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A woman sewing a quilt 
on a sewing machine in 

her craft room.

An  illustration of a 
majestic  wolf with 

piercing eyes.

A girl playing with a 
cat in a joyful 
atmosphere.

An artistic portrait 
of a proud eagle.

A realistic photo of a 
spider weaving the 
net, great details.
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to a road.
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A woman with freckles and curly hair smiling warmly, under a golden sunset. A futuristic car races through a desert, kicking up clouds of sand.

A brave astronaut in a space suit floats above a planet, gazing at a 
galaxy full of glowing stars. A stealthy ninja leaps across rooftops under two moons.

Figure 1: Image and video samples generated from the model fine-tuned by our RLR optimizer.
Please refer to Appendices D, E, and F for more qualitative examples.

ABSTRACT

The probabilistic diffusion model (DM), generating content by inferencing through
a recursive chain structure, has emerged as a powerful framework for visual gen-
eration. After pre-training on enormous data, the model needs to be properly
aligned to meet requirements for downstream applications. How to efficiently align
the foundation DM is a crucial task. Contemporary methods are either based on
Reinforcement Learning (RL) or truncated Backpropagation (BP). However, RL
and truncated BP suffer from low sample efficiency and biased gradient estimation,
respectively, resulting in limited improvement or, even worse, complete training
failure. To overcome the challenges, we propose the Recursive Likelihood Ratio
(RLR) optimizer, a Half-Order (HO) fine-tuning paradigm for DM. The HO gradi-
ent estimator enables the computation graph rearrangement within the recursive
diffusive chain, making the RLR’s gradient estimator an unbiased one with lower
variance than other methods. We theoretically investigate the bias, variance, and
convergence of our method. Extensive experiments are conducted on image and
video generation to validate the superiority of the RLR. Furthermore, we propose a
novel prompt technique that is natural for the RLR to achieve a synergistic effect.
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1 INTRODUCTION

Probabilistic diffusion model (DM) (Sohl-Dickstein et al., 2015; Ho et al., 2020; Zhang et al.,
2024b; Gao & Li, 2025) has emerged as a transformative framework in high-fidelity data generation,
demonstrating unmatched capabilities in diverse applications such as image synthesis (Podell et al.,
2023), video generation (Wang et al., 2023a), and multi-modal data modeling. These models operate
by recursively denoising latent representations, as shown in Figure 2, effectively capturing complex
data distributions. However, fine-tuning DMs in the post-training phase remains a daunting challenge,
since the gradient estimation through the recursive structure imposes excessive computation overhead
(Clark et al., 2023). This challenge has limited the broader deployment of DM in dynamic and
resource-constrained environments.
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Figure 2: The recursive structure of
diffusion models for gradient esti-
mation.
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Figure 3: Model collapse caused
by the truncation: training SD 1.4
on the aesthetic reward model by
truncated BP.

It is a natural way to fine-tune DMs via full backpropagation
(BP) through all time steps (Rumelhart et al., 1986), which
is theoretically functional, providing precise gradient estima-
tion over the entire diffusion chain. However, the computa-
tional and memory overhead of BP scales prohibitively with
the model size and the number of diffusion steps (Prabhudesai
et al., 2023; Yuan et al., 2024a; Clark et al., 2023; Prabhudesai
et al., 2024), making full BP impractical for most real-world
scenarios. Specifically, training Stable Diffusion 1.4 by full BP
with a batch size of 1 and 50 time steps would require approx-
imately 1TB of GPU RAM (Prabhudesai et al., 2023). Thus,
truncating recursive differentiation becomes a common practice
to alleviate memory overhead. But truncated BP suffers from
structural bias, as it terminates gradient computation before
sourcing to the input, only considering a limited subset of the
diffusion chain. Fine-tuning based on a biased gradient esti-
mation can inadvertently impair the optimization performance,
resulting in model collapse, i.e., contents generated reducing
to pure noise. Empirical evidence, in Figure 3, shows that
truncated gradients result in a significant drop in reward scores
during training: the fewer the truncated time steps, the more
severe the model collapse. Moreover, truncated BP fails to
capture the multi-scale information across all time steps due
to the absence of differentiation on early steps. The hierarchical
feature of generation imposes a thorough gradient evaluation
to retain fidelity from pixel to structural level.

Reinforcement learning (RL) (Schulman et al., 2017) as a gra-
dient computation trick has enabled another branch of DM fine-tuning (Lee et al., 2023; Black
et al., 2023; Wallace et al., 2024; Fan et al., 2024). It typically ignores the differentiable connection
between steps and recovers the gradient by estimation. RL avoids caching intermediate activations,
significantly reducing memory requirements. It also supports gradient computation in a divided
manner under extreme circumstances to accommodate insufficient memory. The cost to pay is the
high variance of the estimated gradient. Even if the estimator is unbiased, the variance can result in
wild sample-inefficient updates, demonstrated by the slow convergence during training.

These limitations of BP and RL underscore the necessity of a more efficient, scalable, and stable fine-
tuning approach that harmonizes computational tractability with optimization efficacy. To address
this, we first investigate the recursive architecture of the DM and propose the problem of finding the
minimal variance gradient estimator. Informed by perturbation-based estimation using Likelihood
Ratio (LR) techniques (Jiang et al., 2024; Ren et al., 2025) (detailed reviews of LR techniques are
provided in the Appendix A), we propose the Recursive Likelihood Ratio (RLR) optimizer. By
utilizing the inherent noise in the DM, a local computational graph is enabled for pathwise gradient
estimation as shown in Figure 4, which can reduce the variance and better capture the multi-scale
information. The RLR estimator is unbiased and has lower variance under the same computation
budgets as other methods. Through perturbation-based computational graph rearrangement, the RLR
mitigates the structural bias of truncated BP and the high variance of RL, capable of better capturing
multi-scale visual information. Our optimizer shares similarity with zeroth-order optimizer since both
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Figure 4: The computation paradigm of the RLR optimizer.

need perturbation to estimation gradient, but the RLR utilize a local BP chain to enable low-variance
estimation. Therefore, we name it as Half-Order optimizer. Our contributions are threefold:

• We provide a systematic analysis of gradient estimation in DMs, identifying a structured
design space of estimators. Then, we formulate the RLR optimizer in the design space under
the protocol of minimizing variance with a limited computational budget.

• Extensive evaluation of Text2Image and Text2Video tasks are conducted. RLR consistently
achieves higher reward scores across multiple human preference reward models and outper-
forms SOTA video models on the VBench benchmark. Furthermore, we propose a prompt
technique for our RLR, validating the intuition and applicability of our method.

• We conduct a rigorous theoretical analysis of RLR’s design, proving its unbiasedness,
bounding its estimator variance, and establishing convergence guarantees. These results
formally justify the empirical success of RLR and explain the deficiency of prior methods.

2 RELATED WORK

Diffusion probabilistic models have achieved state-of-the-art performance in multi-modal generation
(Ho et al., 2020; Rombach et al., 2022). However, aligning pre-trained DMs for downstream tasks
remains challenging. RL and supervised post-training have been widely explored to incorporate
human preferences or task-specific objectives, with recent methods including RLHF-inspired ap-
proaches, DPO variants, and reward-model-guided fine-tuning (Ziegler et al., 2019; Fan et al., 2024;
Wallace et al., 2024; Prabhudesai et al., 2023). Yet, RL-based fine-tuning often suffers from high
variance and sample inefficiency, while truncated BP reduces memory cost but introduces structural
bias that can lead to model collapse(Prabhudesai et al., 2023; 2024; Xu et al., 2024b). Recent
forward-learning methods based on stochastic gradient estimation offer a promising alternative with
lower computational and memory costs (Salimans et al., 2017; Peng et al., 2022; Chen et al., 2023).
Please refer to Appendix A for extended related works.

