalization will instead consider
the k features with the k highest scores.
Definition 1 (Feature scoring function). A feature scoring function H takes as input a labeled
dataset S over a d-dimensional feature space, a feature i ∈ [d], and returns a score νi ∈ [0, 1].

See Section 3.1 for a discussion of the feature scoring functions that correspond to standard greedy
algorithms ID3, C4.5, and CART. Pseudocode for Top-k is provided in Figure 1. We note that from
the perspective of interpretability, the trained model looks the same regardless of what k is. During
training, the algorithm considers more splits, but only one split is eventually used at each node.

1.1.2 THEORETICAL RESULTS ON THE POWER OF TOP-k

The search space of Top-(k + 1) is larger than that of Top-k, and therefore its training accuracy is
certainly at least as high. The first question we consider is: Is the test accuracy of Top-(k + 1) only
marginally better than that of Top-k, or are there examples of data distributions for which even a sin-
gle additional choice provably leads to huge gains in test accuracy? Our first main theoretical result
is a sharp greediness hierarchy theorem, showing that this parameter can have dramatic impacts on
accuracy, thereby illustrating its power:
Theorem 1 (Greediness hierarchy theorem). For every ε > 0, k, h ∈ N, there is a data distribution
on which Top-(k+1) achieves at least 1− ε accuracy with a depth budget of h, but Top-k achieves
at most 1

2 + ε accuracy with a depth budget of h.

Theorem 1 is a special case of a more general result that we show: for all k < K, there are data
distributions on which Top-K achieves maximal accuracy gains over Top-k, even if Top-k is allowed
a larger depth budget:
Theorem 2 (Generalization of Theorem 1). For every ε > 0, k,K, h ∈ N where k < K, there is
a data distribution on which Top-K achieves at least 1 − ε accuracy with a depth budget of h, but
Top-k achieves at most 1

2 + ε accuracy even with a depth budget of h+ (K − k − 1).
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Top-k(H, S, h):
Given: A feature scoring function H, a labeled sample set S over d dimensions, and

depth budget h.
Output: Decision tree of depth h that approximately fits S.

1. If h = 0, or if every point in S has the same label, return the constant function with
the best accuracy w.r.t. S.

2. Otherwise, let I ⊆ [d] be the set of k coordinates maximizing H(S, i).
3. For each i ∈ I, let Ti be the tree with

Root = xi

Left subtree = Top-k(H, Sxi=0, h− 1)

Right subtree = Top-k(H, Sxi=1, h− 1),

where Sxi=b is the subset of points in S where xi = b.
4. Return the Ti with maximal accuracy with respect to S among all choices of i ∈ I.

Figure 1: The Top-k algorithm. It can be instantiated with any feature scoring function H, and when
k = 1, recovers standard greedy algorithms such as ID3, C4.5, and CART.

The proof of Theorem 2 is simple and cleanly highlights the theoretical power of choices. One
downside, though, is that it is based on data distributions that are admittedly somewhat unnatural:
the labeling function has embedded within it a function that is the XOR of certain features, and real-
world datasets are unlikely to exhibit such adversarial structure. To address this, we further prove
that the power of choices is evident even for monotone data distributions.

Theorem 3 (Greediness hierarchy theorem for monotone data distributions). For every ε > 0, depth
budget h, K between Ω̃(h) and Õ(h2) and k ≤ K − h, there is a monotone data distribution on
which Top-K achieves at least 1− ε accuracy with a depth budget of h, but Top-k achieves at most
1
2 + ε accuracy with a depth budget of h.

Many real-world data distributions are monotone in nature, and relatedly, they are a common as-
sumption and the subject of intensive study in learning theory. Most relevant to this paper, recent
theoretical work has identified monotone data distributions as a broad and natural class for which
classical greedy decision tree algorithms (i.e. Top-1) provably succeed (Blanc et al., 2020b;a). The-
orem 3 shows that even within this class, increasing the greediness parameter can lead to dramatic
gains in accuracy. Compared to Theorem 2, the proof of Theorem 3 is more technical and involves
the use of concepts from the Fourier analysis of boolean functions (O’Donnell, 2014).

We note that a weaker version of Theorem 3 is implicit in prior work: Combining (Blanc et al.,
2020b, Theorem 7b) and (Blanc et al., 2021b, Theorem 2) yields the special case of Theorem 3
where K = O(h2) and k = 1. Theorem 3 is a significant strengthening as it allows for k > 1 and
K − k much smaller.

1.1.3 EXPERIMENTAL RESULTS ON THE POWER OF TOP-k

We provide extensive empirical validation of the effectiveness of Top-k when trained on on real-
world datasets, and provide an in-depth comparison with both standard greedy algorithms as well as
optimal decision tree algorithms.

