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Abstract
Remarkable progress in zero-shot learning (ZSL)
has been achieved using generative models. How-
ever, existing generative ZSL methods merely
generate (imagine) the visual features from
scratch guided by the strong class semantic vec-
tors annotated by experts, resulting in subopti-
mal generative performance and limited scene
generalization. To address these and advance
ZSL, we propose an inductive variational autoen-
coder for generative zero-shot learning, dubbed
GenZSL. Mimicking human-level concept learn-
ing, GenZSL operates by inducting new class
samples from similar seen classes using weak
class semantic vectors derived from target class
names (i.e., CLIP text embedding). To ensure
the generation of informative samples for training
an effective ZSL classifier, our GenZSL incor-
porates two key strategies. Firstly, it employs
class diversity promotion to enhance the diver-
sity of class semantic vectors. Secondly, it uti-
lizes target class-guided information boosting cri-
teria to optimize the model. Extensive exper-
iments conducted on three popular benchmark
datasets showcase the superiority and potential
of our GenZSL with significant efficacy and ef-
ficiency over f-VAEGAN, e.g., 24.7% perfor-
mance gains and more than 60× faster training
speed on AWA2. Codes are available at https:
//github.com/shiming-chen/GenZSL.

1. Introduction
Zero-shot learning (ZSL) enables the recognition of un-
seen classes by transferring semantic knowledge from some
seen classes to unseen ones (Palatucci et al., 2009; Lampert
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Figure 1. Motivation illustration. (a) Existing generative ZSL
methods merely generate (imagine) the visual features from scratch
guided by the strong class semantic vectors, resulting in suboptimal
generative performance and scene generalization. For example,
the generator inevitably generates similar classes of "Zebra" or
others, e.g., "Donkey". (b) Our GenZSL generates (induces) the
reliable visual features of unseen classes from the similar seen
classes with the clues of weak class semantic vector, e.g., from
"Horse" to "Zebra".

et al., 2009). Recently, generative models such as genera-
tive adversarial networks (GANs) (Goodfellow et al., 2014),
variational autoencoders (VAEs) (Kingma & Welling, 2014),
and normalizing flows (Dinh et al., 2017) have been suc-
cessfully applied in ZSL, achieving significant performance
improvements. These models synthesize images or visual
features of unseen classes to alleviate the lack of samples for
those classes (Arora et al., 2018; Xian et al., 2018; 2019b;
Chen et al., 2021a; Narayan et al., 2020; Chen et al., 2021b).

Given that GAN architectures can generate higher-quality
visual sample features, there’s a growing trend in synthesiz-
ing features using GANs (Xian et al., 2018; 2019b; Chen
et al., 2021a; Narayan et al., 2020; Yue et al., 2021; Chen
et al., 2025). However, existing generative ZSL methods
typically generate (imagine) visual features from scratch
(e.g., Gaussian noises) guided by strong class semantic vec-
tors annotated by expert (Xian et al., 2018; 2019b; Chen
et al., 2021a; Narayan et al., 2020; Çetin et al., 2022; Chen
et al., 2023a). This approach often fails to produce reliable
feature samples and generalize to various scene tasks, as
illustrated in Figure 1 (a). The shortcomings arise from: i)
the generator learning from scratch without sufficient data
to capture the high-dimensional data distribution, and ii) the
reliance on strong class semantic vectors, which are time-
consuming and labor-intensive to collect for various scene
generations. Hence, there’s a pressing need to explore novel
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generative paradigms for ZSL.

Cognitive psychologist often frame the process of learning
new concepts as "the problem of induction" (Carey, 1985;
and, 2000). For instance, children typically induce novel
concepts from a few familiar objects, guided by certain pri-
ors (Tenenbaum et al., 2011; Lake et al., 2015). Essentially,
rich concepts can be induced "compositionally" from sim-
pler primitives under a Bayesian criterion, and the model
"learns to learn" by developing hierarchical priors that fa-
cilitate the learning of new concepts based on previous ex-
periences with related concepts. These priors represent a
learned inductive bias that abstracts the key regularities and
dimensions of variation across both types of concepts and
instances of a concept within a given domain. Following this
paradigm, our objective is to devise a novel generative zero-
shot learning (ZSL) model capable of generating (inducing)
new/target classes based on samples from similar/referent
seen classes. As illustrated in Figure 1 (b), our generative
ZSL model can generate informative samples of new classes
(e.g., "Zebra") by inducing them from referent seen classes
(e.g., "Horse", "Tiger", and "Panda").

However, there are two challenges in targeting this goal.
Firstly, addressing the issue of weak class semantic vec-
tors. These vectors, extracted from sources like the CLIP
text encoder (Radford et al., 2021), often lack specific class
information, such as attributes, compared to vectors anno-
tated by experts. As a result, they may not effectively guide
generative methods. Furthermore, these vectors can be mis-
aligned in the vision-language space. For instance, the text
embedding of a class name might be close to embeddings
of unrelated classes but distant from image embeddings (Hu
et al., 2023; Tanwisuth et al., 2023; Khattak et al., 2023;
Chen et al., 2024a). How can we enhance the diversity of
weak class semantic vectors to distinguish between various
classes effectively, thereby avoiding the problem of gener-
ating visual features that are too similar to other classes?
Secondly, ensuring that a novel generative method evolves
samples of referent classes into target classes with the guid-
ance of weak class semantic vectors is equally challenging.
This involves transforming samples of seen classes into sam-
ples that accurately represent unseen classes, guided only
by the limited information provided by weak class semantic
vectors. How can we achieve this induction reliably and
effectively within a generative ZSL framework?

