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Abstract

Generative flow networks (GFNs) are a class of probabilistic models for sequential sampling
of composite objects, proportional to a target distribution that is defined in terms of an
energy function or a reward. GFNs are typically trained using a flow matching or trajectory
balance objective, which matches forward and backward transition models over trajectories.
In this work we introduce a variational objective for training GFNs, which is a convex
combination of the reverse- and forward KL divergences, and compare it to the trajectory
balance objective when sampling from the forward- and backward model, respectively. We
show that, in certain settings, variational inference for GFNs is equivalent to minimizing the
trajectory balance objective, in the sense that both methods compute the same score-function
gradient. This insight suggests that in these settings, control variates, which are commonly
used to reduce the variance of score-function gradient estimates, can also be used with the
trajectory balance objective. We evaluate our findings and the performance of the proposed
variational objective numerically by comparing it to the trajectory balance objective on two
synthetic tasks.

1 Introduction

Generative flow networks (GFNs) (Bengio et al., 2021a;b) have recently been proposed as a computationally
efficient method for sampling composite objects such as molecule strings (Bengio et al., 2021a), DNA
sequences (Jain et al., 2022) or graphs (Deleu et al., 2022). To generate such objects, GFNs sample a
trajectory along a directed acyclic graph (DAG) in which edges correspond to actions that modify the object.
A trajectory sequentially constructs an object by transitioning from a root node (initial object, or null state)
to a terminating node (final composite object) which is scored according to a reward signal. While sampling
sequences of actions has been well studied in the reinforcement learning literature (Sutton and Barto, 2018),
the objective is typically to find a policy which maximizes the expected reward of the trajectory. By contrast,
GFNs are trained to learn a policy that solves a planning-as-inference problem (Toussaint et al., 2006) by
learning a distribution over trajectories ending in a terminating state with probability proportional to the
reward assigned to it. This is done by optimizing objectives which aim to satisfy a flow matching or detailed
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balance condition (Bengio et al., 2021a). Malkin et al. (2022b) has since found that these objectives are prone
to ineffective credit propagation across trajectories and proposes an alternative objective based on a trajectory
balance (TB) condition to alleviate these problems. Most recently, Madan et al. (2022) proposed an objective
that can be optimized on partial trajectories and (Do et al., 2022) proposed an optimal-transport-based
objective to further improve generalization and exploration.

A positive reward function can be interpreted as an unnormalized distribution, which one wishes to generate
samples from. In this view, we are interested in sequentially sampling form a factorized joint distibution,
such that the marginal distribution of the final state is approximately equal to the corresponding normalized
distribution. Generating approximate samples from an unnormalized target distribution is a well-studied
task in probabilistic inference, for which many methods have been developed. Examples include methods
based on MCMC (Hoffman and Gelman, 2014; Salimans et al., 2015; Li et al., 2017; Hoffman, 2017; Naesseth
et al., 2020; Zhang et al., 2022c), importance sampling Neal (2001); Del Moral et al. (2006); Naesseth et al.
(2019) and variational inference (Blei et al., 2017; Naesseth et al., 2018; Maddison et al., 2017; Le et al., 2018;
Zimmermann et al., 2021). Recent work on GFNs by Zhang et al. (2022b) takes a similar view by treating the
reward function as an energy-based model, which can be trained to maximize the data likelihood following a
contrastive divergence-based approach (Hinton, 2002), while the forward- and backward transition models
are trained by optimizing the TB objective.

In this work we show that, in certain settings, optimizing the TB objective is equivalent to optimizing a
forward- or reverse Kullback–Leibler divergence. To this end we compare the TB objective when optimized
with samples generated from the forward transition model, backward transition model, or a mixture of both,
to training with a corresponding variational objective, which takes the form of a convex combination of the
forward- and reverse Kullback-Leibler divergence. We identify cases in which the TB objective is equivalent
to the corresponding variational objective and leverage this insight to employ variance reduction techniques
from variational inference. Finally, we run experiments, to evaluate our theoretical findings and the empirical
performance of the trajectory balance and the corresponding variational objective.

Related Work Recent work by Zhang et al. (2022a) identifies equivalences between GFNs and certain
classes of generative models. The authors observe that hierarchical variational auto-encoders are equivalent to
a special class of GFNs, and that training hierarchical latent variable models with the forward KL divergence
between the full backward- and forward transition model of the GFN is equivalent to training a hierarchical
VAE by maximizing its ELBO.

In concurrent and independent work, Malkin et al. (2022b) derive the same equivalences between optimizing
the TB objective and forward- and reverse KL divergence that we establish in this work. The difference with
our work is that we establish these equivalences based on a composite objective which is a convex combination
of the reverse and forward Kullback-Leibler divergences. Using the composite objective we also explore setting
for which training is not equivalent but conceptually similar in the sense that the same proportion of samples
is taken from the forward and backward model. Furthermore, we discuss and study this objective in context
of learning energy-based models. Finally, we also study the differences between variational inference and
trajectory balance optimization when the forward and backward trajectory distributions share parameters.