3 UNBIASED MINIMAL VARIANCE GRADIENT ESTIMATOR FOR DIFFUSION
MODEL

3.1 PROBLEM FORMULATION

DMs generate data by transforming a noise sample xT into a data sample x0 through a recursive
denoising process, as shown in Figure 2. This generation proceeds through T steps of stochastic
updates, each governed by a parameterized mapping ϕt, where the implementation of ϕt may vary
across steps, yielding the transformation:

xt−1 = ϕt(xt, zt; θ) (1)
where θ denotes the model parameter, and zt = σtϵt, ϵt ∼ N (0, I) is a stochastic perturbation. The
noise term zt can be either the inherent noise in the DM, i.e., xt−1 = φ(xt; θ) + zt, or the injected
noise to the parameter, i.e., xt−1 = φ(xt; θ + zt). The function φ denotes the shared backbone
network of the DM, reused across different steps, while ϕt should be used with the subscript t to
indicate which time-step it operates on. The full generation chain can be represented recursively as:

x0 = ϕ1:T (xT , z1:T ; θ) = ϕ1 ◦ ϕ2 ◦ · · · ◦ ϕT (xT , z1:T ; θ) =

ϕ1(ϕ2:T (xT , z2:T ; θ), z1; θ) = ϕ1(ϕ2:T−1(ϕT (xT , zT ; θ), z2:T−1; θ), z1; θ),
(2)
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where z1:T are independent noise terms injected at each step. Once a pre-trained model is available,
a reward model R(x0) is introduced to guide post-training towards generating samples of higher
semantic or perceptual quality. The resulting fine-tuning objective becomes:

max
θ

E[R(x0)] = max
θ

Ez1:T [R(ϕ1:T (xT , z1:T ; θ))]. (3)

Fine-tuning DMs through the recursive structure poses a critical challenge: how to efficiently and
accurately estimate the gradient of the expected reward with respect to model parameters. A natural
objective is to construct a gradient estimator for E[R(x0)] that is unbiased and has minimal
variance, under a given computational and memory budget. We formulate the problem as the
following constrained optimization problem over the space of gradient estimators:

min
G∈G

Var(G) s.t. ∇θE[R(x0)] = E[G], C(G) ≤ B, (4)

where G denotes the space of all unbiased gradient estimators G for the objective E[R(x0)], with the
sample x0 being obtained via a generative chain defined by x0 = ϕ1:T (xT ; z1:T , θ). The term Var(G)
refers to the variance of the estimator, which we aim to minimize. The cost function C(G) quantifies
the total computational and memory overhead incurred by the estimator G, typically measured in
terms of the length of backward passes or the volume of intermediate activations stored. Finally, B
represents the computational budget available for gradient estimation.

3.2 G : THE UNBIASED GRADIENT ESTIMATOR DESIGN SPACE IN DIFFUSION MODELS

We now characterize the feasible design space G for unbiased gradient estimators in DMs. Due to the
recursive structure of the generative chain, the gradient estimator must propagate through all T steps.
At each step t, we may choose one of three gradient estimation strategies:

• First-Order (FO) uses exact backpropagation through ϕt. Zeroth-Order (ZO) perturbs the
parameters directly, e.g., φt(xt; θ + σtϵt), and estimates the gradient via R(φ(·;θ+σtϵt))

σt
ϵt,

based solely on function evaluations (Salimans et al., 2017).
• We propose unbiased Half-Order (HO) gradient estimator which utilizes the inherent noise
zt (rather than extrinsic perturbation) and applies the Likelihood Ratio technique, producing
an estimator of the form: R(x0) · D⊤

θ ϕt:t+h−1 · ∇ log f(zt), where Dθϕt:t+h−1 denotes
the Jacobian of a local sub-chain of length h, and f(·) denotes the noise density. The HO
allows a h-length sub-chain, starting from any t in the diffusive chain. RL is a special case
of HO method with h = 1.

The full estimator design space is thus defined as:

Gfull := {G = (g1, . . . , gT ) | gt ∈ {FO,HO,ZO} ∀1 ≤ t ≤ T}, (5)

Table 1: Comparison of gradient estimators.

Method Unbiasedness Variance Memory

First-order ✓ Small Large
Half-order ✓ Medium Medium

Zeroth-order ✓ Large Small
Truncated BP × Small Medium

where each sequence G ∈ Gfull represents a com-
posite estimator composed of local choices at
each time step. Table 1 summarizes the variance,
unbiasedness, and memory costs of each strat-
egy: FO has the lowest variance but highest
cost, ZO is the cheapest but suffers from the
highest variance, and HO balances the two.
The theoretical underpinnings of these variances,
unbiasedness, and memory comparisons are formalized in Section 6, and constitute an independent
contribution of this work.

4 SOLVING THE VARIANCE MINIMIZATION PROBLEM: RECURSIVE
LIKELIHOOD RATIO OPTIMIZER

4.1 RECURSIVE LIKELIHOOD RATIO OPTIMIZER

Having characterized the decision space Gfull, we now turn to solving the variance minimiza-
tion problem (4). Due to practical constraints, we further reduce the full design space by en-
forcing the following structure: (i) All HO estimators should be connected in the chain, since

4
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separating the HO path would incur high variance. (ii) FO should be directly connected to
the reward model, according to its definition. This way, the decision space Gfull is reduce to
GRLR = {(gFO

1 , · · · , gHO
j , · · · , gHO

j+h, · · · , gZO
T ) | 1 ≤ j ≤ T − h}, which consists of one FO at

the first step, a HO sub-chain of length h starting at step j, and ZO estimators for all remaining steps
to ensure unbiasedness. Under this specific structure, the decision variables are reduced to the length
h and the starting index j. Each solution in GRLR is referred to as a Recursive Likelihood Ratio (RLR)
estimator (see Figure 4), which takes the form

G = D⊤
θ ϕ(x1, z1; θ)

dR(x0)

dx0︸ ︷︷ ︸
One−step first−order estimator

−R(x0)D
⊤
θ ϕj:j+h(xj+h, zj:j+h; θ)∇z ln f(zj)︸ ︷︷ ︸
h−length half−order estimator

−
∑
i∈C

R(x0)∇z ln f(zi)︸ ︷︷ ︸
zeroth−order estimator

,
(6)

where j ∈ [1, T − h] ∩ Z , C = {1, 2, . . . , T} \ {j, j + 1, . . . , j + h}, zj ∼ N (0, σjI), and
zi ∼ N (0, σiI) for i ∈ C.

Differentiating the reward model. In the first part of the RLR estimator, we apply the FO estimator
to the first time step to directly backpropagate through the reward model, avoiding black-box treatment
(e.g., RL and ZO) and better leveraging its structure, as shown in Figure 4.

Fixed-horizon half-order optimization. The generation process of the DM follows a coarse-to-fine
structure, with every time step in the chain controlling a different scale of generation. Incorporat-
ing precise gradient information from every time step is essential, but full BP is computationally
prohibitive. Truncated BP introduces bias, while ZO and RL lead to high variance by ignoring
structural information. To address this, the RLR optimizer incorporates an HO h-length sub-chain,
capturing multi-scale information while minimizing variance. Specifically, the starting index of HO,
j ∼ J (1, T − h), is randomly selected across the whole diffusive chain, following a given distribu-
tion J (see Section 3.2). The inherent perturbation, zj , enables the localized h-length sub-chain,
Dθϕt:t+h−1, effectively capturing the visual scale information represented around that step (see
Section 3.2 for choosing h).

Surrogate estimator via parameter perturbation. For the remaining times steps, C =
{1, 2, . . . , T}\{j, j+1, . . . , j+h}, we inject noise directly into the model’s parameters to construct
ZO estimation to ensure unbiasedness. This approach is computationally cheap without caching
intermediate latent variables.

4.2 OPTIMIZING h AND j: VARIANCE–MEMORY TRADEOFFS

The remaining task is to optimize the two variables in the RLR estimator, h and j, to solve the
optimization problem (4). Notably, the choice of j does not directly affect this surrogate objective,
but instead influences the ability to capture multi-scale information across different steps, so we treat
its decision as a separate problem of interest.

Optimizing h. To reduce the number of problem parameters that need to be estimated, we use an
upper bound on the variance of the RLR estimator (see the Appendix J.4) as a surrogate objective:

min
h∈N0: G(h)∈GRLR

T∑
t=1

Var(gt) + 2
∑
t̸=t′

√
Var(gt)Var(gt′)

s.t. Bhh+ Bz(T − 1− h) ≤ B,

(7)

where h and (T−1−h) are the number of steps for HO and ZO; Bh and Bz are coefficients indicating
the magnitude of the memory cost of HO and ZO per step. In practice, the available budget satisfies
BzT < B < BhT , meaning that using pure ZO underutilizes the budget, while using pure HO
exceeds it. Let V 2

h and V 2
z denote the per-step variance of the HO and ZO, respectively. Since HO
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and FO have much lower variance than ZO, we use a common Vh for both HO and FO, and assume
Vh ≪ Vz and T > 2. These conditions ensure the optimization problem admits the solution:

h∗ = min{⌊B − Bz(T − 1)

Bh − Bz
⌋, ⌊ TVz

2(Vz − Vh)
− 1⌋} > 0. (8)

We set Bh = 8GB and Bz = 0.24GB, which is supported by empirical evidence in Table 9 in the
Appendix. If the memory budget B is between 30GB and 40GB. It is recommended to set h = 2.
As the formula (7) indicates, the variance decreases as h increases. However, the performance
exhibits diminishing improvement with increasing h. In other aspects, the memory consumption
grows linearly with h, and the computational time grows even more rapidly. The above claims
are corroborated by our ablation results in Table 9. Therefore, even with a larger memory budget,
blindly increasing h is not advisable. Moreover, since Vh ≪ Vz , the second term in (8) simplifies
to approximately T

2 − 1 ≈ 24, which is typically larger than the first term. As a result, we have
h∗ = ⌊(B − Bz(T − 1))/Bh − Bz⌋ in practice, and there is no need to estimate Vh and Vz .