To guide the induction towards creating informative samples
for training effective ZSL classifiers, we propose a novel in-
ductive variational autoencoder for generative ZSL, namely
GenZSL. GenZSL essentially considers two criteria, i.e.,
class diversity promotion and target class-guided informa-
tion boosting. Specifically, we first deploy a class diversity
promotion module to reduce redundant information from
class semantic vectors by eliminating their major compo-

nents. This process enables all class semantic vectors to
become nearly perpendicular to each other but keep the ori-
gin relationships between all classes, thus enhancing the
diversity among them. Then, we employ a semantically
similar sample selection module to select the referent class
samples for seen/unseen classes from seen classes. Finally,
we design a target class-guided information boosting loss
to guide the inductive variational autoencoder to synthesize
the visual features belonging to target classes.

Our main contributions are summarized in the following:
i) We propose an induction-based GenZSL for generative
ZSL, which can synthesize the samples of unseen classes
based on the weak class semantic vectors inducting from
the similar seen classes. ii) We enable GenZSL to synthe-
size informative samples by designing the class diversity
promotion, semantically similar sample selection, and in-
ductive vatiational autoencoder modules. iii) We conduct
extensive experiments on three wide-used ZSL benchmarks
(e.g., CUB (Welinder et al., 2010), SUN (Patterson & Hays,
2012), and AWA2 (Xian et al., 2019a)), results demonstrate
the significant efficacy and efficiency over the existing ZSL
methods, e.g., 24.7% performance gains and more than 60×
faster training speed on AWA2. More importantly, our Gen-
ZSL can be flexibly extended on various scene tasks without
the guidance of expert-annotated attributes.

2. Related Work
Zero-Shot Learning. Zero-shot learning is proposed to
tackle the classification problem when some classes are
unknown. To recognize the unseen classes, the side-
information/semantic (e.g., attribute descriptions (Lampert
et al., 2014), DNA information (Badirli et al., 2021)) is uti-
lized to bridge the gap between seen and unseen classes. As
such, the key task of ZSL is to conduct effective interactions
between visual and semantic domains. Typically, there are
two methodologies to target on this goal, i.e., embedding-
based methods that learn visual→semantic mapping (Xian
et al., 2016; Xu et al., 2020; Zhu et al., 2019; Wan et al.,
2019; Han et al., 2022), and generative methods that learn
semantic→visual mapping (Xian et al., 2019b; Chen et al.,
2021a; Huynh & Elhamifar, 2020b; Çetin et al., 2022; Chen
et al., 2020). Considering the semantic representations,
embedding-based methods focus recently on learning the
region-based visual features rather than the holistic visual
features (Huynh & Elhamifar, 2020a; Xu et al., 2020; Chen
et al., 2022a;b; 2024c). Since these methods learn the ZSL
classifier only on seen classes, inevitably resulting in the
models overfitting to seen classes. To tackle this challenge,
generative ZSL methods employ the generative models (e.g.,
VAE, and GAN) to generate the unseen features for data
augmentation, and thus ZSL is converted to a supervised
classification task. As such, the generative ZSL methods
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Figure 2. Pipeline of our GenZSL. GenZSL first takes class diversity promotion to reduce the redundant information from class semantic
vectors, and to improve the identity for all class semantic vectors. Then, it employs a semantically similar sample selection module to
select the top-k referent class from the seen classes for each target class as training inputs. Based on the referent samples, GenZSL learns
an inductive variational autoencoder to create the new informative feature samples for unseen classes via induction optimized by target
class-guided information boosting criteria.

have shown significant performance and become very pop-
ular recently. Furthermore, Li et al. (Li et al., 2023) intro-
duces Stable Diffusion to perform zero-shot classification
without any additional training by leveraging the ELBO as
an approximate class-conditional log-likelihood.

However, existing generative ZSL methods simply imagine
the visual feature from a Gaussian distribution with the guid-
ance of a strong class semantic vector. Thus, they are limited
in i) there lacks enough data for training a generative model
to learn the high-dimension data distribution, resulting in un-
desirable generation performance; ii) they rely on the strong
condition guidance (e.g., expert-annotated attributes) for
synthesizing target classes, so they cannot easily generalize
to various scenes. As such, we propose a novel generative
method to create samples of unseen classes for advancing
ZSL via induction rather than imagination.

Generative Model for Data Augmentation. Synthesiz-
ing new data using a generative model for data augmentation
is a promising direction (Zhou et al., 2023; Jahanian et al.,
2022). Many recent studies (Azizi et al., 2023; He et al.,
2023) explored generative models to generate new data for
model training. However, these methods fail to ensure that
the synthesized data bring sufficient new information and
accurate labels for the target small datasets. Because they
imagine the new data from scratch (e.g., Gaussian distribu-
tion), which is infeasible with very limited/diverse training
data. Zhang et al. (Zhang et al., 2023) introduce GIF to
expanding small-scale datasets with guided imagination us-
ing pre-trained large-scale generative models, e.g., Stable
Diffusion (Rombach et al., 2022) or DALL-E2 (Ramesh
et al., 2022). Although GIF can expand a small dataset
into a larger labeled one in a fully automatic manner with-

out involving human annotators, it requires anchor samples
for imagination. As such, these imagination-based genera-
tive models are not feasible for ZSL tasks. In contrast, we
introduce a novel generative method to synthesize new in-
formative data for ZSL via induction inspired by the human
perception process (Carey, 1985; and, 2000).

