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a b s t r a c t 

Most of the current exemplar-based face sketch synthesis approaches directly synthesize face sketches 

from face photos. However, due to the great difference between face photos and sketches, as well as 

the cluttered backgrounds in photo images, there tends to be some noise, deformation and missing parts 

on the synthesized face sketches by most of the exemplar-based methods. Besides, most exemplar-based 

methods exist a common problem: they only produce satisfactory results when training and test sam- 

ples originate from the same dataset. To address these issues, in this paper we propose a simple but 

effective method which consists of two stages: the preprocessing stage and the sketch synthesis stage. 

In the preprocessing stage, we first design a fully convolutional neural network for preprocessing (pFCN). 

To fit the preprocessing task, the pFCN is trained by an L1 based total loss function, which is simple yet 

could enhance the facial features. Then the full-size photo is fed to the well-trained pFCN to generate the 

feature map, which we call a semi-sketch since it bridges the discrepancy between photo and sketch. At 

the sketch synthesis stage, the semi-sketches and an existing exemplar-based method are employed to 

synthesize the final sketches. Extensive experiments on public face sketch datasets verify that the pro- 

posed two-stage method improves the sketch synthesis quality of the state-of-the-art exemplar-based 

methods in terms of both recognition accuracy and perceptual quality. In addition, the experiments on 

cross-dataset indicate that the proposed method provides a new means for strengthening the generaliza- 

tion ability of the exemplar-based method. 

© 2019 Elsevier B.V. All rights reserved. 

1

 

o  

i  

h  

t  

i  

o  

p  

f  

a  

w  

t  

f  

d  

s  

e  

s  

b  

s  

v

 

o  

l  

b  

h  

i  

T  

r  

d

 

n  

s  

h

0

. Introduction 

A sketch is a quick, rough drawing that shows the main features

f an object or scene. Synthesizing face sketches from photos, an

mportant branch of heterogeneous image transformation (HIT),

as been widely used in both law enforcement and digital en-

ertainment [4–6] . Surveillance cameras have been widely used

n law enforcement, as an important tool for maintaining public

rder. However, in many criminal cases, surveillance cameras only

rovide limited information about suspects, which is not enough

or normal face recognition methods. Under these circumstances,

 sketch drawn by the artist based on the recollection of an eye-

itness and the clues from video surveillance is often considered

he best substitute for suspect identification [7,8] . Synthesizing

ace sketches from the photo database, and then taking the sketch

rawn by the artist as the probe to retrieve from the synthesized

ketches can help the police quickly identify the suspect. In digital
∗ Corresponding author. 
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ntertainment, people like to display their photos in an artistic

tyle, and automatic sketch portrait generation could help them,

eing faster and more convenient. Therefore, the synthesized

ketches need to meet two requirements: (1) easy to identify; (2)

ivid and delicate in visual perception. 

Significant progress has been made in face sketch synthesis,

ver the past decade. Thanks to the rapid development of machine

earning and deep learning, the face sketch synthesis methods have

ecome more diverse, and the quality of the synthesized sketch

as also significantly improved. Exemplar-based methods play an

mportant role among the various face sketch synthesis methods.

his is due to their success in detecting and exploiting patch cor-

espondences within a training database or calculating optimized

ictionaries allowing for highly sparse data representation [9] . 

Given a photo patch, exemplar-based methods will first search

eighbor patches in the training photo set, and then their corre-

ponding sketch patches are linearly combined to synthesize the

arget sketch. In most of the exemplar-based methods, the combi-

ation weights are computed based on the assumption that if two

hoto patches are similar, then their corresponding sketch patches

re also similar [3] . However, this assumption is not always true;

https://doi.org/10.1016/j.neucom.2019.07.008
http://www.ScienceDirect.com
http://www.elsevier.com/locate/neucom
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neucom.2019.07.008&domain=pdf
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Fig. 1. Face sketches synthesized by three existing exemplar-based methods and 

the proposed two-stage methods. (b) LLE [1] , (c) MRF [2] , (d) RSLCR [3] ; (f)–(h) are 

from our proposed two-stage method. 

Fig. 2. Even if the two photo patches are very similar, their corresponding sketch 

patches might be very different; however, introduction of the semi-sketch alleviates 

this contradiction. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3. Comparison between shading sketch and profile sketch. Image (c) is from 

[17] . 
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sometimes even when the photo patches are very similar, their

corresponding sketch patches may be different [2] , as shown in

Fig. 2 . In addition, the results of the exemplar-based methods are

greatly influenced by the distribution of training samples, since

they are reconstructed from the training samples. Therefore, if the

distribution of the test sample is different from the training sam-

ples, it is hard for these methods to synthesize satisfactory re-

sults. As shown in Fig. 1 , the photo (see Fig. 1 (a)) is a little darker

than the training samples, and there are some unsatisfactory parts

of the synthesized results, such as the noise in the background

and skin area, the deformation of the nose and mouth, and obvi-

ous gridding problems (see Fig. 1 (b)–(d)). These problems will be

more serious when the test samples and training samples are not

from the same dataset. Thus, using an appropriate preprocessing

method to reduce the distribution difference between test samples

and training samples and make the above-mentioned assumption

stronger is an effective way to improve the synthesis quality of the

exemplar-based methods. 

