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Abstract

Vision and language navigation (VLN) is a
challenging task towards the creation of embod-
ied agents that requires spatial and temporal rea-
soning over the instructions provided in natural
language and aligning them with the visual per-
ception of an environment. Although a number
of methods and approaches have been devel-
oped, none achieves human level performance
in outdoor settings (by up to 75 percent). The
contributions of visual and language modalities
to the success of VLN have been studied, how-
ever here we focus on an overlooked property
of routes and show that navigational instruc-
tions can be represented as patterns of actions
that also describe trajectory shapes. Through
carefully crafted experiments, we show that
agents generalization to unseen environments
depends not only on visual and linguistic fea-
tures, but also on the shape of trajectories pre-
sented to the model during the fine-tuning. Our
experiments show that the diversity of patterns
of actions during training is a key contributor
to high success rates for agents. Our findings
will guide researchers towards improved prac-
tices in the development and evaluation of VLN
datasets and agents.'

1 Introduction

Vision-language navigation (VLN) is a challeng-
ing research area that combines computer vision
and natural language processing to enable embod-
ied agents to navigate and understand their envi-
ronment based on instructions provided in natural
language. A typical solution to solving this prob-
lem is to train neural network architectures such as
LSTM (Fried et al., 2018) and Transformers (Schu-
mann and Riezler, 2022) from scratch. In contrast,
using LLMs facilitates the development of modular
agents (Shah et al., 2022; Schumann et al., 2024;
Zhou et al., 2023) by taking advantage of reasoning
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Navigation Text of Route 641
You should be facing the correct direction when you
load in. Begin by moving forward until you reach an
intersection, and then take a right. Reorient yourself and
take a right at the next intersection. Reorient yourself
again and move forward though the next intersection.
three screens after this intersection. If you turn to
the left slightly, there should be a traffic barrel near a
shopping cart, which is in front of a red car.

The Pattern of Actions:
forward, right, forward, right, forward,

Figure 1: Visualization of route 641 on Google Maps
from TouchDown, along with navigation instructions
and corresponding pattern of actions.

capabilities learned through pre-training. Nonethe-
less, even with LLMs, a significant gap remains
between human-level and agent-based performance
when solving VLN tasks in outdoor settings (Schu-
mann et al., 2024).

Eliminating such a performance gap requires a
better understanding of the contributing factors to
the success and failures of the agents. Zhu et al.
(2022) studied token-level features of instructions
and structural features of routes such as heading
difference in turns. Schumann and Riezler (2022)
focused on junction types for navigation.

In this work, we focus on an overlooked prop-
erty of navigational routes, which we call Pattern



of Actions (PAct), which can be understood as

the high-level shape of an agent trajectory. To the

best our knowledge, PActs as a contributing factor
to VLN agent performance have been overlooked.

Figure 1 shows that each navigational pattern has a

corresponding PAct. We find that the agents’ per-

formance on out of sample test sets highly relies

on the pattern of actions seen during the training, a

phenomenon we call “pattern leakage”.

Our contributions can be summarized as follows:

1. We show that as an intrinsic feature of naviga-
tional trajectories, navigational patterns play an
important role in model performance. This is
reflected in success of the model in navigating
routes with similar patterns, even with instruc-
tions that are from another routes.

2. We propose new splits in which train and test
data are separated so that we minimize pattern
leakage. Our results show that agents largely
fail on pattern generalization.

3. We perform an in-depth analysis, comparing the
fine-tuned agents on different data splits, show-
ing that not observing patterns during training
also deteriorates the agents’ performance on sub-
tasks such as orienting towards the correct initial
direction and stopping at the correct destination
point.

2 Vision and Language Navigation

A navigation task can be defined as following in-
structions provided in natural language in order
to ground a destination point within a given envi-
ronment (Schumann et al., 2024). A navigation
instruction L = (w1, wa, ..., wy) is a sequence of
words in natural language that describes a navi-
gation route R = (n1,n2,...,npr). Each naviga-
tional route consists of multiple nodes in the navi-
gational graph of the environment. Each node n;
in the navigational graph also has visual informa-
tion v; (a 360-degree panorama image). In each
round of navigation, a VLN agent starts at an ini-
tial state s; and according to the instruction L and
visual observation v; predicts a navigational ac-
tion from the action space of {FORWARD, LEFT,
RIGHT, TURN_AROUND, STOP}. After taking the
action, it moves to another state, obtains another vi-
sual observation, and predicts a navigational action
again. This loop continues until the agent decides
the action STOP, or it runs out of action limit. A nav-
igation is considered successful if the agent stops
within one node distance of the destination point.

3 Patterns of Actions

Patterns of Actions (PAct) can be considered “prin-
cipal components” of navigation trajectories. Con-
sider the navigation instruction shown in Figure 1,
and notice that it consists of largely two compo-
nents: (a) directional information at key points
where the agent should make turns, and (b) descrip-
tion of forward movements. The instructions also
contain several references to landmarks. We can
define PActs as abstract representations of trajec-
tories capturing ground truth actions at key points.
For example, as depicted in Figure 1 (bottom),
the navigational text can be summarized using
the following PAct: forward, right, forward,
right, forward, stop. Although moving for-
ward might mean either one block or several kilo-
meters, such a sequence of actions at key points
can represent the structure of a navigational route.
For brevity, we will represent each unique pattern
with a hash, with the above example represented as
frfrfs. Figure 1 also shows the actual route 641
on a map.

A PAct effectively also describes the shape of
a trajectory. Therefore, throughout the paper we
use the phrases shape of trajectory and pattern
of actions/PAct interchangeably to emphasize the
similarity of routes whose patterns of ground truth
actions are equal.

Given our definition of PAct, Table 1 shows the
number of unique patterns in our datasets. Com-
pared to the number of samples, the number of
unique PActs is 2 orders magnitude smaller, i.e.
66 unique patterns for 7352 samples in Map2Seq
(Schumann and Riezler, 2021) dataset, and 85
unique patterns for over 9500 samples in Touch-
Down (Chen et al., 2018).

The datasets available in the literature share com-
mon PActs. In this work, we base our analysis on
those PActs and perform experiments and ablation
studies to show the contribution of pattern leakage
in agents’ performance. To the best of our knowl-
edge this is the first analysis of VLN approaches
and datasets using such a pattern based approach.

