
MTChat: A Multimodal Time-Aware Dataset and Framework
for Conversation

Anonymous ACL submission

Abstract

Understanding temporal dynamics is critical001
for applications ranging from conversations002
and multimedia content analysis to decision-003
making. However, time-aware datasets, partic-004
ularly for conversations, are still limited, which005
narrows their scope and diminishes their com-006
plexity. To overcome these limitations, we007
introduce MTChat, a multimodal time-aware008
dialogue dataset that integrates linguistic, vi-009
sual, and temporal elements in dialogue and010
persona memory. Based on MTChat, we de-011
sign two time-sensitive tasks, Temporal Next012
Response Prediction (TNRP) and Temporal013
Grounding Memory Prediction (TGMP), utiliz-014
ing implicit temporal cues and dynamic aspects015
to challenge model’s temporal awareness. Fur-016
thermore, we present an innovative framework017
with an adaptive temporal module to integrate018
these multimodal streams and build intercon-019
nections effectively. The experimental results020
confirm that novel challenges of MTChat and021
effectiveness of our framework in multimodal022
time-sensitive scenarios. The codes are pub-023
licly available at Anonymous Link and MTChat024
is submitted to ARR system.025

1 Introduction026

Research on temporal awareness has attracted con-027

siderable interest subsequent to (Min et al., 2020)028

seminal work, which illuminated the temporal dy-029

namics inherent in answers to questions. This030

temporal dimension is critical across various do-031

mains, such as financial decision-making, event032

outcomes, multimedia content analysis and percep-033

tions of topics. To explore the temporal awareness034

of large language models (LLMs), several time-035

sensitive datasets have been developed for research036

purposes. Among these, the TimeQA (Chen et al.,037

2021) and SituatedQA (Zhang and Choi, 2021)038

datasets offer time-sensitive questions accompa-039

nied by free-text contexts extracted from Wiki-040

Data (Vrandečić and Krötzsch, 2014). Additionally,041

Figure 1: An example in multimodal time-sensitive
scenarios: different dialogue responses from the user
with temporal dynamic of dialogue and his memories.

the TEMPLAMA dataset (Dhingra et al., 2022) was 042

constructed based on the temporal knowledge base. 043

StreamingQA (Liska et al., 2022) was compiled 044

from collections of news articles in the English 045

WMT challenges spanning 2007 to 2020. 046

Considering temporal aspects in a multimodal 047

dialogue dataset, common in real-world appli- 048

cations, is challenging. However, there is lim- 049

ited work addressing this problem. For previous 050

datasets, firstly, they are confined to the task set- 051

ting: QA tasks, and secondly, both the questions 052

and contexts being free-text (only linguistic in- 053

formation). A recently proposed time-sensitive 054

multimodal dataset for long video understanding, 055

termed TimeIT (Ren et al., 2023). This dataset, 056

while innovative, presents three primary limita- 057

tions: 1) its concentration on QA tasks restricts 058

broader application scope; 2) the explicit tempo- 059

ral markers in the videos fail to fully challenge 060

the model’s capabilities in temporal sensitivity to 061

implicit temporal cues; and 3) the fixed response 062

format “<timestamp_start> to <timestamp_end> 063

seconds: <event_description>” simplifies the task 064

by reducing the requirement for complex temporal 065

reasoning. 066

Addressing the limitations found in current time- 067

related datasets, we introduce MTChat, an inno- 068

vative multimodal time-aware dialogue dataset. 069
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Dataset Knowledge Corpus Samples Time-Sensitive Task has Images

TempLama (Dhingra et al., 2022) CustomNews 50.0k YES Question Answering NO
TimeQA (Chen et al., 2021) Wikipedia 41.2k YES Question Answering NO
StreamingQA (Liska et al., 2022) WMT07-20 138.0k YES Question Answering NO
TempReason-L2L3 (Tan et al., 2023) Wikipedia 49.0k YES Question Answering NO

PhotoChat (Zang et al., 2021) OpenImage V4 12.3k NO Dialogue YES
MMDialog (Feng et al., 2022) SocialMedia 1.1M NO Dialogue YES

MTChat Reddit 28.7k YES Dialogue YES

Table 1: Related datasets overview, including free-text time-sensitive datasets and multimodal dialogue datasets.

