
Follow the Beaten Path: The Role of Route Patterns on Vision-Language
Navigation Agents Generalization Abilities

Anonymous EMNLP submission

Abstract

Vision and language navigation (VLN) is a001
challenging task towards the creation of embod-002
ied agents that requires spatial and temporal rea-003
soning over the instructions provided in natural004
language and aligning them with the visual per-005
ception of an environment. Although a number006
of methods and approaches have been devel-007
oped, none achieves human level performance008
in outdoor settings (by up to 75 percent). The009
contributions of visual and language modalities010
to the success of VLN have been studied, how-011
ever here we focus on an overlooked property012
of routes and show that navigational instruc-013
tions can be represented as patterns of actions014
that also describe trajectory shapes. Through015
carefully crafted experiments, we show that016
agents generalization to unseen environments017
depends not only on visual and linguistic fea-018
tures, but also on the shape of trajectories pre-019
sented to the model during the fine-tuning. Our020
experiments show that the diversity of patterns021
of actions during training is a key contributor022
to high success rates for agents. Our findings023
will guide researchers towards improved prac-024
tices in the development and evaluation of VLN025
datasets and agents.1026

1 Introduction027

Vision-language navigation (VLN) is a challeng-028

ing research area that combines computer vision029

and natural language processing to enable embod-030

ied agents to navigate and understand their envi-031

ronment based on instructions provided in natural032

language. A typical solution to solving this prob-033

lem is to train neural network architectures such as034

LSTM (Fried et al., 2018) and Transformers (Schu-035

mann and Riezler, 2022) from scratch. In contrast,036

using LLMs facilitates the development of modular037

agents (Shah et al., 2022; Schumann et al., 2024;038

Zhou et al., 2023) by taking advantage of reasoning039

1The code and data will be released upon publication.

Navigation Text of Route 641
You should be facing the correct direction when you
load in. Begin by moving forward until you reach an
intersection, and then take a right. Reorient yourself and
take a right at the next intersection. Reorient yourself
again and move forward though the next intersection.
Stop three screens after this intersection. If you turn to
the left slightly, there should be a traffic barrel near a
shopping cart, which is in front of a red car.

The Pattern of Actions:
forward, right, forward, right, forward, stop.

Figure 1: Visualization of route 641 on Google Maps
from TouchDown, along with navigation instructions
and corresponding pattern of actions.

capabilities learned through pre-training. Nonethe- 040

less, even with LLMs, a significant gap remains 041

between human-level and agent-based performance 042

when solving VLN tasks in outdoor settings (Schu- 043

mann et al., 2024). 044

Eliminating such a performance gap requires a 045

better understanding of the contributing factors to 046

the success and failures of the agents. Zhu et al. 047

(2022) studied token-level features of instructions 048

and structural features of routes such as heading 049

difference in turns. Schumann and Riezler (2022) 050

focused on junction types for navigation. 051

In this work, we focus on an overlooked prop- 052

erty of navigational routes, which we call Pattern 053
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of Actions (PAct), which can be understood as054

the high-level shape of an agent trajectory. To the055

best our knowledge, PActs as a contributing factor056

to VLN agent performance have been overlooked.057

Figure 1 shows that each navigational pattern has a058

corresponding PAct. We find that the agents’ per-059

formance on out of sample test sets highly relies060

on the pattern of actions seen during the training, a061

phenomenon we call “pattern leakage”.062

Our contributions can be summarized as follows:063

1. We show that as an intrinsic feature of naviga-064

tional trajectories, navigational patterns play an065

important role in model performance. This is066

reflected in success of the model in navigating067

routes with similar patterns, even with instruc-068

tions that are from another routes.069

2. We propose new splits in which train and test070

data are separated so that we minimize pattern071

leakage. Our results show that agents largely072

fail on pattern generalization.073

3. We perform an in-depth analysis, comparing the074

fine-tuned agents on different data splits, show-075

ing that not observing patterns during training076

also deteriorates the agents’ performance on sub-077

tasks such as orienting towards the correct initial078

direction and stopping at the correct destination079

point.080

2 Vision and Language Navigation081

A navigation task can be defined as following in-082

structions provided in natural language in order083

to ground a destination point within a given envi-084

ronment (Schumann et al., 2024). A navigation085

instruction L = (w1, w2, ..., wN ) is a sequence of086

words in natural language that describes a navi-087

gation route R = (n1, n2, ..., nM ). Each naviga-088

tional route consists of multiple nodes in the navi-089

gational graph of the environment. Each node ni090

in the navigational graph also has visual informa-091

tion vi (a 360-degree panorama image). In each092

round of navigation, a VLN agent starts at an ini-093

tial state s1 and according to the instruction L and094

visual observation v1 predicts a navigational ac-095

tion from the action space of {FORWARD, LEFT,096

RIGHT, TURN_AROUND, STOP}. After taking the097

action, it moves to another state, obtains another vi-098

sual observation, and predicts a navigational action099

again. This loop continues until the agent decides100

the action STOP, or it runs out of action limit. A nav-101

igation is considered successful if the agent stops102

within one node distance of the destination point.103

3 Patterns of Actions 104

Patterns of Actions (PAct) can be considered “prin- 105

cipal components” of navigation trajectories. Con- 106

sider the navigation instruction shown in Figure 1, 107

and notice that it consists of largely two compo- 108

nents: (a) directional information at key points 109

where the agent should make turns, and (b) descrip- 110

tion of forward movements. The instructions also 111

contain several references to landmarks. We can 112

define PActs as abstract representations of trajec- 113

tories capturing ground truth actions at key points. 114

For example, as depicted in Figure 1 (bottom), 115

the navigational text can be summarized using 116

the following PAct: forward, right, forward, 117

right, forward, stop. Although moving for- 118

ward might mean either one block or several kilo- 119

meters, such a sequence of actions at key points 120

can represent the structure of a navigational route. 121

For brevity, we will represent each unique pattern 122

with a hash, with the above example represented as 123

frfrfs. Figure 1 also shows the actual route 641 124

on a map. 125

A PAct effectively also describes the shape of 126

a trajectory. Therefore, throughout the paper we 127

use the phrases shape of trajectory and pattern 128

of actions/PAct interchangeably to emphasize the 129

similarity of routes whose patterns of ground truth 130

actions are equal. 131

Given our definition of PAct, Table 1 shows the 132

number of unique patterns in our datasets. Com- 133

pared to the number of samples, the number of 134

unique PActs is 2 orders magnitude smaller, i.e. 135

66 unique patterns for 7352 samples in Map2Seq 136

(Schumann and Riezler, 2021) dataset, and 85 137

unique patterns for over 9500 samples in Touch- 138

Down (Chen et al., 2018). 139

The datasets available in the literature share com- 140

mon PActs. In this work, we base our analysis on 141

those PActs and perform experiments and ablation 142

studies to show the contribution of pattern leakage 143

in agents’ performance. To the best of our knowl- 144

edge this is the first analysis of VLN approaches 145

and datasets using such a pattern based approach. 146

4 Experimental Settings 147

4.1 LLM-based Agents 148

In our study, we utilize VELMA (Schumann et al., 149

2024). It is a state-of-the-art modular agent con- 150

sisting of two main components: (i) the Reasoning 151

module is an LLM that takes in instructions and 152
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Train Dev Test