4 Experimental Settings

4.1 LLM-based Agents

In our study, we utilize VELMA (Schumann et al.,
2024). It is a state-of-the-art modular agent con-
sisting of two main components: (i) the Reasoning
module is an LLM that takes in instructions and



Train Dev  Test
Split name GS PS Dataset #S #P #S #P #S #P PO
base-unseen v’ TD 6,770 74 800 50 1,50766 58
M2S 5,737 37 800 31 800 31 28
0-pact-overlap v TD 4783 42286 1 425640 0
M2S 3889 21306 1 347719 0
base-zpo TD 4781 73 286 34 425872 63
M2S 3899 36 306 19 346735 31
zero-pact-geo-a v/ v TD 3510 37 158 20 100035 0
M2S 2975 20246 15 600 18 0
base-pg-a Vv TD 3510 59 158 29 100054 46
M2S 2975 34 246 24 600 31 28
zero-pact-geo-b v v TD 3260 38 149 18 100034 0
M2S 2762 17 15412 600 16 0
base-pg-b vV TD 3260 64 149 30 100060 49
M2S 2762 31 154 21 600 24 21

Table 1: The number of samples and the number of
PActs in each train, dev, and test set for different data
splits. GS: Geographical Separation. PS: PActs Separa-
tion. PO: PActs Overlap, the number of common PActs
between train and test sets. #S: Number of Samples. #P:
Number of PActs.

textual description of visual observations and pre-
dicts a sequence of actions. We use LLaMA (Tou-
vron et al., 2023) 7B, LLaMA 2, 7B, and Mistral
7B (Jiang et al., 2023) as the reasoning module of
VLN agent. (ii) Vision module, which is a mul-
timodal model for grounding landmarks referred
in instructions to the visual observations. We use
OpenCLIP (Cherti et al., 2022). Any landmark that
is grounded by OpenCLIP is added to the prompt
of the LLM as an observation. In our experiments,
we ablate the visual information (OpenCLIP vs.
No-Vision) both during fine-tuning and inference
to report its effect. When we train a model not
using visual information, we report it with suffix
NV (e.g. Llama2-NV). Similar to (Schumann et al.,
2024), we fine-tune the models using LoRA (Hu
et al., 2021) for 20 epochs and we choose the best

model by task completion on the development set.
2

4.2 Datasets

We perform our experiments on two datasets: (i)
TouchDown (TD) (Chen et al., 2018), which con-
sists of 9326 navigational routes in Manhattan, NY,
generated by human annotators through an ego-

2Based on the size of data splits, fine-tuning the models
would take somewhere between 16 to 28 hours on an NVIDIA
A100- 80GB GPU. Inference, would take 30 to 60 minutes on
the same GPU.

centric view similar to Google street view and (ii)
Map2Seq (M2S) (Schumann and Riezler, 2021),
which consists of 7,672 routes in the same neigh-
borhood as TouchDown. However, annotators, an-
notated the navigational routes by looking at the
map of the route.

Seen and Unseen splits. The original
train/dev/test splits of the TouchDown dataset
contains routes covering the area of Manhattan.
The train and test splits geographically overlap.
However, a new split was proposed in (Schumann
and Riezler, 2021) for both TouchDown and
Map2Seq datasets so that the train and test samples
are in geographically separate chunks. This split
is called unseen. Throughout this paper, we refer
to it as a baseline by base-unseen.

Dataset comparison. There are subtle differ-
ences in the construction of the datasets that are
important for the following discussion:

e Initial Direction: in TouchDown, the follower
agent is facing towards a random direction in the
beginning of the navigation. As a result, the first
piece of instruction describes how the follower
agent should orient itself towards the correct di-
rection. On the other hand, for Map2Seq, the
agent is initially placed in the correct orientation
towards the next move along the route. Note that
both datasets are verified by other humans as fol-
lowers to ensure that the instructions accurately
describe the routes.

* Route Structure routes of Map2Seq are generated
by finding the shortest path among two different
points on the navigational graph. Given the grid-
like map of Manhattan, this limits the number of
patterns of actions for Map2Seq agents. However,
TouchDown uses routes that are not necessarily
shortest path and have arbitrary patterns.

4.3 Evaluation Metrics

Interested in quantifying the effect of patterns in
the training data on agent performance for 3 main
tasks, we use the following metrics:

* Task Completion (TC) represents the percentage
of successful navigation instances among all nav-
igation instances in the test set (Schumann et al.,
2024).

* Overshoot Rate (OSR) is the rate at which the
agent reaches a destination but fails to stop at the
destination.

* Orientation assesses how capable the model is
in orienting the agent towards the correct direc-



tion in the beginning of the navigation. We use
Precision, Recall and F1 scores.

5 Experiments and Results

We are interested in the generalization ability of
agents with respect to the patterns presented to the
model during training. To this end, we split the
datasets into train and test sets based on patterns,
fine-tune the models on these splits, and discuss
the results. Both our datasets, TouchDown and
Map2Seq, have only a limited number of unique
patterns (PActs) of 85 and 63, respectively. Ta-
ble 1 shows the number of samples in the train,
dev(elopment), and test data using a base-unseen
split. However, notice that train, test and dev
datasets share patterns, which motivates our first
experiment.

5.1 Swapping Instructions of Similar Paths

We noticed that patterns that are present in train
data are also present in test data. This allows us to
form the following hypothesis:

If the PAct of a trajectory is a contributing factor,
then swapping the instructions of one route with
instructions of another route and still retaining
its shape (PAct), then this should still result in a
successful completion of the navigation task.

To test this hypothesis, we take a test set of the
unseen data split and for each route in the test set,
we randomly choose five other routes that have an
identical PAct and use the instructions as substitute
instructions. We omit the few routes that have
fewer than five similar routes. For each route, we
also randomly choose five instructions from routes
with different PActs to aid in the validation of our
hypothesis.

Table 2 shows the results of these experiments
compared to the baseline (base-unseen). Across
different experiments, the model completes the
navigation task in up to 5% of the test cases even
without any visual information. On the other hand,
the task completion (TC) rate is lower for routes
whose instructions are swapped with routes of dif-
ferent patterns. The TC rates for similar pattern
replacements ("similar" rows in Table 2) are always
higher than those for different patterns ("different"
rows). Overall, the results support our hypothesis
and emphasizes the importance of PActs in VLN.