Firstly, This dataset features a comprehensive data070

structure that integrates linguistic, visual, and tem-071

poral elements within its dialogues and persona072

memories, which directly addresses the limitations073

of the free-text time-sensitive data formats cur-074

rently available. Secondly, MTChat offers vari-075

ous time-sensitive tasks: Temporal Next Response076

Prediction (TNRP) and Temporal Grounding Mem-077

ory Prediction (TGMP). These tasks with tempo-078

ral dynamic aspect are designed to make models079

aware of the impact of time and predict varying080

responses and grounding memories evolve signifi-081

cantly over time. The variety of task settings broad-082

ens the scope of research in time-sensitive domains.083

Thirdly, MTChat increases the complexity of the084

dataset by utilizing time as implicit cues. It skill-085

fully employs the time order of dialogues and mem-086

ories to demonstrate the influence of time on human087

cognition processes. Fig 1 depicts an example in088

multimodal time-sensitive scenarios.089

Moreover, based on the tasks presented in090

MTChat, we propose a pioneering framework fea-091

turing an adaptive temporal module. This frame-092

work is designed to augment the model’s capac-093

ity for integrating linguistic, visual, and temporal094

elements, thereby facilitating more coherent inter-095

connections among them. Specifically, this adap-096

tive temporal module is used to dynamically merge097

features based on their relevance, enhancing the098

coherence and efficacy of the integration.099

Finally, we conducted experiments on MTChat100

using SBERT (Reimers and Gurevych, 2019) and101

CLIP (Radford et al., 2021) models, which demon-102

strated that MTChat poses novel challenges to the103

model in multimodal time-sensitive scenarios. Fur-104

thermore, we compared our framework with other105

methods of feature integration, proving that our106

framework can effectively and markedly enhance107

the model’s capabilities in integrating multimodal108

streams with temporal awareness.109

The main contributions of this work are sum-110

marised as:111
• We create the first multimodal time-aware di-112

alogue dataset contains numerous instances 113

where both dialogue responses and the ground- 114

ing memories evolve markedly over time. 115

• We offer various time-sensitive tasks: Tempo- 116

ral Next Response Prediction and Temporal 117

Grounding Memory Prediction, extending the 118

the research landscape in time-sensitive do- 119

mains. 120

• We propose a innovative framework with 121

an adaptive temporal module to enhance 122

the model’s capabilities in integrating multi- 123

modal streams with temporal awareness. 124

• We present experimental results that demon- 125

strate MTChat dataset poses novel challenges, 126

and that our framework surpasses other meth- 127

ods in feature integration. 128

2 Comparison with Existing Datasets 129

We start with a brief comparison of existing 130

datasets, emphasizing multi-modal and time-aware 131

strategies (see Table 1 for an overview). 132

Time-Sensitive QA Datasets Time-Sensitive 133

Question Answering (TSQA) involves interpret- 134

ing and responding to questions that are depen- 135

dent on specific time points or intervals. We anal- 136

yse a set of TSQA datasets (Dhingra et al., 2022; 137

Chen et al., 2021; Liska et al., 2022; Tan et al., 138

2023), as shown in the upper part of Table 1. Cur- 139

rently, TSQA datasets typically use free-text form 140

or knowledge graphs (KGs) and are structured as 141

QA tasks. However, our work introduces the first 142

multimodal time-aware dataset based on conversa- 143

tion. Similar to TSQA, we modify the time of dia- 144

logues, which affects the responses and the related 145

grounding memory, thereby testing the model’s 146

ability to understand time. 147

MultiModal Dialogue Datasets Multimodal dia- 148

logue datasets generally comprise one or more im- 149

ages and multi-turn textual dialogues. As depicted 150

in the lower half of Table 1, we analyse two rep- 151

resentative datasets (Zang et al., 2021; Feng et al., 152
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2022). These datasets are designed for models to153