We first compare the performance of Top-k for k = 1, 2, 3, 4 (Figure 2), and find that increasing
k does indeed provide a significant increase in test accuracy—in a number of cases, Top-4 already
achieves accuracy that is comparable to the test accuracy attained by MurTree (Demirović et al.,
2022), a state-of-the-art optimal decision tree algorithm. We further show, in Figures 3 and 4, that
Top-k inherits the efficiency of popular greedy algorithms, and furthermore scales much better than
the optimal decision tree algorithms MurTree and GOSDT (Lin et al., 2020).
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Taken as a whole, our experiments demonstrate that Top-k provides a useful middle ground be-
tween greedy and optimal decision tree algorithms: It is significantly more accurate than greedy
algorithms, but still fast enough to be practical on reasonably large data sets. See Section 5 for an
in-depth discussion of our experiments. Finally, we emphasis the benefits afforded by the simplic-
ity of Top-k. Standard greedy algorithms (i.e. Top-1) are widely employed and easily accessible.
Introducing the parameter k requires modifying only a tiny amount of source code and gives the
practitioner a new lever to control. Our experiments and theoretical results demonstrate the utility
of this simple lever.

2 RELATED WORK

Provable guarantees and limitations of greedy decision tree algorithms. A long and fruitful
line of work seeks to develop a rigorous understanding of the performances of greedy decision
tree learning algorithms such as ID3, C4.5, and CART, and to place their empirical success on
firm theoretical footing (Kearns & Mansour, 1996; Kearns, 1996; Dietterich et al., 1996; Brutzkus
et al., 2019; 2020; Blanc et al., 2020b;a; 2021a). These works identify feature and distributional
assumptions under which these algorithms provably succeed; they also highlight the limitations
of these algorithms by pointing out settings on which they provably fail. Our work complements
this line of work by showing, theoretically and empirically, how these algorithms can be further
improved with a simple new parameter while preserving their efficiency and scalability.

The work of Blanc et al. (2021b). Recent work of Blanc et al. also highlights the power of choices
in decision tree learning. However, they operate within a stylized theoretical setting. First, they
consider a specific scoring function that is based on a notion of influence of features, and crucially,
computing these scores requires query access to the target function (rather than from random labeled
samples as is the case in practice). Furthermore, their results only hold with respect to the uniform
distribution. These are strong assumptions that limit the practical relevance of their results. In
contrast, a primary focus of this work is to be closely aligned with practice, and in particular, our
framework captures and generalizes the standard greedy algorithms used in practice.

Optimal decision trees. Motivated in part by the surge of interest in interpretable machine learn-
ing and the highly interpretable nature of decision trees, there have been numerous works on learning
optimal decision trees (Bertsimas & Dunn, 2017; Verwer & Zhang, 2017; 2019; Aghaei et al., 2019;
Zhu et al., 2020; Verhaeghe et al., 2020; Narodytska et al., 2018; Avellaneda, 2020; Janota & Mor-
gado, 2020; Nijssen & Fromont, 2007; 2010; Hu et al., 2019; Lin et al., 2020; Demirović et al.,
2022). As mentioned in the introduction, this is an NP-complete problem (Hyafil & Rivest, 1976)—
indeed, it is NP-hard to find even an approximately optimal decision tree (Sieling, 2008; Adler &
Heeringa, 2008; Alekhnovich et al., 2009). Due to the fundamental intractability of this problem,
even highly optimized versions of algorithms are unlikely to match the scalability of standard greedy
algorithms. That said, these works implement a variety of optimizations that allow them to build
optimal decision trees for many real world data sets when the data set and feature sizes are in the
hundreds and the desired depth is small (≈ 5 or less).

Finally, another related line of work is that of soft decision trees (Irsoy et al., 2012; Tanno et al.,
2019). These works use gradient-based methods to learn soft splits at each internal node. We
believe that one key advantage of our work over these soft trees is in interpretability. With Top-k,
since the splits are hard (and not soft), to understand the classification of a test point, it is sufficient
to look at only one root-to-leaf path, as opposed to a weighted combination across many.

3 THE TOP-k ALGORITHM

3.1 BACKGROUND AND CONTEXT: IMPURITY-BASED ALGORITHMS

Greedy decision tree learning algorithms like ID3, C4.5 and CART are all instantiations of Top-k
in Figure 1 with k = 1 and an appropriate choice of the feature-scoring function H. Those three
algorithms all used impurity-based heuristics as their feature-scoring function:
Definition 2 (Impurity-based heuristic). An impurity function G : [0, 1] → [0, 1] is a function that
is concave, symmetric about 0.5, and satisfies G(0) = G(1) = 0 and G(0.5) = 1. A feature-scoring
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function H is an impurity-based heuristic, if there is some impurity function G for which:

H(S, i) = G
(

E
x,y∼S

[y]

)
− Pr

x,y∼S
[xi = 0] · G

(
E

x,y∼S
[y | xi = 0]

)
− Pr

x,y∼S
[xi = 1] · G

(
E

x,y∼S
[y | xi = 1]

)
where in each of the above, (x,y) are a uniformly random point from within S.

Common examples for the impurity function include the binary entropy function, G(p) =
−p log2(p) − (1 − p) log2(1 − p) (used by ID3 and C4.5), the Gini index G(p) = 4p(1 − p) (used
by CART), and the G(p) = 2

√
p(1− p) (proposed and analyzed in Kearns & Mansour (1999)). We

refer to the reader to Kearns & Mansour (1999) for a theoretical comparison, and Dietterich et al.
(1996) for an experimental comparison, of these impurity-based heuristics.