FT—Test Swapped with OpenCLIP No-Vision
Same Train-Test Dataset
base-unseen 20.9 11.48
TD—TD similar 4.97 2.82
different 2.92 1.46
base-unseen 39.13 33.75
M2S—M2S similar 5.96 6.21
different 1.88 1.38
Different Train-Test Datasets
base-unseen 6.17 5.31
M2S—TD  similar 2.96 2.89
different 1.19 1.53
base-unseen 23.5 22.75
TD—M2S similar 4.56 5.32
different 2.25 2.13

Table 2: FT: Fine-tune dataset. Task completion rate
for base-unseen in 3 scenarios: Instructions swapped
with similar PAct, different PAct, and base-unseen (no
swapping).

5.2 Zero Pattern Overlap: Seen and Unseen
Patterns

Our observations so far support the hypothesis that
pattern leakage plays a role in dowsntream per-
formance. To further study this phenomenon, we
reverse the question. What if we train and test
a model on carefully selected samples that will
exhibit zero pattern leakage (i.e., no patterns are
shared between the training and test data)?

We create a new data split in which no sample
from the training data shares pattern with any of
the samples in the test set, denoted as Zero Pattern
Overlap (0-pact-overlap). We group the data sam-
ples based on their patterns and sort them based
on the number of samples within each group in
descending order. We then assign the even-index
samples to the training set odd-index samples to
the test set, ensuring zero overlap. We also leave
samples of one pattern for the development set. In
the Appendix, Figure 2 illustrates this process. The
resulting dataset has a 50-50 train-test split. Also,
there is no common pattern among the train, de-
velopment, and test sets. Note that, although we
ensure no leakage within samples of each dataset,
cross-dataset leakage (e.g. Map2Seq train to Touch-
down test) is still possible.

To control for the effect of number of samples
of data for training (compared to the base-unseen
split where around 75% of the data is used for train-
ing, 10% for development and 15% for testing),
we resample the base split —with leakage— so that
the number of samples in the train, dev, test sets



match that of O-pact-overlap’s. We label this split
base-zpo and will use it as the fair baseline for com-
parison with O-pact-overlap. The details of these
splits are in Table 1.

Effect of Patterns Results. Table 4 shows
that the model’s performance drops noticeably (on
TouchDown train-test), from 4.06% in Llama2 us-
ing vision, to 7.81% in no-vision scenario. The
range of the performance drop is from 1.51% to
7.15% for other cases. This underlines the impor-
tance of seeing patterns during the training phase
for the agent’s ability to resolve test cases. We
should also emphasize that the TC rates are also
worse for no-vision cases in O-pact-overlap split,
i.e., in cases where the agent totally ignores visual
observations during the inference or fine-tuning.
For example, when the model is fine-tuned with
no-vision, the performance drop from controlled to
zero pattern overlap ranges from 3.83% to 15.25%.
This suggests that the model heavily relies on pat-
terns to navigate.

Visual Data Contamination. Given that 0-pact-
overlap only separates the routes based on their
patterns, the test samples can be from the same
area the model has seen in the training data and
potentially causing data contamination in O-pact-
overlap split. Nonetheless, even with this type of
data contamination, there is an evident decrease
in TC rate when the training and test samples do
not share any patterns compared to the baselines
(base-zpo).

The question that may be raised here is as to
how a model fine-tuned with 0-pact-overlap split on
M2S, and tested on M2S (38.13% with vision, 30%
without vision) still performs comparable to that
of the base-unseen scenario (39.12% with vision,
33.75% without vision), even though it has been
trained on fewer (almost half) samples?

We hypothesize that this can be partly due to the
geographical overlap in the 0-pact-overlap case.
This question motivates our next experiment.

5.3 Zero Pattern and Zero Geographical
Overlap

To mitigate the influence of both geographical over-
lap and pattern overlap within the dataset, we fur-
ther partition the data according to both geographic
coordinates and patterns creating Zero Patterns and
Geographical Overlap splits. Since the train and
test set in base-unseen are geographically separate,
if we take samples from its train set, whose patterns

Llama2
FT — Test OpenCLIP No-Vision Llama2-NV

Same Train-Test Dataset

TD — TD 23.22 13.8 144

M2S — M2S 36.75 26.5 27.75
Different Train-Test Datasets

TD — M2S 23 25.5 21.62

M2S — TD 4.98 3.58 3.45

Table 3: Task Completion Rate (%) for base-unseen
scenario.

Llama2
FT — Test Split OpenCLIP No-Vision Llama2-NV
Same Train-Test Dataset
D = 1D gil;zz?ooverlap S8 (4.06) ;.5728(-780 s
M2S§ — M28§ g?;z;f);verlap 2(3):(1)? (-7.15) ;E (-2.4) 43‘;;‘2‘

Different Train-Test Datasets
base-zpo 27.7 29.51 28.93
TD = M2S ) act-overlap 2224 (-5.46) 2532 (-4.19)  16.27

base-zpo 7.31 5.08 6.51

M2S = TD ) pact-overlap  4.56 (:2.75) 3.55(-1.53)  2.68

Table 4: Task Completion Rate (%) for Zero-Pattern-
Overlap split

are different from samples in its test set, then we
will have samples that have both geographical and
pattern separation. So, similar to the O-pact-overlap
scenario, we group all data samples of base-unseen
based on their patterns, sort them by the number
of samples, take even indices as one partition, and
then take the combination of train and test samples
of base-unseen whose patterns match that of odd
indices to form a split known as zero patterns and
geographical overlap (denoted by zero-pact-geo-a).
We follow a similar procedure to generate another
split from the remaining data known as (zero-pact-
geo-b). To form test and dev splits, we randomly
sample a constant number of 1000 and 600 samples
for TouchDown and Map2seq, respectively from
test splits as test, and leave the remaining samples
for dev. Appedix Figure 3 visualizes this process.
Since such a separation of data results in smaller
datasets for train and test, we control for data size
by creating two splits as baselines: base-pg-a, base-
pg-b. We sample from base-unseen train to cre-
ate train sets and sample from base-unseen test to
create test sets, ensuring that the number of train-
dev-test splits in base-pg-a and base-pg-b match to
zero-pact-geo-a and zero-pact-geo-b respectively.
This way, the geographical separation of train
and test splits in base-pg-a and base-pg-b are guar-
anteed, while they share patterns. The details of