interpret images and utterances within a dialogue154

framework and generate coherent responses. Our155

MTChat dataset, although drawing on the conversa-156

tional structure and task, distinctively emphasizes157

the annotation and manipulation of time informa-158

tion. MTChat allows the model to acknowledge159

the influence of temporal dynamics on dialogue160

interaction and memory processes, demonstrating161

temporal awareness.162

Time-Sensitive Video-Centric Dataset163

TimeIT (Ren et al., 2023) is a novel dataset164

focused on video-based instructions, encompass-165

ing a collection of long-video datasets annotated166

with timestamps. It requires models to describe167

video content across specified time intervals. The168

description follows a structured format, such as169

“<timestamp_start> to <timestamp_end> seconds:170

<event_description>”. Ingeniously, our dataset171

integrates time of dialogues and memories, making172

model awareness of the time order of dialogue173

and memory significant influence on dialogue174

responses and memory recall. In contrast to175

TimeIT’s tasks that directly answer timestamp176

and associated content, MTChat offers a more177

complex challenge with implicit time factor,178

pushing the boundaries of temporal understanding179

in multimodal dialogue models.180

3 MTChat Dataset181

Our dataset is built on the basis of MPChat (Ahn182

et al., 2023), a comprehensive multimodal persona-183

grounded dialogue dataset that includes both184

linguistic and visual components derived from185

episodic-memory-based personas. MPChat gath-186

ered from the social media platform Reddit, con-187

sists of memory image-sentence pairs and dialogue188

instances grounded on the speakers’ multimodal189

memories.190

A significant challenge is the ingenious inte-191

gration of time information and multimodal dia-192

logue, aiming to establish a multimodal time-aware193

dataset. Based on MPChat dataset, we develop194

a novel methodology that involves three primary195

steps: 1) Time annotations, 2) Constructing time-196

aware conversations, and 3) Memory annotations.197

These efforts achieve the creation of a pioneering198

multimodal time-aware dialogue dataset. MTChat199

breaks away from the limitations of current time-200

sensitive datasets confined to QA tasks, free-text201

formats and relying on explicit time information.202

We believe that our work fosters the development of 203

more diverse time-sensitive datasets and advancing 204

research toward achieving human-level temporal 205

understanding in models. 206

3.1 Time Annotations 207

We converted the UTC strings in MPChat dataset 208

into date format “yyyy/mm/dd” and incorporated 209

this feature into both the dialogue and memory 210

components. The dialogue in our dataset is struc- 211

tured as a triplet consisting of (dialogue context, 212

dialogue image, dialogue time), while each mem- 213

ory of the speaker is similarly organized as a 214

triplet (memory description context, memory im- 215

age, memory time). 216

3.2 Time-Aware Conversations 217

In real-world scenarios, conversations can vary sig- 218

nificantly based on the time they occur, even with 219

similar contexts. For instance, as a high school 220

student asked, “What is machine learning?”, you 221

might respond with no knowledge on the subject. 222

However, after three years of studying machine 223

learning at university, your response to the same 224

conversation would be more detailed, potentially 225

including discussions about deep learning and re- 226

lated topics. 227

Inspired by how the temporal order of conver- 228

sation and memories influences human responses, 229

we constructed conversational data with temporal 230

orders: 231
• Later Stage Conversations: We used the orig- 232

inal memories and conversations from the 233

MPChat dataset, adding time annotations as 234

described in Section 3.1. For instance, if 235

you are a university student with three years 236

of study in machine learning and are asked, 237

“What is machine learning?”, your response 238

might include topics like deep learning. 239

• Early Stage Conversations: To simulate con- 240

versations from earlier times, we assumed 241

there was no prior memory of the discussion 242

topic. We used the context of the original con- 243

versations but removed the original responses. 244

We then add new, earlier time annotations and 245

responses. The newly created responses differ 246

from the original ones and contain minimal 247

information about the discussion topic due to 248

the lack of relevant memory. For example, if 249

you are a high school student asked, “What is 250

machine learning?”, you might respond with 251

little to no knowledge on the subject. 252
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Specifically, we utilized GPT-4 (Ouyang et al.,253