Recently, several works [10,11] have successfully exploited con-

volutional neural network (CNN) to synthesize face sketches from

photos. Although some of them do not perform better than some

exemplar-based methods in terms of recognition accuracy, they are

able to retain the structure and content of the photos well, since

they can generate sketches directly and globally rather than us-

ing training sketch patches to synthesize sketches. Inspired by this,

rather than the commonly used exemplar-based strategy where

sketches are directly synthesized from photos, this paper proposes

a two-stage method, consisting of a preprocessing stage and a

sketch synthesis stage. In the preprocessing stage, we take train-

ing photos as inputs and their corresponding sketches as labels

to train a fully convolutional neural network. Since this fully con-

volutional neural network is used for preprocessing, we denote

it as pFCN. Then the training photos and test photos are fed
o the well-trained pFCN to get training semi-sketches and test

emi-sketches. Semi-sketches not only retain the structure and

ontent information of the photos but also have some charac-

eristics of the sketches, such as the white background. At this

tage, both training photos and test photos are transformed into

emi-sketches and their distribution differences are greatly dimin-

shed. In the sketch synthesis stage, we directly employ an exist-

ng exemplar-based method to synthesize the final sketches, but

or the inputs we replace the training photos and test photos

ith training semi-sketches and test semi-sketches. Specifically, we

esign a simpler fully convolutional neural network (pFCN) than

10,11] , because the texture learning is not crucial in the prepro-

essing stage. To learn more details about the key facial features,

 total loss function which includes a global loss function and two

ocal loss functions are used to train the pFCN. 

The contributions of this work are mainly three-fold. 

First, we propose a two-stage (a preprocessing stage and a

ketch synthesis stage) method for face sketch synthesis. Specif-

cally, the proposed two-stage method takes a fully convolu-

ional neural network as the preprocessing of the exemplar-based

ethod. 

Second, we design a simpler neural network architecture in-

pired by Zhang et al. [11] , termed pFCN. Then a simple yet ef-

ective loss function is designed to focus training on learning more

tructural and content information. 

Third, detailed experiments are conducted on the CUFS

atabase [2] to demonstrate the improvement in the synthesis

uality. Besides, the experimental results on cross-dataset show

hat the proposed preprocessing can improve the generalization

bility of the existing exemplar-based method. 

. Related work 

In this section, previous works on exemplar-based face sketch

ynthesis and dense predictions via CNNs are reviewed. 

.1. Exemplar-based face sketch synthesis methods 

In recent decades, researchers have made great effort s in the

eld of sketch face synthesis and achieved remarkable results.

ased on the previous studies [10,12,13] , exemplar-based sketch

ace synthesis can be roughly divided into two categories: profile

ketch synthesis [14–16] and shading sketch synthesis [3,12,13] . As

e can see from Fig. 3 , profile sketches are more like line draw-

ngs. Compared with profile sketches, the shading sketches can

ot only use lines to reflect the overall profiles but also capture

he textural parts via shading [10] . Therefore, shading sketches

re more expressive than profile sketches. This paper focuses on

hading sketch synthesis. 

Tang and Wang [18] used a separate eigen-transformation

lgorithm (ET) to synthesize a face sketch from a photo. This

lgorithm assumed that the photo has a linear correspondence
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ith its corresponding sketch if their shape and texture were

reated independently. However, this assumption may be too

trong for all face photos and sketches, especially when consider-

ng the hair area. Inspired by the manifold learning method called

ocally linear embedding (LLE) [19,20] , Liu et al. [1] proposed a

ace sketch synthesis method that works on image patch level.

ifferent from the global linear assumption in [1,18] was based

n the idea of locally linear approximating global nonlinear. This

ethod first divided the photo and sketch into overlapping image

atches in the same way. Then for a test photo patch, K nearest

eighbors were selected from training photo patches. Then the K

ketch patches which corresponded to the K nearest photo patches

ere used to reconstruct the target sketch in the weighted linear

ombination way. The reconstruction weights were calculated in

he spirit of locally linear embedding. However, due to the target

ketch patches are synthesized independently at a fixed scale, the

ace shape cannot be well learned. Wang and Tang [2] proposed a

ethod that synthesizes target sketch patches at different scales

y using a multiscale Markov random fields (MRF) model, which

ad a profound impact on subsequent research. This method only

nds one most appropriate photo patch from the training set

nd uses its corresponding sketch patch to estimate the target

ketch patch. Therefore, it is difficult to deal with new patches

hat have never appeared in the training set. In addition, the

RF’s optimization is NP-hard. To address these problems, Zhou

t al. [12] proposed a method named Markov weight field (MWF),

hich introduced the linear combination into MRF and considered

he dependency constraint between adjacent synthesized sketch

atches. They formulated their model into a convex quadratic pro-

ramming (QP) problem and proposed a cascade decomposition

ethod (CDM) to solve this QP problem. Zhang et al. [21] also

roposed a method based on MRF, which focuses on improving

he robustness to lighting and pose variations. Similarly, [22] also

ade a significant contribution to coping with the problem of

ighting variation in face sketch synthesis by using a preprocessing

ethod named bidirectional luminance remapping (BLR). Unlike

RF and MWF, which use a single representation to measure the

imilarity between two image patches, Peng et al. [23] used a

ombination of multiple representations and obtained impressive

esults. To reduce the time consumption while ensuring the quality

f the synthesis, Wang et al. [3] presented a face sketch synthesis

ramework based on random sampling and locality constraint. 

.2. Dense predictions via CNNs 

Convolutional neural networks (CNNs) are a kind of neural

etwork model, whose architectures usually have three types of

ayers: convolutional layer, pooling layer, and fully-connected layer.

owadays, CNNs have produced impressive results in many tradi-

ional computer vision tasks, such as object detection, localization,

emantic segmentation, classification and recognition [24–28] .

pecifically, dense prediction, one of the traditional areas, has

lso achieved rapid development due to the introduction of CNNs.

ense prediction refers to per-pixel prediction from one or more

nput images. Long et al. [29] transformed the fully-connected

ayers in a classification net into convolution layers to build a fully

onvolutional network. Their work demonstrated that fully convo-

utional network is a desirable choice for solving dense prediction

roblems in per-pixel tasks like semantic segmentation, due to its

bility to take arbitrarily sized inputs and return spatial outputs.

ermanet et al. [25] proposed an integrated framework based on

NN, which is used for classification, localization and detection.

iu et al. [30] designed a deep convolutional neural field model

o solve the problem of depth estimation from a single image and

chieved a state-of-the-art result without using geometric priors.

he highlight of [30] is that they incorporated the optimization
roblem in a continuous conditional random field (CRF) into a

eep CNN framework. Dong [31] developed a three-layer convolu-

ional neural network to learn an end-to-end mapping between the

ow-resolution image and its corresponding high-resolution image. 