Our experiments focus on Gini index being the impurity measure, but our theoretical results apply
to Top-k instantiated with any impurity-based heuristic.

3.2 BASIC THEORETICAL PROPERTIES OF THE TOP-k ALGORITHM

Running time. The key behavioral aspect in which Top-k differs from greedy algorithms is that
it is less greedy when trying to determine which coordinate to query. This naturally increases the
running time of Top-k, but that increase is fairly mild. Concretely, say that Top-k is run on a dataset
S with n points. We can then easily derive the following bound on the running time of Top-k, where
H(S, i) is assumed to take O(n) time to evaluate (as it does for all impurity-based heuristics).
Claim 3.1. The running time of Top-k(H, S, h) is O((2k)h · nd).

Proof. Let Th be the number of recursive calls made by Top-k(H, S, h). Then, we have the simple
recurrence relation Th = 2kTh−1, where T0 = 1. Solving this recurrence gives Th = (2k)h. Each
recursive call takes O(nd) time, where the bottleneck is scoring each of the d features.

We note that any decision tree algorithm, including blazingly fast greedy algorithms such as ID3,
C4.5, and CART, has runtime that scales exponentially with the depth, h. The size of a depth-h
can be 2h, and this is of course a lower bound on the runtime as the algorithm needs to output
such a tree. In particular, contrasting the running time of Top-k with greedy algorithms (for which
k = 1), Top-k incurs an additional kh cost in running time. As mentioned earlier, in practice, we
are primarily concerned with fitting small decision trees (e.g., h = 5) to the data, as this allows for
explainable predictions. In this regard, the additional kh cost is inexpensive, as confirmed by our
experiments.

The search space of Top-k: We state and prove a simple claim that Top-k returns the best tree
within its search space.
Definition 3 (Search space of Top-k). Given a sample S and integers h, k, we use Tk,h,S to refer
to all trees in the search space of Top-k. Specifically, if h = 0, this contains all trees with a height
of zero (the constant 0 and constant 1 trees). For h ≥ 1, and I ⊆ [d] being the k coordinates with
maximal score, this contains all trees with a root of xi, left subtree in Tk,h−1,Sxi=0

and right subtree
in Tk,h−1,Sxi=1

for some i ∈ I.

Lemma 3.2 (Top-k chooses the most accurate tree in its search space). For any sample S and
integers h, k, let T be the output of Top-k with a depth budget of h on S. Then,

Pr
x,y∼S

[T (x) = y] = max
T ′∈Tk,h,S

(
Pr

x,y∼S
[T ′(x) = y]

)
.

We refer the reader to Appendix A for the proof of this lemma.

Parallelizability. We observe Top-k is largely amenable to parallelization. Observe that each of
the 2k recursive calls in Step 3 of the pseudocode can be assigned to a separate processor. This means
that given (2k)h processors, a carefully engineered implementation of Top-k can enjoy a parallel
running time of O(hnd), which is also the parallel running time of standard greedy algorithms.
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4 THEORETICAL BOUNDS ON THE POWER OF CHOICES

We refer the reader to the Appendix B for most of the setup and notation. For now, we briefly
mention a small amount of notation relevant to this section: We use bold font (e.g. x) to denote
random variables. We also use bold font to indicate stochastic functions which output a random
variable. For example,

f(x) :=

{
x with probability 1

2

−x with probability 1
2

is the stochastic function that returns either the identity or its negation, each with equal probability.
To define the data distributions of Theorems 2 and 3, we will give a distribution over the domain, X
and the stochastic function that provides the label given an element of the domain.

4.1 PROOF OF THEOREM 2

For each depth budget h and search branching factor K, we will define a hard distribution Dh,K

that is learnable to high accuracy by Top-K with a depth of h, but not by Top-k with a depth of h′

for any h′ < h + K − k. This distribution will be over {0, 1}d × {0, 1}, where d = h + K − 1.
The marginal distribution over {0, 1}d is uniform, and the distribution over {0, 1} conditioned on a
setting of the d features is given by the stochastic function fh,K(x). All of the results of this section
(Theorems 2 and 3) hold when the feature scoring function is any impurity-based heuristic.

Description of fh,K(x). Partition x into two sets of variables, x(1) of size h and x(2) of size K−1.
Let fh,K(x) be the randomized function defined as follows:

fh,K(x) =

{
Parh(x

(1)) with probability 1− ε

x
(2)
i chosen uniformly at random from x(2) with probability ε.

The definition of Parh(x(1)) can be found in Appendix B.

The proof Theorem 2 is divided into two components. First, we prove that when the data distribution
is Dh,K , Top-K succeeds in building a high accuracy tree with a depth budget of h. Then, we show
that Top-k fails and builds a tree with low accuracy, even given a depth budget of h+ (K − k − 1).
Lemma 4.1 (Top-K succeeds). The accuracy of Top-K with a depth of h on Dh,K is at least 1− ε.
Lemma 4.2 (Top-k fails). The accuracy of Top-k with a depth of h′ on Dh,K is at most (1/2 + ε)
for any h′ < h+K − k.