2022) to process a combination of inputs: the254

dialogue context, dialogue image, newly mod-255

ified dialogue time, and speaker memories pre-256

dating this new dialogue time. GPT-4 gener-257

ated responses under the following guidelines:258

1) responses could not exceed 40 words; 2)259

if the provided memories’ topics significantly260

differed from the conversation, the response261

should indicate the speaker’s lack of familiar-262

ity with the conversations topic; 3) if the pro-263

vided memories and conversation topics were264

only slightly different, the response should265

reflect the speaker’s intention to engage with266

and explore the conversation topic.267

3.3 Memory Annotations268

To gain a more precise understanding of the269

model’s capabilities in temporal awareness, we270

align conversations with memory. For the mem-271

ory component, we add time annotations as out-272

lined in Section 3.1. Since the memories of the273

speakers are sourced from real users on Reddit,274

we avoid creating fabricated memories to preserve275

data authenticity. Additionally, we incorporate a276

“No Memory” category into the speaker’s mem-277

ory set. Structured similarly to existing memory278

triplets (memory description context, memory im-279

age, memory time), the “No Memory” category is280

assigned as the description context, indicating that281

there is no memory to align with the response. 1282

This memory category is used to align early-stage283

conversations. We then synchronize the memory284

time with the conversation’s time information.285

3.4 Dataset Statistics286

MTChat comprises 18,973 conversations and287

25,877 users. We divided MTChat into training,288

validation, and test sets with 15,056, 1,994, and289

1,923 conversations respectively. We analyzed the290

proportion of later stage conversations and early291

stage conversations, finding a ratio of 3:1. As well292

as later stage conversations with grounding mem-293

ories (some later stage conversations lack ground-294

ing memory) and early stage conversations with295

“No Memory”, resulting in a ratio of 2:1. Further-296

more, to gain deeper insight into the time informa-297

tion within MTChat, we charted the distribution of298

times across conversations and memories in Fig 2.299

1We also correlate “No Memory” with a plain white image
as the memory image.

Figure 2: The distribution of times across conversations
and memories in training, validation, and test set.

4 Task Definition 300

The MTChat datasets consist of N examples D = 301

{(dn, rn,Mn)}Nn=1, where ∀n ∈ {1, . . . , N} and 302

each example contains a dialogue dn, the speaker’s 303

response rn to the dialogue dn and a memory 304

set Mn from the speaker. Each dialogue dn = 305

(cdn , idn , tdn) encompasses the context cdn (con- 306

text utterances), an associated image idn and the 307

time marking tdn (formatted as yyyy/mm/dd) when 308

the dialogue occurred. The memory set for the 309

speaker consists of m distinct memories Mn = 310

{Mn1 , . . . ,Mnm}, where each memory Mnm = 311

(cMnm , iMnm , tMnm ) characterized by a descrip- 312

tion context cMnm (context utterances), an image 313

iMnm and the time marking tMnm (formatted as 314

yyyy/mm/dd) when the memory occurred. 315

4.1 Temporal Next Response Prediction 316

As illustrated in the Fig 3, Temporal Next Re- 317

sponse Prediction (TNRP) is a retrieval task aimed 318

at predicting the next response r̃ from a set Rc 319

containing C response candidates based on the dia- 320

logue d = (cd, id, td) and the speaker’s memories 321

M = {M1 = (cM1 , iM1 , tM1), . . . ,Mm}. The 322

response candidate set Rc comprises one ground 323

truth and C − 1 distractor responses. It is essential 324

to emphasize that, 1) Identical dialogue content 325

and speaker memories can lead to vastly different 326

responses depending on the time of the dialogue. 327

2) To intensify the task’s complexity and underline 328

the temporal factor’s significance, our response 329

candidate set includes responses from later-stage 330

dialogue and early-stage dialogue. The remainder 331

of the response candidates are randomly selected 332

from other dialogues. 333
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Figure 3: An overview of Temporal Next Response Prediction (TNRP) and Temporal Grounding Memory Prediction
(TGMP) task. A user Alice’s memories (i.e., four image-sentence-time triplet) and a same dialogue with different
created date in the left part. Predicting responses and grounding memory from candidates is depended on the
understanding temporal dynamic of dialogue and Alice’s memories.

4.2 Temporal Grounding Memory Prediction334

Temporal Grounding Memory Prediction (TGMP)335

task is also a retrieval task that requires predicting336

the most likely memory element from a set Mc337

containing C memory candidates based on a given338

dialogue d = (cd, id, td) and a remainder memory339

set (except grounding memory) before producing a340

response. The memory candidate set Mc comprises341

one grounding memory, one “No Memory” option342

and C − 2 distractor memories randomly selected343

from other speakers. As shown in Fig 3, time vari-344

ations within the dialogue substantially influence345

the choice of the grounding memory. Specifically,346

when the time of the dialogue is later than the time347

of the grounding memory, suggesting the availabil-348

ity of memory related to the dialogue for support-349

ing the speaker’s response, the model is capable350

of predicting the grounding memory. Conversely,351

if the time of the dialogue is earlier than that of352

the grounding memory, indicating an absence of353

relevant dialogue memory, the model must predict354

a “No Memory” outcome.355

In TGMP task, we deliberately exclude the356

speaker’s response from the input. This decision357

is based on the consideration that potential re-358

sponses of early-stage dialogue can vary signif-359

icantly—ranging from disinterest in the dialogue360

topic to expressing a desire to learn. These different361

but reasonable responses could potentially confuse362

the model to predict grounding memory. The prin-363

cipal objective of the TGMP task is making model364

recognize the critical temporal order between di-365

Figure 4: The architecture of our framework with Adap-
tive Temporal Module (ATM).