2 Background

In the following we give a brief introduction to Generative Flow Networks, variational inference, and variance
reduction techniques for discrete variable models. It is important to note that we introduce the concept
of flows, which are used to define the a forward- and reverse transition model based on the flow along the
edges of a DAG, for completeness only. In the remainder we only assume the existence of a proper forward-
and backward transition model for a given DAG, which does not need to be parameterized by a flow. For a
comprehensive study of flows and generative flow networks we refer to Bengio et al. (2021a;b).
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2.1 Generative Flow Networks

Generative Flow Networks (Bengio et al., 2021a) aim to generate trajectories τ = (s0, s1, . . . , sT , sf ) along
the edges of a directed acyclic graph G = (S, E). Each trajectory starts in the root, s0, and terminates in a
terminating state, sT , before transitioning to a special final state, sf , which is the single leaf node of G. A
non-negative reward signal R(sT ) is assigned to each terminating state sT . The task is to learn a sampling
procedure, or flow, for simulating trajectories, such that the marginal distribution of reaching the terminating
state sT is proportional to R(sT ). We adopt the convention that sf = sT+1. The structure of the DAG
imposes a partial order, <, on states s, s′ ∈ S such that s < s′ if s is an ancestor of s′. Hence, any trajectory
satisfies sj < sk for 0 ≤ j < k ≤ T + 1 and consequently does not contain loops. In Figure 1 we illustrate
a possible DAG structure and corresponding forward- and backward transition models over the domain of
(extended) binary vectors.

2.1.1 Trajectory Flows

A trajectory flow is a non-negative function FG : T → R+ on complete trajectories T , i.e. trajectories
starting in a initial state s0 and ending in the final state sf associated with a DAG G. Below, we drop the
graph subscript for notational convenience. A trajectory flow defines a probability measure P over complete
trajectories, such that for any event A ⊆ T

P (A) = F (A)
Z

, F (A) =
∑
τ∈A

F (τ), Z =
∑
τ∈T

F (τ),

where Z can be interpreted as the total amount of flow. The flow F (s) through a state and the flow F (s → s′)
along an edge (s, s′) are denoted by

F (s) := F ({τ ∈ T : s ∈ τ}), F (s → s′) := F ({τ ∈ T | ∃t ∈ N : s = st, s
′ = st+1 ∈ τ}).

The probability of a trajectory containing the state s, and the forward- and backward transition probabilities
are denoted by

P (s) := F (s)
Z

, PF (s′ | s) := P (s → s′ | s) := F (s → s′)
F (s) , PB(s | s′) := P (s → s′ | s′) = F (s → s′)

F (s′) .

A flow is referred to as a Markovian flow if its corresponding probability measure satisfies P (s → s′ | τ) =
P (s → s′ | s) for any consecutive states s, s′ and partial trajectory τ = (s0, . . . , s) ending in s. For a
Markovian flow and complete trajectory τ ∈ T we have,

P (τ) =
T∏
t=0

PF (st+1 | st) =
T∏
t=0

PB(st | st+1).

GFNs parameterize a Markovian flow on a DAG by modeling the forward transition probabilities PF (s′|s;ϕ)
together with a normalizing constant Zψ, which can be interpreted as an approximation to the total amount
of flow. The trajectory flow is given by

F (τ ;ϕ, ψ) = Zψ

T∏
t=0

PF (st+1 | st;ϕ) =
∏T
t=0 F (st → st+1;ϕ, ψ)∏T−1
t=0 F (st+1;ϕ, ψ)

= Zψ

T∏
t=0

PB(st | st+1;ϕ).

2.1.2 Training Generative Flow Networks

For a reward function R, we want to find transition probabilities PF and PB, i.e. parameters ϕ, such that
PB(sT | sf ;ϕ) = R(sT )/Z =: πT (sT ). In some scenarios we want to fix the backward transition model, e.g. a
uniform distribution model can be advantageous for exploration, or parameterize it with a distinct set of
parameters θ. In this case, the forward and backward transition probabilities do not correspond to the same
flow and, under slight overload of notation, we refer to PB(s | s′; θ) as the backward transition probabilities.

3



Published in Transactions on Machine Learning Research (04/2023)

Figure 1: Graph representing the forward- and backward transition model of a GFN over states s ∈ {∅, 0, 1}n
(∅ - white, 0 - light gray, 1 - dark gray); the graph is a DAG in the forward- and backward direction respectively.
Each forward transition sets one of the ∅-bits to either 0 or 1 (example in blue), whereas each backward
transition deletes one set bit (example in orange).

Bengio et al. (2021a) originally proposed objectives to train GFNs based on the flow matching conditions
and a detailed balance condition. Malkin et al. (2022a) observe that optimizing these may lead to inefficient
credit propagation to early transitions, especially for long trajectories. To alleviate this, Malkin et al. (2022a)
propose an alternative TB objective for complete trajectories

LTB(τ, λ) =
(

log
Zψ
∏T
t=0 PF (st+1|st;ϕ)

R(sT )
∏T−1
t=0 PB(st|st+1; θ)

)2

=
(

log ZψQ(τ ;ϕ)
ZP (τ ; θ)

)2
, (1)

where λ = (ϕ, θ, ψ) and we define

P (τ ; θ) := R(sT )
Z

T−1∏
t=0

PB(st | st+1; θ), Q(τ ;ϕ) :=
T∏
t=0

PF (st+1 | st;ϕ).

Trajectories τ are sampled from a proposal distribution q with full support over the space of trajectories
T . The TB objective is optimized using stochastic gradient descent. The gradient w.r.t. all parameters
λ = (ϕ, θ, ψ) is computed as the average over a batch of S i.i.d. samples. Solutions correspond to fixed points
of the (negative) expected gradient

Eτ∼q

[
d

dλ
LTB(τ, λ)

]
= 0.

We can compute an unbiased estimate of this gradient using samples from the proposal distribution,

gTB(λ) := 1
S

S∑
s=1

d

dλ
LTB(τs, λ), τs ∼ q.