3. Inductive Variational Autoencoder for ZSL
Problem Setting. The problem setting of ZSL and no-
tations are defined in the following. Assume that data
of seen classes Ds = {(xsi , ysi )} has Cs classes, where
xsi ∈ X denotes the i-th visual feature, and ysi ∈ Ys is
the corresponding class label. Ds is further divided into
training set Ds

tr and test set Ds
te following (Xian et al.,

2019a). The unseen classes Cu has unlabeled samples
Du

te = {(xui , yui )}, where xui ∈ X are the visual samples of
unseen classes, and yui ∈ Yu are the corresponding labels.
Notably, YU ∩ YS = ∅. A set of class semantic vectors of
the class c ∈ Cs ∪ Cu = C are extracted from CLIP text en-
coder, defined as zc. In the conventional zero-shot learning
(CZSL) setting, we learn a classifier only classifying unseen
classes, i.e., fCZSL : X → YU , while we learn a classifier
for both seen and unseen classes in the generalized zero-shot
learning (GZSL) setting, i.e., fGZSL : X → YU ∪ YS .

Pipeline Overview. To enable the generative ZSL method
to synthesize high-quality visual features with good scene
generalization, we propose an inductive variational autoen-
coder for ZSL (namely GenZSL). Towards creating infor-
mative new samples for unseen classes, GenZSL considers
two important criteria, i.e., class diversity promotion and
target class-guided information boosting. As shown in Fig.
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2, GenZSL first takes class diversity promotion to reduce
the redundant information from class semantic vectors by
removing their major components, enabling all class se-
mantic vectors nearly perpendicular to each other. Based
on the refined class semantic vectors, GenZSL employs a
semantically similar sample selection module to select the
top-k referent class from the seen classes for each target
class. Subsequently, GenZSL learns the inductive varia-
tional autoencoder (IVAE) with the Kullback-Leibler diver-
gence (KL) loss, target class reconstruction loss, and target
class-guided information boosting loss, which ensures Gen-
ZSL inducts the target class samples from their similar class
samples. After training, GenZSL takes IVAE to synthe-
size visual features of unseen classes to learn a supervised
classifier.

3.1. Class Diversity Promotion

To avoid the ZSL model relying on the expert-annotated
class semantic vectors, we adopt CLIP (Radford et al., 2021)
text encoder to extract the class semantic vectors, i.e., text
embedding of the class names. However, we observed that
the CLIP text encoder fails to capture discriminative class
information, especially on fine-grained datasets. As shown
in Fig. 3(a), the class semantic vectors have high similarity
with other classes, that is, all class semantic vectors are
highly adjacent to ones of other classes. If we directly take
such class semantic vectors as conditions to guide GenZSL,
it inevitably causes the synthesized visual features confusion
as the class semantic vectors with limited diversity.

(b) CLIP w/ Class Diversity Promotion(a) CLIP text encoder

Mean Similarity (0.5726) Mean Similarity (1.825 )

Figure 3. Class semantic vectors’ similarity heatmaps are extracted
by CLIP text encoder and CLIP with class diversity promotion on
the CUB dataset. The similarity heatmaps on SUN and AWA2 are
presented in Appendix B.

As such, we introduce class diversity promotion (CDP) to
improve the diversity of class semantic vectors. CDP re-
duces the redundant information from class semantic vectors
by removing their major components, enabling all class se-
mantic vectors nearly perpendicular to each other but to
keep the original class relationships. Specifically, we take
Singular Value Decomposition to get the orthonormal basis
of the span of class semantic vectors Z = [z1, z2, · · · , zC ],

i.e., U, S, V = svd(Z), where U = [e1, e2, · · · , eC ] is the
orthonormal basis. As suggested in Principal Component
Analysis, the first dimension e1 of the outer-space basis U
will be the major component, which overlaps on most class
semantic vectors [z1, z2, · · · , zC ]. We directly remove the
major component e1 to define the new projection matrix
P = U

′
U
′> with U

′
= [e2, e3, · · · , eC ]. Accordingly, we

obtain the refined class semantic vectors, formulated as:

Z̃ = P · Z = {z̃1, z̃2, · · · , z̃C} (1)

As shown in Fig. 3(b), we make the refined class seman-
tic vectors nearly perpendicular to each other, such as the
mean similarity between various classes drops from 0.5726
to 1.825e−5 on the CUB. Meanwhile, CDP preserves the
original relationships of classes, and thus it will not destroy
the class semantics. As such, the refined class semantic
vectors will be the significant conditions for induction.

3.2. Semantically Similar Sample Selection

In this paper, we are interested in semantically similar sam-
ples as they can serve as reliable known data for inducing
new samples of other similar classes. Specifically, we select
the semantically similar samples in seen classes (defined a
referent class samples) with respect to the target seen/unseen
classes ctarget during training/testing, respectively. Accord-
ing to the cosine similarity, we define similar samples as
the referent ones whose class semantic vectors z̃c

s

is top-k
closed to the target class semantic vectors z̃target, formu-
lated as:

crefer = arg max
top−k(cs)

z̃target × z̃cs

‖z̃target‖ · ‖z̃cs‖
, (2)

where k is the number of referent classes with respect to the
corresponding target classes. Accordingly, we can obtain
a set of referent samples xrefer = xc

refer

of the target
seen/unseen classes from seen classes for training/testing.