Inspired by Dong et al. [31] , Zhang et al. [11] designed a six-

ayer fully convolutional neural network (FCN), which takes photo

mage (RGB channels and two channels of the corresponding coor-

inate ( i, j )) as input and outputs target sketch image. The sketches

ynthesized by FCN greatly reduce the discrepancy between pho-

os and sketches, but they have blurry contours due to the mean

quare error metric (MSE) in the training loss. Zhang et al. [10] also

roposed a CNN-based method and trained end-to-end. To enhance

he texture of the hair area, they designed a two-branch fully

onvolutional neural network (BFCN), which generates structural

nd textural representations. Although the synthesized sketches

chieve impressive results in sketch-based face recognition, the

exture of these sketches does not look natural. 

. Photo–sketch synthesis 

Most of the exemplar-based methods assume that similar photo

mages have similar sketch images [10] . However, due to the tex-

ure and shape discrepancy between photos and sketches, some-

imes even though two photo patches are very similar, their cor-

esponding sketch patches might be very different, as shown in

ig. 2 . Besides, the cluttered background may cause some noise in

he synthesized sketches. Moreover, the requirement of distribu-

ion similarity between training samples and test samples leads to

he exemplar-based method cannot synthesize satisfactory results

n cross-database [10] . Therefore, using preprocessing to reduce

he gap between photos and sketches, simplify the background

nd reduce the distribution differences between training samples

nd test samples can improve the synthetic quality of the existing

xemplar-based methods. 

In this paper, we propose a method consisting of two stages:

he preprocessing stage and the synthesis stage. In the prepro-

essing stage, a fully convolutional neural network (pFCN) is used

o generate the semi-sketch , which is the transition state of the

hoto and sketch. In the synthesis stage, the semi-sketches are

sed in the existing exemplar-based methods to synthesize the tar-

et sketch. A graphical pipeline of the proposed two-stage method

s shown in Fig. 4 . 

In the following sections, we introduce the preprocessing stage

nd the synthesis stage, respectively. For the preprocessing stage,

e describe the details of the proposed pFCN framework. For the

ynthesis stage, the random sampling with locality constraint for

ace sketch synthesis method (RSLCR) [3] is used as an example

f the exemplar-based method to introduce how to use the semi-

ketches to synthesize the target sketch. 

.1. Semi-sketch generation via pFCN 

The main task in the preprocessing stage is as follows. Given a

ace photo image P, we would like to generate a face semi-sketch

mage X , which has details of the facial features (like eyes, nose

nd mouth), the main structure of the face (such as the distance

etween the eyes) and simplified background. For each face photo

mage P, the generated face semi-sketch image needs to have a

imilar distribution. In this paper, we design a fully convolutional

eural network to accomplish this task. The final task is synthesiz-

ng a target sketch which is as close as possible to the hand-drawn

ketch, and the hand-drawn sketch (ground truth) also meets the

equirements of the semi-sketches as to content, structure and dis-

ribution. Considering these, we take the face photo image as the

nput and its corresponding hand-drawn sketch as the label to

rain the fully convolutional neural network. 
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Fig. 4. Illustration of the proposed two-stage method. The architecture of pFCN is illustrated in Fig. 5 . 

250 × 200 × 3
250 × 200 × 128 250 × 200 × 128

250 × 200 × 64 250 × 200 × 64
250 × 200 × 1 250 × 200 × 1

Fig. 5. The architecture of the proposed pFCN. This model takes a photo image as input and outputs a semi-sketch of the same size. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6. Illustration of the calculation area of the local loss functions. 
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In particular, the previous work in [11] has successfully applied

a six-layer fully convolutional neural network (FCN) to synthesize

sketches. And these synthesized sketches present the main content

of the photos and some texture of the sketches. Inspired by FCN

[11] , we design an eight-layer fully convolutional neural network

for preprocessing (namely pFCN). 

3.1.1. Network architecture 

The architecture of pFCN is shown in Fig. 5 . Unlike the FCN

which uses the position prior and photo image as the input, pFCN

directly takes the photo image as the input. Moreover, pFCN has

8 convolutional layers, since we decomposed the latter of the two

5 × 5 (3 × 3) convolution layers to 5 × 1 and 1 × 5 (3 × 1 and 1 × 3).

This operation can reduce the number of parameters, which is

good for reducing overfitting in the training process when the scale

of the training set is small. Our network adapts rectified linear unit

(ReLU) as activation function. Besides, we add batch normalization

before each ReLU except the last layer. 

3.1.2. Loss function 

Since the texture can be added in the synthesis stage, the pro-

cess of generating the semi-sketch needs to pay more attention to

learning the content of face photo rather than the texture of the

face sketch. To fit our task, this paper applies L1-norm between

the generated semi-sketch X and hand-drawn sketch S as the loss

function. L1-norm will preserve more details than L2-norm [32] ,

and these details play an important role in the following sketch

synthesis stage. The global loss function can be formulated as: 

L global = 

1 

N 

N ∑ 

i =1 

‖X i − S i ‖ 1 (1)

where N is the number of training samples. 
When drawing a face sketch image, the facial features (eye-

rows, eyes, nose and mouth) will take up most of the time, al-

hough the area they occupy in the overall image is small. To ob-

ain a high-quality result, some methods imitated the hand-drawn

rocess to strengthen the supervision of the facial features, such as

A-GAN [33] . CA-GAN employed the face parsing method proposed

y Liu et al. [34] to decompose the facial features and strengthen

upervision over them. In addition to the above-mentioned facial

eatures, we found that the smile folds and under-eye bags have

lso been stressed in the hand-drawn sketch (ground truth), which

ay provide useful help for identification. However, it is hard to

nd a face parsing method to decompose these two components. 