Split name GS PS Dataset #S #P #S #P #S #P PO

base-unseen ✓ TD 6,770 74 800 50 1,50766 58
M2S 5,737 37 800 31 800 31 28

0-pact-overlap ✓ TD 4783 42 286 1 4256 40 0
M2S 3889 21 306 1 3477 19 0

base-zpo TD 4781 73 286 34 4258 72 63
M2S 3899 36 306 19 3467 35 31

zero-pact-geo-a ✓ ✓ TD 3510 37 158 20 1000 35 0
M2S 2975 20 246 15 600 18 0

base-pg-a ✓ TD 3510 59 158 29 1000 54 46
M2S 2975 34 246 24 600 31 28

zero-pact-geo-b ✓ ✓ TD 3260 38 149 18 1000 34 0
M2S 2762 17 154 12 600 16 0

base-pg-b ✓ TD 3260 64 149 30 1000 60 49
M2S 2762 31 154 21 600 24 21

Table 1: The number of samples and the number of
PActs in each train, dev, and test set for different data
splits. GS: Geographical Separation. PS: PActs Separa-
tion. PO: PActs Overlap, the number of common PActs
between train and test sets. #S: Number of Samples. #P:
Number of PActs.

textual description of visual observations and pre-153

dicts a sequence of actions. We use LLaMA (Tou-154

vron et al., 2023) 7B, LLaMA 2, 7B, and Mistral155

7B (Jiang et al., 2023) as the reasoning module of156

VLN agent. (ii) Vision module, which is a mul-157

timodal model for grounding landmarks referred158

in instructions to the visual observations. We use159

OpenCLIP (Cherti et al., 2022). Any landmark that160

is grounded by OpenCLIP is added to the prompt161

of the LLM as an observation. In our experiments,162

we ablate the visual information (OpenCLIP vs.163

No-Vision) both during fine-tuning and inference164

to report its effect. When we train a model not165

using visual information, we report it with suffix166

NV (e.g. Llama2-NV). Similar to (Schumann et al.,167

2024), we fine-tune the models using LoRA (Hu168

et al., 2021) for 20 epochs and we choose the best169

model by task completion on the development set.170
2171

4.2 Datasets172

We perform our experiments on two datasets: (i)173

TouchDown (TD) (Chen et al., 2018), which con-174

sists of 9326 navigational routes in Manhattan, NY,175

generated by human annotators through an ego-176

2Based on the size of data splits, fine-tuning the models
would take somewhere between 16 to 28 hours on an NVIDIA
A100- 80GB GPU. Inference, would take 30 to 60 minutes on
the same GPU.

centric view similar to Google street view and (ii) 177

Map2Seq (M2S) (Schumann and Riezler, 2021), 178

which consists of 7,672 routes in the same neigh- 179

borhood as TouchDown. However, annotators, an- 180

notated the navigational routes by looking at the 181

map of the route. 182

Seen and Unseen splits. The original 183

train/dev/test splits of the TouchDown dataset 184

contains routes covering the area of Manhattan. 185

The train and test splits geographically overlap. 186

However, a new split was proposed in (Schumann 187

and Riezler, 2021) for both TouchDown and 188

Map2Seq datasets so that the train and test samples 189

are in geographically separate chunks. This split 190

is called unseen. Throughout this paper, we refer 191

to it as a baseline by base-unseen. 192

Dataset comparison. There are subtle differ- 193

ences in the construction of the datasets that are 194

important for the following discussion: 195

• Initial Direction: in TouchDown, the follower 196

agent is facing towards a random direction in the 197

beginning of the navigation. As a result, the first 198

piece of instruction describes how the follower 199

agent should orient itself towards the correct di- 200

rection. On the other hand, for Map2Seq, the 201

agent is initially placed in the correct orientation 202

towards the next move along the route. Note that 203

both datasets are verified by other humans as fol- 204

lowers to ensure that the instructions accurately 205

describe the routes. 206

• Route Structure routes of Map2Seq are generated 207

by finding the shortest path among two different 208

points on the navigational graph. Given the grid- 209

like map of Manhattan, this limits the number of 210

patterns of actions for Map2Seq agents. However, 211

TouchDown uses routes that are not necessarily 212

shortest path and have arbitrary patterns. 213

4.3 Evaluation Metrics 214

Interested in quantifying the effect of patterns in 215

the training data on agent performance for 3 main 216

tasks, we use the following metrics: 217

• Task Completion (TC) represents the percentage 218

of successful navigation instances among all nav- 219

igation instances in the test set (Schumann et al., 220

2024). 221

• Overshoot Rate (OSR) is the rate at which the 222

agent reaches a destination but fails to stop at the 223

destination. 224

• Orientation assesses how capable the model is 225

in orienting the agent towards the correct direc- 226
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tion in the beginning of the navigation. We use227