alogue and memory. By focusing on whether the 366

model can identify the appropriate grounding mem- 367

ory or its absence for a given time information, we 368

obtain a clearer measure of its temporal awareness 369

capabilities. 370

5 Framework 371

In this section, we present a framework to perform 372

above retrieval tasks based on dialogue and mem- 373

ory. The inputs include dialogue dn, the speaker’s 374

response rn to the dialogue and a memory set Mn. 375

We define various encoders to process different 376

modalities of data, fuse the extracted features, and 377

achieve both the temporal next response prediction 378

task and the temporal grounding memory predic- 379
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tion task. The architecture of our framework is380

shown in Fig 4.381

Text Encoder In this study, we employ the text382

encoder to process textual components within tasks,383

specifically extracting representations of text and384

date information from dialogues, memories, and385

responses. For both dialogue and speaker memo-386

ries, which may contain multiple entries, we first387

concatenate the text and date information for each388

entry. These concatenated strings are then further389

combined using a delimiter, forming unified rep-390

resentations. This method ensures comprehensive391

feature extraction by the text encoder, facilitating a392

more robust analysis of the textual data involved.393

Vision Encoder Similarly, our vision encoder394

to extract features from images embedded in dia-395

logues and memories. In datasets featuring speaker396

memories with multiple images, each image is pro-397

cessed by this vision encoder. The extracted fea-398

tures are then aggregated via mean-pool operation399

to create a consolidated visual representation. This400

methodology ensures a coherent integration of vi-401

sual data, significantly enhancing the model’s ca-402

pacity to process multi-image features effectively.403

Adaptive Temporal Module Following the ex-404

traction of textual and visual representations, it is405

essential to effectively integrate these features. As406

the inclusion of date information into textual repre-407

sentations can impact the correspondence between408

the text and vision features extracted by text en-409

coder and vision encoder, we propose a method410

to dynamically balance these modalities to main-411

tain the alignment of text and visual information412

within the same set of memories and dialogues.413

We introduce a module called the Adaptive Tem-414

poral Module (ATM), which is designed to be both415

simple and effective.416

First, we concatenate the corresponding text and417

vision features and map them through a linear layer.418

Subsequently, a sigmoid layer is used to derive the419

weights for both text and vision features. These420

weights are then employed to merge the features421

based on their relevance, ensuring better alignment422

and integration. This approach allows for a more423

coherent and contextually appropriate fusion of424

multimodal features, enhancing the overall inter-425

pretative capability of the model.426

6 Experiments427

6.1 Experimental Setup428

Baselines We consider the following baselines:429

• SBERT+CLIP: We adopt a Trans- 430

former (Vaswani et al., 2017) initialized 431

weights of SBERT (Reimers and Gurevych, 432

2019) and CLIP-ViT-B/32 vision model (Rad- 433

ford et al., 2021) as text encoder and vision 434

encoder to represent text and image respec- 435

tively. SBERT enhances the original BERT 436

model (Devlin et al., 2018) to better handle 437

similarity comparisons of dialogue and 438

memory textual information. CLIP-ViT-B/32 439

vision model utilizes a Vision Transformer 440

(ViT) (Dosovitskiy et al., 2020) with 32 441

attention heads, which enables it to capture 442

more visual features. 443

• CLIP+CLIP: We utilize the CLIP-ViT-B/32 444

model (Radford et al., 2021) as text encoder 445

(CLIP-ViT-B/32 text model) and vision en- 446

coder (CLIP-ViT-B/32 vision model). CLIP- 447

ViT-B/32 text model employs a Transformer 448

similar to GPT (Radford et al., 2018), de- 449

signed specifically for processing textual in- 450

put, making it ideally suited for textual analy- 451

sis requirements. 452

Training We train both baselines and our frame- 453

work for 5 epochs with a batch size of 8 on a 454

NVIDIA Tesla V100 GPU. The model is optimized 455

using Adam (Kingma and Ba, 2014) with a learn- 456

ing rate of 3e−6. For our framework, we incorpo- 457

rated the Adaptive Temporal Module (ATM) into 458

two baselines to validate the effectiveness of frame- 459

work. We set the number of speaker’s memories is 460

m = 20 and the number of candidates is C = 100. 461

Evaluation Metrics We assess the performance 462

of the model on two tasks using Recall@1 and 463

Mean Reciprocal Rank (MRR), which is the stan- 464

dard evaluation metrics on dialogue task (Lee et al., 465

2021; Feng et al., 2022; Ahn et al., 2023). Re- 466

call@1 quantifies the model’s accuracy in retriev- 467

ing the most relevant result as the top result for 468

each query, effectively capturing the model’s abil- 469

ity to return the most relevant result as the first 470

item. MRR evaluates the average inverse ranking 471

of the first relevant result across queries, providing 472

insight into the model’s overall retrieval quality. 473

6.2 Experimental Results 474

We conduct experiments of two baselines with and 475

without our framework on time-sensitive tasks in 476

MTChat. Besides, we define two input settings: 477

one limited to dialogue, and the other encompass- 478

ing both dialogue and speaker’s memories. The 479
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Model Input Setting
TNRP TGMP

R@1 MRR R@1 MRR

SBERT+CLIP
d 58.26 69.90 49.17 63.38

d, M 61.32 72.55 58.90 73.53

SBERT+CLIP+ATM
d 58.70 70.26 52.04 65.35

d, M 61.55 72.78 60.22 74.26

CLIP+CLIP
d 66.20 76.34 56.91 70.64

d, M 68.75 78.66 67.25 80.50

CLIP+CLIP+ATM
d 66.97 76.96 57.35 71.04

d, M 69.26 78.92 71.82 83.68

Table 2: Results of the Temporal Next Response Pre-
diction (TNRP) and Temporal Grounding Memory Pre-
diction (TGMP) tasks. Symbols means: dialogue d =
(cd, id, td) contains a context, an image and time infor-
mation. A speaker’s memory set M = {M1, . . . ,Mm},
where each memory M = (cM , iM , tM ) characterized
by a context, an image and time information.

Method
Temporal Grounding Memory Prediction

R@1 MRR

Attention Fusion 63.65 76.72

Linear Fusion 66.41 79.59

Mean-Pool Fusion 67.25 80.50

ATM (ours) 71.82 83.68

Table 3: Comparison of Adaptive Temporal Module
(ATM) with other methods of feature integration on
Temporal Grounding Memory Prediction task.