FT — Test Split Llama2-7b
OpenCLIP No-Vision
Same Train-Test Dataset
base-pg-a 18 11.2
TD — TD zero-pact-geo-a 13.6 (-4.4) 6.1 (-5.1)
base-pg-b 18 10.4
zero-pact-geo-b 7.6 (-10.4) 3.7 (-6.7)
base-pg-a 25.17 19.83
M2S —s M2S zero-pact-geo-a 31.67 ( ) 26 ( )
base-pg-b 37.67 27.17
zero-pact-geo-b 2433 (-13.34) 18.5 (-8.67)
Different Train-Test Datasets
base-pg-a 26.17 24
TD —s M2S zero-pact-geo-a 16.83 (-9.34) 13.67 (-10.33)
base-pg-b 23.5 21.5
zero-pact-geo-b 15(-8.5) 14.5(-7)
base-pg-a 4.1 3.7
M2S — TD zero-pact-geo-a 4.9 ( ) 39¢( )
base-pg-b 6.7 4.3
zero-pact-geo-b 6.3(-04) 3.5(-0.8)

Table 5: Task Completion Rate (%) for Zero Pattern and
Geographical Overlap.

the data splits are listed in Table 1.

We fine-tune and test the models on these new
splits of data. As a general trend in Table 5, for
each pair of zero-pact-geo-x and base-pg-x (where
X can be a or b) the models performance deterio-
rates (from 4.4% to 16.8% where TouchDown was
used for both training and testing). This reduction
in model performance cannot be attributed to the
size of training data as the performance on control
cases (base-pg-x) is better. Furthermore, the po-
tential data contamination that was present in zpo
and base-zpo scenarios is not present here either.
Hence, we can conclude that the patterns play a
key role in the performance of the models.

5.4 Orientation

One key difference between the datasets of this
study is that in TouchDown, the initial direction of
the navigator agent is random whereas in Map2Seq
the agent is facing towards the correct direction
initially. This difference is also reflected in the in-
structions generated for each of the datasets. The
first piece of instruction in TouchDown describes
how the agent should orient itself towards the cor-
rect direction at the start of navigation. Therefore,
an important sub-task in VLN is aligning towards
the correct direction in the beginning of the naviga-
tion. In over 53% of test samples in TouchDown,
the initial direction of the agent is incorrect, while
that is the case for 0% for Map2Seq in both train
and test splits.

The initial direction of the agent is encoded in
the ground truth pattern of actions, represented
by the first character. If the initial direction is to-
wards the correct direction, then the ground truth
pattern starts with a forward as there is no need
for the agent to make any turns. Otherwise, the
agent might need to make a turn before moving
forward, with the pattern starting with any of the
{1,r,t} letters (which stand for LEFT, RIGHT,
TURN_AROUND actions respectively).

We formulate the prediction of the initial action
as a multi-class classification problem. To evaluate,
we calculate F1 scores for each action and report
macro-averaged Precision, Recall, and F1 scores.

Map2Seq neither teaches nor instructs the agent
to make turns. When the test set is Map2Seq,
the agent never makes any initial turns even when
it is fine-tuned on TouchDown. Also, when the
model is fine-tuned on Map2Seq, it rarely > makes
any turns in the beginning since it has not learned
to make any turns. Hence, for this analysis, we
only focus on the Touchdown dataset.

The agent fails most often in orientation when
the test dataset has patterns that are not present
in the training data. Table 6 shows this general
trend in the models’ performance in the orientation
sub-task. In the Zero Pattern Overlap scenario, the
F1 score for orientation drops by 2.70% when the
model is fine-tuned and tested on TouchDown us-
ing vision. Without vision data, the F1 score drops
even more (by 10.74%) from 24.07% in controlled
split to 13.33% in O-pact-overlap.

Table 7 shows that the results of the Zero pat-
tern and geographical overlap (zero-pact-geo-x)
scenario generally follow a similar trend. This indi-
cates that the models are sensitive to the train-test
separation of patterns for the orientation task as
well.

5.5 Stopping

Accurately deciding where to stop is another cru-
cial sub-task in vision and language navigation.
Our error analysis on the base model showed that
there is a significant number of what we term “over-
shoot errors”. The agent reaches the destination,
but erroneously continues moving instead of stop-
ping. These are cases that could indeed have been
successful had the agent stopped. We calculate the

3 At most 2% in any of the test splits.



Image Scenario ‘ Precision

Llama2 Llama2-NV

Recall ~F1 | Precision Recall F1
0-pact-overlap 53 43.06 42.09 - - -
OpenCLIP 1 e-zpo ‘ 451 5582 44.79 ‘ . . -

None

0-pact-overlap 28.13
base-zpo 27.08

2727 13.33 13.26 14.5 8.48
33.58  24.07 30.27 3516 289

Table 6: Orientation results for Zero-Pattern-Overlap split. We use TouchDown as test and fine-tuning set. Bolded
results are better performing between a zero-pattern-overlap case and its controlled split.

Llama2 Llama2-NV
Image Scenario Precision  Recall F1 Precision Recall F1
zero-pact-geo-a 46.12 53.29 48 - - -
base-pg-a 47.52 54.2 49.2 - - -
OpenCLIP zero-pact-geo-b 38.32 39.01 38.5 - - -
base-pg-b 54.63 62.34 5541 - - -
zero-pact-geo-a 17.1 29.65 17.25 17.1 29.65 17.25
None base-pg-a 24.26 3459 2247 24.26 3459 2247
zero-pact-geo-b 29.7 36.04 2533 29.7 36.04 25.33
base-pg-b 31.34 4649 24.14 31.34 4649 24.14

Table 7: Orientation result for Zero Pattern and Geographical Overlap for TouchDown as test and fine-tuning set.
Bolded results are better performing between a zero-pact-geo-a (or b) case and its controlled split.

overshoot rate among all the cases that reached the
destination as follows:

hoot
Overshoot_Rate = Overshoo x 100,
Overshoot + Success

In general, pattern separation increases over-
shoot rates. Table 8 shows the results of overshoot
rates in the Zero Pattern Overlap scenario. For the
same train-test dataset scenarios, there is a con-
sistent decrease in overshoot rates. However, in
the scenario where the train and test datasets are
different, overshoot rates do not always decrease
from base-zpo to O-pact-overlap split. This can be
attributed to the fact that the cross dataset pattern
leakage still exists.