In section 3, we show how optimizing GFNs using the TB objective corresponds to variational inference on
complete trajectories. Going forward, we refer to the probability mass functions Q(τ ;ϕ) and P (τ ; θ) over
complete trajectories as forward and backward model, respectively.

2.2 Variational Inference

The problem of finding corresponding forward and backward transition probabilities can alternatively be
phrased as a variational inference problem. The goal is to find parameters ϕ and θ such that the difference
between the forward and backward transition probabilities, measured by a suitable divergence, is minimized.
Two commonly used divergence measures are the forward Kullback-Leibler divergence (FKL) and reverse
Kullback-Leibler divergence (RKL),

LRKL(ϕ, θ) := KL(Q(· ;ϕ) | P (· ; θ)) = Eτ∼Q

[
log Q(τ ;ϕ)

P (τ ; θ)

]
= Eτ∼Q [− logw] , (2)

LFKL(ϕ, θ) := KL(P (· ; θ) | Q(· ;ϕ)) = Eτ∼P

[
log P (τ ; θ)

Q(τ ;ϕ)

]
= Eτ∼P [logw] , (3)
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with the importance weights w := P (τ ; θ)/Q(τ ;ϕ). The divergences can be optimized using stochastic
gradient descent with gradients estimated from samples from the forward model Q and backward model P ,
respectively. In most setting, samples from P are not readily available and one has to resort other techniques
to generate approximate samples, e.g. using importance sampling or MCMC (Naesseth et al., 2020).

Computing the derivative of LRKL w.r.t. parameters θ of the backward transition model is straightforward,
the dependence only appears in the log-weights. We can approximate the resulting expected gradient using S
samples from the forward model,

d

dθ
LRKL(ϕ, θ) = Eτ∼Q

[
− d

dθ
logP (τ ; θ)

]
≈ gθRKL(ϕ, θ) := 1

S

S∑
s=1

− d

dθ
logP (τs; θ), τs ∼ Q(·;ϕ).

Similarly, the derivative of LFKL w.r.t. parameters ϕ of the forward transition model and corresponding
gradient estimator gϕRKL are

d

dϕ
LFKL(ϕ, θ) = Eτ∼P

[
− d

dϕ
logQ(τ ;ϕ)

]
≈ gϕFKL(ϕ, θ) := 1

S

S∑
s=1

− d

dϕ
logQ(τs;ϕ), τs ∼ P (·; θ).

Computing derivative of LRKL w.r.t. ϕ and derivative of LFKL w.r.t. θ on the other hand involves computing
a so-called score-function gradient,

d

dϕ
LRKL(ϕ, θ) =

∑
τ∈T

log Q(τ ;ϕ)
P (τ ; θ)

d

dϕ
Q(τ ;ϕ) +

(
d

dϕ
log Q(τ ;ϕ)

P (τ ; θ)

)
Q(τ ;ϕ)

=
∑
τ∈T

log Q(τ ;ϕ)
P (τ ; θ)Q(τ ;ϕ) d

dϕ
logQ(τ ;ϕ) +Q(τ ;ϕ) d

dϕ
logQ(τ ;ϕ)

= Eτ∼Q

[
(− logw + 1) d

dϕ
logQ(τ ;ϕ)

]
= Eτ∼Q

[
− logw d

dϕ
logQ(τ ;ϕ)

]
Importantly, we can cancel-out the additional score-function term (last equality of above equation) as
Eτ∼Q[a d

dϕ logQ(τ ;ϕ)] = 0 for any constant a. The corresponding score-function gradient estimator is thus

gϕRKL(ϕ, θ) := 1
S

S∑
s=1

− logws
d

dϕ
logQ(τs;ϕ), ws := P (τs; θ)

Q(τs;ϕ) , τs ∼ Q(·;ϕ).

Analogously, we can compute a score function gradient of LFKL w.r.t. θ and corresponding estimator

Eτ∼P

[
logw d

dθ
logP (τ ; θ)

]
≈ gθFKL(ϕ, θ) := 1

S

S∑
s=1

logws
d

dθ
logP (τs; θ), τs ∼ P (·; θ).

Score-function gradient estimators can exhibit high variance (Ranganath et al., 2013), which can be problematic
for learning variational approximations via stochastic gradient descent, and hence it is often essential to
employ variance reduction techniques.

2.2.1 Variance reduction techniques for score-function estimators

A commonly used technique to reduce the variance of score-function estimators is to use a control variate h
(Ross, 1997) to replace the gradient estimator g with the modified estimator g′ = g + c(h − E

[
h
]
), where

c is a scaling parameter. Control variates leave the expected value of the gradient estimator g unchanged,
E[g] = E[g′], but has the potential to reduce the variance. Indeed, for a given control variate h we can
minimize the variance of g′

Var[g′] = Var[g] + c2Var[h] + 2cCov[g, h] (4)
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with respect to the scaling c. The scaling that minimizes the variance is

c∗ = arg min
c

Var[g′] = −Cov[g, h]
Var[h] .

When g, and hence g′, is a vector, we are typically interested in the scalar- or vector-valued scaling c that
minimizes the trace of the covariance matrix of g′. Note that the trace obtained with the optimal vector-valued
scaling is a lower bound on the trace obtained with the optimal scalar-valued scaling as

min
cvec

D∑
d=1

Var[g′
d] =

D∑
d=1

min
cvec
d

Var[g′
d] ≤ min

csca

D∑
d=1

Var[g′
d].

The optimal scalar- and vector-valued scalings are

c∗
sca = −

∑D
d=1 Cov[gd, hd]∑D
d=1 Var[hd]

, c∗
vec,d = −Cov[gd, hd]

Var[hd]
.