Precision, Recall and F1 scores.228

5 Experiments and Results229

We are interested in the generalization ability of230

agents with respect to the patterns presented to the231

model during training. To this end, we split the232

datasets into train and test sets based on patterns,233

fine-tune the models on these splits, and discuss234

the results. Both our datasets, TouchDown and235

Map2Seq, have only a limited number of unique236

patterns (PActs) of 85 and 63, respectively. Ta-237

ble 1 shows the number of samples in the train,238

dev(elopment), and test data using a base-unseen239

split. However, notice that train, test and dev240

datasets share patterns, which motivates our first241

experiment.242

5.1 Swapping Instructions of Similar Paths243

We noticed that patterns that are present in train244

data are also present in test data. This allows us to245

form the following hypothesis:246

If the PAct of a trajectory is a contributing factor,247

then swapping the instructions of one route with248

instructions of another route and still retaining249

its shape (PAct), then this should still result in a250

successful completion of the navigation task.251

To test this hypothesis, we take a test set of the252

unseen data split and for each route in the test set,253

we randomly choose five other routes that have an254

identical PAct and use the instructions as substitute255

instructions. We omit the few routes that have256

fewer than five similar routes. For each route, we257

also randomly choose five instructions from routes258

with different PActs to aid in the validation of our259

hypothesis.260

Table 2 shows the results of these experiments261

compared to the baseline (base-unseen). Across262

different experiments, the model completes the263

navigation task in up to 5% of the test cases even264

without any visual information. On the other hand,265

the task completion (TC) rate is lower for routes266

whose instructions are swapped with routes of dif-267

ferent patterns. The TC rates for similar pattern268

replacements ("similar" rows in Table 2) are always269

higher than those for different patterns ("different"270

rows). Overall, the results support our hypothesis271

and emphasizes the importance of PActs in VLN.272

FT→Test Swapped with OpenCLIP No-Vision

Same Train-Test Dataset

TD→TD
base-unseen 20.9 11.48
similar 4.97 2.82
different 2.92 1.46

M2S→M2S
base-unseen 39.13 33.75
similar 5.96 6.21
different 1.88 1.38

Different Train-Test Datasets

M2S→TD
base-unseen 6.17 5.31
similar 2.96 2.89
different 1.19 1.53

TD→M2S
base-unseen 23.5 22.75
similar 4.56 5.32
different 2.25 2.13

Table 2: FT: Fine-tune dataset. Task completion rate
for base-unseen in 3 scenarios: Instructions swapped
with similar PAct, different PAct, and base-unseen (no
swapping).

5.2 Zero Pattern Overlap: Seen and Unseen 273

Patterns 274

Our observations so far support the hypothesis that 275

pattern leakage plays a role in dowsntream per- 276

formance. To further study this phenomenon, we 277

reverse the question. What if we train and test 278

a model on carefully selected samples that will 279

exhibit zero pattern leakage (i.e., no patterns are 280

shared between the training and test data)? 281

We create a new data split in which no sample 282

from the training data shares pattern with any of 283

the samples in the test set, denoted as Zero Pattern 284

Overlap (0-pact-overlap). We group the data sam- 285

ples based on their patterns and sort them based 286

on the number of samples within each group in 287

descending order. We then assign the even-index 288

samples to the training set odd-index samples to 289

the test set, ensuring zero overlap. We also leave 290

samples of one pattern for the development set. In 291

the Appendix, Figure 2 illustrates this process. The 292

resulting dataset has a 50-50 train-test split. Also, 293

there is no common pattern among the train, de- 294

velopment, and test sets. Note that, although we 295

ensure no leakage within samples of each dataset, 296

cross-dataset leakage (e.g. Map2Seq train to Touch- 297

down test) is still possible. 298

To control for the effect of number of samples 299

of data for training (compared to the base-unseen 300

split where around 75% of the data is used for train- 301

ing, 10% for development and 15% for testing), 302

we resample the base split –with leakage– so that 303

the number of samples in the train, dev, test sets 304
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match that of 0-pact-overlap’s. We label this split305

base-zpo and will use it as the fair baseline for com-306

parison with 0-pact-overlap. The details of these307

splits are in Table 1.308

Effect of Patterns Results. Table 4 shows309

that the model’s performance drops noticeably (on310

TouchDown train-test), from 4.06% in Llama2 us-311

ing vision, to 7.81% in no-vision scenario. The312

range of the performance drop is from 1.51% to313

7.15% for other cases. This underlines the impor-314

tance of seeing patterns during the training phase315

for the agent’s ability to resolve test cases. We316

should also emphasize that the TC rates are also317

worse for no-vision cases in 0-pact-overlap split,318

i.e., in cases where the agent totally ignores visual319

observations during the inference or fine-tuning.320

For example, when the model is fine-tuned with321

no-vision, the performance drop from controlled to322

zero pattern overlap ranges from 3.83% to 15.25%.323

This suggests that the model heavily relies on pat-324

terns to navigate.325

Visual Data Contamination. Given that 0-pact-326

overlap only separates the routes based on their327

patterns, the test samples can be from the same328

area the model has seen in the training data and329

potentially causing data contamination in 0-pact-330

overlap split. Nonetheless, even with this type of331

data contamination, there is an evident decrease332

in TC rate when the training and test samples do333

not share any patterns compared to the baselines334

(base-zpo).335

The question that may be raised here is as to336

how a model fine-tuned with 0-pact-overlap split on337

M2S, and tested on M2S (38.13% with vision, 30%338

without vision) still performs comparable to that339

of the base-unseen scenario (39.12% with vision,340

33.75% without vision), even though it has been341

trained on fewer (almost half) samples?342

We hypothesize that this can be partly due to the343

geographical overlap in the 0-pact-overlap case.344

This question motivates our next experiment.345

5.3 Zero Pattern and Zero Geographical346

Overlap347

To mitigate the influence of both geographical over-348

lap and pattern overlap within the dataset, we fur-349

ther partition the data according to both geographic350

coordinates and patterns creating Zero Patterns and351

Geographical Overlap splits. Since the train and352

test set in base-unseen are geographically separate,353

if we take samples from its train set, whose patterns354

Llama2
FT → Test OpenCLIP No-Vision Llama2-NV

Same Train-Test Dataset
TD → TD 23.22 13.8 14.4
M2S → M2S 36.75 26.5 27.75

Different Train-Test Datasets
TD → M2S 23 25.5 21.62
M2S → TD 4.98 3.58 3.45

Table 3: Task Completion Rate (%) for base-unseen
scenario.

Llama2
FT → Test Split OpenCLIP No-Vision Llama2-NV

Same Train-Test Dataset

TD → TD base-zpo 28.34 15.58 17.5
0-pact-overlap 24.28 (-4.06 ) 7.77 (-7.81) 2.25

M2S → M2S base-zpo 50.16 37.1 43.74
0-pact-overlap 43.01 (-7.15) 34.7 (-2.4) 39.72

Different Train-Test Datasets

TD → M2S base-zpo 27.7 29.51 28.93
0-pact-overlap 22.24 (-5.46) 25.32 (-4.19) 16.27