findings, as depicted in Table 2, reveal several in-480

sights: 1) MTChat poses challenges in terms of481

the multimodal temporal awareness capabilities482

of models. Despite TNRP and TGMP being re-483

trieval tasks, both baselines exhibited inadequate484

performance on these time-sensitive challenges,485

achieving Recall@1 scores not surpassing 70. 2)486

Our framework is model-agnostic and effective, en-487

hancing performance over both baselines. Note488

that in our TNRP task, where labels contain only489

the response text, the ATM module—which is tai-490

lored for multimodal fusion balance—yields a less491

pronounced improvement. 3) The temporal order-492

ing of dialogue and memories plays a pivotal role493

in MTChat. In previous works with multimodal494

persona-grounded dialogue datasets (Zhong et al.,495

2020; Wen et al., 2021), the persona information496

serves as supplementary data to improve the ac-497

curacy of predicted dialogue responses. However,498

in MTChat, both persona memory and dialogue499

are essential components. They not only enhance500

the model’s temporal awareness but also signifi-501

cantly influence performance. For instance, for502

CLIP+CLIP+ATM model on TGMP task, when503

the input lacked memory data, performance signifi-504

cantly dropped by 20.1% in Recall@1 and 15.1%505

in MRR.506

In addition, to evaluate the performance of 507

the Adaptive Temporal Module within our pro- 508

posed system, we conducted a comparative analysis 509

against other feature fusion methods: 510

• Attention Fusion: This method adeptly com- 511

bines textual and temporal data with image 512

features, employing an attention-based mod- 513

ule to learn weights. This enhances the 514

model’s sensitivity to contextually significant 515

features. 516

• Linear Fusion: Incorporates two linear layers 517

optimized during training, enabling the model 518

to directly learn the weights that most effec- 519

tively combine textual and visual information. 520

521• Mean-Pool Fusion: This approach computes 522

the mean of the combined features, aggregat- 523

ing them from different modalities by simple 524

averaging. 525

These methods were assessed using the 526

CLIP+CLIP model on the Temporal Grounding 527

Memory Prediction (TGMP) task. The findings in 528

Table 3 indicate that the Adaptive Temporal Mod- 529

ule surpassed other techniques, achieving improve- 530

ments of 12.8%, 8.1%, and 6.4% in Recall@1, re- 531

spectively. These results substantiate the superior 532

capability of our framework to effectively enhance 533

multimodal integration with temporal awareness. 534

6.3 Ablation Study 535

Model Input Setting
TNRP TGMP

R@1 MRR R@1 MRR

CLIP+CLIP
d, M(zero-shot) 39.49 52.07 54.59 61.27

d, M 68.75 78.66 67.25 80.50

Table 4: Ablation study of baseline CLIP+CLIP with
zero-shot setting.

Zero-Shot Setting We explore the performance 536

of the CLIP+CLIP model with a zero-shot setting 537

on time-sensitive tasks. As shown in Table 4, the 538

model demonstrates poor performance on MTChat 539

time-sensitive tasks, showing the challenges inher- 540

ent in MTChat and highlighting the urgent need for 541

research into multimodal temporal awareness. 542

The Importance of Temporal Awareness This 543

study highlights the critical role of temporal aware- 544

ness in models. Utilizing the CLIP+CLIP model, 545

we trained on datasets both with and without tem- 546

poral data of dialogue and memories. These mod- 547

els were then evaluated on the Temporal Ground- 548

ing Memory Prediction (TGMP) task. Our find- 549

ings (see Table 5) reveal a marked difference in 550
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Model Input Setting
TGMP

R@1 MRR

CLIP+CLIP
d, M(without time) 60.99 65.09

d, M 68.75 78.66

Table 5: Ablation study of baseline CLIP+CLIP without
time information.