3.3. Inductive Variational Autoencoder

Network Components. Our GenZSL aims to generate
informative new samples for novel classes by inducing from
seen classes. To achieve this, we devise a novel generative
model called the inductive variational autoencoder (IVAE).
We formulate the induction of new samples for target classes
x̂ from reference samples xrefer as x̂ = IV AE(xrefer +
o, z̃target), where o represents the perturbation applied to
xrefer to enable IVAE to variationally generate x̂ distinct
from xrefer.

Specifically, IVAE consists of an inductive encoder (IE) and
an inductive decoder (ID). The IE and ID are the Multi-
Layer Perceptron (MLP) networks. The IE encodes the ref-
erent samples xrefer into latent space o conditioned by the
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target class semantic vectors z̃target, i.e., o = δ·N (0, 1)+µ,
where µ, δ = IE(xrefer, z̃target). Subsequently, The ID
further comprises hidden layers with a progressively larger
number of nodes that decode the latent features to be a re-
construction of the target classes samples xtarget guided by
z̃target, formulated as x̂ = ID(o, z̃target). This is different
to VAE which ultimately reconstructs the data back to its
original input xrefer.

Network Optimization. Similar to the conditional VAE
(Sohn et al., 2015), our IVAE includes the KL loss LKL and
the target class reconstruction loss LTR, formulated as:

LIV AE = LKL − LTR

= KL(q(o | x, z̃target)‖p(o | z̃target))
− Eq(o|xrefer,z̃target)[log p(x

target | o, z̃target)],
(3)

where q(o | x, z̃target) is modeled by IE(xrefer, z̃target),
p(o | z̃target) is assumed to be N (0, 1), and p(xtarget |
o, z̃target) is represented by ID(o, z̃target). Essentially,
LTR towards the target class-guided information boosting
criteria in vision-level, encouraging IVAE to synthesize
high-quality target class samples.

To ensure IVAE evolves the referent samples to belong to
target classes, GenZSL further employs a target class-guided
information boosting loss LBoost for optimization. Consid-
ering CLIP’s full prior knowledge, LBoost aims to improve
the information entropy between the synthesized visual fea-
tures of target classes x̂target and their corresponding class
semantic vectors z̃target, formulated as:

LBoost = −
exp (< x̂target, z̃target > /τ)∑Cs

j=1 exp (< x̂target, z̃target > /τ)
, (4)

where τ is the temperature parameter and set to 0.07,
< ·, · > denotes the similarity between the two elements.
Indeed, LBoost and LTR cooperatively ensure IVAE to syn-
thesize desirable target class samples from semantic- and
vision-level, respectively.

As such, the total optimization loss function can be written
as:

Ltotal = LIV AE + λLBoost, (5)

where λ is a weight to control the LBoost, enabling model
optimization to be more effective.

3.4. ZSL Classification

After training, we first take the pre-trained IVAE to synthe-
size visual features for unseen classes:

x̂u = ID(o, z̃c
u

),

where o = δ · N (0, 1) + µ, and µ, δ = IE(xrefer, z̃c
u

).

(6)

Different from the standard VAEs that synthesize samples
from scratch (e.g., Gaussian noise), we synthesize the visual
features of unseen classes inducting from referent seen class
samples and take Gaussian noise as variations. As such, our
GenZSL can more easily create informative new samples
for unseen classes.

Then, we take the synthesized unseen visual features and
the real visual features of seen classes xs ∈ Ds

tr to learn a
classifier (e.g., softmax), i.e., fczsl : X → Ys in the CZSL
setting and fgzsl : X → Ys∪Yu in the GZSL setting. Once
the classifier is trained, we use the real sample in the test
set Du

te to test the model further. The details of the testing
process are shown in Appendix A.

4. Experiments
Datasets. We evaluate our GenZSL on three well-known
ZSL benchmark datasets, i.e., two fine-grained datasets (
CUB (Welinder et al., 2010) and SUN (Patterson & Hays,
2012)) and one coarse-grained dataset (AWA2 (Xian et al.,
2019a)). CUB has 11,788 images of 200 bird classes
(seen/unseen classes = 150/50). SUN contains 14,340 im-
ages of 717 scene classes (seen/unseen classes = 645/72).
AWA2 consists of 37,322 images of 50 animal classes
(seen/unseen classes = 40/10).

Evaluation Protocols. During testing, we adopt the uni-
fied evaluation protocols following (Xian et al., 2019a). The
top-1 accuracy of the unseen class (denoted as acc) is used
for evaluating the CZSL performance. In the GZSL setting,
the top-1 accuracy on seen and unseen classes is adopted,
denoted as S and U , respectively. Meanwhile, their har-
monic mean (defined as H = (2× S ×U)/(S +U)) is a
better protocols in the GZSL.