This paper adopted a simple but effective method to strengthen

he supervision of these facial features. As shown in Fig. 6 , there

re two gray rectangles in every face image. The edge of one rect-

ngle is a green dashed line, and the edge of the other is the red
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W (1,1) W (1,31)

W (40,1) W (40,31)

Fig. 7. Illustration of the synthesis process using the RSLCR method [3] and preprocessed data. 
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ashed line. We use Rect g (green) and Rect r (red) to denote these

wo rectangles. As we can see in the Fig. 6 , Rect g and Rect r have

overed almost all facial features required to strengthen the super-

ision, including the smile folds and under-eye bags. The images in

he photo–sketch dataset are geometrically aligned relying on two

ye centers. In addition, all images in the dataset are of the size

50 × 200. Therefore, if Rect g and Rect r are set to the suitable size,

ven if the position of these two rectangles is fixed they can cover

lmost all facial features in any image that is in the dataset. For

he datasets we use in this paper, the position and size of Rect g 
nd Rect r are set as follows: 

ect g = image (30 , 90 , 140 , 80) (2)

ect r = image (70 , 90 , 60 , 160) (3)

here image ( x, y, w, h ) represents a rectangle area in image, this

ectangle’s top left corner coordinates are ( x, y ), the width of this

ectangle is w and the height of this rectangle is h . 

To preserve more details and generate a delicate semi-sketch,

his paper adds two local loss functions: L Rect g and L Rect r . 

 Rect g = 

1 

N 

N ∑ 

i =1 

‖X i (Rect g ) − S i (Rect g ) ‖ 1 (4) 

 Rect r = 

1 

N 

N ∑ 

i =1 

‖X i (Rect r ) − S i (Rect r ) ‖ 1 (5) 

Thus, the total loss function of our preprocessing method can

e formulated as: 

 total = L global + L Rect g + L Rect r (6)

For the dataset which the image is not aligned and the image

ize is not 250 × 200, we need to translate, rotate, and scale to

lign all photos and sketches by the centers of the two eyes. Then

e need to average of all the aligned photos in the training set to

et an average photo. The approximate position of the rectangular
rea is selected on the average photo based on the position of the

yes. As mentioned above, the key of rectangular area selection is

o cover important facial features. The size of the rectangular area

s important for the supervision of facial features. The effect of the

ize of the rectangular area on the generation of semi-sketches will

e detailed in Section 4.3 . 

.2. Sketch synthesis via exemplar-based method 

After the preprocessing stage, we obtain the training semi-

ketches and test semi-sketches with similar distributions. But

hese semi-sketches still have some noise and lack texture details.

he main task at the sketch synthesis stage is to erase the noise

nd add more texture details. At this stage, we directly employ

he existing exemplar-based methods to synthesize target sketches

rom semi-sketches, since these methods have achieved impressive

erformance in synthesizing target sketches from photos. Neigh-

or selection and reconstruction weight computation are the two

ain parts in the exemplar-based method. Fig. 7 shows the pro-

ess of synthesizing a sketch using the RSLCR method [3] and

he preprocessed data. The RSLCR method is an exemplar-based

ethod which aims to speed up the synthesis while maintaining

he high quality of the synthesized results. As shown in Fig. 7 , the

SLCR method applies an offline random sample strategy instead

f the online searching for neighbors in the training phase, which

reatly improves the synthesis speed. In the test phase, the locality

onstraint is imposed on the reconstruction weight representation,

hich improves the synthesis quality. 

In the following, we take the RSLCR method as an example of

he exemplar-based method in the sketch synthesis stage to de-

cribe our method. In the preprocessing stage, the training photos

nd the test photos are converted to the training semi-sketches

nd test semi-sketches by the pFCN. In the synthesis stage, the

SLCR method is used to synthesis sketches. In the training phase,

he semi-sketch -sketch pairs in training dataset are divided into

 = 40 × 31 patches with even size. At each patch position ( i, j ),



118 D. Lu, Z. Chen and Q.M.J. Wu et al. / Neurocomputing 365 (2019) 113–124 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 8. Example face photo–sketch pairs in the CUFS dataset. The first and second 

columns are from CUHK student dataset, the third column is from AR dataset, and 

the fourth and fifth columns are from the XM2VTS dataset. 
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n rs = 800 pairs of training semi-sketch patches and training sketch

patches are randomly sampled, i ∈ { 1 , 2 , . . . , 40 } , j ∈ { 1 , 2 , . . . , 31 } .
Then N PCA projection matrices E ( i, j ) are computed to reduce the

dimension of the training semi-sketch patches. The dimension re-

duced training semi-sketch patches at the patch position ( i, j ) are

denoted as X 

( i,j ) . Their corresponding training sketch patches are

denoted as Y ( i,j ) . In the test phase, the test semi-sketch is divided

into N patches according to the same way as the training semi-

sketch -sketch pairs have been divided. The N PCA projection matri-

ces E ( i, j ) computed in the training phase are used to reduce the

dimension of the testing semi-sketch patches. The dimension re-

duced test semi-sketch patch at the patch position ( i, j ) is denoted

as x ( i,j ) . Its corresponding target sketch patch is denoted as y ( i,j ) . At

each patch position ( i, j ), X 

( i,j ) and x ( i,j ) are fed to the locality con-

straint (LCR) based reconstruction weight representation model to

get the weight representation W 

( i,j ) . Then the target sketch patch

at position ( i, j ) can be synthesized: y (i, j) = Y (i, j) W 

(i, j) . The whole

target sketch can obtain by arranging all target patches. The above

parameters are all from [3] . 