Proofs of both these lemmas are deferred to Appendix B.

4.2 PROOF OF THEOREM 3

In this section, we overview the proof Theorem 3, restated for convenience. Some of the proofs are
deferred to Appendix B.2
Theorem 4 (Greediness hierarchy theorem for monotone distributions). For every ε > 0, depth
budget h, K between Ω(h log h) and O(h2/(log h)2) and k ≤ K − h, there is a monotone data
distribution on which Top-K achieves at least 1 − ε accuracy with a depth budget of h, but Top-k
achieves at most 0.5 + ε accuracy with a depth budget of h.

Before proving Theorem 4, we’ll formalize monotonicity. For simplicity, we’ll assume the domain
is the Boolean cube, {0, 1}d, and use the partial ordering x ⪯ x′ iff xi ≤ x′

i for each i ∈ [d];
however, the below definition easily extends to the domain being any partially ordered set.
Definition 4 (Monotone). A stochastic function, f : {0, 1}d → {0, 1}, is monotone if, for any
x, x′ ∈ {0, 1}d where x ⪯ x′, E[f(x)] ≤ E[f(x′)]. A data distribution, D over {0, 1}d × {0, 1}
is said to be monotone if the corresponding stochastic function, f(x) returning (y | x = x) where
(x,y) ∼ D, is monotone.

To construct the data distribution of Theorem 4, we will combine monotone functions, Majority and
Tribes, commonly used in the analysis of Boolean functions due to their extremal properties. See
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Appendix B.2 for their definitions and useful properties. Let d = h + K − 1, and the distribution
over the domain be uniform over {0, 1}d. Given some x ∈ {0, 1}d, we’ll use x(1) to refer to the
first h coordinates of x and x(2) the other K− 1 coordinates. This data distribution is labeled by the
stochastic function f given below.

f(x) :=

{
Tribesh(x(1)) with probability 1− ε

MajK−1(x
(2)) with probability ε.

Clearly f is monotone as it is the mixture of two monotone functions. Throughout this subsection,
we’ll use Dh,K to refer to the data distribution over {0, 1}d × {0, 1} where to sample (x,y) ∼ D,
we first draw x ∼ {0, 1}d uniformly and then y from f(x). The proof of Theorem 4 is a direct
consequence of the following two Lemmas, both of which we prove in Appendix B.2

Lemma 4.3 (Top-K succeeds). On the data distribution Dh,K , Top-K with a depth budget of h
achieves at least 1− ε accuracy.

Lemma 4.4 (Top-k fails). On the data distribution Dh,K , Top-k with a depth budget of h achieves
at most 1

2 + ε accuracy.

5 EXPERIMENTS

Setup for experiments. At all places, unless otherwise specified, the Top-1 tree that we compare
to is that given by scikit-learn (Pedregosa et al., 2011), a standard library for machine learning
algorithms. We run experiments on a variety of datasets from the UCI Machine Learning Reposi-
tory (Dua & Graff, 2017) (numerical as well as categorical features) having a size in the thousands
and having ≈ 50 − 300 features (after binarization). There were ≈ 100 data sets meeting these
criteria, and we took a random subset of 20 such datasets. We binarize all the datasets - for cate-
gorical datasets, we convert every categorical feature that can take on (say) ℓ values into ℓ binary
features. For numerical datasets, we sort and compute thresholds for each numerical attribute for an
appropriate number of thresholds, so that the total number of binary features is ≈ 100. A detailed
description of the datasets is given in Appendix C.

We build decision trees corresponding to both gini and entropy as the impurity measure H, and
report numbers for whichever of the two performed better on the test set (the trends are the same
even if we fix the impurity measure). A simple implementation of the Top-k algorithm and other
technical details for the experiments will be made publicly available.

5.1 KEY EXPERIMENTAL FINDINGS

Small increments of k yield significant accuracy gains. Since the search space of Top-k is a
superset of that of Top-1 for any k > 1, the training accuracy of Top-k is guaranteed to be larger.
The primary objective in this experiment is to show that Top-k can outperform Top-1 in terms of
test accuracy as well. Figure 2 shows the results for Top-1 versus Top-k for k = 2, 3, 4: each plot
is a different dataset, where on the x-axis, we plot the depth of the learned decision tree, and on
the y-axis, we plot the test accuracy. We also plot the test accuracy of an optimal decision tree
(MurTree) in each plot as an additional point of reference.1 We can clearly observe that the test
accuracy increases as k increases—in some cases, the gain is > 5%—and for several datasets, the
accuracy of Top-4 is close to that of MurTree.