The score function d
dϕ logQ(τ ;ϕ) (Ranganath et al., 2013) is a useful and easy to compute control variate

when optimizing the reverse KL divergence, which we will use as our running example. Using the score
function as a control variate simplifies the expression of the optimal baseline 1 and the resulting gradient
estimator such that the scaling c can simply be added to the (negative) log-importance weight,

g′ = 1
S

S∑
i=s

− logws
d

dϕ
logQ(τs;ϕ)︸ ︷︷ ︸

g

+c
( d
dϕ

logQ(τs;ϕ) − E
[
d

dϕ
logQ(τ ;ϕ)

]
︸ ︷︷ ︸

=0

)

= 1
S

S∑
i=s

(
− logws + c

) d
dϕ

logQ(τs;ϕ).

Monte Carlo Estimation. We can estimate the optimal scaling with the same S i.i.d. samples τs ∼ Q(τs; θ)
used to estimate g. However, in order for the gradient estimator to remain unbiased, we have to employ a
leave-one-out (LOO) estimator ĉs (Mnih and Rezende, 2016), which only makes use of samples {τ̂s′ | s′ ̸= s},
such that

E

[
1
S

S∑
i=s

(
− logws + ĉs

) d
dϕ

logQ(τs;ϕ)
]

=E
[
− logws

d

dϕ
logQ(τs;ϕ)

]
.

The leave-on-out estimate of the optimal scaling for the d-th dimension of c∗ is

ĉ∗
d,s = − Ĉovs[gd, hd]

V̂ars[hd]
,

where Ĉovs[·, ·], and V̂ars[·] are empirical LOO covariance and variance estimates, respectively. Note that
estimating the optimal scaling requires access to per-sample gradients and hence requires S forward-backward
passes on the computations graph in many reverse-mode automatic differentiation frameworks2. Two popular
non-optimal scaling choices that are easily computed and do not require access to gradient information are
clogw = E[logw] and clogZ = logE[w] with corresponding LOO estimators

ĉlogw
s := 1

S − 1

S∑
s′=1,s′ ̸=s

logws′ ĉlogZ
s := log 1

S − 1

S∑
s′=1,s′ ̸=s

ws′ .

1The expressions for the optimal baseline simplifies due to fact that the expectation of the score function is zero.
2We used jax (Bradbury et al., 2018) to efficiently compute per-sample gradients to estimate the optimal control variates.
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Interestingly, for ĉlogw one can show that it is sufficient to only compute the fixed scaling ĉlogw and instead
correct by a factor S−1

S to obtain an unbiased estimate of g′ ,

1
S

S∑
i=1

(
− logws + ĉlogw

s

) d
dϕ

logQ(τs;ϕ) = 1
S − 1

S∑
i=1

(
− logws + 1

S

S∑
j=1

logwj︸ ︷︷ ︸
ĉlogw

) d
dϕ

logQ(τs;ϕ).

In Section 3 we show how we can leverage these variance reduction techniques for training GFNs by identifying
scenarios in which training GFNs with the TB objective is equivalent to performing variational inference
with a score-function gradient estimator.

3 Variational Inference for Generative Flow Networks

The trajectory balance objective and variational objectives, introduced in Section 2.2.1, all try to find a
forward model Q and backward model P such that

P (τ ; θ) = πT (sT )
T−1∏
t=0

PB(st | st+1; θ) ≈
T∏
t=0

PF (st+1 | st;ϕ) = Q(τ ;ϕ),

and hence terminating states sT which are approximately distributed according to πT , which is proportional
to the reward R. While the TB objective can be optimized with samples from any proposal distribution that
has full support on T , it is commonly optimized with samples from either the forward model τF ∼ Q or the
backward model τB ∼ P . Similarly, variational inference commonly optimizes the RKL divergence or FKL
divergence, which can be estimated by sampling from the forward model and backward model, respectively.

Zhang et al. (2022b) propose a special case of the trajectory balance objective using a proposal that first
samples a Bernoulli random variable u ∼ B(α). This variable then determines whether the trajectory samples
are drawn from the forward model or the backward model. The corresponding expected gradient is

Eu∼B(α)

[
[u = 0]Eτ∼P (·;θ)

[
d

dλ
LTB(τ, λ)

]
+ [u = 1]Eτ∼Q(·;ϕ)

[
d

dλ
LTB(τ, λ)

]]
(5)

=αEτB∼P (·;θ)

[
d

dλ
LTB(τ, λ)

]
+ (1 − α)Eτ∼Q(·;ϕ)

[
d

dλ
LTB(τ, λ)

]
. (6)

We can approximate the expected gradient by approximating the expectation w.r.t. the forward and backward
model for any backward ratio α ∈ [0, 1], which is equivalent to optimizing a weighted sum of TB objectives,

LαTB(τF , τB , λ) := αLTB(τB , λ) + (1 − α)LTB(τF , λ),

where τF ∼ Q(·;ϕ) and τB ∼ P (·; θ). We can similarly define a convex combination of the two KL divergences,
which penalizes the FKL objective and RKL objective with α and (1 − α), respectively,

LαKL(ϕ, θ, α) =αLFKL(ϕ, θ).+ (1 − α)LRKL(ϕ, θ)

Like RKL and FKL, this is a divergence which is non-negative and zero if and only if P = Q. For α = 0.5
the objective recovers the Jeffreys divergence.