M2S → TD base-zpo 7.31 5.08 6.51
0-pact-overlap 4.56 (-2.75) 3.55 (-1.53) 2.68

Table 4: Task Completion Rate (%) for Zero-Pattern-
Overlap split

are different from samples in its test set, then we 355

will have samples that have both geographical and 356

pattern separation. So, similar to the 0-pact-overlap 357

scenario, we group all data samples of base-unseen 358

based on their patterns, sort them by the number 359

of samples, take even indices as one partition, and 360

then take the combination of train and test samples 361

of base-unseen whose patterns match that of odd 362

indices to form a split known as zero patterns and 363

geographical overlap (denoted by zero-pact-geo-a). 364

We follow a similar procedure to generate another 365

split from the remaining data known as (zero-pact- 366

geo-b). To form test and dev splits, we randomly 367

sample a constant number of 1000 and 600 samples 368

for TouchDown and Map2seq, respectively from 369

test splits as test, and leave the remaining samples 370

for dev. Appedix Figure 3 visualizes this process. 371

Since such a separation of data results in smaller 372

datasets for train and test, we control for data size 373

by creating two splits as baselines: base-pg-a, base- 374

pg-b. We sample from base-unseen train to cre- 375

ate train sets and sample from base-unseen test to 376

create test sets, ensuring that the number of train- 377

dev-test splits in base-pg-a and base-pg-b match to 378

zero-pact-geo-a and zero-pact-geo-b respectively. 379

This way, the geographical separation of train 380

and test splits in base-pg-a and base-pg-b are guar- 381

anteed, while they share patterns. The details of 382
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FT → Test Split Llama2-7b

OpenCLIP No-Vision

Same Train-Test Dataset

TD → TD

base-pg-a 18 11.2
zero-pact-geo-a 13.6 (-4.4) 6.1 (-5.1)

base-pg-b 18 10.4
zero-pact-geo-b 7.6 (-10.4) 3.7 (-6.7)

M2S → M2S

base-pg-a 25.17 19.83
zero-pact-geo-a 31.67 (+6.5 ) 26 (+6.17 )

base-pg-b 37.67 27.17
zero-pact-geo-b 24.33 (-13.34 ) 18.5 (-8.67 )

Different Train-Test Datasets

TD → M2S

base-pg-a 26.17 24
zero-pact-geo-a 16.83 (-9.34 ) 13.67 (-10.33 )

base-pg-b 23.5 21.5
zero-pact-geo-b 15 (-8.5 ) 14.5 (-7 )

M2S → TD

base-pg-a 4.1 3.7
zero-pact-geo-a 4.9 (+0.8 ) 3.9 (+0.2 )

base-pg-b 6.7 4.3
zero-pact-geo-b 6.3 (-0.4 ) 3.5 (-0.8 )

Table 5: Task Completion Rate (%) for Zero Pattern and
Geographical Overlap.

the data splits are listed in Table 1.383

We fine-tune and test the models on these new384

splits of data. As a general trend in Table 5, for385

each pair of zero-pact-geo-x and base-pg-x (where386

x can be a or b) the models performance deterio-387

rates (from 4.4% to 16.8% where TouchDown was388

used for both training and testing). This reduction389

in model performance cannot be attributed to the390

size of training data as the performance on control391

cases (base-pg-x) is better. Furthermore, the po-392

tential data contamination that was present in zpo393

and base-zpo scenarios is not present here either.394

Hence, we can conclude that the patterns play a395

key role in the performance of the models.396

5.4 Orientation397

One key difference between the datasets of this398

study is that in TouchDown, the initial direction of399

the navigator agent is random whereas in Map2Seq400

the agent is facing towards the correct direction401

initially. This difference is also reflected in the in-402

structions generated for each of the datasets. The403

first piece of instruction in TouchDown describes404

how the agent should orient itself towards the cor-405

rect direction at the start of navigation. Therefore,406

an important sub-task in VLN is aligning towards407

the correct direction in the beginning of the naviga-408

tion. In over 53% of test samples in TouchDown,409

the initial direction of the agent is incorrect, while410

that is the case for 0% for Map2Seq in both train411

and test splits.412

The initial direction of the agent is encoded in 413

the ground truth pattern of actions, represented 414

by the first character. If the initial direction is to- 415

wards the correct direction, then the ground truth 416

pattern starts with a forward as there is no need 417

for the agent to make any turns. Otherwise, the 418

agent might need to make a turn before moving 419

forward, with the pattern starting with any of the 420

{l,r,t} letters (which stand for LEFT, RIGHT, 421

TURN_AROUND actions respectively). 422

We formulate the prediction of the initial action 423

as a multi-class classification problem. To evaluate, 424

we calculate F1 scores for each action and report 425

macro-averaged Precision, Recall, and F1 scores. 426

Map2Seq neither teaches nor instructs the agent 427

to make turns. When the test set is Map2Seq, 428

the agent never makes any initial turns even when 429

it is fine-tuned on TouchDown. Also, when the 430

model is fine-tuned on Map2Seq, it rarely 3 makes 431

any turns in the beginning since it has not learned 432

to make any turns. Hence, for this analysis, we 433

only focus on the Touchdown dataset. 434

The agent fails most often in orientation when 435

the test dataset has patterns that are not present 436

in the training data. Table 6 shows this general 437

trend in the models’ performance in the orientation 438

sub-task. In the Zero Pattern Overlap scenario, the 439

F1 score for orientation drops by 2.70% when the 440

model is fine-tuned and tested on TouchDown us- 441

ing vision. Without vision data, the F1 score drops 442

even more (by 10.74%) from 24.07% in controlled 443

split to 13.33% in 0-pact-overlap. 444

Table 7 shows that the results of the Zero pat- 445

tern and geographical overlap (zero-pact-geo-x) 446

scenario generally follow a similar trend. This indi- 447

cates that the models are sensitive to the train-test 448

separation of patterns for the orientation task as 449

well. 450

5.5 Stopping 451

Accurately deciding where to stop is another cru- 452

cial sub-task in vision and language navigation. 453

Our error analysis on the base model showed that 454

there is a significant number of what we term “over- 455

shoot errors”. The agent reaches the destination, 456

but erroneously continues moving instead of stop- 457

ping. These are cases that could indeed have been 458

successful had the agent stopped. We calculate the 459

3At most 2% in any of the test splits.
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Llama2 Llama2-NV
Image Scenario Precision Recall F1 Precision Recall F1

OpenCLIP 0-pact-overlap 53 43.06 42.09 - - -
base-zpo 45.1 55.82 44.79 - - -

None 0-pact-overlap 28.13 27.27 13.33 13.26 14.5 8.48
base-zpo 27.08 33.58 24.07 30.27 35.16 28.9

Table 6: Orientation results for Zero-Pattern-Overlap split. We use TouchDown as test and fine-tuning set. Bolded
results are better performing between a zero-pattern-overlap case and its controlled split.