Table 9 shows the overshoot rates for the Zero
Pattern and Geographical Overlap scenario. Gen-
erally (although with a few exceptions), for each
split pair and its controlled baseline split, the over-
shoot is lower in the baseline. The overshoot rate is
affected by the separation of patterns in one of two
ways. One, it reduces the agents’ generalization on
routes with unseen patterns, leading to a reduction
in task completion rate (TC). Two, in most of the
overshoot scenarios, the agent is actually able to
navigate the route and make it to the destination,
but fails to stop at the right place. In such a case,
the agent has actually followed a pattern similar
to the ground truth pattern of the route. However,

Llama2 Llama2-NV
FT — Test Scenario OpenCLIP None

Same Train-Test Dataset
0-pact-overlap 54.85 60.92 77.67

D= 1D base-zpo 46.4 56.61 45.22
0-pact-overlap 35.62 47.63 36.81
M28 = M2§ base-zpo 26.81 47.39 30.04

Different Train-Test Dataset

TD — M2S 0-pact-overlap 17.45 29.08 46.74

base-zpo 19.68 29.97 27
0-pact-overlap 76.08 79.89 84.72
M28 = 1D base-zpo 75.98 82.82 77.59

Table 8: Overshoot Rate for Zero Pattern Overlap Sce-
nario.

if a pattern is totally unfamiliar to the agent, the
agent is less likely to reach the end of the route.
Rather, it is more likely to make a wrong turn in
the middle of the route. In turn, this would disqual-
ify the route as an overshoot example. The overall
outcome of these two effects results in increased
overshoot rates. The details of these scores are in
Table 16 of Appendix.

6 Related Work

Vision and Language Navigation. Following nav-
igational instructions to reach destination in a navi-
gable environment is a well studied topic. Various
datasets and benchmarks have been proposed for
indoor navigation such as R2R (Anderson et al.,
2017),RxR (Ku et al., 2020), and Qi et al. (2020).



Llama2
FT — Test Scenario OpenCLIP None Llama2-NV
Same Train-Test Dataset
zero-pact-geo-a 75.05 77.32 77.32
D — TD base-pg-a 56.94 64.44 64.44
zero-pact-geo-b 84.33 90.75 90.75
base-pg-b 59.55 67.9 67.9
zero-pact-geo-a 28.57 42.22 42.22
M2S > M2S base-pg-a 42.8 51.43 51.43
zero-pact-geo-b 46.32 61.46 61.46
base-pg-b 34.3 52.48 52.48
Different Train-Test Dataset
zero-pact-geo-a 47.12 56.15 56.15
TD —s M2S base-pg-a 22.66 33.02 33.02
zero-pact-geo-b 66.67 70.1 70.1
base-pg-b 31.55 45.8 45.8
zero-pact-geo-a 73.37 79.03 79.03
M2S s TD base-pg-a 84.23 84.9 84.9
zero-pact-geo-b 81.9 89.2 89.2
base-pg-b 77.21 83.52 83.52

Table 9: Overshoot Rate for Zero Pattern and Geograph-
ical Overlap (zero-pact-geo-x splits) scenario.

Also, for outdoor navigation, several datasets have
been proposed StreetLearn (Mirowski et al., 2018),
TouchDown (Chen et al., 2018), Map2Seq (Schu-
mann and Riezler, 2021), StreetNav (Hermann
et al.,, 2020), and Talk2Nav (Vasudevan et al.,
2021). While VLN was previously performed us-
ing mostly LSTM based models (Fried et al., 2018;
Hermann et al., 2020), transformer-based models
that are trained end-to-end have been proposed as
well (Schumann and Riezler, 2022).

LLMs and Modular Agents. The promising
reasoning ability of large language models on lin-
guistic task has attracted researchers interest in
path planning (Aghzal et al., 2023). Also, it has
enabled the development of modular agents such as
LM-Nav (Shah et al., 2022), NavGPT (Zhou et al.,
2023), A2Nav(Chen et al., 2023), and VELMA
(Schumann et al., 2024). In these agents, the task
of VLN is performed by having an LLM perform as
the reasoning and planner component and having
other multi-modal models such as CLIP (Radford
et al., 2021) as a visual alignment module.

Topology and Route Structure. Rather than
solely relying on the history of past visual observa-
tions and taken actions, representing the topology
of the navigable environment as an abstract graph
has been studied in various studies (Zhao et al.,
2022; Liu et al., 2023). Addition of such a mental
map of the environment, enhances the performance
of VLN agents. However, these studies do not dis-
cuss the effect of topology and patterns of routes

on agents performance.

Model Behaviour Analysis. Evaluation of deep
generative models is both important and challeng-
ing. For VLN, various evaluation methods have
been proposed. While methods have been proposed
for assessing similarity of trajectories (Ilharco et al.,
2019), (Jain et al., 2019), these scores do not reveal
any further details on how the models perform. For
outdoor VLN, (Schumann and Riezler, 2022) per-
form various ablation experiments and show that
structural features of routes such as junction type
and difference in heading have higher weight on
the performance of models compared to visual cues.
Also, (Zhu et al., 2022) show that for indoor, the
models use object tokens and directional tokens for
navigation. Whereas, for the outdoor, the models’
performance mostly depends on directional tokens.
(Yang et al., 2023) propose a method for interven-
ing with the instructions given to the agent and
evaluating its sensitivity to the interventions. In
this way, they analyze skill-specific capabilities of
VLNSs. Our study differs from the previous ones
in several ways: First, Unlike these studies, we fo-
cus on LL.M-based models. As the LL.Ms provide
strong reasoning capabilities that can be incorpo-
rated in navigational tasks with fine-tuning. Hence,
eliminating the need to train a model from scratch.
Second, we do not perform a token-wise analysis.
Rather, we focus on the structure of navigational
routes. Nonetheless readers can refer to (Zhu et al.,
2022) for a holistic analysis on token level evalu-
ation of VLNSs. Finally, we focus on the outdoor
navigation only as it is understudied.

7 Conclusion

Our evaluation of LLM-based vision and language
navigation agents shows that navigation instruc-
tions contain an abstract representation of the shape
of a trajectory, which captures the pattern of actions
an agent must take to perform the navigation task.
Using this patterns as the basis of our evaluation,
we show that VLN agents’ are less likely to gen-
eralize to routes whose patterns are not present in
training data. Using diverse patterns during the
training phase improves the agents’ performance.
Therefore, our suggestion for the development of
new datasets for VLN is to generate navigational
routes with a higher diversity of patterns of actions
to improve performance, and to consider this vari-
able when evaluating VLN agents.