We are now equipped to compare the various objectives for different settings of α and different parameteriza-
tions of the forward and backward model. Specifically, we differentiate between two settings: (1) PF and PB
(and hence Q and P ) have distinct parameters ϕ and θ respectively, and (2) PF and PB share parameters
η = ϕ = θ. The expected gradient of LαTB can be computed as the convex combination of the expected
gradient of LTB w.r.t. samples from the forward model and backward model (see Equation 5). Similarly,
LαKL can be computed as convex combination of LRKL and LFKL. Thus, in the following we study the cases
α = 0 and α = 1 separately and results for 0 < α < 1 follow accordingly.
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3.1 Forward model and backward model with shared parameters

If the forward and backward model share parameters η = (ϕ, θ), e.g. when they are parameterized by the
same GFN, the expected gradient of the TB objective (Equation 1) takes the form

Eτ∼q(·;η)

[
d

dλ
LTB(τ, λ)

]
= −2Eτ∼q(·;η)

[(
logw + log Z

Zψ

)(
d

dψ
logZψ + d

dη
logQ(τ ; η) − d

dη
logP (τ ; η)

)]
,

where the proposal q is either the forward model Q(τ ;ϕ) (α = 0) or backward model P (τ ; θ) (α = 1). The
corresponding gradients of the RKL and FKL divergences are

d

dη
LRKL(η) = −Eτ∼Q(·;η)

[(
logw + c

) d
dη

logQ(τ ; η) + d

dη
logP (τ ; η)

]
,

d

dη
LFKL(η) = Eτ∼P (·;η)

[(
logw + c

) d
dη

logP (τ ; η) − d

dη
logQ(τ ; η)

]
,

where c is a scaling parameter as discussed in Section 2.2.1.

3.2 Forward model and backward model with distinct parameters

Sampling from the forward model (α = 0). In the case where we are using samples from the forward
model τ ∼ Q(·;ϕ) only, the expected TB gradients reduce to

Eτ∼Q(·;ϕ)

[
d

dϕ
LTB(τ, λ)

]
= −2Eτ∼Q(·;ϕ)

[(
logw +

�
�

��log Z

Zψ

)
d

dϕ
logQ(τ ;ϕ)

]
,

Eτ∼Q(·;ϕ)

[
d

dθ
LTB(τ, λ)

]
= 2Eτ∼Q(·;ϕ)

[(
logw + log Z

Zψ

)
d

dθ
logP (τ ; θ)

]
,

Eτ∼Q(·;ϕ)

[
d

dψ
LTB(τ, λ)

]
= 2Eτ∼Q(·;ϕ)

[(
logw + log Z

Zψ

)
d

dψ
logZψ

]
.

Interestingly, the expected gradient w.r.t. ϕ does not depend on logZψ and is proportional to the gradient of
the standard score-function gradient for the reverse KL-divergence

d

dϕ
LRKL(ϕ, θ) = −Eτ∼Q(·;ϕ)

[(
logw + c

) d
dϕ

logQ(τ ;ϕ)
]

= 1
2Eτ∼Q(·;ϕ)

[
d

dϕ
LTB(τ, λ)

]
.

Hence, solutions of the corresponding optimization problem correspond to fixed points of the (negative)
expected gradient. Moreover, the term logZ/Zψ can be interpreted as a learned scaling parameter cψ for

α = 0, τ ∼ Q(·;ϕ) α = 1, τ ∼ P (·; θ)

d
dϕLKL(ϕ, θ) − E

[
logw d

dϕ logQ(τ ;ϕ)
]

− E
[
d
dϕ logQ(τ ;ϕ)

]
E[ ddϕLTB(ϕ, θ, ψ)] − 2E

[
logw d

dϕ logQ(τ ;ϕ)
]

− 2E
[(

logw + log Z
Zψ

)
d
dϕ logQ(τ ;ϕ)

]
d
dθLKL(ϕ, θ) − E

[
d
dθ logP (τ ; θ)

]
E
[
logw d

dθ logP (τ ; θ)
]

E[ ddθLTB(ϕ, θ, ψ)] 2E
[(

logw + log Z
Zψ

)
d
dθ logP (τ ; θ)

]
2E
[
logw d

dθ logP (τ ; θ)
]

Table 1: Gradient expressions w.r.t. parameters of the forward model (ϕ) and backward model (θ) for the
αTB and αKL objective. For α = 0, the gradient w.r.t. ϕ of the αKL objective is proportional to the expected
gradient of the αTB objective (highlight in first column). Analogously, for α = 1, the gradient w.r.t. θ of the
αKL objective is proportional to the expected gradient of the αTB objective (highlight in second column).
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variance reduction similar to the control variates discussed in section 2.2.1. Optimizing the TB objective
w.r.t. parameters of the forward model is equivalent to optimizing a RKL divergence using a score-function
estimator with a learned scaling parameter cψ, updated according to the gradient described above. This
insight also suggests that the control variate described in Section 2.2.1 can be used as an alternative to the
learned baseline to reduce the variance of the expected gradient estimates of the trajectory balance objective.

The expression of the gradient of the RKL w.r.t. parameters of the backward model θ differs from the expected
gradient of the corresponding TB objective

d

dθ
LRKL(ϕ, θ) = −Eτ∼Q(·;ϕ)

[
d

dθ
logP (τ ; θ)

]
.

The integrand differs by a multiplicative factor logw + cψ.

Intuitively, if the likelihood of a sample is higher under the backward transition model P than under the
forward transition model Q by more than predicted by −cψ = log(Zψ/Z), then logw + cψ < 0 and the TB
objective tries to increase the likelihood of the sample under P and vice versa. In contrast, the gradient of the
RKL objective tries to always maximize the likelihood of samples under the backward transition model, which
achieves its global maximum for P = Q. Due to the fact that

∑
τ P (τ ; θ) = 1, increasing the probability of

P (τ ; θ) for some τ decreases the probability of other trajectories indirectly. Hence, while both objectives have
the same global minima for flexible enough Q and P , their optimization dynamics may differ.