Llama2 Llama2-NV
Image Scenario Precision Recall F1 Precision Recall F1

OpenCLIP

zero-pact-geo-a 46.12 53.29 48 - - -
base-pg-a 47.52 54.2 49.2 - - -
zero-pact-geo-b 38.32 39.01 38.5 - - -
base-pg-b 54.63 62.34 55.41 - - -

None

zero-pact-geo-a 17.1 29.65 17.25 17.1 29.65 17.25
base-pg-a 24.26 34.59 22.47 24.26 34.59 22.47
zero-pact-geo-b 29.7 36.04 25.33 29.7 36.04 25.33
base-pg-b 31.34 46.49 24.14 31.34 46.49 24.14

Table 7: Orientation result for Zero Pattern and Geographical Overlap for TouchDown as test and fine-tuning set.
Bolded results are better performing between a zero-pact-geo-a (or b) case and its controlled split.

overshoot rate among all the cases that reached the460

destination as follows:461

Overshoot_Rate =
Overshoot

Overshoot + Success
× 100,462

In general, pattern separation increases over-463

shoot rates. Table 8 shows the results of overshoot464

rates in the Zero Pattern Overlap scenario. For the465

same train-test dataset scenarios, there is a con-466

sistent decrease in overshoot rates. However, in467

the scenario where the train and test datasets are468

different, overshoot rates do not always decrease469

from base-zpo to 0-pact-overlap split. This can be470

attributed to the fact that the cross dataset pattern471

leakage still exists.472

Table 9 shows the overshoot rates for the Zero473

Pattern and Geographical Overlap scenario. Gen-474

erally (although with a few exceptions), for each475

split pair and its controlled baseline split, the over-476

shoot is lower in the baseline. The overshoot rate is477

affected by the separation of patterns in one of two478

ways. One, it reduces the agents’ generalization on479

routes with unseen patterns, leading to a reduction480

in task completion rate (TC). Two, in most of the481

overshoot scenarios, the agent is actually able to482

navigate the route and make it to the destination,483

but fails to stop at the right place. In such a case,484

the agent has actually followed a pattern similar485

to the ground truth pattern of the route. However,486

Llama2 Llama2-NV

FT → Test Scenario OpenCLIP None

Same Train-Test Dataset

TD → TD
0-pact-overlap 54.85 60.92 77.67

base-zpo 46.4 56.61 45.22

M2S → M2S
0-pact-overlap 35.62 47.63 36.81

base-zpo 26.81 47.39 30.04

Different Train-Test Dataset

TD → M2S
0-pact-overlap 17.45 29.08 46.74

base-zpo 19.68 29.97 27

M2S → TD
0-pact-overlap 76.08 79.89 84.72

base-zpo 75.98 82.82 77.59

Table 8: Overshoot Rate for Zero Pattern Overlap Sce-
nario.

if a pattern is totally unfamiliar to the agent, the 487

agent is less likely to reach the end of the route. 488

Rather, it is more likely to make a wrong turn in 489

the middle of the route. In turn, this would disqual- 490

ify the route as an overshoot example. The overall 491

outcome of these two effects results in increased 492

overshoot rates. The details of these scores are in 493

Table 16 of Appendix. 494

6 Related Work 495

Vision and Language Navigation. Following nav- 496

igational instructions to reach destination in a navi- 497

gable environment is a well studied topic. Various 498

datasets and benchmarks have been proposed for 499

indoor navigation such as R2R (Anderson et al., 500

2017),RxR (Ku et al., 2020), and Qi et al. (2020). 501
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Llama2

FT → Test Scenario OpenCLIP None Llama2-NV

Same Train-Test Dataset

TD → TD

zero-pact-geo-a 75.05 77.32 77.32
base-pg-a 56.94 64.44 64.44

zero-pact-geo-b 84.33 90.75 90.75
base-pg-b 59.55 67.9 67.9

M2S → M2S

zero-pact-geo-a 28.57 42.22 42.22
base-pg-a 42.8 51.43 51.43

zero-pact-geo-b 46.32 61.46 61.46
base-pg-b 34.3 52.48 52.48

Different Train-Test Dataset

TD → M2S

zero-pact-geo-a 47.12 56.15 56.15
base-pg-a 22.66 33.02 33.02

zero-pact-geo-b 66.67 70.1 70.1
base-pg-b 31.55 45.8 45.8

M2S → TD

zero-pact-geo-a 73.37 79.03 79.03
base-pg-a 84.23 84.9 84.9

zero-pact-geo-b 81.9 89.2 89.2
base-pg-b 77.21 83.52 83.52

Table 9: Overshoot Rate for Zero Pattern and Geograph-
ical Overlap (zero-pact-geo-x splits) scenario.