Determining j. We use the gradient norm to represent the importance of different steps. Then
sample j from the categorical distribution j ∼ J (1, T − h) = CAT (softmax(∥g1∥, · · · , ∥gT−h∥)).

5 EXPERIMENTS

We verify the superiority and applicability of the RLR optimizer against various baselines on two
generation tasks: Text2Image and Text2Video. We compare the RLR with the RL-based method
(DDPO), and the truncated-BP-based methods (Alignprop and VADER). Moreover, other baselines,
e.g, closed-source models, are also included. Finally, we propose a novel prompt technique that is
natural for the RLR optimizer, demonstrating the enhanced capability of the proposed RLR optimizer
to capture multi-scale information for visual generation. Ablations are included to verify the validity
of the proposed RLR optimizer. Please refer to Appendix B for detailed settings.

Table 2: Text to Image reward score. We evaluate methods under different DM under different reward
models. The higher the score, the better the performance.

Model Methods Pick-a-Pic HPD v2
PickScore HPSv2 AES ImageReward PickScore HPSv2 AES ImageReward

SD1.4

Base 16.24 21.03 4.48 32.74 16.19 22.08 4.42 32.90
DDPO 17.56 23.15 5.47 49.33 17.53 22.79 5.52 52.06

Alignprop 18.08 26.64 5.91 65.07 19.17 27.02 6.02 67.18
RLR 20.14 28.57 6.53 75.65 21.38 29.22 6.65 76.55

SD2.1

Base 16.37 22.14 4.53 35.40 16.25 23.32 4.57 36.03
DDPO 17.70 24.55 5.58 52.48 17.43 24.56 5.62 52.85

Alignprop 19.23 27.20 6.07 68.09 21.60 27.40 6.11 72.62
RLR 22.58 30.11 6.76 77.26 23.22 30.98 6.94 83.07

Table 3: Text2Video Generation Evaluation on the Vbench. The weighted average is calculated by
assigning a weight of 1 to all metrics, except for the Dynamic Degree metric, which is assigned a
weight of 0.5.

Methods Subject Background Motion Dynamic Aesthetic Imaging Weighted
Consistency Consistency Smoothness Degree Quality Quality Average

VideoCrafter 95.44 96.52 96.88 53.46 57.52 66.77 79.97
Pika 96.76 98.95 99.51 37.22 63.15 62.33 79.87

Gen-2 97.61 97.61 99.58 18.89 66.96 67.42 79.75
T2V-Turbo 96.28 97.02 97.34 49.17 63.04 72.49 81.96

DOODL 95.47 96.57 96.84 55.46 58.27 66.79 80.30
DDPO 95.53 96.63 96.92 58.29 59.23 66.84 80.78

VADER 95.79 96.71 97.06 66.94 66.04 69.93 83.45
RLR 97.64 97.19 98.05 70.69 66.15 71.08 84.63
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(a) Reward curves for aesthetic score.
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Figure 5: Sample efficiency analysis, reward curves under the same training steps for SD 1.4.

5.1 TEXT2IMAGE GENERATION

We evaluate our methods on two DMs: Stable Diffusion 1.4 and 2.1 (Rombach et al., 2022). As
shown in Table 2, the RLR methods achieve higher reward scores on the unseen prompts from the
test set. The RL-based method have limited improvement with respect to the base model, due to the
sample inefficiency nature. Alignprop has considerable improvement over the base model. However,
the biased estimator limits its further improvement. Training details and hyperparameters can be
found in the appendix.

Sample efficiency analysis. The compare the sample efficiency and the variance of different
methods, we show the reward curves of SD 1.4 when training on the AES and HPS v2 models in
Figure 5. The DDPO optimizes the reward at a very slow pace, indicating high variance and low
sample efficiency. In the earlier phase, the AlignProp has comparable performance as the RLR. In the
later phase, while the RLR can continue to improve the reward, the AlignProp suffers from severe
model collapse.

5.2 TEXT2VIDEO GENERATION

We compare our RLR not only with RL and truncated BP but also with a series of open-source or
API-based Text2Video models. In the metric of DD and AQ, the RLR surpasses other methods by
a large margin. In other metrics, RLR achieves considerable improvement over the base model,
VideoCrafter. Some API-based models have better performance on some metrics, but the gaps are
small. In terms of the weighted average score, our RLR has the best performance over all baselines.

5.3 DIFFUSIVE CHAIN-OF-THOUGHT
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Figure 6: The framework of Diffusive Chain-of-Thought. The DM generates images in a multi-scale
manner: earlier steps for low-resolution features and later steps for high-resolution features. If a
specific scale has deficiencies, we utilize the HO estimator to enhance the corresponding steps.

Furthermore, we propose the Diffusive Chain-of-Thought (DCoT), a prompt technique that is natural
for our RLR optimizer to demonstrate the applicability of our method. The core idea is that DMs
generate content in a multi-scale (coarse-to-fine) manner, and deficiencies at a particular scale can
be addressed by focusing gradient updates on the corresponding steps of the diffusion process by
the HO sub-chain. We propose dividing all the diffusion process steps into three groups: coarse-level,
mid-level, and fine-level. The coarse-level chain includes steps adjacent to the initial noise, focusing
on generating a rough outline. The fine-level chain includes steps adjacent to the final output, focusing
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on the fine-grained details. The mid-level chain in between focuses on the geometric structure of the
content.

Table 4: Experiment results for Diffusive Chain-
of-Thought

Methods PickScore HPSv2 AES ImageReward

SD1.4 15.33 20.50 4.76 33.45
SD1.4-DCoT 16.38 21.68 4.83 39.24

RLR w/o 18.05 23.58 5.27 43.09
RLR-DCoT 19.45 25.80 5.83 49.88

The idea of DCoT is shown in Figure 9, which
converts the original prompt into multi-scale
prompts reflecting the coarse-to-fine nature. Dif-
ferent generation steps should be conditioned on
different prompts instead of being conditioned
on the same prompt. The HO estimator term in
the RLR enables a h-step local computational
chain for low-variance, unbiased gradient esti-
mation. By integrating DCoT, we can target the HO sub-chain precisely at the time steps (i.e., scales)
where generation is deficient, as revealed by the multi-scale prompt decomposition. The HO estimator
term uniformly picks a starting point j ∼ U(1, T − h) from the entire T -step chain to start the local
h-step BP chain. When applying the DCoT to the fine-tuning process, we should constrain the sample
range of j in the steps where deficiencies exist, j ∼ U(a, b), 1 < a < b < T − h, b− a > h. In our
experiment for the hand task, we set a = 30 and b = 40.

We write 5 prompts for hand generation and then prompt ChatGPT to generate the multi-scale
prompts for the three levels. We report the performance in Table 4. As shown in the table, either
simply applying DCoT to the base model or combining it with the RLR can improve the performance
significantly. The RLR with the DCoT has the best performance. Qualitative results are shown in the
Appendix F.

5.4 ABLATION STUDY

Table 5: Ablation of the RLR.

Methods PickScore HPSv2 AES ImageReward

RLR w/o HO & ZO 18.43 23.66 5.78 60.07
RLR w/o ZO 20.11 27.07 6.23 68.35
RLR w/o HO 19.28 26.70 5.92 63.85

RLR 21.38 29.22 6.65 76.55

We conduct the ablation study, using
SD 1.4 and HPD v2, to verify the con-
tribution of different parts in the RLR
optimizer. In Table 5, we evaluate the
RLR and its variants (V1: the RLR
without HO and ZO; V2: the RLR
without ZO; V3: the RLR without
HO). The V1 performs the worst since
it actually reduces to the truncated BP with only one time-step. The V2 and V3 perform better than
the V1. It is worth noting that the V2 is better than the V3. The V3 without HO is actually an unbiased
estimator since it takes all time steps into account when estimating the gradient. Even though the
V2 rearranges the computational graph by the HO, it is still a biased estimator. This phenomenon
indicates the importance of unbiasedness when conducting the fine-tuning task.

6 THEORETICAL PROPERTIES OF GRADIENT ESTIMATORS: BIAS, VARIANCE,
AND CONVERGENCE

In this part, we analyze the bias of truncated BP and compare the variance of different estimators,
backing the claim in Table 1. Thanks to the unbiasedness of the RLR estimator, the convergence of
the optimization is also guaranteed.