Top-k inherits the efficiency and scalability of greedy algorithms. Since Top-k invests more
computation towards fitting a better tree on the training set, its training time is naturally longer than
Top-1. However, our experiments show that the slowdown is fairly mild, especially compared to the
optimal decision tree algorithm MurTree. As stated in Claim 3.1, the running time of Top-k run to
a depth budget of h on a dataset of size n having d binary attributes is O((2k)h · nd). Thus, if we
were to plot the running time of Top-k in log-scale as a function of the depth h, we would expect
to see a linear behaviour with slope log(2k). Concretely, Top-1 should differ from Top-k only in its

1This number should be agnostic to what algorithm is computing the optimal tree, and hence we only
compute it for MurTree, since it scales up much better than GOSDT (furthermore, the GOSDT tree is not
exactly optimal unless the regularization coefficient is set to 0).
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Figure 2: Test accuracy comparison between Top-1, Top-k and MurTree. We can see that Top-
k + 1 generally obtains higher accuracy than Top-k for k = 1, 2, 3, and in some cases, Top-4’s
accuracy is even comparable to MurTree’s. As the dataset size increases, the missing points for
MurTree indicate a segmentation fault (possibly due to excessive memory requirements) before the
tree-building process was completed.

slope, but the behaviour for both should be linear. Figure 4 in Appendix D confirms this expected
behavior. Also, we can very well see that MurTree could not build a decision tree of depth 5 and
beyond on the larger datasets, indicating that optimal decision trees do not scale up well (more on
this ahead).

Finally, note that we plot two lines for Top-1: Top-1 (sklearn), which is given by scikit-learn
(and has much better training time) and also Top-1 (basic), where we simply substitute k = 1 in our
implementation of Top-k (which has comparatively slower training time; in fact, sklearn is ≈ 20x
faster). This is simply to highlight the fact that our implementation of Top-k can be made much more
efficient by subjecting it to all the optimizations present in scikit-learn’s implementation of
ID3. We also verified that the accuracies (training and test) for Top-1 (sklearn) and Top-1 (basic)
match, so they are building the same trees.

Top-k scales much better than optimal decision tree algorithms. Despite having an optimality
certificate, optimal decision tree algorithms suffer a lot in running time compared to ID3. Here, we
empirically demonstrate that in comparison, Top-k suffers a significantly more benign blow-up in
training time. The experiment is identical to that in Figures 14, 15 in the GOSDT paper (Lin et al.,
2020), where two notions of scalability are considered. In the first experiment, we fix the number
of samples, and gradually increase the number of features to train the decision tree. In the second
experiment, we include all the features, but gradually increase the number of samples to train on.
The dataset under consideration is the FICO (FICO et al., 2018) dataset, which has a total of 1000
samples having 1407 binary features. On the x-axis, we plot the number of features/samples, and
on the y-axis, we plot the training time (in seconds) taken by optimal tree algorithms (MurTree,
GOSDT) and Top-k. We do this for depth = 4, 5, 6 (for GOSDT, the regularization coefficient λ is
set to 2−depth). Figure 3 has the results - we can observe that the training time for both MurTree and
GOSDT blows up in a much more drastic manner as compared to Top-k, in both the experiments. In
particular, for depth = 5, both MurTree and GOSDT couldn’t finish building a tree on 300 features
within the time limit of 10 minutes, while Top-4 completed execution even with all the 1407 features.
Similarly, in the latter experiment, GOSDT/MurTree couldn’t build a depth-5 tree on 150 samples
within the time limit, while Top-4 comfortably finished execution even on 1000 samples. This
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(c) Depth = 6
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(f) Depth = 6

Figure 3: Training time comparison between Top-k and optimal tree algorithms. As the nummber of
features/samples increases, both GOSDT and MurTree scale poorly compared to Top-k, and beyond
a threshold, do not complete execution within the time limit.

nicely illustrates the scalability issues with optimal tree algorithms. Combined with the accuracy
gains seen in the previous experiment, Top-k can thus be seen as achieving a nice bargain in the
tradeoff between training time and accuracy.2

6 CONCLUSION

We have shown how popular and empirically successful greedy decision tree learning algorithms
can be improved with the power of choices: our generalization, Top-k, considers the k best features
as candidate splits instead of just the single best one. As our theoretical and empirical results demon-
strate, this simple generalization is extremely powerful, enabling significant accuracy gains while
preserving the efficiency and scalability of standard greedy algorithms. Indeed, we find it surprising
that such a simple generalization has not been considered before.

There is much more to be explored and understood, both theoretically and empirically; we list here a
few concrete directions that we find particularly exciting and promising. First, we suspect that power
of choices affords more advantages over greedy algorithms than just accuracy gains. For example,
an avenue for future work is to show that the trees grown by Top-k are more noise tolerant. Second,
are there principled approaches to the automatic selection of the greediness parameter k? Can the
optimal choice be inferred from a few examples or learned over time? This opens up the possibility
of new connections to machine-learned advice and algorithms with predictions (Mitzenmacher &
Vassilvitskii, 2020), an area that has seen a surge of interest in recent years. Finally, as mentioned in
the introduction, standard greedy decision tree algorithms are at the very heart of modern tree-based
ensemble methods such as XGBoost and random forests. A natural next step is to combine these
algorithms with Top-k and further extend the power of choices to these settings.

2We also ran an experiment comparing accuracy with Soft Decision Trees (Irsoy et al., 2012). We found that
their code took significantly longer to train (often 1-2 orders of magnitude) than both Top-3 and Top-4 trained
to the same depth. For accuracy, it seems that each method has data sets where it performs better; however,
when Soft Decision Trees has more accuracy, it is typically by a very small amount. In contrast, in the other
cases, Top-k often has a drastic accuracy gain.
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A PROOFS DEFERRED FROM SECTION 3

Proof of Lemma 3.2. By induction: When h = 0, the only trees in the search space are the constant
0 and constant 1 functions. Top-k returns which of these two trees is the most accurate.