Also, for outdoor navigation, several datasets have502

been proposed StreetLearn (Mirowski et al., 2018),503

TouchDown (Chen et al., 2018), Map2Seq (Schu-504

mann and Riezler, 2021), StreetNav (Hermann505

et al., 2020), and Talk2Nav (Vasudevan et al.,506

2021). While VLN was previously performed us-507

ing mostly LSTM based models (Fried et al., 2018;508

Hermann et al., 2020), transformer-based models509

that are trained end-to-end have been proposed as510

well (Schumann and Riezler, 2022).511

LLMs and Modular Agents. The promising512

reasoning ability of large language models on lin-513

guistic task has attracted researchers interest in514

path planning (Aghzal et al., 2023). Also, it has515

enabled the development of modular agents such as516

LM-Nav (Shah et al., 2022), NavGPT (Zhou et al.,517

2023), A2Nav(Chen et al., 2023), and VELMA518

(Schumann et al., 2024). In these agents, the task519

of VLN is performed by having an LLM perform as520

the reasoning and planner component and having521

other multi-modal models such as CLIP (Radford522

et al., 2021) as a visual alignment module.523

Topology and Route Structure. Rather than524

solely relying on the history of past visual observa-525

tions and taken actions, representing the topology526

of the navigable environment as an abstract graph527

has been studied in various studies (Zhao et al.,528

2022; Liu et al., 2023). Addition of such a mental529

map of the environment, enhances the performance530

of VLN agents. However, these studies do not dis-531

cuss the effect of topology and patterns of routes532

on agents performance. 533

Model Behaviour Analysis. Evaluation of deep 534

generative models is both important and challeng- 535

ing. For VLN, various evaluation methods have 536

been proposed. While methods have been proposed 537

for assessing similarity of trajectories (Ilharco et al., 538

2019), (Jain et al., 2019), these scores do not reveal 539

any further details on how the models perform. For 540

outdoor VLN, (Schumann and Riezler, 2022) per- 541

form various ablation experiments and show that 542

structural features of routes such as junction type 543

and difference in heading have higher weight on 544

the performance of models compared to visual cues. 545

Also, (Zhu et al., 2022) show that for indoor, the 546

models use object tokens and directional tokens for 547

navigation. Whereas, for the outdoor, the models’ 548

performance mostly depends on directional tokens. 549

(Yang et al., 2023) propose a method for interven- 550

ing with the instructions given to the agent and 551

evaluating its sensitivity to the interventions. In 552

this way, they analyze skill-specific capabilities of 553

VLNs. Our study differs from the previous ones 554

in several ways: First, Unlike these studies, we fo- 555

cus on LLM-based models. As the LLMs provide 556

strong reasoning capabilities that can be incorpo- 557

rated in navigational tasks with fine-tuning. Hence, 558

eliminating the need to train a model from scratch. 559

Second, we do not perform a token-wise analysis. 560

Rather, we focus on the structure of navigational 561

routes. Nonetheless readers can refer to (Zhu et al., 562

2022) for a holistic analysis on token level evalu- 563

ation of VLNs. Finally, we focus on the outdoor 564

navigation only as it is understudied. 565

7 Conclusion 566

Our evaluation of LLM-based vision and language 567

navigation agents shows that navigation instruc- 568

tions contain an abstract representation of the shape 569

of a trajectory, which captures the pattern of actions 570

an agent must take to perform the navigation task. 571

Using this patterns as the basis of our evaluation, 572

we show that VLN agents’ are less likely to gen- 573

eralize to routes whose patterns are not present in 574

training data. Using diverse patterns during the 575

training phase improves the agents’ performance. 576

Therefore, our suggestion for the development of 577

new datasets for VLN is to generate navigational 578

routes with a higher diversity of patterns of actions 579

to improve performance, and to consider this vari- 580

able when evaluating VLN agents. 581
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Limitations582

The limitations of our study can be summarized as583

follows:584

VLN Agents. We do not discuss the effect of pat-585

terns on VLN agents that are LSTM (Fried et al.,586

2018) or Transformer-based (Schumann and Rie-587

zler, 2022) that use end-to-end training since:588

1. Transformer-based models are superior in per-589

formance compared to LSTM based models590

on VLN tasks. (Schumann and Riezler, 2022)591

2. LLMs are pre-trained on huge and diverse592

datasets and we can take advantage of such593

models by fine-tuning them.594

Simplification Assumptions. The agent of our595

study navigates in a discrete environment. The596

actions of the agent are considered complete. How-597

ever, the effect of PActs in a continuous setting is598

an open research question.599

Diversity of Languages. We only consider the600

English language and leave the study of PActs in601

other languages to future work.602

Granularity of Contributing Factors. We do603

not consider token-wise analysis as it is has been604

studied in the literature (Zhu et al., 2022). Also,605

we do not consider fine-grained structural features606

such as junction types and directional changes since607

they have been thoroughly analyzed and discussed608

by Schumann and Riezler (2022). Rather, we focus609

on the route structure, which is overlooked in the610

literature.611

Ethics Statement612

In this study, we use panorama images of street613

view published by Google (Mirowski et al., 2018).614

Privacy and ethics concerned with the dataset have615

been addressed by blurring individuals’ faces in the616

image data. Since we conducted our experiments in617

a simulated environment, there is no risk of damage618

or injury. However, deploying and experimenting619

VLN in real world environments would require620

additional, extensive safety measurements which621

are beyond the scope of this study.622
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Test Dataset Finetune Dataset Scenario Llama1-7B Mistral-7B-v0.1

OpenCLIP None OpenCLIP None

TouchDown TouchDown base-unseen 20.9 11.48 10.42 7.03

Map2Seq base-unseen 6.17 5.31 8.69 6.9

Map2Seq TouchDown base-unseen 23.5 22.75 5.62 6

Map2Seq base-unseen 39.12 33.75 35 32.62

TouchDown TouchDown base-zpo 30.48 15.1 14.92 8.06
0-pact-overlap 5.82 (-24.66) 3.19 (-11.91) 7.05 (-7.87) 3.05 (-5.01)

Map2Seq base-zpo 7.64 5.49 5.83 2.96
0-pact-overlap 2.53 (-5.11) 1.87 (-3.62) 2.02 (-3.81) 1.36 (-1.6)

Map2Seq TouchDown base-zpo 30.95 26.62 8.57 9.49
0-pact-overlap 16.28 (-14.67) 15.05 (-11.57) 3.52 (-5.05) 2.74 (-6.75)

Map2Seq base-zpo 49.52 38.94 39.57 25.65
0-pact-overlap 38.13 (-11.39) 30 (-8.94) 35.13 (-4.44) 21.81 (-3.84)

TouchDown TouchDown base-pg-a 18.1 11.1 16.3 9.3
zero-pact-geo-a 6.1 (-12) 3.8 (-7.3) 10.2 (-6.1) 3.5 (-5.8)

base-pg-b 20 11.2 10.2 6.5
zero-pact-geo-b 3.2 (-16.8) 1.8 (-9.4) 1.6 (-8.6) 0.9 (-5.6)

Map2Seq base-pg-a 7 3.5 3.2 2.3
zero-pact-geo-a 5.5 4.2 1.7 1.1

base-pg-b 5.4 3.9 5.2 3.1
zero-pact-geo-b 4.2 4 1 0.5

Map2Seq TouchDown base-pg-a 17.5 18.33 19.83 21.17
zero-pact-geo-a 15.83 13.33 14.83 13.5

base-pg-b 20.83 21.66 4.67 6.17
zero-pact-geo-b 7.66 6.5 4.17 2.67

Map2Seq base-pg-a 34.83 28.66 17.17 16.83
zero-pact-geo-a 28.49 22.5 7.83 8.67

base-pg-b 37.33 25.83 34.67 26.83
zero-pact-geo-b 20.83 18.66 13.83 11.17

Table 10: Task Completion (TC) rate for Llama1 and Mistral, fine-tuned using vision.
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Test Dataset Finetune Dataset Scenario Llama1-7B-NV Llama2-7B-NV Mistral-7B-NV
TouchDown TouchDown base-unseen 14 14.4 10.95

Map2Seq base-unseen 6.64 3.45 2.65
Map2Seq TouchDown base-unseen 19.62 21.62 23.88

Map2Seq base-unseen 33.62 27.75 26.25
TouchDown TouchDown base-zpo 17.22 17.5 11.14

0-pact-overlap 6.08 2.25 2.47
Map2Seq base-zpo 7.07 6.51 6.48

0-pact-overlap 1.9 2.68 1.86
Map2Seq TouchDown base-zpo 27.67 28.93 11.13

0-pact-overlap 19.47 16.27 22.61
Map2Seq base-zpo 42.8 43.74 34.45

0-pact-overlap 33.86 39.72 18.34
TouchDown TouchDown base-pg-a 11.1 11.2 9.3

zero-pact-geo-a 3.8 6.1 3.5
base-pg-b 11.2 10.4 6.5
zero-pact-geo-b 1.8 3.7 0.9

Map2Seq base-pg-a 3.5 3.7 2.3
zero-pact-geo-a 4.2 3.9 1.1
base-pg-b 3.9 4.3 3.1
zero-pact-geo-b 4 3.5 0.5

Map2Seq TouchDown base-pg-a 18.33 24 21.17
zero-pact-geo-a 13.33 13.67 13.5
base-pg-b 21.67 21.5 6.17
zero-pact-geo-b 6.5 14.5 2.67

Map2Seq base-pg-a 28.67 19.83 16.83
zero-pact-geo-a 22.5 26 8.67
base-pg-b 25.83 27.17 26.83
zero-pact-geo-b 18.67 18.5 11.17

Table 11: Task Completion (TC) rate for fine-tuned models without using vision. Between each split and its
controlled baseline, the best performing score is bolded.