Limitations

The limitations of our study can be summarized as
follows:

VLN Agents. We do not discuss the effect of pat-
terns on VLN agents that are LSTM (Fried et al.,
2018) or Transformer-based (Schumann and Rie-
zler, 2022) that use end-to-end training since:

1. Transformer-based models are superior in per-
formance compared to LSTM based models
on VLN tasks. (Schumann and Riezler, 2022)

2. LLMs are pre-trained on huge and diverse
datasets and we can take advantage of such
models by fine-tuning them.

Simplification Assumptions. The agent of our
study navigates in a discrete environment. The
actions of the agent are considered complete. How-
ever, the effect of PActs in a continuous setting is
an open research question.

Diversity of Languages. We only consider the
English language and leave the study of PActs in
other languages to future work.

Granularity of Contributing Factors. We do
not consider token-wise analysis as it is has been
studied in the literature (Zhu et al., 2022). Also,
we do not consider fine-grained structural features
such as junction types and directional changes since
they have been thoroughly analyzed and discussed
by Schumann and Riezler (2022). Rather, we focus
on the route structure, which is overlooked in the
literature.

Ethics Statement

In this study, we use panorama images of street
view published by Google (Mirowski et al., 2018).
Privacy and ethics concerned with the dataset have
been addressed by blurring individuals’ faces in the
image data. Since we conducted our experiments in
a simulated environment, there is no risk of damage
or injury. However, deploying and experimenting
VLN in real world environments would require
additional, extensive safety measurements which
are beyond the scope of this study.
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A Supplementary Materials
A.1 Data Separation

Figures 2 and 3 visually show the process of cre-
ating data splits of Zero Pattern Overlap and Zero
FPattern and Geographical Overlap respectively.

A.2 Extra Results

Here we show our complete results on Llamal-hf
7B, Llama2-hf 7B and Mistral 7B vO0.1.
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Test Dataset  Finetune Dataset Scenario Llamal-7B Mistral-7B-v(.1
OpenCLIP None OpenCLIP None
TouchDown  TouchDown base-unseen 20.9 11.48 10.42 7.03
Map2Seq base-unseen 6.17 5.31 8.69 6.9
Map2Seq TouchDown base-unseen 23.5 22.75 5.62 6
Map2Seq base-unseen 39.12 33.75 35 32.62
TouchDown  TouchDown base-zpo 30.48 15.1 14.92 8.06
0-pact-overlap 5.82 (-24.66) 3.19 (-11.91) 7.05 (-7.87) 3.05 (-5.01)
Map2Seq base-zpo 7.64 5.49 5.83 2.96
0-pact-overlap 2.53 (-5.11) 1.87 (-3.62) 2.02 (-3.81) 1.36 (-1.6)
Map2Seq TouchDown base-zpo 30.95 26.62 8.57 9.49
0-pact-overlap 16.28 (-14.67)  15.05 (-11.57)  3.52 (-5.05) 2.74 (-6.75)
Map2Seq base-zpo 49.52 38.94 39.57 25.65
0-pact-overlap 38.13 (-11.39) 30 (-8.94) 35.13 (-4.44)  21.81(-3.84)
TouchDown  TouchDown base-pg-a 18.1 11.1 16.3 9.3
zero-pact-geo-a 6.1 (-12) 3.8 (-7.3) 10.2 (-6.1) 3.5(-5.8)
base-pg-b 20 11.2 10.2 6.5
zero-pact-geo-b 3.2 (-16.8) 1.8 (-9.4) 1.6 (-8.6) 0.9 (-5.6)
Map2Seq base-pg-a 7 3.5 3.2 2.3
zero-pact-geo-a 5.5 4.2 1.7 1.1
base-pg-b 54 3.9 52 3.1
Zero-pact-geo-b 4.2 4 1 0.5
Map2Seq TouchDown base-pg-a 17.5 18.33 19.83 21.17
Zero-pact-geo-a 15.83 13.33 14.83 13.5
base-pg-b 20.83 21.66 4.67 6.17
zero-pact-geo-b 7.66 6.5 4.17 2.67
Map2Seq base-pg-a 34.83 28.66 17.17 16.83
zero-pact-geo-a 28.49 22.5 7.83 8.67
base-pg-b 37.33 25.83 34.67 26.83
zero-pact-geo-b 20.83 18.66 13.83 11.17

Table 10: Task Completion (TC) rate for Llamal and Mistral, fine-tuned using vision.
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Test Dataset Finetune Dataset Scenario Llamal-7B-NV Llama2-7B-NV  Mistral-7B-NV
TouchDown  TouchDown base-unseen 14 14.4 10.95
Map2Seq base-unseen 6.64 3.45 2.65
Map2Seq TouchDown base-unseen 19.62 21.62 23.88
Map2Seq base-unseen 33.62 27.75 26.25
TouchDown  TouchDown base-zpo 17.22 17.5 11.14
0-pact-overlap 6.08 2.25 247
Map2Seq base-zpo 7.07 6.51 6.48
0-pact-overlap 1.9 2.68 1.86
Map2Seq TouchDown base-zpo 27.67 28.93 11.13
0-pact-overlap 19.47 16.27 22.61
Map2Seq base-zpo 42.8 43.74 34.45
0-pact-overlap 33.86 39.72 18.34
TouchDown  TouchDown base-pg-a 11.1 11.2 9.3
zero-pact-geo-a 3.8 6.1 3.5
base-pg-b 11.2 104 6.5
zero-pact-geo-b 1.8 3.7 0.9
Map2Seq base-pg-a 3.5 3.7 23
zero-pact-geo-a 4.2 39 1.1
base-pg-b 3.9 4.3 3.1
zero-pact-geo-b 4 35 0.5
Map2Seq TouchDown base-pg-a 18.33 24 21.17
zero-pact-geo-a 13.33 13.67 13.5
base-pg-b 21.67 21.5 6.17
zero-pact-geo-b 6.5 14.5 2.67
Map2Seq base-pg-a 28.67 19.83 16.83
Zero-pact-geo-a 22.5 26 8.67
base-pg-b 25.83 27.17 26.83
zero-pact-geo-b 18.67 18.5 11.17

Table 11: Task Completion (TC) rate for fine-tuned models without using vision. Between each split and its
controlled baseline, the best performing score is bolded.