When h ≥ 1, let T ′ be a tree with maximal accuracy within Tk,h,S . As T ′ is in the search space, its
root must be one of the k coordinates with maximal score which form the candidate set I.

For each coordinate i ∈ I, the candidate tree Ti satisfies

Pr
x,y∼S

[Ti(x) ̸= y] = Pr
x∼S

[xi = 0] Pr
x,y∼S

[Ti0(x) ̸= y] + Pr
x∼S

[xi = 1] Pr
x,y∼S

[Ti1(x) ̸= y],

where Ti0 and Ti1 are the left and right subtrees of Ti respectively. Each of Ti0 and Ti1 is an output
of Top-k with a depth budget of h − 1. We assume as the inductive hypothesis that each of these
trees minimizes error among all trees in Tk,h−1,Sxi=0

and Tk,h−1,Sxi=1
respectively; therefore the

candidate Ti minimizes error among all trees in Tk,h,S that have xi at the root. Since Top-k chooses
the most accurate of the Ti’s, it follows that the chosen tree minimizes error among all trees in
Tk,h,S .

B PROOFS DEFERRED FROM SECTION 4

Setup and notation: We use 1[·] for the indicator function, and [d] to refer to the set {1, . . . , d}.

For brevity, we’ll make two simplifying assumptions about Top-k:

1. We will assume Top-k builds non-redundant trees, meaning on every root-to-leaf path, each
coordinate is queried at most once. This is easy to enforce in the pseudocode: At each step,
the algorithm can track a set Q of the coordinates already queried along this path, and pick
the top-k coordinates according to the feature score function among [d] \ Q. For brevity,
we do not include that modification to the pseudocode in Figure 1.

2. We assume, roughly speaking, that Top-k has access to an infinite-sized sample. More pre-
cisely, whenever Top-k needs to compute an expectation over its sample (to determine the
set of k coordinates maximizing the scoring function, or to decide which constant function
to put at a leaf), we replace the the empirical expectation with the population expectation.
Using standard techniques, if the sample is large enough, these expectations will concen-
trate and our results still hold.

3. We assume that Top-k always build complete trees (i.e every root-to-leaf path has depth
exactly h). This is without loss of generality, as whenever Top-k stops early, it does so
because it has already achieved perfect accuracy on that path.

Throughout this section, we will assume the feature scoring function is an impurity-based heuristic.
As our data distribution is uniform on the input, we are able to use the following fact and simulta-
neously prove results for all impurity-based heuristic.
Fact B.1 (Proposition 7.7 of Blanc et al. (2020b)). If the scoring function is any impurity-based
heuristic, and the data distribution is uniform over inputs (x is uniform when (x,y) ∼ D), then the
score of a coordinate i is monotone increasing with its correlation with the label, E(x,y)∼D[xiy].

Fact B.1 means that, when analyzing Top-k on uniform data distributions, we are free to replace the
“k coordinates with largest scores” with the “k coordinates with largest correlations.”

B.1 PROOFS DEFERRED FROM SECTION 4.1

The stochastic function fh,K used throughout Lemma 4.1 and Lemma 4.2 combines a function that
outputs a random one of k features with the h-wise parity function.
Definition 5 (Parity). The parity function of ℓ variables, indicated by Parℓ : {0, 1}ℓ → {0, 1},
returns

Parℓ(x) :=

(∑
i∈[ℓ]

xi

)
mod 2.
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Fact B.2 (Computing any function with a complete tree). Let f : {0, 1}d → {0, 1} be any function
that only depends on the first h variables, meaning there is some g : {0, 1}h → {0, 1} such that:

f(x) = g(x[1:h])

for all x ∈ {0, 1}d. Let T be any non-redundant complete tree of depth-h in which every internal
node is one of the first h coordinates. Then, there is a way to label the leaves of T such that T
exactly computes f .

Proof. Since T is non-redundant, each coordinate is queried at most once on each root-to-leaf path.
T is complete and depth-h, so each of the first h coordinates must be queried exactly once on
each root-to-leaf path. Therefore, each leaf of T corresponds to exactly one way to set the first k
coordinates of x. If the leaf is labeled by the output of g given those first k coordinates, T will
exactly compute f .

Proof of Lemma 4.1. The function Parh(x
(1)) is a (1−ε)-approximation to f , so it suffices to show

that the depth-h tree for Parh(x(1)) is within the search space of Top-K when run to a depth of h.

There are only K − 1 variables not in x(1), so each set of K candidate variables must contain some
variable in x(1). Since Top-K is non-redundant, this must be a variable that hasn’t yet been queried
higher in the tree. Thus, at every step Top-K will always try a candidate variable that reduces the
number of relevant x(1)-variables by 1. It follows that the complete nonadaptive tree of depth h,
containing all the variables of x(1), is within the search space, so by Fact B.2 there is a tree in the
search space that computes Parh(x(1)) exactly. Then the accuracy of the output must be at least the
total accuracy of this tree, which is (1− ε).