Llama1-7B-NV Llama2-7B-NV Mistral-7B-NV

Test Dataset Fine-Tune Dataset Scenario Precision Recal F1 Precision Recal F1 Precision Recal F1

TouchDown TouchDown base-unseen 24.81 28.41 23.44 30.42 42.45 31.16 51.49 25 17
Map2Seq base-unseen 22.06 35.01 19.86 25.74 30.74 18.68 21.57 27.83 16.28

TouchDown TouchDown 0-pact-overlap 16.31 24.83 8.74 13.26 14.5 8.48 10.35 12.93 6.88
base-zpo 31.93 42.02 32.66 30.27 35.16 28.9 39.78 37.82 38.68

Map2Seq 0-pact-overlap 21.67 25.93 9.85 15 25.27 8.9 19.2 36.89 16.6
base-zpo 19.71 28.19 16.71 22.36 29.15 17.84 13.89 26.34 14.84

TouchDown TouchDown zero-pact-geo-a 19.87 30.61 19.38 17.1 29.65 17.25 23.13 32.75 15.43
base-pg-a 20.78 25.02 13.9 24.26 34.59 22.47 26.06 35.15 20.77

zero-pact-geo-b 36.54 37.24 24.32 29.7 36.04 25.33 26.89 38.25 25.2
base-pg-b 29.92 50.58 28.28 31.34 46.49 24.14 22.47 34.44 20.76

Map2Seq zero-pact-geo-a 11.74 26.71 12.95 14.3 26.9 13.73 14.29 34.74 16.2
base-pg-a 18.18 28.96 16.89 15.87 24.95 12.89 20.28 29.06 17.36

zero-pact-geo-b 21.09 32.13 20 21.13 31.64 19.33 26.68 24.95 13.91
base-pg-b 39.01 29.78 18.07 17.96 26.9 15.37 15.55 24.84 12.7

Table 12: Orientation : Models fine-tuned without using visual info.
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Llama1-7B Llama2-7B Mistral-7B
Test Dataset Fine-Tune Dataset Image Scenario Precision Recall F1 Precision Recall F1 Precision Recall F1
TouchDown TouchDown CLIP base-unseen 51.4 53.65 52.07 48.92 53.7 50.74 49.88 50.97 50.2

None base-unseen 26.37 36.64 25.99 29.94 43.33 31.29 30.64 36.39 29.15
Map2Seq CLIP base-unseen 23.09 24.93 12.62 20.09 36.26 19.84 22.63 32.03 18.76

None base-unseen 23.09 24.93 12.62 21.28 36.26 19.56 23.22 30.67 18.43
TouchDown TouchDown CLIP zero-pact-geo-a 53.36 40.74 39.99 46.12 53.29 48 46.41 47.85 46.94

base-pg-a 58.94 45.67 44.68 47.52 54.2 49.2 43.86 47.04 44.81
zero-pact-geo-b 76.77 39.15 38.55 38.32 39.01 38.5 53.01 43.42 40.01

base-pg-b 57.04 54.88 54.56 54.63 62.34 55.41 62.36 60.62 61.28
None zero-pact-geo-a 19.87 30.61 19.38 17.1 29.65 17.25 23.13 32.75 15.43

base-pg-a 20.78 25.02 13.9 24.26 34.59 22.47 26.06 35.15 20.77
zero-pact-geo-b 36.54 37.24 24.32 29.7 36.04 25.33 26.89 38.25 25.2

base-pg-b 29.92 50.58 28.28 31.34 46.49 24.14 22.47 34.44 20.76
Map2Seq CLIP zero-pact-geo-a 11.71 26.84 12.97 13.24 26.77 13.48 14.7 34.74 16.53

base-pg-a 17.55 28.96 16.74 15.87 24.95 12.89 26.26 33.23 21.35
zero-pact-geo-b 17.86 28.28 17.12 25.31 35.44 22.3 17.8 24.95 13.92

base-pg-b 26.29 31.9 19.93 22.54 31.9 19.5 11.66 24.79 12.69
None zero-pact-geo-a 11.74 26.71 12.95 14.3 26.9 13.73 14.29 34.74 16.2

base-pg-a 18.18 28.96 16.89 15.87 24.95 12.89 20.28 29.06 17.36
zero-pact-geo-b 21.09 32.13 20 21.13 31.64 19.33 26.68 24.95 13.91

base-pg-b 39.01 29.78 18.07 17.96 26.9 15.37 15.55 24.84 12.7
TouchDown TouchDown CLIP 0-pact-overlap 64.75 46.15 47.59 53 43.06 42.09 32.82 39.16 31.61

base-zpo 45.14 57.04 44.94 45.1 55.82 44.79 59.58 52.85 55.1
None 0-pact-overlap 29.43 28.79 20.35 28.13 27.27 13.33 15.93 32.4 14.33

base-zpo 32.3 39.69 27.43 27.08 33.58 24.07 31.85 37.31 25.38
Map2Seq CLIP 0-pact-overlap 18.64 28.3 12.74 16.06 28.6 12.74 14.98 25.54 9.34

base-zpo 16.78 26.33 14.74 22.36 27.28 15.96 23.27 29.77 18.5
None 0-pact-overlap 19.17 28.01 12.46 16.96 31.13 14.07 9.32 25.25 8.88

base-zpo 15.92 25.85 14.21 20.22 27.25 15.89 20.94 28.31 16.99

Table 13: Precision, Recall and F1 scores for Orientation task. Between each pair of data split and its corresponding
baseline, the best performing F1 score is bolded.