Sampling from the backward model (α = 1). When samples are taken from the backward model
τ ∼ P (·; θ) the expected TB gradients reduce to

Eτ∼P (·;θ)

[
d

dϕ
LTB(τ, λ)

]
= −2Eτ∼P (·;θ)

[(
logw + log Z

Zψ

)
d

dϕ
logQ(τ ;ϕ)

]
,

Eτ∼P (·;θ)

[
d

dθ
LTB(τ, λ)

]
= 2Eτ∼P (·;θ)

[(
logw +

�
�
��log Z

Zψ

)
d

dθ
logP (τ ; θ)

]
,

Eτ∼P (·;θ)

[
d

dψ
LTB(τ, λ)

]
= 2Eτ∼P (·;θ)

[(
logw + log Z

Zψ

)
d

dψ
logZψ

]
.

Here, a similar observation holds. The expected gradient, w.r.t. θ, of the TB objective is proportional to the
corresponding gradient of the forward KL-divergence w.r.t. parameters θ

d

dθ
LFKL(ϕ, θ) = Eτ∼P (·;θ)

[
logw d

dθ
logP (τ ; θ)

]
= 1

2Eτ∼P (·;θ)

[
d

dθ
LTB(ϕ, θ, τ)

]
.

Again, solutions of the corresponding optimization problem correspond to fixed points of the (negative)
expected gradient. Moreover, analogously to the previous case, optimizing the TB objective w.r.t. θ is
equivalent to optimizing a FKL divergence w.r.t. θ using a score-function estimator with a learned scaling
parameter cψ.

The expression of the gradient of the FKL w.r.t. parameters of the forward model ϕ analogously differs from
the expected gradient of the corresponding TB objective by a factor logw + cψ in the integrand,

d

dϕ
LFKL(ϕ, θ) = −Eτ∼P (·;θ)

[
d

dϕ
logQ(τ ;ϕ)

]
.

Observing the expected gradients of the TB objective and corresponding gradients of the RKL and FKL
shows that in certain cases optimizing the TB objective is equivalent to variational inference using reverse or
forward KL divergences. This observation also suggests that we can leverage the various variance reduction
techniques for score-function estimators developed in the variational inference literature. We summarize the
gradients w.r.t. the parameters of the forward- and backward model in Table 1.
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4 Experiments

We have shown that for certain settings, optimizing the αTB objective is equivalent to optimizing the αKL
objective, in the sense that the fixed points are the same and the expected gradient of the αTB objective
is proportional to the gradient of the αKL objective. In these settings we can use the variance reduction
techniques for score-function gradient estimators to reduce the variance of the expected gradients of the TB
objective. In settings where optimizing the αTB objective and αKL objective is not equivalent, it is not
immediately clear if optimizing the αKL objective is advantageous over optimizing the αTB objective, or vice
versa. In the following we compare the performance of the αTB and αKL objective with different control
variates and different backward ratios α.

Generating samples from the target density. Optimizing the αTB and αKL objective with α > 0
require samples from the ground truth distribution sT = x ∼ πGT. In these setting we require either (1)
access to online samples x ∼ πGT (e.g. in the synthetic density experiment in 4.1) or (2) access to a data set
X = {xi}ni=1 containing samples xi ∼ πGT which can be uniformly subsampled during optimization.

Evaluation metrics. If samples from the ground-truth target distribution are available we can sample
trajectories from the backward model conditioned on x. Let

PB(s0:T−1 | sT ; θ) :=
T−1∏
t=0

PB(st | st+1; θ) and PF (s1:T−1|s0;ϕ) :=
T−2∏
t=0

PF (st+1|st;ϕ).

Then, we can estimate the marginal likelihood of the data under the the forward model using importance
sampling,

1
N

N∑
i=1

PF (x|siT−1;ϕ)PF (si1:T−1|si0;ϕ)
PB(si0:T−1 | x; θ)

, si0:T−1 ∼ PB(s0:T−1 | x; θ). (7)

If no data is available we will report the expected log-weight Eτ∼Q(·;ϕ)[logw] ≤ logZ.

Structure and representation of the state space. Following Zhang et al. (2022b) we target a discrete
distribution over terminating states on ST = {0, 1}D by consecutively sampling values in {0, 1} for each step.
To this end we define the state space S = {∅, 0, 1}D ∪ {sf}, where ∅ indicates that no bit value has been
sampled for the corresponding position yet. We further define edges

E = {(s, s′) : s ∈ S \ {sf} ∧ s′ ∈ S ′(s)} ∪ {(s, sf ) : s ∈ ST }, S ′(s) = {s′ ∈ S \ {sf} : |s| = |s′| − 1},

where |s| denotes the number of set bits in s. With these definitions in place we define a DAG G(S, E) that
specifies the structure of the state space (see Figure 1). For mathematical convenience, we map the states s
to numeric representations s̃ in which ∅, 0 and 1 are replaced by 0, −1 and 1 respectively. This allows us to
compute the number of set bits |s| =

∑
d |s̃d|, and the location and type of the bit added by a transition

s → s′ as the signed one-hot vector s̃′ − s̃. We can also compute the state ¬s̃′(s, s′) = s̃− (s̃′ − s̃) that results
from flipping the newly added bit in s′. These operations are useful for defining the transition model.