Proof of Lemma 4.2. Conditioned on any setting of < k variables, for any variable xi in x(2),
E[f(x)xi] ≥ 1/k. Similarly, for any variable xj in x(1), E[f(x)xj ] = 0. By Fact B.1, at every node
the variables of x(2) that have not yet been queried all rank ahead of the variables of x(1).Thus, if at
most K − k variables have already been queried, the remaining k most-correlated candidates will
all be from x(2), so no variable in x() will be considered. Thus, at least K − k variables from x(1)

will be placed.

Since the depth budget h′ is smaller than h + K − k and at least K − k variables from x(2) are
placed in every path, no path can contain all of the h variables of x(1). The value of Parh(x(1)) is
0 with probability 1/2 and 1 with probability 1/2 conditioned on the values of any set of variables
smaller than h. Therefore, the tree built by Top-k cannot achieve accuracy better than 1/2 on the
parity portion of the function (and thus have accuracy better than (1/2 + ε) overall),

B.2 PROOFS DEFERRED FROM SECTION 4.2

The data distribution showing the accuracy separation between Top-K and Top-k is formed by
combining the following two functions.
Definition 6 (Majority). The majority function of ℓ variables, indicated by Majℓ : {0, 1}ℓ → {0, 1},
returns

Majℓ(x) := 1[at least half of x’s coordinates are 1].

Definition 7 (Tribes). For any input length ℓ, let w be the largest integer such that (1− 2−w)ℓ/w ≤
1/2. For x ∈ {0, 1}ℓ, let x(1) be the first w coordinates, x(2), the second w, and so on. Tribesℓ is
defined as

Tribesℓ(x) := (x
(1)
1 ∧ · · · ∧ x(1)

w ) ∨ · · · ∨ (x
(t)
1 ∧ · · · ∧ x(t)

w ) where t :=

⌊
ℓ

w

⌋
.

For our purposes, it is sufficient to know a few simple properties about Tribes. These are all proven
in (O’Donnell, 2014, §4.2).
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Fact B.3 (Properties of Tribes).

1. Tribesℓ is monotone.

2. Tribesℓ is nearly balanced:

E
x∼{0,1}ℓ

[Tribesℓ(x)] =
1

2
± o(1)

where the o(1) term goes to 0 as ℓ goes to ∞.

3. All variables in Tribesℓ have small correlation: For each i ∈ [ℓ],

E
x∼{0,1}ℓ

[xi · Tribesℓ(x)] = O

(
log ℓ

ℓ

)
.

Indeed, the famous KKL inequality implies that any function with the first and second property has
a variable with correlation at least Ω(log ℓ/ℓ) (Kahn et al., 1988). Our construction uses Tribes
exactly because it has the minimum correlations among functions with the above properties (up to
constants). In contrast, we use Maj because its correlations are as large as possible, which will
“trick” Top-k into building a bad tree.

With the above definitions in-hand, we are able to provide proofs of the two missing Lemmas.

Proof of Lemma 4.3. This proof is very similar to that of Lemma 4.1: Once again, we observe the
tree computing (x 7→ Tribesh(x(1))) has at least 1−ε accuracy with respect to Dh,K . By Lemma 3.2,
it is sufficient to prove such a tree is in the search space.

By Fact B.2, any non-redundant complete tree of depth h that only queries the first h coordinates
of its input will compute the function (x 7→ Tribesh(x(1))) whenever the leaves are appropriately
labeled. Therefore, we only need to prove such a tree is in the search space TK,h,D. There are
only K − 1 coordinates that are not one of the first h corresponding to x(1). Therefore, within any
non-redundant set of K coordinates, at least one must be a non-redundant coordinate from the first
h. This implies one of the desired trees is in the search space.

Proof of Lemma 4.4. Let T be the tree returned by Top-k. Consider any root-to-leaf path of T
that does not query any of the first h coordinates (those within x(1)). Recall that, with probability
(1 − ε), the label is given by Tribesh(x(1)). On this path, the label of T does not depend on any of
the coordinates within x(1). Therefore,

Pr
(x,y)∼Dh,K

[T (x) = y | x follows this path]

= (1− ε) · Pr
(x,y)∼Dh,K

[T (x) = Tribesh(x(1)) | x follows this path]

+ ε · Pr
(x,y)∼Dh,K

[T (x) = MajK(x(2)) | x follows this path]

≤ (1− ε) ·
(
1

2
+ o(1)

)
+ ε · 1 ≤ 1 + ε

2
+ o(1)

where the last line follows because Tribesh is nearly balanced (Fact B.3). As the distribution over x
is uniform, each leaf is equally likely. Therefore, if only p-fraction of root-to-leaf paths of T query
at least one of the first h coordinates, then,

Pr
(x,y)∼Dh,K

[T (x) = y] ≤ (1− p) ·
(
1 + ε

2
+ o(1)

)
+ p · 1 ≤ 1

2
+

p

2
+

ε

2
+ o(1)

Our goal is to prove the tree returned by Top-k achieves at most 1
2 + ε accuracy. Therefore, it is

enough to prove that p = o(1). Indeed, we will prove that p ≤ O(K−2).