Implementation Details. We use the training splits pro-
posed in (Xian et al., 2018). Meanwhile, the visual fea-
tures with 512 dimensions are extracted from the CLIP
vision encoder (Radford et al., 2021). The IE and ID
are the MLP networks. The specific network settings are
fc(512) − fc(1024) − fc(2048) − ReLu and fc(512) −
fc(1024) − fc(2048) − ReLu − fc(512) for IE and ID,
respectively. We synthesize 1600, 800, and 5000 features
per unseen class to train the classifier for CUB, SUN, and
AWA2 datasets, respectively. We empirically set the loss
weight λ as 0.1 for CUB and AWA2, and 0.001 for SUN.
The top-2 similar classes serve as the referent classes for
inductions on all datasets. Furthermore, to enlarge the ref-
erence of the referent samples for effective model training,
we take mixup technique (Zhang et al., 2018) to randomly
fuse the samples of various referent classes for data aug-
mentation, i.e., xrefer = 0.8 · xctop−1

+ 0.2 · xctop−2

. All
experiments are performed on a single NVIDIA RTX 3090
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Table 1. State-of-the-art comparisons for generative ZSL methods on CUB, SUN, and AWA2 under the GZSL settings. The best and
second-best results are marked in Red and Blue, respectively. † denotes methods use CLIP visual features.

Methods CUB SUN AWA2
U S H U S H U S H

CADA-VAE (Schönfeld et al., 2019) 51.6 53.5 52.4 47.2 35.7 40.6 55.8 75.0 63.9
f-VAEGAN (Xian et al., 2019b) 48.7 58.0 52.9 45.1 38.0 41.3 57.6 70.6 63.5

LisGAN (Li et al., 2019) 46.5 57.9 51.6 42.9 37.8 40.2 52.6 76.3 62.3
LsrGAN (Vyas et al., 2020) 48.1 59.1 53.0 44.8 37.7 40.9 54.6 74.6 63.0
IZF-NBC (Shen et al., 2020) 44.2 56.3 49.5 – – – 58.1 76.0 65.9
AGZSL (Chou et al., 2021) 48.3 58.9 53.1 29.9 40.2 34.3 65.1 78.9 71.3
HSVA (Chen et al., 2021b) 52.7 58.3 55.3 48.6 39.0 43.3 59.3 76.6 66.8
ICCE (Kong et al., 2022) – – – – – – 65.3 82.3 72.8

SCE-GZSL (Han et al., 2022) – – – 45.9 41.7 43.7 64.3 77.5 70.3
FREE+ESZSL (Çetin et al., 2022) 51.6 60.4 55.7 48.2 36.5 41.5 51.3 78.0 61.8

CLSWGAN + DSP (Chen et al., 2023a) 51.4 63.8 56.9 48.3 43.0 45.5 60.0 86.0 70.7
ViFR (Chen et al., 2025) 57.8 62.7 60.1 48.8 35.2 40.9 58.4 81.4 68.0

f-VAEGAN† (Xian et al., 2019b) 22.5 82.2 35.3 – – – 61.2 95.9 74.7
TF-VAEGAN† (Narayan et al., 2020) 21.1 84.4 34.0 – – – 43.7 96.3 60.1

GenZSL 53.5 61.9 57.4 50.6 43.8 47.0 86.1 88.7 87.4

with 24G memory. We employ Pytorch to implement our
experiments.

Table 2. State-of-the-art comparisons for ZSL methods on SUN
and AWA2 under the CZSL setting. Embedding-based methods
are categorized as †, and generative methods are categorized as ‡.
∗ denotes ZSL methods using the ViT visual features. The best
and second-best results are marked in Red and Blue, respectively.

Methods SUN AWA2
acc acc

†

APN (Xu et al., 2020) 62.6 66.8
DAZLE (Huynh & Elhamifar, 2020a) 59.4 67.9
GEM-ZSL (Liu et al., 2021) 62.8 67.3
TransZero (Chen et al., 2022a) 65.6 70.1
MSDN (Chen et al., 2022b) 65.8 70.1
ICIS (Christensen et al., 2023) 51.8 64.6
DUET∗ (Chen et al., 2023b) 64.4 69.9
I2MVFormer-Wiki∗ (Naeem et al., 2023) – 79.6
HAS (Chen et al., 2023c) 63.2 71.4
I2DFormer+∗ (Naeem et al., 2024) – 77.3
EG-GZSL (Chen et al., 2024d) 69.5 77.6
ZSLViT∗ (Chen et al., 2024c) 68.3 70.7
CVsC∗ (Chen et al., 2024b) 71.5 73.1

‡

CLSWGAN (Xian et al., 2018) 60.8 68.2
f-VAEGAN (Xian et al., 2019b) 64.7 71.1
CADA-VAE (Schönfeld et al., 2019) 61.7 63.0
LisGAN (Li et al., 2019) 61.7 70.6
IZF-NBC (Shen et al., 2020) 63.0 71.9
LsrGAN (Vyas et al., 2020) 62.5 66.4
HSVA (Chen et al., 2021b) 63.8 70.6
GG (Cavazza et al., 2023) 62.7 70.1
f-VAEGAN+DSP (Chen et al., 2023a) 68.6 71.6
VADS (Hou et al., 2024) – 82.5
GenZSL (Ours) 73.5 92.2

4.1. Comparisons with State-of-the-Art Methods

We first compare our GenZSL with the various imagination-
based generative ZSL methods (e.g., VAE, GAN, VAEGAN,
and normalizing flow) under the GZSL setting. Table 1
shows the evaluation results on three datasets. Our Gen-

ZSL consistently achieves the best results with the H of
47.0% and 87.4% on SUN and AWA2, and second best re-
sults with the H of 57.4% on CUB, respectively. Notably,
our GenZSL relies solely on weak class semantic vectors,
while the compared methods utilize strong ones annotated
by experts. Furthermore, when imagination-based gener-
ative ZSL methods (e.g., f-VAEGAN (Xian et al., 2019b)
and TF-VAEGAN(Narayan et al., 2020)) using CLIP vi-
sual and semantic features, GenZSL still obtains improve-
ments of H = 22.1%/1.5%/16.7% on CUB/SUN/AWA2,
respectively. This indicates that GenZSL is more adapt-
able to generalizing across various scenes. These results
consistently demonstrate our induction-based GenZSL is a
desirable generative paradigm for ZSL.