To alleviate the memory burden of full-step BP, the truncated variant is often employed, backpropa-
gating the gradient with only T ′ steps; T ′ ≪ T . However, the truncation introduces a structural
bias into the gradient estimator. We have the following proposition to justify this structural bias.

Proposition 6.1 (Biasedness of Truncated-BP ). Assume R and ϕ are differentiable almost everywhere,
R and ϕt have bounded gradients, then the FO estimator is unbiased. However, the truncated BP
estimator ∇θR(x0)truncated has a structural bias, which can be specified as below:

∇θE[R(x0)]− E[∇θR(x0)truncated] = Ez1:T

[( T∑
i=T ′+1

∂ϕi(xi, zi; θ)

∂θ

i−1∏
j=1

∂xj−1

∂xj

)⊤
dR(x0)

dx0

]
.
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Bias in the estimator can lead to suboptimal updates or even training failure, as the truncated gradient
may not follow a true descent direction. This can cause two major issues: model collapse and loss of
multi-scale information. In contrast, ZO (Spall, 1992) and HO (Jiang et al., 2024) are unbiased.

The stochastic nature of the DM results in the variance of the estimator. As expected, the variance of
the FO estimator is lower than that of the HO and ZO estimators because the differentiation leverages
the structural information of the neural network. However, BP introduces significant computational
and storage overhead. The following proposition demonstrates that this additional cost is, to some
extent, justified, as BP leverages accurate internal structures to reduce estimation variance.
Proposition 6.2 (Variance Comparison). Under Assumptions (A.1-3) in the Appendix, the variance
of FO estimators is less than or equal to ZO estimators, i.e.

Var(∇θR(x0)) ≤ Var(R(x0)∇ ln f(z)). (9)

Based on the above proposition, it is straightforward to conclude that the variance of the HO estimator
is also less than or equal to that of the ZO estimator, as it is essentially an FO estimator with a
perturbation at the start of the sub-chain. The Table 1 presents all the gradient computation methods
discussed above.

Overall, the RLR reorganizes the recursive computation chain by perturbation-based estimation,
seamlessly integrating ZO, HO, and FO optimization techniques. RLR strikes a balance between
computational cost and gradient accuracy, achieving both unbiasedness and low variance. The
following Theorem 6.3 establishes its unbiasedness.
Theorem 6.3 (Unbiasedness of RLR). The RLR estimator is an unbiased estimator:

∇θE[R(ϕ1:T (xT ; θ))] = Ez1:T ,j∼U(1,T−h)

[
D⊤

θ ϕ1(x1, z1; θ)
dR(x0)

dx0

−R(x0)D
⊤
θ ϕj:j+h(xj+h, zj:j+h; θ)∇z ln f(zj)−

∑
i∈C

R(x0)∇z ln f(zi).

]
.

(10)

The variance of the RLR estimator, denoted by σ2
RLR, is discussed in the appendix. Under limited

computational resources where full BP is infeasible, RLR achieves substantially lower variance
compared to other unbiased gradient estimators. Finally, the convergence rate of RLR is provided in
the following Theorem 6.4.
Theorem 6.4 (Convergence Rate). Suppose that the reward function R(·) is L-smooth. By appropri-
ately selecting the step size, the convergence rate of the RLR is given by

1

K + 1

K∑
k=0

E(∥∇R(θk)∥2) ≤

√
8L∆0σ2

RLR

K + 1
+

2L∆0

K + 1
,

where K is the number of iterations, θk is the trainable parameter in the k-th iteration, and ∆0 =
|R(θ0)−R∗| is difference between initialization performance and optimal performance.

7 CONCLUSION

We propose the RLR optimizer, a half-order gradient estimation framework designed for efficient fine-
tuning of diffusion models. Theoretically, we analyze the bias, variance, and convergence of the RLR
estimator and formulate a constrained optimization problem to guide its design. Empirically, RLR
consistently outperforms both reinforcement learning and truncated backpropagation methods on
Text2Image and Text2Video tasks across multiple human preference reward models and benchmarks.
Furthermore, we introduce a novel prompt technique, Diffusive Chain-of-Thought (DCoT), which
complements the RLR and further boosts performance. Although determining the appropriate sub-
chain length h can be nontrivial in practice, we provide both theoretical justification and empirical
ablations to guide practitioners in making informed choices.
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A EXTENDED RELATED WORKS

Diffusion Probabilistic Models. Denoising Diffusion Model (Ho et al., 2020; Lu et al., 2022) is one
of the strongest models for generation tasks, especially for visual generation (Rombach et al., 2022;
Peebles & Xie, 2023; Chen et al., 2024a). Extensive research has been conducted from theoretical and
empirical perspectives (Song et al., 2020a; Karras et al., 2022; Song et al., 2020b). It has achieved
phenomenal success in multi-modality generation, including image, video, audio, and 3D shapes. The
DM is trained on enormous images and videos from the internet (Bain et al., 2021; Wang et al., 2023b;
Schuhmann et al., 2022). Empowered by modern architecture (Vaswani, 2017), it has a powerful
learning capability for Pixel Space Distribution.

Alignment and Post-training. After pre-training to learn the distribution of the targeted modality
(Achiam et al., 2023; Kaplan et al., 2020), post-training is conducted to align the model toward
specific preferences or tune the model to optimize a particular objective. RL has been utilized to align
the foundation models toward various objectives (Ziegler et al., 2019; Lambert et al., 2022; Black
et al., 2023). DPOK (Fan et al., 2024) studies KL regularization when training a separate DM for each
prompt. Supervised learning can also be applied to the post-training phase (Rafailov et al., 2024),
either optimizing an equivalent objective (Wallace et al., 2024) or directly differentiating the reward
model (Clark et al., 2023; Prabhudesai et al., 2023; 2024). D3PO Yang et al. (2024) utilizes the
DPO loss to train the DM. Specialist Diffusion Lu et al. (2023) focuses on sample-efficient, few-shot
fine-tuning of large pre-trained diffusion models to enable the generation of new visual styles from
as few as 5–10 examples. SPIN (Yuan et al., 2024b) introduces a self-play learning paradigm for
diffusion models. For DM, most methods use a neural reward model to align the pre-trained model,
and there has been a continual effort to design better reward models (He et al., 2024; Xu et al.,
2024a;b).

Forward Learning Methods. After extensive exploration of model training using forward infer-
ences only (see, e.g., Peng et al., 2022; Hinton, 2022), forward-learning methods (Salimans et al.,
2017; Malladi et al., 2023; Chen et al., 2023; Jiang et al., 2024) based on stochastic gradient estima-
tion have recently emerged as a promising alternative to classical BP for large-scale machine learning
problems (Zhao et al., 2024; Zhang et al., 2024a). Subsequent research (Ren et al., 2025; Chen
et al., 2024b) has further optimized computational and storage overhead from various perspectives,
achieving greater efficiency.

B EXPERIMENTS SETTINGS

B.1 OVERALL SETTING

Prompts dataset. We use Pick-a-Pic (Kirstain et al., 2023) and HPD v2 (Wu et al., 2023) for the
Text2Image experiments. We report the performance of the trained model on unseen prompts from
the training phase. For the Text2Video task, we prompt ChatGPT to generate a series of prompts that
describe motions and train models under the prompts. After the training, we evaluate the model’s
performance on the unseen prompts from the VBench (Huang et al., 2024).

Reward model and benchmark. We adopt multiple human preference reward models to train
and test our methods, including PickScore (Kirstain et al., 2023), HPS v2 (Wu et al., 2023), and
ImageReward (Xu et al., 2024b). All the models are trained on large-scale preference datasets. We
also included the traditional aesthetic models, e.g., AES (Schuhmann, 2022).

For the video generation task, we use the VBench (Huang et al., 2024) to rate the methods according
to various perspectives of the generated videos. We report 6 aspects of the generated videos in the
main text: Subject Consistency (SC), Background Consistency (BC), Motion Smoothness (MS),
Dynamic Degree (DD), Aesthetic Quality (AQ), and Imaging Quality (IQ). For more results of 16
metrics on VBench, please refer to Table 10 in the appendix.

Baselines. We compared our methods with RL-based methods and BP-based methods. DDPO
(Black et al., 2023) is the state-of-the-art RL method for DMs. For the Text2Image experiment,
we include the AlignProp (Prabhudesai et al., 2023), a randomized truncated BP method. For
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the Text2Video experiment, we included VADER (Prabhudesai et al., 2024), a BP-based method
especially catering to video generation.