Here, we apply (Blanc et al., 2020b, Lemma 7.4), which was used to show that Top-1 fails to build a
high accuracy tree. They used a different data distribution, but that particular Lemma still applies to
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our setting. They prove that a random root-to-leaf path of T satisfies the following with probability
at least 1 − O(K−2): If the length of this path is less than O(K/ logK), at any point along that
path, all coordinates within x(2) that have not already been queried have correlation at least 1

100
√
k

.

That Lemma will be useful for proving Top-k fails with the following parameter choices.

1. By setting K ≥ Ω(h log h), we can ensure all root-to-leaf paths in T have length at most
O(K/ logK), so (Blanc et al., 2020b, Lemma 7.4) applies.

2. By setting K ≤ O(h2/(log h)2), we can ensure that all the coordinates within x(1) have
correlation less than 1

100
√
k

(Fact B.3). This means that all non-redundant coordinates

within x(2) have more correlation than those within x(1).

3. By setting k ≤ K − h, we ensure at all nodes along every path, there are at least k co-
ordinates within the last K − 1 coordinates (those corresponding to x(2)), that have not
already been queried. With probability at least 1− O(K−2) over a random path, those all
have more correlation than all coordinates within x(1), so Top-k won’t query any of the h
coordinates within x(1).

We conclude that, with probability at least 1−O(K−2) over a random path in T , that path does not
query any of the first h variables. As a result, the accuracy of T is at most 1+ε

2 + o(1) ≤ 1
2 + ε.
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C DETAILS ABOUT DATASETS USED IN SECTION 5

Name Type Size (#train/#test) #feats #binary feats #classes
connect-4 C 67557 (54045/13512) 42 126 3
nursery C 12960 (10368/2592) 8 27 5

letter-recognition C 19999 (15999/4000) 16 256 26
car C 1728 (1382/346) 6 21 4

kr-vs-kp C 3196 (2556/640) 36 73 2
hiv-1-protease C 6590 (5272/1318) 8 160 2

molecular-biology-splice C 3190 (2552/638) 60 287 3
mushroom C 8124 (6499/1625) 22 117 2

artificial-characters N 10218 (8174/2044) 7 91 10
telescope N 19020 (15216/3804) 10 100 2
spambase N 4601 (3680/921) 57 57 2
dry-bean N 13611 (10888/2723) 16 96 7

occupancy-estimation N 10129 (8103/2026) 16 86 4
miniboone N 130064 (104051/26013) 50 100 2

sensorless-drive-diagnosis N 58509 (46807/11702) 48 96 11
ml-prove N 6118 (4588/1530) 51 51 6

avila N 20867 (10430/10437) 10 100 12
taiwanese-bankruptcy N 6819 (5455/1364) 95 95 2

credit-card N 30000 (24000/6000) 23 88 2
electrical-grid-stability N 10000 (8000/2000) 13 91 2

FICO N 1000 (900/100) 23 1407 2

Table 1: Dataset characteristics. In the Type column, C stands for Categorial and N stands for
Numerical.

Table 1 provides complete details regarding all the datasets we used in our experiments. For datasets
that don’t provide an explicit train/test split, we randomly compute a 80:20 split. The column #feats
has the number of raw attributes in each dataset, while the column #binary feats has the number of
features we obtain after converting these raw attributes to binary-valued attributes. For categorical
datasets, we encode a categorical attribute taking on l distinct values to l binary attributes. For
numerical datasets, we sort and compute thresholds for each numerical attribute. The number of
thresholds is so selected that the total number of binary attributes does not exceed 100.
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D TRAINING TIME COMPARISON
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Figure 4: Training time comparison between Top-1, Top-k and MurTree. We can see that the plots
for Top-k are all straight lines with increasing slope, as would be expected from Claim 3.1. The
dashed vertical line for MurTree indicates a segmentation fault before completing execution of build-
ing the decision tree.
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E ACCURACY COMPARISON WITH TOP-1 - FURTHER PLOTS
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Figure 5: Test accuracy comparison between Top-1 and Top-k.

We provide plots from our experiments on a further few datasets comparing the test accuracy of
Top-k and Top-1 in Figure 5. In the case of taiwanese-bankruptcy, credit-card and electrical-grid-
stability, we can observe that Top-1 is outperforming Top-k. However, we believe that this is because
the learning problem in this regime is extremely susceptible to overfitting. In particular, we can see
that Top-1 is itself not consistently improving with increasing depth. Concretely, increasing depth
beyond 3 is already causing Top-1 to overfit, and hence we would expect Top-k to suffer from
overfitting even more. Furthermore, we can see that the gradation in the y-axis is very small, in
that the accuracy numbers are very close to one another. In the case of the remaining datasets
(which all happen to be categorical), while the numbers might not be monotonically getting better
with increasing k, we can still observe that there is always some value of k ∈ {2, 3, 4} which is
outperforming k = 1 (except for molecular-biology-splice, for which this is still the case till depth
6). This lends further support to our proposition of incorporating k as an additional hyperparameter
to tune while training decision trees greedily.
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