4. Experiment and analysis 

In this section, we first introduce the datasets and the evalu-

ation criteria in Section 4.1 . In Section 4.2 , we describe the nec-

essary implementation details. Section 4.3 discusses the setting of

loss function for pFCN. Afterwards, we employ the well-trained

pFCN in the preprocessing stage and adopt four state-of-the-art

exemplar-based methods in the synthesis stage to synthesize the

target sketches. Section 4.4 provides a qualitative comparison with

the state-of-the-art methods. Objective image quality assessment

and sketch-based face recognition experiments are carried out as

detailed in Sections 4.5 and 4.6 to demonstrate the effectiveness

of the proposed two-stage method. Subsequently, the experiments

on cross-dataset are conducted to demonstrate the effectiveness of

the proposed pFCN preprocessing in enhancing the generalization

ability of the exemplar-based method (see Section 4.7 ). 

4.1. Dataset and evaluation criteria 

4.1.1. Dataset 

To demonstrate the effectiveness of our proposed method, we

carried out the experiments on the CUHK Face Sketch dataset

(CUFS) [2] , which is widely used in face sketch synthesis and

recognition [9,35] . This dataset consists of three sub-databases

(CUHK student dataset, AR dataset, and XM2VTS dataset) with a

total of 606 samples. For each sample, there is a sketch drawn by

an artist based on a photo taken in a frontal pose, under normal

lighting conditions. Of the 606 samples, 188 are from the Chinese

University of Hong Kong (CUHK) student dataset, 123 samples are

from the AR dataset [36] and 295 samples are from the XM2VTS

dataset [37] . Samples in the XM2VTS dataset are different in age,

skin and hairstyles. Some of the photo–sketch pairs from the three

sub-databases are shown in Fig. 8 . 

The settings for the training set and test set are the same as in

[3] . Of the 188 samples in the CUHK student dataset, 88 are se-

lected for training, and the remaining 100 samples are taken as

the test set. For AR dataset, we take 80 samples as training sam-

ples and the remaining 43 samples are used as the test set. From

the XM2VTS dataset, 100 samples are chosen for training and the

remaining 195 for testing. 

4.1.2. Evaluation criteria 

The structure similarity index metric (SSIM) [38] is adopted as

evaluation criteria in this paper to objectively evaluate the percep-

tual quality of the synthesized sketches. In recent years, SSIM has

become the prevalent metric in sketch face synthesis. The quality
f a synthesized sketch can be assessed by computing the SSIM

ndex between itself ˆ S and its corresponding hand-drawn sketch

ground truth) S . The SSIM index between two images can be com-

uted as follows: 

SIM( ̂  S , S) = [ l( ̂  S , S)] 
α

[ c( ̂  S , S)] 
β

[ s ( ̂  S , S)] 
γ

(7)

here α > 0, β > 0, and γ > 0 are used to adjust the relative impor-

ance of the three components. In this paper, α = β = γ = 1 . The

hree components are computed as follows: 

( ̂  S , S) = 

2 μ ˆ S μS + C 1 

μ2 
ˆ S + μ2 

S + C 1 
(8)

( ̂  S , S) = 

2 σ ˆ S σS + C 2 

σ 2 
ˆ S + σ 2 

S + C 2 
(9)

 ( ̂  S , S) = 

σ ˆ S S + C 3 

σ ˆ S σS + C 3 
(10)

here l( ̂  S , S) is the luminance comparison function, c( ̂  S , S) is the

ontrast comparison function, and s ( ̂  S , S) is the structure compar-

son function. C 1 , C 2 and C 3 are three constants to avoid instabil-

ty when the denominator is very close to zero. C i = (K i L ) 
2 
, K i � 1,

 = 1 , 2 , 3 , L denotes the dynamic range of the pixel values (255

or 8-bit grayscale images). We set C 3 = 

C 2 
2 , K 1 = 0 . 01 , K 2 = 0 . 03 .

represents the mean of the image and σ represents the variance

f the image or covariance of two different images. 

.2. Implementation details 

We employ PyTorch, a popular deep learning platform, for

mplementation. Photos in the training set are used directly as

nputs and their ground truth as labels to train the proposed

FCN. Note that the two eye centers of all input and label images

hould be in the same positions, and all input and label images are

ropped to the size of 250 × 200. To ensure the output semi-sketch

nd the input photo have the same size, we apply padding before

he convolutional operation, except when the kernel size is 1 × 1.

or the initialization of our network, the filter weights are filled

ith values ω ∼ N (0, 0.01), and the biases are filled with zero.

e set the learning rate to 0.001, and use Adam optimization

lgorithm [39] to optimize our model (the weight decay is set to

.0 0 02). The model is trained on an NVIDIA Titan Xp GPU with

2G memory in 120 epochs. 

We feed all the photos in the dataset (both training photos and

est photos) to the well-trained pFCN to obtain the training semi-

ketches and test semi-sketches. 
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Fig. 9. Comparison of different loss function strategies. (a) are the synthesized 

sketches of the FCN method [11] , it uses an MSE based loss function to train its 

model; (b) are from the MSE based total loss function trained pFCN; (c) are from 

the global loss function trained pFCN; (d) are from the L1 based total loss function 

trained pFCN. 
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Table 1 

Average SSIM values (%) on CUHK student dataset. 