Transition model. We consider a fixed backward transition model PB(st | st+1) which uniformly at
random select a set bit and replaces it with ∅. The forward transition model PF (st+1 | st;ϕ) uniformly at
random selects a ∅-bit and and replaces it with a bit value sampled from a Bernoulli distribution, whose
parameters (logits) are the output of a function fϕ : S × S → R+. The corresponding probability mass
functions of the forward- and backward transition model are

PB(st | st+1) = 1
|st+1|

, PF (st+1|st;ϕ) = 1
D − |st|

fϕ(s̃′
t)

fϕ(s̃′
t) + fϕ(¬s̃′(st, st+1)) .

In practice fϕ : RD → RD×2 is a vector valued function parameterized by a Multilayer Perceptron (MLP)
with weights ϕ. Given a state st, it produces D pairs of logits associated with positions in the state vector.
The uniformly drawn position d of the added bit is then used to select the corresponding logits fϕ(s)d ∈ R2.
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4.1 Synthetic densities

To model a discrete ground-truth distribution πGT over terminating states we follow Dai et al. (2020); Zhang
et al. (2022b) and discretize a continuous distribution πcont

GT : R2 → R+ into 216 equally sized grid cells along
each dimension. The cells are remapped to Gray code such that neighbouring grid cells differ in exactly one
bit and the resulting pair of 16-bit vectors is concatenated to obtain a single 32-bit vector.

We are interested in two settings: (1) Learning a forward model Q(τ ;ϕ) such that its marginal distribution
QT (sT ;ϕ) approximates a fixed distribution πT (sT ) = πGT(sT ) over terminating states, and (2) learning a
forward model and energy function ξ : {0, 1}32 → R jointly such that πT (sT ; θ) ∝ exp(−ξ(sT , θ)) ≈ πGT(sT ).
We optimize the energy function by minimizing the negative log-likelihood via stochastic gradient descent,
interleaving gradient updates to the forward model and energy function.

We approximate the gradient of the log-marginal likelihood

− d

dθ
log πT (sT ; θ) = d

dθ
(ξ(sT ; θ) + logZθ) = d

dθ
ξ(sT ; θ) − EsT∼πT (·;θ) [ξ(sT ; θ)]

using a contrastive divergence-based approach (Hinton, 2002), which replaces the expectation w.r.t. πT
with an expectation w.r.t. the marginal distribution of a K-step Metropolis-Hastings (MH) chain m(x′ | x)
initialized at data x,

Ex∼U(X )

[
d

dθ
ξ(x; θ) − Ex′∼m(x′|x) [ξ(x′; θ)]

]
.

The MH updates uses the GFN to construct proposals (Zhang et al., 2022b). For K → ∞ this gradient
update recovers the expected gradient of the log-marginal likelihood.

We evaluate the αTB objective and αKL objective with a learned control variate for different backward
ratios α. For each backward ratio we consider two settings: (1) jointly learning the energy function ξ and
parameters of the GFN, and (2) using a previously learned fixed energy and learning parameters only. We
report the negative log-likelihood in Table 2). All numbers are averages over 10 independently trained models.

We find that, unsurprisingly, for α = 0, in which case optimizing the αTB objective is equivalent to optimizing
the αKL objective with a learned control variate both objectives perform comparably, i.e. their average
negative log-likelihoods are withing one standard deviation of each other (see Table 2). Similarly, for 0 < α < 1,
both objectives perform similarly, with αTB having a slight edge over αKL in terms of negative log-likelihood.
For α = 1, i.e. when sampling from backward model only, the performance of αTB drops significantly while
the performance of the αKL objective remains stable.

Figure 2: Negative log-likelihood over
training on 2spirals for fixed energy ξ
and different backward ratios α.

method 2spirals
learned ξ

8gaussians
learned ξ

2spirals
fixed ξ

8gaussians
fixed ξ

αTB, α=0.0 20.163±0.013 20.006±0.015 20.201±0.032 20.038±0.014
αTB, α=0.25 20.133±0.010 20.000±0.011 20.149±0.015 20.002±0.015
αTB, α=0.5 20.119±0.006 19.997±0.010 20.134±0.014 19.999±0.014
αTB, α=0.75 20.118±0.008 20.002±0.008 20.126±0.008 19.995±0.010
αTB, α=1.0 20.994±0.037 20.088±0.008 21.207±0.051 20.076±0.012

αKL, α=0.0 20.171±0.015 20.021±0.018 20.196±0.017 20.045±0.015
αKL, α=0.25 20.142±0.012 19.999±0.007 20.147±0.009 20.003±0.008
αKL, α=0.5 20.145±0.008 20.003±0.014 20.144±0.005 20.006±0.010
αKL, α=0.75 20.160±0.008 20.019±0.009 20.152±0.010 20.011±0.011
αKL, α=1.0 20.174±0.009 20.019±0.010 20.174±0.010 20.016±0.008

Table 2: Negative log-likelihood of test data under learned GFN
policy with learned control variate for learned and fixed energy
functions and different backward ratios α.
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Figure 3: Expected log importance-weight over training. Using the estimated baselines leads to faster
convergence during early stages of training.

4.2 Ising model

We are modeling a discrete distribution over terminating states sT ∈ {−1, 1}D corresponding to the grid cells
of an Ising model,

πT (sT ) ∝ exp(−βH(sT )), H(sT ) = −1
2s

⊤
TANsT , (8)

where A is the adjacency matrix of a N ×N (D = N2) grid with periodic boundary conditions, and β is the
interaction strength.