We also take our GenZSL to compare with the state-of-the-
art ZSL methods under the CZSL setting, including the
embedding-based methods and generative methods. Results
are shown in Table 2. Compared to the embedding-based
methods, our GenZSL consistently achieves the best per-
formance on SUN and AWA2. When taking our GenZSL
to compare with the imagination-based generative meth-
ods, GenZSL performs best results of acc=73.5% and
acc=92.2% on SUN and AWA2, respectively. Notably, our
GenZSL obtains the performance gains by 20.3% at least on
AWA2 over the imagination-based generative ZSL methods.
Compared with other ViT visual features based methods
(Naeem et al., 2024; Chen et al., 2024c;b), our GenZSL
still obtains competitive performance gains. These com-
petitive results demonstrate the superiority and potential of
our induction-based generative method, which significantly
synthesizes informative new samples for unseen classes.
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Table 3. Results of ablation study for our GenZSL on CUB and AWA2.

Methods
CUB AWA2

CZSL GZSL CZSL GZSL
acc U S H acc U S H

GenZSL w/o CDP 60.9 48.2 64.6 55.2 90.7 82.3 87.9 85.0
GenZSL w/o Selection 62.5 48.0 67.0 55.9 91.1 84.2 86.4 85.3
GenZSL w/o LTR 48.3 20.1 37.5 26.2 87.5 39.9 83.1 53.9
GenZSL w/o LBoost 61.1 47.7 66.4 55.5 90.5 75.3 91.4 82.6
GenZSL w/o CDP&LBoost 60.0 42.5 69.3 52.7 87.7 89.0 75.3 81.6
GenZSL (full) 63.3 53.5 61.9 57.4 92.2 86.1 88.7 87.4

Table 4. Results of various models using weak class semantic vec-
tors as side-information on CUB.

Methods CUB
U S H

CLIP (Radford et al., 2021) 55.2 54.8 55.0
CoOp (Zhou et al., 2021) 49.2 63.8 55.6
CoOp + SHIP (Wang et al., 2023) 55.3 58.9 57.1
f-VAEGAN (Xian et al., 2019b) 22.5 82.2 35.3
TF-VAEGAN (Narayan et al., 2020) 21.1 84.4 34.0
GenZSL (Ours) 53.5 61.9 57.4

4.2. Ablation Study

Various Model Components of Our GenZSL. To gain
further insights into GenZSL, we conducted ablation studies
to evaluate the effect of various model components, specifi-
cally class diversity promotion (CDP), semantically similar
sample selection, target class reconstruction loss LTR, and
target class-guided information boosting loss LBoosting , on
the CUB and AWA2 datasets. The ablation results are sum-
marized in Table 3. When GenZSL lacks CDP to consider
class diversity criteria, there is a notable degradation in per-
formance. This is attributed to the inability of class semantic
vectors extracted from the CLIP text encoder to capture dis-
criminative class information, resulting in weak diversity
among class semantic vectors. Moreover, if GenZSL does
not incorporate LTR for target class information boosting,
there is a significant drop in performance, with the har-
monic mean decreasing by 30.8% and 33.5% on CUB and
AWA2, respectively. These findings underscore the impor-
tance of LTR as a fundamental loss for target class-guided
information boosting, ensuring that our IVAE accurately in-
duces referent samples to target class samples. Furthermore,
LBoosting enhances the induction process at the semantic
level, complementing LTR. Semantically similar sample
selection can slightly improve the performances of GenZSL,
this means GenZSL is relatively robust in various source
samples for model induction. Overall, these results demon-
strate the effects of various components of GenZSL and
underscore the significance of the two criteria for induction.
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(a) f-VAEGAN (b) Our GenZSL

Figure 4. Qualitative evaluation with t-SNE visualization. The
sample features from f-VAEGAN (Xian et al., 2019b) are shown
on the left, and from our GenZSL are shown on the right. We
use 10 colors to denote randomly selected 10 classes from SUN.
The "×" and "◦" are denoted as the real and synthesized sample
features, respectively. The synthesized sample features and the
real features distribute differently on the left while distributing
similarly on the right. The visualization on the CUB and AWA2 is
shown in Appendix D.