performance: models without temporal aware-551

ness demonstrated substantial difficulties in time-552

sensitive tasks. Conversely, models incorporating553

temporal awareness significantly excelled, achiev-554

ing a 12.7% increase in recall@1 and a 20.8% im-555

provement in MRR.556

7 Related Work557

Time-Sensitive Datasets In recent years, numer-558

ous contemporary time-sensitive datasets have been559

introduced, predominantly composed in the format560

of question answering and exclusively in textual561

form (Zhang and Choi, 2021; Chen et al., 2021;562

Tan et al., 2023; Liska et al., 2022; Wei et al.,563

2023). A significant contribution to this field is564

the SituatedQA dataset (Zhang and Choi, 2021),565

which emphasizes open-domain time-sensitive QA.566

It uniquely reannotates questions from the Nat-567

ural Questions (NQ) (Kwiatkowski et al., 2019)568

and Wikidata (Vrandečić and Krötzsch, 2014) to569

reflect context dependency and variability in an-570

swers across different times and locations. An-571

other notable dataset, TimeQA (Chen et al., 2021)572

comprises 20,000 questions and its hard version573

requiring models to infer from implicit temporal574

cues within text passages.In addition, the TempRea-575

son dataset (Tan et al., 2023) introduced by Tan576

presents a comprehensive framework for evaluating577

various aspects of temporal understanding. These578

datasets with the Open Book Question Answering579

(OBQA) setting, relying on external text to help580

language models (Izacard and Grave, 2020; Zaheer581

et al., 2020; Wei et al., 2021; Ouyang et al., 2022)582

in deducing correct answers.583

There are also time-sensitive datasets structured584

around Closed Book Question Answering (CBQA),585

where the models must rely solely on the in-586

formation within the question, without external587

text (Févry et al., 2020; Roberts et al., 2020; Dhin-588

gra et al., 2022).589

Moreover, there are time-sensitive datasets based590

on knowledge graphs, such as TEQUILA (Jia et al.,591

2018), TimeQuestions (Jia et al., 2021), and Cron-592

Questions (Saxena et al., 2021). These datasets fea-593

ture more complex questions in natural language 594

and require models to rank entities from a knowl- 595

edge graph based on their temporal relevance. 596

Multimodal Dialogue Datasets Recently, sev- 597

eral multimodal dialogue datasets have emerged, 598

incorporating one or more images alongside multi- 599

turn textual dialogues. Research in multimodal 600

dialogue primarily aims to comprehend images and 601

utterances within a context to either answer ques- 602

tions (Antol et al., 2015; Das et al., 2017; Seo et al., 603

2017; Kottur et al., 2019; Li et al., 2023) or gen- 604

erate natural responses(Meng et al., 2020; Zheng 605

et al., 2021; Wang et al., 2021; Zang et al., 2021; 606

Feng et al., 2022). (Mostafazadeh et al., 2017) in- 607

troduced the IGC dataset, which consists of 4,000 608

dialogues, each featuring an image with a textual 609

description as well as accompanying questions and 610

responses centered around the image. (Shuster 611

et al., 2018) released the ImageChat dataset, which 612

significantly larger than IGC. As research into mul- 613

timodal dialogue has deepened, datasets incorpo- 614

rating persona information have become increas- 615

ingly prevalent. Datasets such as FoCusd (Jang 616

et al., 2022), MPChat (Ahn et al., 2023), DuLe- 617

Mon (Xu et al., 2022), and MSPD (Kwon et al., 618

2023) include dialogues paired with persona infor- 619

mation, ranging from purely textual to multimodal 620

personas. Correspondingly, models are designed 621

to extract relevant personal information, which can 622

significantly enhance the generation of dialogue 623

responses. 624

8 Conclusion 625