Method FCN MSE-pFCN global-pFCN L1-pFCN 

SSIM(%) 60.94 53.58 56.47 61.78 

Fig. 10. Illustration of the position and size of the different rectangular areas in the 

local loss function. 

Table 2 

Position and size of different rectangular areas. 

Rect x y w h 

Rect 1 g 50 100 100 35 

Rect 1 r 80 100 40 95 

Rect 2 g 40 90 120 50 

Rect 2 r 70 90 60 105 

Rect 3 g 30 90 140 80 

Rect 3 r 70 90 60 160 

Rect 4 g 0 90 200 80 

Rect 4 r 70 0 60 250 

Table 3 

Average SSIM values (%) under different rectangular areas on CUHK student dataset. 

Method Rect1 Rect2 Rect3 Rect4 

SSIM(%) 58.99 61.08 61.78 60.70 
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.3. Discussion on loss function for pFCN 

In this subsection, we discuss the setting of loss function for

FCN on the CUHK student dataset. To verify the effectiveness of

he loss function described in Section 3.1.2 , we carry out experi-

ents on three aspects. 

First, to demonstrate that the L1 loss is more appropriate than

SE loss for this preprocessing task, we use L1 based total loss

unction (described in Section 3.1.2 formulation (6) ) and MSE based

otal loss function to train pFCN. Replacing the computation of L1-

orm in Section 3.1.2 with L2-norm can help to obtain the formu-

ation of MSE based total loss function. The same optimizer and

earning rate are used to iterate 120 epochs. The two trained pFCN

odels are represented as L1-pFCN and MSE-pFCN. Fig. 9 (b) re-

eals that the synthesized results from MSE-pFCN are darker and

ave more noise in the face area. However, Fig. 9 (d) shows that

he synthesized results from L1-pFCN highlight the important fa-

ial features while weakening the noise. FCN model [11] is trained

y MSE based loss function and obtains impressive results; how-

ver, it takes several hours to train. The L1-pFCN can synthesize a

learer and more delicate sketch than FCN in several minutes, as

hown in Fig. 9 (a) and (d), and the synthesized sketches of FCN

ethod [11] are from the results released by Wang et al. [3] . 

Second, to prove that the use of local loss functions ( L Rect g and

 Rect r ) can improve the quality of the synthesized semi-sketch, we

nly use the L1 based global loss function L global to train pFCN. The

rained pFCN is denoted as global-pFCN. The synthesized results

rom global-pFCN can be seen in Fig. 9 (c). Comparing Fig. 9 (c) with
ig. 9 (d) reveals that the addition of two local loss functions can

ake the image cleaner and refine the facial features, especially

or the eyes area. 

In addition, the average SSIM values in Table 1 show the supe-

iority of L1-pFCN in an objective way. 

Therefore, the L1 based total loss function is more effective for

raining pFCN than MSE based total loss function and L1 based

lobal loss function, and the proposed architecture and loss func-

ion in Section 3.1 are more appropriate than FCN [11] for the pre-

rocessing task. 

Third, we discuss the effect of the size of the rectangular area

n the generation of semi-sketches. Four groups of rectangular area

re used in the loss function respectively. Details on the rectan-

ular area settings are shown in Fig. 10 and Table 2 . The denota-

ions in Table 2 and Fig. 10 are consistent with the Section 3.1.2 .

able 3 presents the SSIM score corresponding to different rectan-

ular areas. It can be seen from Table 3 that Rect 3 achieves the

est performance in the four sets of rectangular areas. As we can

ee from Fig. 10 , Rect 1 only covers the important facial features in

he average photo. However, the photos in the dataset are roughly

ligned. So the Rect 1 is too small to obtain a good result. With

he expansion of the rectangle, the SSIM score is increasing. How-

ver, when the rectangle expands to the edge of the image (see

ig. 10 (d) Rect 4), the supervision of the facial features is weakened

nd the SSIM score is reduced because the rectangle is too large.

n order to make the selected rectangle cover the facial features

s many photos as possible, the rectangle selected on the average

hoto face should be properly enlarged. But the oversized rectan-

le has an adverse effect on the semi-sketch. Therefore, if the pFCN
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Fig. 11. Comparison of sketches synthesized by different methods. (a): Input Photos; (b): the proposed pFCN; (c): MRF [2] ; (d): pFCN + MRF (the proposed two-stage method 

which uses the MRF method in the sketch synthesis stage); (e): LLE [1] ; (f): pFCN + LLE (the proposed two-stage method which uses the LLE method in the sketch synthesis 

stage); (g): SSD [13] ; (h): pFCN + SSD (the proposed two-stage method which uses the SSD method in the sketch synthesis stage); (i): RSLCR [3] ; (j): pFCN + RSLCR (the 

proposed two-stage method which uses the RSLCR method in the sketch synthesis stage); (k): FCN [11] ; (m): GAN [40] . 
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needs to be trained in a new dataset, the suitable rectangle can be

found by fine-tuning based on the above rules. 

In the following experiments, the pFCN is trained by the loss

function described in Section 3.1.2 . To make the expression more

concise, we use pFCN to denote L1-pFCN in the following. 

4.4. Photo-to-sketch generation 

In this subsection, we evaluate the proposed two-stage ap-

proach on the CUFS database. To prove that the two-stage method

is more effective than directly using the exemplar-based method

or using the pFCN alone, the LLE method [1] , MRF method [2] ,

SSD method [13] and RSLCR method [3] as the examples of the

exemplar-based methods are applied in the synthesis stage. In

addition, we also compare the proposed method with two neu-

ral network-based methods: the FCN method [11] and the GAN

method [40] . The sketches synthesized using the SSD method and

RSLCR method are generated from the source codes provided by

the authors. For the MRF method, the synthesized sketches are

generated from the codes that are implemented by the author of

SSD, while for the LLE method the synthesized sketches are gen-

erated from the codes implemented by the author of RSLCR. The
ketches generated by the FCN method and GAN method are from

he release results by the RSLCR author. 