As we do not have access to ground truth samples from the Ising model, we are training the GFN with α = 0.
In this setting, optimizing the αTB objective and αKL objective is equivalent and hence we focus on the
effect of replacing the learned control variate, that is used in the original αTB objective, with estimated
control variate typically used to reduce the variance in score-function estimators.

We report the expected log-weights for different control variates and values of β averaged over 10 independently
trained GFNs in Table 3, and show samples from a GFN and samples generated by running a MH chain for
qualitative comparison in Figure 4. For computational efficiency we compute a slightly biased global estimate
for the optimal control variates instead of an unbiased LOO estimate, which we have found to not noticeable
influence the result. While using the estimated control variates helps the GFN to converge faster, specifically
in early stages of training (see Figue 3), we find that it has no significant influence on the final performance.

method control variate β = -1.0 β = -0.8 β = -0.6 β = -0.4 -0.2

αKL, α=0.0 none 279.54 ± 34.78 230.50 ± 17.23 161.12 ± 20.86 -127.92 ± 4.82 -135.94 ± 1.71
αKL, α=0.0 learned 369.30 ± 0.90 283.92 ± 0.78 185.28 ± 0.92 40.38 ± 3.08 -140.76 ± 0.42
αKL, α=0.0 log Z 369.57 ± 0.60 283.80 ± 1.15 185.70 ± 1.16 40.05 ± 3.00 -138.13 ± 0.22
αKL, α=0.0 opt. scalar 369.16 ± 0.92 283.84 ± 0.79 186.14 ± 1.48 39.48 ± 2.87 -138.16 ± 0.18
αKL, α=0.0 opt. vector 369.73 ± 0.78 283.88 ± 1.02 186.30 ± 1.66 41.50 ± 3.73 -138.04 ± 0.27

method control variate β = 0.2 β = 0.4 β = 0.6 β = 0.8 β = 1.0

αKL, α=0.0 none -135.94 ± 2.84 -126.93 ± 4.39 143.81 ± 22.36 235.06 ± 17.64 274.11 ± 31.61
αKL, α=0.0 learned -140.69 ± 0.40 87.20 ± 21.32 214.36 ± 44.48 326.74 ± 34.11 413.30 ± 35.51
αKL, α=0.0 log Z -138.27 ± 0.31 48.88 ± 35.28 211.71 ± 37.90 305.98 ± 44.27 411.81 ± 36.92
αKL, α=0.0 opt. scalar -138.29 ± 0.30 80.23 ± 28.96 219.92 ± 37.03 327.26 ± 33.52 427.90 ± 32.53
αKL, α=0.0 opt. vector -138.05 ± 0.36 74.51 ± 33.47 211.88 ± 37.44 326.55 ± 34.62 405.99 ± 34.91

Table 3: Expected log-weights of αKL with different control variates for ten 15×15 Ising models with different
interaction strengths β. Note that αKL with a learned control variate is equivalent to αTB for α = 0.

12



Published in Transactions on Machine Learning Research (04/2023)

Figure 4: Approximate samples from a 15×15 Ising model generated using MH chains (top row) and the
forward model of a trained GFNs (bottom row).

5 Conclusion

In this paper, we draw connections between the recent literature on generative flow networks and the literature
on variational inference methods. We observe that GFNs can be trained using variational objectives that
minimize a divergence between a forward and a backward distribution over trajectories. When minimizing the
reverse Kullback-Leibler divergence, the objective is analogous to that used in standard variational inference
methods that maximize a lower bound on the log-marginal likelihood (Blei et al., 2017). When minimizing the
forward Kullback-Leibler divergence, we obtain a variant of the objective that is commonly used in wake-sleep
methods and related approaches (Hinton et al., 1995; Bornschein and Bengio, 2015; Naesseth et al., 2020).
It is also possible to optimize a convex combination of the two. These objectives are closely related to the
trajectory-balance objective that is typically used when training GFNs. Specifically, the gradient of the RKL
is proportional to computing the expected gradient of the TB objective with respect to trajectories that are
sampled from the forward distribution. Evaluations on synthetic densities and an Ising model demonstrate
that variational objectives for GFNs achieve a comparable performance in terms of the expected log weight
relative to variants of the trajectory balance objective. This observation opens up opportunities to explore
new variational objectives for GFNs that incorporate credit assignment methods Schulman et al. (2015) as
well as importance sampling methods for GFNs based on e.g. variational sequential Monte Carlo (Naesseth
et al., 2018) or nested variational inference (Zimmermann et al., 2021).
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layer number layer type activation function input shape output shape number of parameters
1 Dense Swish B ×D B × 256 d · 256
2 Dense Swish B × 256 B × 256 65536
3 Dense Swish B × 256 B × 256 65536
4 Dense None B × 256 B × 2D d · 512

Table 4: Neural network architecture of forward model which outputs 2D logits, where B is the batch size
and D is the size of the state space.

A Implementation details

The forward model first selects one of the ∅-bit positions in the input vector uniformly at random. The
bit position is then used to select the 2 corresponding logit values from the output of the neural network
(architecture described in 4), which are consecutively used to construct a Bernoulli distribution to draw
the new bit value for the selected bit position. In all our experiments we use a fixed backward model,
which uniformly at random selects a bit position in the vector representation of the state and deletes it, i.e.
sets it to ∅. Hence, the overall number of parameters is the number of parameters of the forward-model
(Nparams = 768D+ 131072) and one additional parameter if the control variate is learned. For all experiments
we trained the forward model using the Adam optimizer with a learning rate α = 1e−3 and batch size
B = 256.
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