In this work, we addressed the under-explored as- 626

pect of temporal awareness in multimodal scenar- 627

ios by introducing the MTChat dataset and an ac- 628

companying framework with an adaptive temporal 629

module. The MTChat dataset, with its integration 630

of linguistic, visual, and temporal elements, offers 631

a high-quality resource for advancing research in 632

temporal reasoning. MTChat challenges models 633

by requiring comprehension of temporal dynam- 634

ics, thereby extending the scope of time-sensitive 635

research beyond traditional QA formats. Our pro- 636

posed adaptive temporal module has demonstrated 637

substantial improvements in model performance, 638

suggesting its potential applicability in various real- 639

world scenarios. 640
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9 Limitations641

Despite its comprehensive structure and innova-642

tive tasks, the MTChat dataset and our framework643

present certain limitations and need attention for644

future development. For MTChat dataset, while the645

dataset significantly enhances the challenge of tem-646

poral reasoning by incorporating implicit temporal647

cues, it may still not fully capture the subtleties of648

real-world temporal dynamics, such as those influ-649

enced by cultural, historical, or personal contexts650

that affect human interactions. For our framework,651

future research should focus on refining this frame-652

work and exploring its scalability and adaptability653

across different domains and temporal challenges,654

aiming to further our understanding of time’s im-655

pact on cognitive and decision-making processes.656

10 Ethics Statement657

In the development of the MTCHAT dataset, we658

have placed a high priority on privacy and adher-659

ence to ethical standards. We ensured that the660

images in the dataset do not contain identifiable661

features such as faces, license plates, or email ad-662

dresses, and the text is free from offensive language.663

We urge users of the dataset to be aware of these664

inherent risks. Additionally, commercial use of our665

data is strictly limited to ensure compliance with666

the Reddit API Terms and to protect user privacy.667

The MTCHAT dataset is exclusively permitted for668

academic research purposes.669
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Appendix885

A Detailed Prompt of GPT-4886

Prompt of GPT-4 for generating response to early-stage conversation

Given the topic of a conversation, the context of the dialogue, and multiple memories
of the speaker, please write a response to the conversation.

It is important to note:
1. responses could not exceed 40 words.
2. If the memories are almost unrelated to the conversation, the generated response
should reflect the speaker’s lack of expertise in the conversation topic.
If appropriate, consider incorporating the current content of the speaker’s memories.
3. If the memories are related to the conversation, the response should express
a willingness to try or explore it in the future.

Conversation Topic: [topic]
Dialogue Context: [context]
Memories: [context]

Table 6: Detailed prompt of GPT-4 for generating re-
sponse to early-stage conversation.

B Detailed Parameters887

The parameter settings of Temporal Next Response888

Prediction (TNRP) and Temporal Grounding Mem-889

ory Prediction (TGMP) tasks used in our paper are890

illustrated in Table 7.891

Parameters TNRP TGMP

per_gpu_train_batch_size 8 8
per_gpu_eval_batch_size 1 4
num_train_epoch 5 5
max_num_candidates 100 100
max_num_image 20 20
image_size 224 224
learning_rate 3e−6 3e−6

weight_decay 0.05 0.05

Table 7: Detailed Parameters of Temporal Next Re-
sponse Prediction (TNRP) and Temporal Grounding
Memory Prediction (TGMP) tasks.
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