Llamal-7B-NV Llama2-7B-NV Mistral-7B-NV

Test Dataset  Fine-Tune Dataset Scenario Precision Recal F1  Precision Recal F1  Precision Recal F1
TouchDown TouchDown base-unseen 24.81 28.41 23.44 30.42 4245 31.16 51.49 25 17
Map2Seq base-unseen 22.06 35.01 19.86 25.74 30.74 18.68 21.57 27.83 16.28
TouchDown TouchDown 0-pact-overlap 16.31 2483 8.74 13.26 145 848 10.35 1293  6.88
base-zpo 31.93 42.02 32.66 30.27 35.16 289 39.78 37.82 38.68
Map2Seq 0-pact-overlap 21.67 2593  9.85 15 2527 89 19.2 36.89 16.6
base-zpo 19.71 28.19 16.71 22.36 29.15 17.84 13.89 26.34 14.84
TouchDown TouchDown zero-pact-geo-a 19.87 30.61 19.38 17.1 29.65 17.25 23.13 3275 1543
base-pg-a 20.78 25.02 139 24.26 3459 2247 26.06 3515  20.77
zero-pact-geo-b 36.54 37.24 2432 29.7 36.04 25.33 26.89 38.25 25.2
base-pg-b 29.92 50.58 28.28 31.34 46.49 24.14 22.47 34.44  20.76
Map2Seq zero-pact-geo-a 11.74 26.71 1295 14.3 269 13.73 14.29 34.74 16.2
base-pg-a 18.18 28.96 16.89 15.87 2495 12.89 20.28 29.06 17.36
zero-pact-geo-b 21.09 3213 20 21.13 31.64 19.33 26.68 2495 1391
base-pg-b 39.01 29.78 18.07 17.96 269 15.37 15.55 2484 127

Table 12: Orientation : Models fine-tuned without using visual info.
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Llamal-7B Llama2-7B Mistral-7B

Test Dataset Fine-Tune Dataset Image Scenario Precision Recall F1  Precision Recall F1  Precision Recall F1
TouchDown TouchDown CLIP base-unseen 51.4 53.65 52.07 48.92 53.7  50.74 49.88 5097 50.2
None base-unseen 26.37 36.64  25.99 29.94 4333 31.29 30.64 36.39 29.15
Map2Seq CLIP base-unseen 23.09 2493  12.62 20.09 36.26 19.84 22.63 32.03 18.76
None base-unseen 23.09 2493 12.62 21.28 36.26  19.56 23.22 30.67 1843
TouchDown TouchDown CLIP  zero-pact-geo-a 53.36 40.74  39.99 46.12 53.29 48 46.41 47.85 46.94
base-pg-a 58.94 45.67 44.68 47.52 542 492 43.86 47.04 4481
zero-pact-geo-b 76.77 39.15 38.55 38.32 39.01 38.5 53.01 4342  40.01
base-pg-b 57.04 54.88 54.56 54.63 62.34 5541 62.36 60.62 61.28
None  zero-pact-geo-a 19.87 30.61 19.38 17.1 29.65 17.25 23.13 3275 1543
base-pg-a 20.78 25.02 13.9 24.26 3459 2247 26.06 35.15  20.77
zero-pact-geo-b 36.54 37.24 2432 29.7 36.04 2533 26.89 3825 252
base-pg-b 29.92 50.58 28.28 31.34 46.49 24.14 22.47 34.44  20.76
Map2Seq CLIP  zero-pact-geo-a 11.71 26.84 1297 13.24 26.77 13.48 14.7 3474 16.53
base-pg-a 17.55 28.96 16.74 15.87 2495 12.89 26.26 3323 2135
zero-pact-geo-b 17.86 28.28 17.12 25.31 3544 223 17.8 2495 13.92
base-pg-b 26.29 319 1993 22.54 319 19.5 11.66 2479 12.69
None  zero-pact-geo-a 11.74 26.71 1295 14.3 269 13.73 14.29 3474  16.2
base-pg-a 18.18 28.96 16.89 15.87 2495 12.89 20.28 29.06 17.36
zero-pact-geo-b 21.09 32.13 20 21.13 31.64 19.33 26.68 2495 1391
base-pg-b 39.01 29.78  18.07 17.96 269 15.37 15.55 24.84 127
TouchDown TouchDown CLIP  O-pact-overlap 64.75 46.15  47.59 53 43.06 42.09 32.82 39.16  31.61
base-zpo 45.14 57.04 4494 45.1 55.82  44.79 59.58 5285 551
None  O-pact-overlap 29.43 28.79  20.35 28.13 2727 13.33 15.93 324 14.33
base-zpo 323 39.69 2743 27.08 3358 24.07 31.85 37.31 25.38
Map2Seq CLIP  O-pact-overlap 18.64 283 1274 16.06 28.6 12.74 14.98 25.54  9.34
base-zpo 16.78 26.33 14.74 22.36 27.28 15.96 23.27 29.77 18.5
None  0-pact-overlap 19.17 28.01 12.46 16.96 31.13  14.07 9.32 2525 8.88
base-zpo 15.92 25.85 14.21 20.22 27.25 15.89 20.94 28.31 16.99

Table 13: Precision, Recall and F1 scores for Orientation task. Between each pair of data split and its corresponding
baseline, the best performing F1 score is bolded.