B.2 PROMPTS

HPD v2. Human Preference Dataset v2 (HPD v2) is a large-scale collection designed to evaluate
human preferences for images generated from text prompts, comprising 798,090 human-annotated
preference choices from 433,760 image pairs. It includes images from diverse text-to-image models
and utilizes cleaned prompts, processed with ChatGPT to remove biases and style-related words.

Pick-a-Pic. The Pick-a-Pic dataset is a publicly available collection of over half a million human
preferences for images generated from 35,000 text prompts. Users generate images using state-
of-the-art text-to-image models and select their preferred image from pairs, with each example
including a prompt, two images, and a preference label. Collected via a web application, this dataset
better reflects real-world user preferences and is used to train the PickScore scoring function, which
enhances model evaluation and improvement.

ChatGPT Created Prompts. We ask ChatGPT to generate imaginative and detailed text descriptions
for various scenarios, including people engaging in sports, animals wearing clothes, and animals
playing musical instruments. We use the ChatGPT-generated prompts to train the model.

Vbench Prompt Suite. The Prompt Suite in VBench is a carefully curated set of text prompts
designed to evaluate video generation models across 16 distinct evaluation dimensions. Each
dimension is represented by approximately 100 prompts tailored to test specific aspects of video
quality and consistency. The prompts are organized to reflect different categories, such as animals,
architecture, human actions, and scenery, ensuring comprehensive coverage across diverse content
types. These prompts are used to assess models’ abilities, such as subject consistency, object
class generation, motion smoothness, and more, providing insights into the models’ strengths and
weaknesses across various scenarios.

B.3 REWARD MODELS AND EVALUATION METRICS

PickScore. The PickScore Reward Model is a scoring function trained on the Pick-a-Pic dataset,
which includes human preferences for text-to-image generated images (Kirstain et al., 2023). It uses
a CLIP-based architecture to compute scores by comparing text and image representations. Trained
to predict user preferences, it minimizes KL-divergence between true preferences (preferred image or
tie) and predicted scores.

HPSv2. Human Preference Score v2 (HPSv2) (Wu et al., 2023) is a model designed to evaluate
human preferences for images generated by text-to-image models. Trained on the Human Preference
Dataset v2, which includes 798,000 human preference annotations on 433,760 image pairs from
various generative models, HPSv2 predicts which images are preferred based on text-image alignment
and aesthetic quality, offering a more human-aligned evaluation compared to traditional metrics like
Inception Score or Fréchet Inception Distance.

AES. The Aesthetic Score (AES) (Schuhmann, 2022) is obtained from a model that builds on CLIP
embeddings and incorporates additional multilayer perceptron (MLP) layers to capture the visual
attractiveness of images. This metric serves as a tool for assessing the aesthetic quality of generated
images, offering insights into how closely they match human aesthetic preferences.

ImageReward. ImageReward (Xu et al., 2024b) is a reward model designed to evaluate human
preferences in text-to-image generation. It is trained on a large dataset of 137k expert comparisons,
using a systematic annotation pipeline that rates and ranks images based on alignment with text,
fidelity, and harmlessness. Built on the BLIP model, ImageReward accurately predicts human
preferences, outperforming models like CLIP, Aesthetic, and BLIP. It serves as a promising automatic
evaluation metric for text-to-image synthesis, aligning well with human rankings.

B.4 BASELINES

DOODL. DOODL (Direct Optimization of Diffusion Latents) optimizes diffusion latents to improve
image generation by directly adjusting latents based on a model-based loss. Unlike traditional
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classifier guidance methods, DOODL avoids the need for retraining models or using approximations,
providing more accurate and efficient guidance. It enhances text-conditioned generation, expands
pre-trained model vocabularies, enables personalized image generation, and improves aesthetic
quality, offering better control and higher-quality outputs in generative image models.

DDPO. DDPO (Denoising Diffusion Policy Optimization) is an RL-based method for optimizing
diffusion models towards specific goals like image quality or compressibility. By treating denoising
as a multi-step decision-making task, DDPO uses policy gradients to maximize a reward function,
unlike traditional likelihood-based methods. DDPO also shows strong generalization across diverse
prompts, making it highly effective for fine-tuning generative models.

AlignProp. AlignProp fine-tunes text-to-image diffusion models by backpropagating gradients
through the entire denoising process using randomized truncated backpropagation. This method
reduces memory and computational costs by employing low-rank adapter modules and gradient
checkpointing. The randomized TBTT approach, which randomly selects the number of backpropa-
gation steps, prevents overfitting and mode collapse, improving both sample efficiency and reward
optimization. AlignProp outperforms other methods in terms of generalization, image-text alignment,
and aesthetic quality, making it a highly efficient and effective tool for optimizing diffusion models
to specific downstream objectives.

VADER. VADER (Video Diffusion via Reward Gradients) fine-tunes video diffusion models by
backpropagating gradients from pre-trained reward models. It enhances sample and computational
efficiency, using reward models to assess aesthetics, text-video alignment, and other video-specific
tasks. VADER maintains temporal consistency and generalizes well to unseen prompts, making it an
effective tool for adapting video models to complex objectives.

B.5 ORTHOGONAL TRICKS

LoRA applies low-rank adaptation to the original parameters, θ, by fine-tuning only the low-rank
components rather than the full parameters. Specifically, each linear layer in the backbone (U-Net or
Transformer) of the diffusion model is modified as h = Wx+BAx, where W ∈ Rm×m, A ∈ Rm×k,
and B ∈ Rk×m, with k ≪ m. The LoRA weights are initialized to zero, ensuring no initial impact
on the pre-trained model’s performance. This method reduces the number of parameters to be trained
while achieving performance comparable to full-parameter fine-tuning. We apply LoRA with k = 16
to all experiments.

Gradient checkpointing is a well-known technique for reducing memory usage during neural
network training (Gruslys et al., 2016; Chen et al., 2016). Instead of storing all intermediate activations
for backpropagation, it selectively saves only those needed for gradient computation and transfers the
rest to the CPU’s main memory. However, this comes with the cost of additional data transfer and
computation overhead, which can increase training time. In the case of truncated backpropagation,
checkpointing is unavoidable. For our RLR optimizer, though, gradient checkpointing is not a
necessary technique.

C HYPEPARAMETERS

All the experiments are conducted on a machine with 8 NVIDIA V100 GPUs. Each GPU has 32GB
of memory.

For the Text2Image and the DCoT experiment, we use Adam optimizer with the learning rate of
5× 10−4. The batch size is 4 and the gradient accumulation steps are 2. The DDIM steps are 50 and
the classifier guidance weight is 7.5. The local sub-chain has a length of 2. We use Gaussian noise
with a standard deviation of 1× 10−3 for perturbing the parameters.

For the Text2Video experiment, we use Adam optimizer with the learning rate of 1 × 10−4. The
batch size is 1 and the gradient accumulation steps are 8. The DDIM steps are 25 and the classifier
guidance weight is 7.5. The local sub-chain has a length of 2. We use Gaussian noise with a standard
deviation of 1× 10−4 for perturbing the parameters.
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D QUALITATIVE RESULTS OF TEXT2IMAGE
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A girl walking with a toy 
bear in her hand.

Small groups of people 
in the downtown

Someone riding a 
motorcycle on the 

grassland

A girl riding a horse in 
an open field with the 
sun setting behind her.

A man cooking 
breakfast in kitchen.

A man working on a DIY 
project in his garage, 

wearing safety goggles.

Figure 7: Qualitative results for Text2Image generation.
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E QUALITATIVE RESULTS OF TEXT2VIDEO
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A boy playing the piano, pressing the keys with focus and enjoyment A girl making friendship bracelets with colorful threads and beads.

A golden phoenix flying over a ruined castle, flames trailing behind its wings. A snow queen with ice-blue eyes, blessing over a frozen forest.

A boy playing on the floor in a cozy room. A hedgehog on top of the roof of a car

A rocket breaking through the clouds during its ascent.A steady rescue lifeboat battling high waves during a sea rescue mission.
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Figure 8: Qualitative results for Text2Video generation.

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

F DETAILS FOR DIFFUSIVE CHAIN-OF-THOUGHT EXPERIMENT

Original prompts for the hand task: (1) A realistic open palm facing upward. (2) A picture of a hand
facing downward. (3) A hand in a relaxed position. (4) A hand. (5) A photo of a hand. The generated
DCoT prompts are in Figure 10. We show the instructions to generate the multi-scale DCoT prompts
in Figure 11.

Stable Diffusion 1.4 After fine-tuning by RLR with DCoT

Figure 9: Qualitative results for the hand task in DCoT.