We first use the training photo–sketch pairs to train the pFCN.

hen the training photos and test photos are fed to the well-

rained pFCN to obtain the training semi-sketches and test semi-

ketches (see Fig. 11 (b)). In the synthesis stage, we use the semi-

ketch -sketch pairs and exemplar-based method (LLE, MRF, SSD or

SLCR) to produce the target sketches. The synthesized results of

he exemplar-based methods (LLE, MRF, SSD and RSLCR) and the

roposed two-stage methods are shown in Fig. 11 . As we can see

n the results from exemplar-based methods (see Fig. 11 (c), (e),

g), (i)), some noise exists in the background and facial skin, some

istortions and missing parts in several facial components and

ome missing parts in the hair area, whereas their corresponding

wo-stage methods achieve better performance on these aspects

see Fig. 11 (d), (f), (h), (j)). The reason behind these improvements

an be explained as follows. Most of the exemplar-based methods

ssume that if two photo patches are similar their correspond-

ng sketch patches also are similar. However, this assumption is

tronger for semi-sketch -sketch pairs than photo–sketch pairs (see

ig. 2 ). Therefore, after the preprocessing, exemplar-based methods

an select more suitable candidates and calculate more appropriate

econstruction weights to synthesize the test patch. In addition,
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Table 4 

Average SSIM values (%) on the CUFS database. 

Method pFCN LLE LLE a MRF MRF a SSD SSD a RSLCR RSLCR a FCN GAN stack-CA-GAN 

SSIM(%) 53.85 52.58 53.26 51.32 51.99 54.20 55.15 55.72 56.10 52.14 49.39 52.66 

a Denotes the proposed two-stage method. 
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or the non-facial components (like the glasses and collar), the

wo-stage method also performs better than the exemplar-based

ethod because the contours and structure of these components

re emphasized in the preprocessing stage (e.g., collar in the first

ow of Fig. 11 and glasses in the fourth row of Fig. 11 ). 

Some results of neural network-based methods (the proposed

FCN method, FCN method, and GAN method) are shown in

ig. 11 (b), (k), (m). Compared to the exemplar-based approaches,

he neural network-based methods can generate structurally

omplete sketches (no missing part). As we can see, the semi-

ketch generated by the proposed pFCN method is cleaner than

he sketch generated by the FCN method. The GAN method can

roduce more stylistic results but it also introduces many artifacts.

lthough the semi-sketch already has some characters of the

ketch image, there are still have some shortcoming. In the second

ow of Fig. 11 , some of the acne scars in the photo are retained in

he semi-sketch. However, these acne marks are usually ignored by

he artist (see Fig. 1 (e)). In the last row of Fig. 11 , the semi-sketch

s more like a photo rather than a sketch. These problems are

lleviated after the synthesis stage (see Fig. 11 (d), (f), (h), (j)). This

roves that the exemplar-based methods in the synthesis stage

an convert semi-sketches into the target sketches which have a

ore similar style with the hand-drawn sketches. 

.5. Objective image quality assessment 

The ability to achieve high visual quality results is an important

riterion for evaluating a sketch face synthesis method. In this sub-

ection, we utilize the SSIM to evaluate the perceptual quality of

ynthesized sketches by different methods on the CUFS database.

able 4 shows the average SSIM scores on test dataset in the CUFS

atabase. As we can see, the semi-sketch generated by the pro-

osed pFCN method obtains higher SSIM value than the results of

he other three neural network-based methods (the FCN method,

he GAN method, and the stack-CA-GAN method [33] ). This proves

hat the architecture and loss function of the proposed pFCN is ef-

ective. 

Table 4 also shows that the proposed two-stage method

chieves higher quality results than its corresponding exemplar-

ased method. When we use the LLE method and the MRF method

n the synthesis stage, the SSIM values of the final results are lower

han the semi-sketches generated by the pFCN method. However,

his does not mean that the synthesis stage in the two-stage

ethod does not work. Because the two-stage method obtains a

etter performance on face recognition than using the exemplar-

ased method or the pFCN method alone, which indicates that the

wo-stage method can better preserve the identification informa-

ion (see more details in Section 4.6 ). 

.6. Sketch-based face recognition 

Due to its significant applications in assisting law enforcement,

he performance on sketch-based face recognition is also widely

sed to evaluate the quality of a synthesized sketch. In the sketch-

ased face recognition task, the hand-drawn sketch is taken as

he probe to search the most similar synthesized sketch in the

allery. In this subsection, we apply the null-space linear discrim-

nant analysis (NLDA) [41] to conduct the face recognition experi-

ents. Following the settings in [3] , from the 388 samples in the
UFS database, we randomly select 150 synthesized sketches and

heir ground-truth sketches (hand-drawn by artists) as a training

et to train the classifier. The remaining 238 sketches are used as

 test set for recognition accuracy statistics. We repeat the face

ecognition experiment 20 times by randomly splitting the data. 

In this subsection, eight state-of-the-art methods are compared.

he synthesized sketches of MWF method [12] are from the release

esults by the RSLCR [3] author. Since the model of the stack-CA-

AN is not available, we only compared the result published in

he paper. Table 5 represents the face recognition rates with dif-

erent reduced dimensions by NLDA. As we can see in Table 5 ,

lthough the pFCN method achieves higher recognition rate than

ome of the exemplar-based methods, the two-stage method al-

ays achieves higher results than both pFCN and its correspond-

ng exemplar-based method. Therefore, the combination of pFCN

nd exemplar-based method can facilitate and improve the results

rom each. Moreover, MWF method introduces the linear combi-

ation into the MRF model, which greatly improves the quality

f the synthesized results. However, with the help of pFCN, MRF

ethod can perform better than MWF. In addition, the sketches

ynthesized by the LLE method and the SSD method have lower

ecognition accuracy than the sketches generated by four neural

etwork-based methods (pFCN, FCN, GAN, and stack-CA-GAN). But

heir corresponding two-stage methods have better performance

n face recognition than these neural network-based methods. 