Llama1-7B Llama2-7B Mistral-7B

Test Dataset Fine-Tune Dataset Scenario OpenCLIP None OpenCLIP None OpenCLIP None

TouchDown TouchDown base-unseen 46.88 60.59 42.53 54.98 69.22 73.03
Map2Seq base-unseen 77.26 80.68 82.64 86.92 71.08 76.94

Map2Seq TouchDown base-unseen 14.55 25.1 22.03 23.88 47.67 42.86
Map2Seq base-unseen 24.94 38.78 37.31 57.26 13.58 29.46

TouchDown TouchDown zero-pact-geo-a 88.18 87.66 75.05 77.32 81.65 87.59
base-pg-a 55.09 67.54 56.94 64.44 63.94 72.07

zero-pact-geo-b 93.19 95.6 84.33 90.75 96.38 97.18
base-pg-b 54.13 66.77 59.55 67.9 69.28 74.21

Map2Seq zero-pact-geo-a 70.27 78.12 73.37 79.03 92.51 94.91
base-pg-a 76.51 87.41 84.23 84.9 85.39 89.59

zero-pact-geo-b 87.9 87.95 81.9 89.2 97.21 98.57
base-pg-b 80.78 85.17 77.21 83.52 84.71 90.37

Map2Seq TouchDown zero-pact-geo-a 53.88 60.2 47.12 56.15 66.29 68.24
base-pg-a 28.57 45.27 22.66 33.02 36.02 45.02

zero-pact-geo-b 79.19 83.4 66.67 70.1 87.37 92.42
base-pg-b 23.78 34.34 31.55 45.8 36.36 28.85

Map2Seq zero-pact-geo-a 25.97 47.47 28.57 42.22 72.67 73.2
base-pg-a 32.14 48.35 42.8 51.43 55.22 61.3

zero-pact-geo-b 55.36 62.03 46.32 61.46 72.7 78.25
base-pg-b 33.13 54.55 34.3 52.48 33.76 50

Table 14: Overshoot Rate (OSR) among different models and data splits. For each pair of Zero PActs and
Geographical Overlap (zero-pact-geo-x) and control splits (base-pg-x), the best performing split is bolded.
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Test Dataset Fine-Tune Dataset Scenario Llama1-7B-NV Llama2-7B-NV Mistral-7B-NV
TouchDown TouchDown base-unseen 46.88 42.53 69.22

Map2Seq base-unseen 77.26 82.64 71.08
Map2Seq TouchDown base-unseen 14.55 22.03 47.67

Map2Seq base-unseen 24.94 37.31 13.58
TouchDown TouchDown zero-pact-geo-a 87.66 77.32 87.59

base-pg-a 67.54 64.44 72.07
zero-pact-geo-b 95.6 90.75 97.18
base-pg-b 66.77 67.9 74.21

Map2Seq zero-pact-geo-a 78.12 79.03 94.91
base-pg-a 87.41 84.9 89.59
zero-pact-geo-b 87.95 89.2 98.57
base-pg-b 85.17 83.52 90.37

Map2Seq TouchDown zero-pact-geo-a 60.2 56.15 68.24
base-pg-a 45.27 33.02 45.02
zero-pact-geo-b 83.4 70.1 92.42
base-pg-b 34.34 45.8 28.85

Map2Seq zero-pact-geo-a 47.47 42.22 73.2
base-pg-a 48.35 51.43 61.3
zero-pact-geo-b 62.03 61.46 78.25
base-pg-b 54.55 52.48 50

Table 15: Overshoot Rate (OSR) among different models fine-tuned without vision and data splits. For each pair of
Zero PActs and Geographical Overlap (zero-pact-geo-x) and control splits (base-pg-x), the best performing split is
bolded

Test Dataset Finetune Dataset Image Scenario Llama1-7B Llama2-7B Mistral-7B
TC OSH OSR TC OSH OSR TC OSH OSR

TouchDown TouchDown None base-zpo 13.53 24.72 64.62 15.58 20.32 56.61 8.06 24.48 75.23
0-pact-overlap 7.68 23.65 75.49 7.77 12.12 60.92 3.05 10.52 77.51

OpenCLIP base-zpo 28.22 31.91 53.07 28.34 24.53 46.4 14.92 35.57 70.45
0-pact-overlap 18.69 37.48 66.72 24.28 29.5 54.85 7.05 27.17 79.41

Map2Seq None base-zpo 5.97 21.78 78.49 5.08 24.46 82.82 2.96 27.26 90.2
0-pact-overlap 3.17 13.22 80.66 3.55 14.09 79.89 1.36 16.25 92.27

OpenCLIP base-zpo 7.82 23.19 74.77 7.31 23.12 75.98 5.83 27.02 82.26
0-pact-overlap 3.76 13.48 78.2 4.56 14.49 76.08 2.02 17.24 89.51

Map2Seq TouchDown None base-zpo 27.24 22.46 45.2 29.51 12.63 29.97 9.49 7.19 43.1
0-pact-overlap 20.59 15.89 43.56 25.32 10.38 29.08 2.74 3.46 55.81

OpenCLIP base-zpo 31.64 14.55 31.51 27.7 6.79 19.68 8.57 6.61 43.56
0-pact-overlap 18.72 7.67 29.07 22.24 4.7 17.45 3.52 3.52 50

Map2Seq None base-zpo 40.98 26.6 39.36 37.1 33.42 47.39 25.65 36.93 59.01
0-pact-overlap 38.13 24.4 39.02 34.7 31.55 47.63 21.81 41.16 65.37

OpenCLIP base-zpo 50.1 16.42 24.69 50.16 18.38 26.81 39.57 25.54 39.22
0-pact-overlap 46.15 16.56 26.4 43.01 23.8 35.62 35.13 27.34 43.77

Table 16: Overshoot (OSH) denotes the number of overshoot cases among all of the samples in the test split.
Overshoot Rate (OSR) and Task Completion (TC) are described in section 5.5. As explained in section 5.5,
separation of PActs from train and test, results in lower number of OSH cases and TC rates in 0-pact-overlap
compared to its baseline, base-zpo. However, the overall outcome is a general increase in Overshoot rates.
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Figure 2: Illustration of creation of Zero Pattern Overlap from base-unseen split. The graphs depicted here are
hypothetical to clarify the process. Each column represents frequency ( number of repetitions ) of a pattern in
samples. Splitting the data by patterns, results in zero pattern overlap, whereas geographical overlap still exists.
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Figure 3: Illustration of creation of Zero Pattern and Geographical Overlap from base-unseen split. The graphs
depicted here are hypothetical to clarify the process. Each column represents frequency ( number of repetitions )
of a pattern in samples. In base unseen, train and test samples are geographically separate. So, when we separate
them by patterns, we could get two sub-sets that are (a) geographically separate, AND (b) have zero pattern overlap.
From the samples assigned to the test, we randomly take 1000 (600) samples to create test set for TouchDown
(Map2Seq) and use the remaining samples as the dev set.
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