A single human hand positioned with the palm facing upward

Detailed skin texture, visible creases on the palm, and natural 
lighting on fingernails and knuckles

An open palm with fingers naturally spread and relaxed, 
oriented upward

A realistic open palm facing upward

Coarse-level

Mid-level

Fine-level

A picture of a hand facing downward

Coarse-level

Mid-level

Fine-level

A hand in a relaxed position

Coarse-level

Mid-level

Fine-level

A human hand with the palm facing downward

Fingers extended naturally, back of the hand visible, wrist slightly 
relaxed

Visible veins, knuckle contours, skin texture, and soft shadows on 
the fingers

A human hand resting in a neutral, relaxed position

Fingers slightly curved, palm partially visible, wrist aligned 
naturally

Subtle skin folds at the joints, soft lighting on the knuckles, 
natural skin tone and texture

Given an original prompt for visual generation, you need to break it down into three 
prompts that controls different scales of the visual content: coarse-scale, mid-scale, 
fine-scale. The generated prompts should be concise and clear.

Here is the original prompt:
<PROMPT>

Your answer format should be:
Coarse-level:
<COMPLETE>

Mid-level:
<COMPLETE>

Fine-level:
<COMPLETE>

Instruction to generate the DCoT prompts

Figure 10: Qualitative examples for DCoT prompts
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A single human hand positioned with the palm facing upward

Detailed skin texture, visible creases on the palm, and natural 
lighting on fingernails and knuckles

An open palm with fingers naturally spread and relaxed, 
oriented upward

A realistic open palm facing upward

Coarse-level

Mid-level

Fine-level

A picture of a hand facing downward

Coarse-level

Mid-level

Fine-level

A hand in a relaxed position

Coarse-level

Mid-level

Fine-level

A human hand with the palm facing downward

Fingers extended naturally, back of the hand visible, wrist slightly 
relaxed

Visible veins, knuckle contours, skin texture, and soft shadows on 
the fingers

A human hand resting in a neutral, relaxed position

Fingers slightly curved, palm partially visible, wrist aligned 
naturally

Subtle skin folds at the joints, soft lighting on the knuckles, 
natural skin tone and texture

Given an original prompt for visual generation, you need to break it down into three 
prompts that controls different scales of the visual content: coarse-scale, mid-scale, 
fine-scale. The generated prompts should be concise and clear.

Here is the original prompt:
<PROMPT>

Your answer format should be:
Coarse-level:
<COMPLETE>

Mid-level:
<COMPLETE>

Fine-level:
<COMPLETE>

Instruction to generate the DCoT prompts

Figure 11: Instruction to generate DCoT prompts.

G MEMORY PROFILE, TIME COMPLEXITY, AND DIFFERENT DIFFUSION
SOLVERS

We give the memory cost for the experiments with Text2Image on SD 1.4 in Table 6. We offload the
memory to the CPU RAM to avoid the out-of-memory error. The AlignProp based on truncated BP
has the largest memory consumption. The DDPO, based on RL, has the smallest consumption, while
the sample efficiency is terrible, as shown in Figure 5. Our RLR has significantly lower memory
consumption than the AlignProp.

Table 6: Memory cost of Text2Image experiments on SD 1.4

Methods VRAM System RAM Total
DDPO 12.4 GB 0 GB 12.4 GB

AlignProp 25.4 GB 78.5 GB 103.9 GB
RLR 22.4 GB 0 GB 22.4 GB

We report the per-step time cost for the truncated BP method, AlignProp, and compare the three
methods in Table 7. As shown in the following table, AlignProp has the highest per-step cost, while
RL is the fastest. When considering the total time to reach the same performance level (AES = 5.4),
the advantage of RLR becomes more evident. RL requires significantly more steps to converge due
to high-variance gradients, whereas RLR achieves the target in fewer steps thanks to its low-variance
property, resulting in faster convergence than both RL and AlignProp.

Table 7: Time complexity of Text2Image experiments on SD 1.4

Methods RLR RL Alignprop
Time(min/step) 1.61 0.82 2.85

Time(to same score) 121 (75 steps) 492 (600 steps) 285 (100 steps)

We use RLR to train SD1.4 with the DPMSolverMultistepScheduler to verify its effectiveness on
different samplers. We set the inference steps to 20 and the solver order to 2. The results in the Table
8 show that RLR maintains robust performance across both samplers. Diffusion-based generation
methods such as DDIM are deterministic when η = 0, and only become stochastic when η > 0. In
our experiments, when we require the HO estimator at a given step, we explicitly set η = 0.1 for the
step to perform HO. For all other steps, we retain the deterministic ODE solver structure by setting
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η = 0. This approach allows us to flexibly combine deterministic and stochastic transitions within the
same framework, ensuring the correctness of the HO estimator where needed. DPM-Solver supports
both deterministic and stochastic sampling modes. Stochasticity can be selectively enabled at the
specific steps where the HO estimator is used, with all other steps remaining deterministic.

Table 8: Ablation of different diffusion solver in Text2Image experiments on SD 1.4

Methods PickScore HPSv2 AES ImageReward
DDIM 20.14 28.57 6.53 75.65

DPMSolver 20.21 28.55 6.56 75.70

H ABLATIONS ON THE SUB-CHAIN LENGTH h

Table 9: Comparison of methods on HPSv2 and ImageReward with memory(GB) and time
cost(minute per step).

Method HPSv2 ImageReward Memory Wall clock time
ZO 22.31 40.82 11.8 0.79
DDPO (RL) 22.79 52.06 12.4 0.82
RLR(h = 0) 26.70 63.85 12.7 0.90
RLR(h = 1) 28.02 69.85 18.8 1.15
RLR(h = 2) 29.22 76.55 22.4 1.61
RLR(h = 3) 29.36 76.62 32.6 5.65
RLR(h = 4) 29.55 76.70 45.8 9.23

We provide ablation over different sub-chain lengths h and different estimators in the following
two tables. We report the reward score from two models, memory, and wall clock time. As the h
increases, the performance increases due to the reduced variance. Increasing h would also increase
the computation overhead, including memory and time. We find that when h is larger than 2,
the performance gain is marginal compared to the increasing computation burden (high memory
requirement and long wall clock time). When the h is smaller than 2, high variance would lead
to performance degradation. Therefore, we choose h = 2 as the best hyperparameter in the main
experiment.

I MORE RESULTS ON VBENCH

VBench Evaluation Dimensions. VBench evaluates video generation models across 16 disentan-
gled dimensions, categorized into Quality and Semantic groups.

The Quality category consists of 7 metrics: Subject Consistency and Background Consistency
measure identity and scene consistency across frames using feature similarity; Motion Smoothness
evaluates physically plausible motion via a motion prior model; Dynamic Degree quantifies motion
magnitude to penalize overly static videos; Temporal Flickering measures high-frequency temporal
instability; Aesthetic Quality reflects perceptual appeal using an aesthetic predictor; and Imaging
Quality assesses distortions like blur or noise using an image quality model.

The Semantic category includes 9 metrics: Object Class and Multiple Objects test object presence
and compositionality; Human Action verifies accurate motion execution; Color, Spatial Relation-
ship, and Scene check fidelity to prompt-specified attributes and layouts; Appearance Style and
Temporal Style assess stylistic alignment in space and time; and Overall Consistency captures
general text-video correspondence. Each dimension has tailored prompts and automatic evaluation
pipelines, ensuring fine-grained, human-aligned assessment.

According to the VBench protocol, the Total Score(TS) is computed as a weighted sum of the
Quality Score(QS) and Semantic Score(SS), following the formula: TS = 0.8 · QS + 0.2 · SS. In
our evaluation, the proposed RLR method achieves the highest scores across all three levels: QS, SS,
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and the final TS. Notably, most metrics contributing heavily to QS are reported in the main text due
to their strong correlation with perceptual quality and their larger weights in the TS calculation. For
completeness, we present all 16 VBench metrics in Table 10, where RLR consistently outperforms
existing baselines.

Table 10: Automatic evaluation on VBench.

(a) Quality dimensions and total score.

Method Subject Background Motion Dynamic Aesthetic Imaging Temporal Quality Total
Consistency Consistency Smoothness Degree Quality Quality Flickering Score Score

ModelScopeT2V 89.97 89.87 95.79 66.39 52.06 58.57 98.28 78.05 75.75
Open-Sora 92.09 97.39 95.61 48.61 57.76 61.51 98.41 78.82 75.91
Pika 96.76 98.95 99.51 37.22 63.15 62.33 99.77 82.68 80.40
Gen-2 97.61 97.61 99.58 18.89 66.96 67.42 99.56 82.47 80.58
T2V-Turbo 96.28 97.02 97.34 49.17 63.04 72.49 97.48 82.57 81.01

DDPO 95.53 96.63 96.92 58.29 59.23 66.84 97.63 81.43 79.84
VADER 95.79 96.71 97.06 66.94 66.04 69.93 97.62 83.75 81.84
RLR 97.64 97.19 98.05 70.69 66.15 71.08 97.70 85.20 83.14

(b) Semantic dimensions.