Various Models with Weak Class Semantic Vectors. We
conducted a comparative analysis of various models utiliz-
ing weak class semantic vectors extracted from the CLIP
text encoder. The results are presented in Table 4. Compared
to large-scale visual-language methods (e.g., CLIP (Radford
et al., 2021) and CoOp (Zhou et al., 2021)), our GenZSL
demonstrates substantial improvements, indicating the effec-
tiveness of our inductive generative paradigm as a desirable
ZSL model. When imagination-based generative ZSL meth-
ods (e.g., f-VAEGAN (Xian et al., 2019b) and TF-VAEGAN
(Narayan et al., 2020)) utilize weak class semantic vectors as
side information, GenZSL achieves significant performance
gains, with a minimum increase of 22.1% in harmonic mean
over these methods. Additionally, we observed that when
imagination-based generative ZSL methods use weak class
semantic vectors, their performances experience more sig-
nificant drops compared to when they utilize strong class
semantic vectors. For instance, the harmonic mean of f-
VAEGAN decreases from 52.9% to 35.3%. These findings
highlight the superiority of our induction-based generative
method over imagination-based approaches in ZSL, as it can
synthesize high-quality sample features for unseen classes
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Figure 5. Hyper-parameter analysis. We show the performance variations on CUB by adjusting the value of loss weight λ in (a), the
number of the top referent classes top-k in (b), and the number of synthesized samples of each unseen class Nsyn in (c).
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Figure 6. Induction-based vs Imagination-based methods on
AWA2 and CUB .

with feasible scene generalization. Moreover, our work
bridges the gap between large-scale visual-language ZSL
methods and classical ZSL methods, leveraging the advan-
tages of both approaches to achieve improved performance
in ZSL tasks. More discussions are in Appendix C.

4.3. Qualitative Evaluation

We conducted a qualitative evaluation to intuitively show-
case the performance of imagination-based generative ZSL
methods (e.g., f-VAEGAN (Xian et al., 2019b)) and our
induction-based approach (GenZSL). The t-SNE visualiza-
tion (Maaten & Hinton, 2008) of real and synthesized sam-
ple features is presented in Fig. 4. We randomly selected
10 classes from SUN and visualized the sample features
generated by f-VAEGAN and GenZSL. Fig. 4(a) illustrates
that sample features synthesized by f-VAEGAN and real
features exhibit significant differences, indicating that the
synthesized visual features may not facilitate reliable classi-
fication for ZSL. In contrast, Fig. 4(b) demonstrates that our
GenZSL synthesizes informative samples for unseen classes
that closely match real sample features. This visualization

confirms that GenZSL is a desirable generative ZSL model,
and the induction-based generative paradigm holds value
for ZSL tasks.

4.4. Induction vs Imagination

We analyze the efficiency and efficacy of induction-based
generative ZSL (e.g., our GenZSL) and imagination-based
generative ZSL (e.g., f-VAEGAN (Xian et al., 2019b),
which is a most typical generative ZSL method) on AWA2
and CUB. Results are shown in Fig. 6. We find that our Gen-
ZSL eases the optimization by providing faster convergence
at the early stage, while f-VAEGAN towards convergence
slowly. For example, GenZSL achieves the best GZSL per-
formance with a remarkable 60× and 10× acceleration in
training speed than f-VAEGAN on AWA2 and CUB, respec-
tively. Meanwhile, our GenZSL obtains better performance
both in the GZSL and CZSL settings. These demonstrate
the efficiency and efficacy of our GenZSL and the great
potential of the induction-based generative paradigm.

4.5. Hyper-Parameter Analysis.

We analyze the effects of different hyper-parameters of our
GenZSL on the CUB dataset. These hyper-parameters in-
clude the loss weight λ in Eq. 5, the number of the top
referent classes top-k, and the number of synthesized sam-
ples for each unseen class Nsyn. Fig. 5 shows the CZSL
and GZSL performances using different hyper-parameters.
In (a), the results indicate that GenZSL is robust to vary-
ing values of λ and achieves good performance when λ
is relatively small (i.e., λ = 0.1). This is because LBoost

is a semantic-level toward target class-guided information
boosting criteria, which is a supplement to the vision-level
one (e.g., LLR). In (b), we evaluate the top similar classes
as referent classes varying k = {1, 2, 4, 8}. We find that our
GenZSL uses the top − 2 referent classes to obtain better
performance, which brings the mixup technique for data
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augmentation. In (c), our GenZSL is shown robust to Nsyn

when it is not set in a large number. The Nsyn can be set
as 1600 to balance between the data amount and the ZSL
performance. Overall, Fig. 5 shows that our GenZSL is
robust to overcome hyper-parameter variations. The hyper-
parameter analysis on SUN and AWA2 are presented in
Appendix E. Accordingly, we empirically set these hyper-
parameters {λ, k,Nsyn} as {0.1, 2, 1600}, {0.001, 2, 800}
and {0.1, 2, 5000} for CUB, SUN and AWA2, respectively.

5. Conclusion
We propose an inductive variational autoencoder as a new
generative model for zero-shot learning, namely GenZSL.
Inspired by human perception, GenZSL operates on an
induction-based approach to synthesize informative and
high-quality sample features for unseen classes. To achieve
this, we introduce class diversity promotion to enhance the
diversity and discrimination of class semantic vectors. Ad-
ditionally, we design two losses targeting the criteria of
target class-guided information boosting to optimize the
model. Through qualitative and quantitative analyses, we
demonstrate that GenZSL consistently outperforms existing
generative ZSL methods in terms of efficacy and efficiency.

Impact Statement
Our induction-based generative method 1) offers new in-
sights into ZSL and other generation tasks, 2) aligns with
vision-language models (e.g., CLIP) to enable attribute-free
generalization, which paves the way for further advance-
ments in ZSL, 3) bridges the gap between classical ZSL
method (e.g., generative ZSL) and VLM-based methods
(e.g., CLIP).
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Appendix organization:
• Appendix A: Testing process of GenZSL.