Llamal-7B Llama2-7B Mistral-7B

Test Dataset  Fine-Tune Dataset Scenario OpenCLIP None OpenCLIP None OpenCLIP None
TouchDown TouchDown base-unseen 46.88 60.59 42.53 54.98 69.22 73.03
Map2Seq base-unseen 77.26 80.68 82.64 86.92 71.08 76.94
Map2Seq TouchDown base-unseen 14.55 25.1 22.03 23.88 47.67 42.86
Map2Seq base-unseen 24.94 38.78 37.31 57.26 13.58 29.46
TouchDown TouchDown zero-pact-geo-a 88.18 87.66 75.05 77.32 81.65 87.59
base-pg-a 55.09 67.54 56.94 64.44 63.94 72.07
zero-pact-geo-b 93.19 95.6 84.33 90.75 96.38 97.18
base-pg-b 54.13 66.77 59.55 67.9 69.28 74.21
Map2Seq Zero-pact-geo-a 70.27 78.12 73.37 79.03 92.51 94.91
base-pg-a 76.51 87.41 84.23 84.9 85.39 89.59
zero-pact-geo-b 87.9 87.95 81.9 89.2 97.21 98.57
base-pg-b 80.78 85.17 77.21 83.52 84.71 90.37
Map2Seq TouchDown zero-pact-geo-a 53.88 60.2 47.12 56.15 66.29 68.24
base-pg-a 28.57 45.27 22.66 33.02 36.02 45.02
zero-pact-geo-b 79.19 83.4 66.67 70.1 87.37 92.42
base-pg-b 23.78 34.34 31.55 45.8 36.36 28.85

Map2Seq zero-pact-geo-a 25.97 47.47 28.57 42.22 72.67 73.2

base-pg-a 32.14 48.35 42.8 51.43 55.22 61.3
zero-pact-geo-b 55.36 62.03 46.32 61.46 72.7 78.25

base-pg-b 33.13 54.55 34.3 52.48 33.76 50

Table 14: Overshoot Rate (OSR) among different models and data splits. For each pair of Zero PActs and
Geographical Overlap (zero-pact-geo-x) and control splits (base-pg-x), the best performing split is bolded.
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Test Dataset Fine-Tune Dataset Scenario Llamal-7B-NV Llama2-7B-NV Mistral-7B-NV

TouchDown  TouchDown base-unseen 46.88 42.53 69.22
Map2Seq base-unseen 77.26 82.64 71.08

Map2Seq TouchDown base-unseen 14.55 22.03 47.67
Map2Seq base-unseen 24.94 37.31 13.58

TouchDown  TouchDown zero-pact-geo-a 87.66 77.32 87.59
base-pg-a 67.54 64.44 72.07

zero-pact-geo-b 95.6 90.75 97.18

base-pg-b 66.77 67.9 74.21

Map2Seq zero-pact-geo-a 78.12 79.03 94.91

base-pg-a 87.41 84.9 89.59

zero-pact-geo-b 87.95 89.2 98.57

base-pg-b 85.17 83.52 90.37

Map2Seq TouchDown zero-pact-geo-a 60.2 56.15 68.24
base-pg-a 45.27 33.02 45.02

zero-pact-geo-b 834 70.1 92.42

base-pg-b 34.34 45.8 28.85

Map2Seq zero-pact-geo-a 47.47 42.22 73.2

base-pg-a 48.35 51.43 61.3

zero-pact-geo-b 62.03 61.46 78.25

base-pg-b 54.55 52.48 50

Table 15: Overshoot Rate (OSR) among different models fine-tuned without vision and data splits. For each pair of
Zero PActs and Geographical Overlap (zero-pact-geo-x) and control splits (base-pg-x), the best performing split is
bolded

Test Dataset Finetune Dataset Image Scenario Llamal-7B Llama2-7B Mistral-7B
TC OSH OSR TC OSH OSR TC OSH OSR
TouchDown  TouchDown None base-zpo 13.53 2472 64.62 | 15.58 20.32 56.61 | 8.06 2448 75.23
O-pact-overlap | 7.68 23.65 7549 | 7.77 1212 6092 | 3.05 10.52 77.51
OpenCLIP  base-zpo 28.22 3191 53.07 | 28.34 24.53 464 | 1492 3557 7045
O-pact-overlap | 18.69 37.48 66.72 | 2428 29.5 5485 | 7.05 27.17 79.41
Map2Seq None base-zpo 597 2178 78.49 | 5.08 2446 8282 | 296 2726 90.2
O-pact-overlap | 3.17 13.22 80.66 | 3.55 14.09 79.89 | 136 16.25 92.27
OpenCLIP  base-zpo 7.82 2319 7477 | 731 23.12 7598 | 583 27.02 82.26
O-pact-overlap | 3.76 1348 782 | 456 1449 76.08 | 2.02 17.24 89.51
Map2Seq TouchDown None base-zpo 2724 2246 452 |29.51 12.63 2997 | 949 7.19 431
O-pact-overlap | 20.59 15.89 43.56 | 2532 10.38 29.08 | 2.74 3.46 55.81
OpenCLIP  base-zpo 31.64 1455 31.51| 277 679 19.68 | 857 6.61 43.56
O-pact-overlap | 18.72 7.67 29.07 | 22.24 4.7 1745 | 352 3.52 50
Map2Seq None base-zpo 4098 26.6 39.36 | 37.1 3342 47.39 | 25.65 36.93 59.01
O-pact-overlap | 38.13 24.4 39.02 | 347 31.55 47.63 | 21.81 41.16 65.37
OpenCLIP  base-zpo 50.1 1642 24.69 | 50.16 18.38 26.81 | 39.57 25.54 39.22
0-pact-overlap | 46.15 16.56 264 | 43.01 23.8 35.62 | 35.13 27.34 43.77

Table 16: Overshoot (OSH) denotes the number of overshoot cases among all of the samples in the test split.
Overshoot Rate (OSR) and Task Completion (TC) are described in section 5.5. As explained in section 5.5,
separation of PActs from train and test, results in lower number of OSH cases and TC rates in 0-pact-overlap
compared to its baseline, base-zpo. However, the overall outcome is a general increase in Overshoot rates.
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Figure 2: Illustration of creation of Zero Pattern Overlap from base-unseen split. The graphs depicted here are
hypothetical to clarify the process. Each column represents frequency ( number of repetitions ) of a pattern in
samples. Splitting the data by patterns, results in zero pattern overlap, whereas geographical overlap still exists.

15



Test -
Train -
Deleted -

Frequency

Pattern
base-unseen

Frequency
Frequency

Pattern Pattern

zero-pat-geo-b

zero-pat-geo-a

Figure 3: Illustration of creation of Zero Pattern and Geographical Overlap from base-unseen split. The graphs
depicted here are hypothetical to clarify the process. Each column represents frequency ( number of repetitions )
of a pattern in samples. In base unseen, train and test samples are geographically separate. So, when we separate
them by patterns, we could get two sub-sets that are (a) geographically separate, AND (b) have zero pattern overlap.
From the samples assigned to the test, we randomly take 1000 (600) samples to create test set for TouchDown

(Map2Seq) and use the remaining samples as the dev set.
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