Method Object Multiple Human Color Spatial Scene Appearance Temporal Overall Semantic
Class Objects Action Relationship Style Style Consistency Score

ModelScopeT2V 82.25 38.98 92.40 81.72 33.68 39.26 23.39 25.37 25.67 66.54
Open-Sora 74.98 33.64 85.00 78.15 43.95 37.33 21.58 25.46 26.18 64.28
Pika 87.45 46.69 88.00 85.31 65.65 44.80 21.89 24.44 25.47 71.26
Gen-2 90.92 55.47 89.20 89.49 66.91 48.91 19.34 24.12 26.17 73.03
T2V-Turbo 93.96 54.65 95.20 89.90 38.67 55.58 24.42 25.51 28.16 74.76

DDPO 91.36 45.67 94.81 90.22 37.54 55.37 25.27 25.04 28.03 73.47
VADER 91.89 48.67 95.12 91.56 39.78 54.39 25.14 25.23 28.19 74.21
RLR 92.52 50.22 95.20 92.31 40.33 54.18 25.74 25.35 28.27 74.87

J PROOFS

J.1 PROOF OF PROPOSITION 6.1

Proof. We assume: R : Rd → R and ϕ : Rd × Rm ×Θ → Rd are continuously differentiable, and
their gradients with respect to the targeted arguments are uniformly bounded. That is, there exist finite
constants MR > 0 and Mϕ > 0 such that supx |∇R(x)| ≤ MR, sup(xt,zt,θ) |∇(xt,θ)ϕt(xt, zt, θ)| ≤
Mϕ. Under these assumptions, for the composite function R(ϕ1:T (xT , z1:T , θ)), the partial derivative
with respect to θ is also uniformly bounded by the chain rule (as a product of bounded terms).
Therefore, the integrability condition required by the Dominated Convergence Theorem (Rudin,
1987) is satisfied, which justifies interchanging the gradient and the expectation (Glasserman, 1990).

By chain rule and x0 = ϕ1:T (xT , z1:T ; θ) = ϕ1(x1, z1; θ), we have

∂R(x0)

∂θ
=

∂x0

∂θ

⊤ dR(x0)

dx0
=

[
∂ϕ1(x1, z1; θ)

∂θ
+

∂x0

∂x1

∂x1

∂θ

]⊤
dR(x0)

dx0

=

[
∂ϕ1(x1, z1; θ)

∂θ
+

∂x0

∂x1

[
∂ϕ2(x2, z2; θ)

∂θ
+

∂x1

∂x2

∂x2

∂θ

]]⊤
dR(x0)

dx0

= . . .

=

[
∂ϕ1(x1, z1; θ)

∂θ
+

T∑
i=2

∂ϕi(xi, zi; θ)

∂θ

i−1∏
j=1

∂xj−1

∂xj

]⊤
dR(x0)

dx0
.

Therefore, we can reach the conclusion that

∇θEz[R(x0)] = Ez1:T [∇θR(ϕ1(x1, z1; θ))]

= Ez1:T

[[
∂ϕ(x1, z1; θ)

∂θ
+

T∑
i=2

∂ϕi(xi, zi; θ)

∂θ

i−1∏
j=1

∂xj−1

∂xj

]⊤
dR(x0)

dx0

]
,
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which means the unbiasedness of the FO estimator. Furthermore, the truncated BP estimator is

∇θR(x0)truncated =

[
∂ϕ1(x1, z1; θ)

∂θ
+

T ′∑
i=2

∂ϕi(xi, zi; θ)

∂θ

i−1∏
j=1

∂xj−1

∂xj

]⊤
dR(x0)

dx0
. (11)

The structural bias of the truncated BP estimator can be specified by combining the above results:

∇θE[R(x0)]− E[∇θR(x0)truncated] = Ez1:T

[ T∑
i=T ′+1

∂ϕ(xi; θ)

∂θ

i−1∏
j=1

∂ϕ(xj ; θ)

∂xj

]⊤
dR(x0)

dx0
,

which completes the proof.

J.2 PROOF OF PROPOSITION 6.2 AND ADDITIONAL ASSUMPTIONS

Assumption J.1. Define R(z; θ) as R(ϕ1:T (xT , z1:T ; θ)). Assume that R(z; θ) is differentiable with
respect to θ almost surely, P(R(θ) = r) = 0 for every r ∈ R, and Lipschitz condition holds for every
θ1 and θ2:

|R(z; θ1)−R(z; θ2)| ≤ m1(z)|θ1 − θ2|,

where m1(z) is integrable.

Assumption J.2. For any xt, whose randomness comes from z, the density f(xt; θ) is differentiable
with respect to θ, and uniform integrability holds:

sup
θ

∣∣∣∣R(z; θ)
∂

∂θ
f(xt; θ)

∣∣∣∣ ≤ m2(z),

where m2(z) is integrable.

Assumption J.3. R(z; θ) is twice continuously differentiable. The following functions are integrable:
m1(·)2, m2(·)2, supθ |R(·; θ)| ×m1(·), supθ |R(·; θ)| × supθ |R′′(·; θ)|.

Proof of Proposition 6.2. Since R(z; θ) is the reward function and the random variables z1:T are
Gaussian distributions in our case, it is easy to check that the above assumptions are satisfied. By
applying Theorem 2 in Cui et al. (2020), we can reach the conclusion.

J.3 PROOF OF THEOREM 6.3

Proof. The RLR estimator contains three parts: FO estimator terms, HO estimator terms, and ZO
estimator terms. For simplicity, we can consider the terms with an FO estimator term, an HO estimator
term, and a ZO estimator term. Substituting the specific form of the iteration process, we have

x0 = ϕ(x1, z1; θ), x1 = φ(x2; θ + z2), x2 = φ(x3; θ) + z3,

where x1 = φ(x2; θ + z2) is an ZO estimator term and x2 = φ(x3; θ) + z3 is an HO estimator term.
We define z2 ∼ fZO(z) and z3 ∼ fHO(z) to indicate the noise distribution associated with ZO and
HO estimators. The overall gradient can be written as:

∇θEz1:3 [R(x0)] =

3∑
i=1

∇θiEz1:3 [R(ϕ(φ(φ(x3; θ3) + z3; θ2 + z2), z1; θ1))]

∣∣∣∣
θ1=θ2=θ3=θ

(12)

For the FO term, ϕ(x1, z1; θ), the gradient is derived by applying the chain rule:

∇θ1Ez1:3 [R(ϕ(φ(φ(x3; θ) + z3; θ + z2), z1; θ1))]

∣∣∣∣
θ1=θ

= ∇θ1Ez1:3 [R(ϕ(x1, z1; θ1)]

∣∣∣∣
θ1=θ

= Ez1:3

[
D⊤

θ̄ ϕ(x1, z1; θ̄)
dR(x0)

dx0

]∣∣∣∣
θ̄=θ
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To derive the gradient of the ZO and HO terms, the key idea is to push the parameter of interest into
the density function of the corresponding noise via a change of variables, so that the gradient operator
only acts on the log-density function. We have the gradient of the ZO term:

∇θ2Ez1,z2,z3 [R(ϕ(φ(φ(x3; θ) + z3; θ2 + z2), z1; θ))]

∣∣∣∣
θ2=θ

= ∇θ2Ez1,z2,z3 [R(ϕ(φ(x2; θ2 + z2), z1; θ))]

∣∣∣∣
θ2=θ

= ∇θ2Ez1,z3 [Ez2∼fZO(z)[R(ϕ(φ(x2; θ2 + z2), z1; θ))|z1, z3]]
∣∣∣∣
θ2=θ

= ∇θ2Ez1,z3 [Ev2∼fZO(v−θ2)[R(ϕ(φ(x2; v2), z1; θ))|z1, z3]]
∣∣∣∣
θ2=θ

= Ez1,z3 [Ev2∼fZO(v−θ2)[R(x0)∇θ2 ln fZO(v2 − θ2)|z1, z3]]
∣∣∣∣
θ2=θ

= Ez1,z3 [Ez2∼fZO(z)[−R(x0)∇z ln fZO(z2)|z1, z3]]
∣∣∣∣
θ2=θ

= Ez1,z2,z3 [−R(x0)∇z ln fZO(z2)],

where the first equality follows from the tower property of expectations, the second from a change
of variables, i.e.,v2 = θ + z2, the third uses the likelihood-ratio trick, and the fourth substitutes
the variable back and collapses the expectation. Likewise, with the change of variables v3 =
φ(x3; θ3) + z3, the derivation for the HO term follows analogously, yielding:

∇θ3Ez1,z2,z3 [R(ϕ(φ(φ(x3; θ3) + z3; θ + z2), z1; θ))]

∣∣∣∣
θ3=θ

= ∇θ3Ez1,z2 [Ez3∼fHO(z)[R(ϕ(φ(φ(x3; θ3) + z3; θ + z2), z1; θ))|z1, z2]]
∣∣∣∣
θ3=θ

= ∇θ3Ez1,z2 [Ev3∼fHO(v−φ(x3;θ3))[R(ϕ(φ(v3; θ + z2), z1; θ))|z1, z2]]
∣∣∣∣
θ3=θ

= Ez1,z2 [Ev3∼fHO(v−φ(x3;θ3))[R(x0)∇θ3 ln fHO(v3 − φ(x3; θ3))|z1, z2]]
∣∣∣∣
θ3=θ

= Ez1,z2

[
Ez3∼fHO(z)[−R(x0)D

⊤
θ3φ(x3; θ3)∇z ln fHO(z3)|z1, z2]

]∣∣∣∣
θ3=θ

= Ez1,z2,z3

[
−R(x0)D

⊤
θ̄ φ(x3; θ̄)∇z ln fHO(z3)

]∣∣∣∣
θ̄=θ

.

Finally, we have the unbiased RLR gradient estimator:

∇θEz1:3 [R(x0)] = Ez1:3

[
∂ϕ(x1, z1; θ̄)

∂θ̄

⊤
dR(x0)

dx0
−R(x0)

(
∇z ln fZO(z2) +

∂φ(x3; θ̄)

∂θ̄

⊤

∇z ln fHO(z3)

)]∣∣∣∣
θ̄=θ

.

Since the sum of unbiased estimators is still unbiased, it is easy to generalize the result for any
number of terms along the lines of the above proof. Also, the unbiasedness of the estimators does not
change no matter how we pick the combination of the HO estimator and the ZO estimator. Therefore,
we can reach the conclusion that:

∇θEz1:3
[R(x0)] = D⊤

θ ϕ(x1, z1; θ)
dR(x0)

dx0

−R(x0)D
⊤
θ ϕj:j+h(xj+h, zj:j+h; θ)∇z ln f(zj)−

∑
i∈C

R(x0)∇z ln f(zi),

which completes the proof.
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J.4 VARIANCE OF THE RLR ESTIMATOR

In this section, we discuss the variance of the RLR estimator, which consists of 3 terms, which are
denoted as A, B, and C, respectively:

RLR =
∂ϕ1(x1, z1; θ)

∂θ︸ ︷︷ ︸
A

−R(x0)D
⊤
θ ϕj:j+h(xj+h, zj:j+h; θ)∇ ln f(zj)︸ ︷︷ ︸

B

−
∑
i∈C

R(x0)∇ ln f(zi)︸ ︷︷ ︸
C

.

(13)

It is easy to verify that the variance of RLR can be bounded by the variances of terms A, B and C:

Var(RLR) = Var(A+B + C)

= Var(A) + Var(B) + Var(C) + 2 Cov(A,B) + 2 Cov(A,C) + 2 Cov(B,C)

≤ Var(A) + Var(B) + Var(C) + 2

(√
Var(A)Var(B) +

√
Var(A)Var(C) +

√
Var(B)Var(C)

)
,

(14)
which gives an upper bound for the variance of the RLR estimator. Next we derive the specific
expression of the terms Var(A), Var(B) and Var(C).

First, the term A represents the original exact BP without any injected noise, so its variance is 0.
Next, for the terms B and C, since both are LR estimators, we present them in the following unified
form for simplicity:

η = E[R(z)∇θ ln f(z, θ)],

where ∇θ ln f(z, θ) = D⊤
θ ϕj:j+h(xj+h; θ)∇ ln f(zj) in the term B. The variance of η is given by

Var(η) = E[(R(z)∇θ ln f(z, θ))
2]− µ(θ)2,

where µ(θ) is the estimator mean.

To better characterize the variance, we now derive an alternative form of the gradient:

E[R(z)∇θ ln f(z, θ)] =

∫
lim
h→0

f(z; θ + h)− f(z; θ)

h
R(z)dz

= lim
h→0

∫
f(z; θ + h)− f(z; θ)

h
R(z)dz

= lim
h→0

1

h

∫
f(z; θ)

(
f(z; θ + h)

f(z; θ)
− 1

)
R(z)dz

= lim
h→0

1

h
(E[ω(θ, h)R(z)]− Ef [R(z)]),

(15)

where the importance weight ω(θ, h) = f(z;θ+h)
f(z;θ) .

With this alternative form Equation (15), we have the variance of the LR estimator

Var(η) = lim
h→0

E[(w(θ, h)− 1)2R(z)2]− µ(θ)2, (16)

By the Hammersley-Chapman-Robbins bound, we can derive a lower bound for the variance:

Var(η) ≥ sup
h

(µ(θ + h)− µ(θ)2)

E[w(θ, h)− 1]2
,

which is a generalization of the more widely-known Cramer-Rao bound and describes the minimal
variance achievable by the estimator.

Under limited computational resources where full BP is infeasible, the only unbiased gradient
estimation methods available are RLR, zeroth-order optimization, and RL. Compared to the latter
two, RLR incorporates h-length half-order optimization and a single-step precise BP. According to
Proposition 6.2 and the subsequent discussion, it is evident that RLR achieves the lowest variance
among these methods.
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J.5 PROOF OF THEOREM 6.4

Proof. Since R(·) is L-smooth, we have

E[R(θk+1)|Fk] = R(θk) + E [⟨∇R(θk), θk+1 − θk⟩|Fk] +
L

2
E
[
∥θk+1 − θk∥2|Fk

]
= R(θk)− γE [⟨∇R(θk),∇R(θk) + ϵ⟩|Fk] +

Lγ2

2
E
[
∥∇R(θk) + ϵ∥2|Fk

]
≤ R(θk)− γ(1− Lγ

2
)∥∇R(θk)∥2 +

Lγ2σ2
RLR

2

≤ R(θk)−
γ

2
∥∇R(θk)∥2 +

Lγ2σRLR
2

2
,

(17)

where the last inequality holds if γ ≤ 1/L. By taking expectations over the filtration Fk, we have

E[R(θk+1)] ≤ E[R(θk)]−
γ

2
E[∇R(θk)

2] +
Lγ2σ2

RLR

2
,

which is equivalent to

E[∇R(θk)
2] ≤ 2

γ
(E(R(θk))− E(R(θk+1))) + γLσ2

RLR.

Taking the average over k = 0, 1, . . . ,K, we have

1

K + 1

K∑
k=0

[E[∇R(θk)
2]] ≤ 2(R(x0)−R∗)

γ(K + 1)
+ γLσ2

RLR.

Defining ∆0 := R(x0)−R∗, if we set the step size

γ =

[(
2∆0

(K + 1)Lσ2
RLR

)− 1
2

+ L

]−1

,

then we have
1

K + 1

K∑
k=0

E(∥∇R(θk)∥2) ≤

√
8L∆0σ2

RLR

K + 1
+

2L∆0

K + 1
,

which completes the proof.

J.6 SOLUTION OF OPTIMIZATION PROBLEM (7)

Quadratic Upper Bound on Variance. Using the variance decomposition bound (14), the objective
of the problem (7) can be upper bounded by a quadratic function of h:

Q(h) = a(h+ 1)2 + b(h+ 1) + c, (18)
where the coefficients a, b, c are given by:

a = V 2
h + V 2

z − 2VhVz > 0,

b = −2TV 2
z + 2TVhVz,

Then, the unconstrained optimal solution h⋆ is given by:

h⋆
unc =

T (V 2
z − VhVz)

2(V 2
h + V 2

z − 2VhVz)
− 1. (19)

Where h and (T − 1 − h) are the number of steps for HO and ZO; V 2
h and V 2

z are coefficients
indicating the magnitude of the variance of HO and ZO per step, and Vh ≪ Vz since HO has
lower variance. Notice that T > 2. Therefore, h∗

unc > 0. Bh and Bz are coefficients indicating
the magnitude of the memory cost of HO and ZO per step and Bh > Bz . BzT ≤ B ≤ BhT. The
constraint of the problem (7) implies that h ≤ B−Bz(T−1)

Bh−Bz
, and B−Bz(T−1)

Bh−Bz
> 0.

Then, the solution to the optimization problem is given by:

min{⌊B − Bz(T − 1)

Bh − Bz
⌋, ⌊ T (V 2

z − VhVz)

2(V 2
h + V 2

z − 2VhVz)
− 1⌋}.
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