• Appendix B: Class semantic vectors’ similarity heatmaps.

• Appendix C: Generative ZSL with weak class semantic vectors.

• Appendix D: t-SNE visualization on CUB and AWA2.

• Appendix E: Hyper-parameter analysis on SUN and AWA2.

A. Testing Process of GenZSL
We present the testing process of GenZSL in Fig. 7. Different to the standard VAE that samples the new data from Gaussian
noise, our GenZSL inducts the informative new sample features for unseen classes from the similar seen classes and takes
Gaussian noises to enable IVAE to synthesize variable and diverse samples. Then, we take the synthesized unseen class
samples x̂u to learn a supervised classifier (e.g., softmax), which is used for ZSL evaluation further.

Inductive Encoder Inductive Decoder…

Top-1 Top-2 Top-k

… Classifier

Figure 7. Testing process of GenZSL.

B. Class Semantic Vectors’ Similarity Heatmaps
We show the lass semantic vectors’ similarity heatmaps of SUN and AWA2 in Fig. 8. Results show that our CDP effectively
improves the discrimination and diversity for class semantic vectors, avoiding the confusion of synthesized visual features
between various classes. For example, the mean similarity of class semantic vectors on AWA2 is reduced from 0.7609 to
0.0005. As such, the class semantic vectors served as a distinct conditions for effective generation. Furthermore, we note
that due to the number of classes in SUN is more than AWA2, the impact of self-similarity of classes in AWA2 is more
heavier. This is why the mean similarity in AWA2 (coarse-grained dataset) is larger than SUN (fine-grained dataset).

(b) CLIP w/ CDP(a) CLIP text encoder (d) CLIP w/ CDP(c) CLIP text encoder

Mean Similarity (0.7312) Mean Similarity (9 ) Mean Similarity (0.7609) Mean Similarity (0.0005)

Figure 8. Class semantic vectors’ similarity heatmaps are extracted by CLIP text encoder and CLIP with class diversity promotion on
SUN (a,b) and AWA2 (c,d).
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C. Generative ZSL Methods with Weak Class Semantic Vectors
We provide the results of imagination-based ZSL (e.g., f-VAEGAN ) and induction-based generative ZSL (e.g., GenZSL)
using weak class semantic vectors (e.g., CLIP text embeddings of class names) on SUN and AWA2. Results are shown
in Table 5. We find that i) the performances of f-VAEGAN drop heavily on SUN (acc : 64.7%→ 45.2%; H : 41.3%→
33.3%) and AWA2 (acc : 71.1%→ 67.1%; H : 63.5%→ 59.8%) when it uses the weak class semantic vector rather than
the strong one (e.g., expert-annotated attributes); ii) our GenZSL achieves significant performance gains over f-VAEGAN.
These demonstrate that induction-based generative model is more feasible for ZSL than the imagination-based ones.

Table 5. Results of various generative ZSL methods with weak class semantic vectors on SUN and AWA2.

Methods
SUN AWA2

CZSL GZSL CZSL GZSL
acc U S H acc U S H

f-VAEGAN (strong) 64.7 45.1 38.0 41.3 71.1 57.6 70.6 63.5
f-VEAGAN (weak) 45.2 32.4 34.3 33.3 67.0 43.3 83.2 59.8
GenZSL (weak) 73.5 50.6 43.8 47.0 92.2 86.1 88.7 87.4

D. t-SNE Visualization on CUB and AWA2
As shown in Fig. 9, t-SNE visualizations of visual features learned by the f-VAEGAN and our GenZSL on CUB (a,b) and
AWA2 (c,d). Analogously, the visual features generated by f-VAEGAN are also far away from their corresponding real
ones, and the discrimination of these real/synthesized visual features is undesirable. In contrast, our GenZSL synthesize
visual features close to their corresponding real ones. As such, our GenZSL significantly improves the performances of
f-VAEGAN on CUB and AWA2. This demonstrates that GenZSL is a effective generative ZSL model.

E. Hyper-Parameter Analysis on SUN and AWA2
We analyze the effects of different hyper-parameters of our GenZSL on SUN and AWA2 datasets. These hyper-parameters
include the loss weight λ in Eq. 5 the number of the top referent classes top-k, and the number of synthesized samples
for each unseen class Nsyn. Fig. 10 shows the GZSL performances of using different hyper-parameters. We observe that
our GenZSL is robust and easy to train. We empirically set these hyper-parameters {λ, k,Nsyn} as {0.001, 2, 800} and
{0.1, 2, 5000} for SUN and AWA2, respectively.
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(a) f-VAEGAN on CUB (b) Our GenZSL on CUB
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(c) f-VAEGAN on AWA2 (d) Our GenZSL on AWA2

Figure 9. Qualitative evaluation with t-SNE visualization. The sample features from f-VAEGAN are shown on the left, and from our
GenZSL are shown on the right. We use 10 colors to denote randomly selected 10 classes from CUB (a,b) and AWA2 (c,d). The "×" and
"◦" are denoted as the real and synthesized sample features, respectively. The synthesized sample features and the real features distribute
differently on the left while distributing similarly on the right.
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Figure 10. Hyper-parameter analysis. We show the performance variations loss weight λ, the number of the top referent classes top-k, and
the number of synthesized samples of each unseen class Nsyn on SUN (a,b,c) and AWA2 (d,e,f).
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