Fig. 12 gives detailed variations of the recognition rate against

ariations of the reduced number of dimensions by NLDA. It also

bjectively demonstrates the superiority of the proposed two-stage

ethod compared to the corresponding exemplar-based method or

he pFCN method. 

.7. Experiments on the cross-dataset 

To verify that the proposed two-stage method has stronger gen-

ralization ability than its corresponding exemplar-based method,

e take the RSLCR method as the example of the exemplar-based

ethod to conduct the experiment on cross-dataset. The reason for

sing the RSLCR method here is that its performance is the best

mong the above-mentioned exemplar-based methods and sketch

ynthesis is fast. 

In this subsection, we take 88 samples from the CUHK stu-

ent dataset as the training set and 195 samples from the XM2VTS

ataset as the test set. Some of the synthesized results are shown

n Fig. 13 . As we can see from Fig. 13 (b), the RSCLR method still

erforms well in the facial area, especially for the eyes, nose and

outh. However, for the non-facial area (e.g., hair and glasses),

he synthesized results by the RSLCR method are unsatisfactory.

ig. 13 (c) shows that the two-stage method achieves a cleaner

tructure and handles the non-facial area better. This is because

he pFCN preprocessing converts the different distributions of

raining samples and test samples into similar distributions, which

itigates the impact of the cross-dataset on the exemplar-based

ethod. 

To assess the quality of the synthesized results objectively, the

SIM scores of the synthesized sketches are computed. Table 6

hows the average SSIM scores of the two methods on cross-

ataset. Fig. 14 gives the statistics of SSIM scores on cross-dataset.

he horizontal axis indicates the SSIM score from 0 to 1. The verti-

al axis shows the percentage of synthesized sketches whose SSIM
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Table 5 

The face recognition accuracy (%) of the compared methods with different reduced dimensions by NLDA. 

Dim pFCN LLE LLE a MRF MWF MRF a SSD SSD a RSLCR RSLCR a FCN GAN stack-CA-GAN 

5 57.10 48.09 71.89 44.71 50.08 67.42 46.94 72.50 70.11 72.63 66.33 63.30 –

10 81.54 70.48 88.27 66.81 73.22 85.61 70.32 88.91 87.58 89.49 86.41 82.10 –

20 90.85 80.96 93.75 76.86 82.87 91.33 79.81 94.49 93.35 94.92 92.42 88.96 –

50 94.55 88.16 96.62 84.39 89.87 95.05 87.93 97.31 96.97 97.66 95.85 92.26 –

100 95.48 90.45 97.37 86.86 92.50 95.90 90.11 97.90 97.71 98.30 96.78 93.06 –

149 95.80 91.20 97.39 87.55 93.01 96.25 90.56 98.01 98.14 98.38 97.10 93.30 95.64 

a Denotes the proposed two-stage method. 

Fig. 12. Variations of the recognition rate against variations of the reduced number of dimensions by NLDA on the CUFS dataset. (a) the comparison of the MRF method 

[2] and its corresponding two-stage method; (b) the comparison of the LLE method [1] and its corresponding two-stage method; (c) the comparison of the SSD method 

[13] and its corresponding two-stage method; (d) the comparison of the RSLCR method [3] and its corresponding two-stage method. 

Fig. 13. Synthesized sketches on the cross-dataset by RSLCR [3] and the proposed 

two-stage method. 

Table 6 

Average SSIM values (%) on the cross-dataset. 

Method RSLCR pFCN + RSLCR 

SSIM(%) 38.11 48.04 

Fig. 14. Statistics of SSIM values (%) on the cross-dataset. 
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cores are not smaller than the score marked on the horizontal

xis. Both Table 6 and Fig. 14 show that the proposed two-stage

ethod produces higher quality results on cross-dataset than the

SLCR method. 

In addition, we conduct a sketch-based face recognition exper-

ment to further demonstrate the superiority in the generalization

bility of the two-stage method. As in Section 4.6 , NLDA is applied

o carry out the face recognition experiment. We randomly split

he 195 synthesized sketches into a training set (90 synthesized

ketches and their ground-truth) and a test set (105 synthesized

ketches). We repeat each face recognition experiment 20 times

y randomly splitting the data. Fig. 15 presents the variations of

he recognition rate against variations of the reduced number of

imensions. The face recognition accuracy also indicates that the

roposed two-stage method is superior to the RSLCR method on

he cross-dataset. 

Therefore, pFCN preprocessing can improve the generalization

bility of the exemplar-based method. 
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Fig. 15. Variations of the recognition rate against variations of the reduced number 

of dimensions by NLDA on the cross-dataset. 
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. Conclusion 

In this paper, we proposed a simple but effective method for

ketch face synthesis, which aims to improve the quality of synthe-

ized sketches and enhance the generalization ability of exemplar-

ased methods. The proposed approach is composed of two stages

preprocessing stage and synthesis stage). In the preprocessing

tage, an eight-layer fully convolutional neural network (pFCN)

onverts the photos to the semi-sketches. In the synthesis stage, an

xemplar-based method is employed to convert the semi-sketches

o target sketches. Specifically, we design a simple loss function

o train the pFCN and generate impressive semi-sketches. Multiple

xperiments based on four state-of-the-art exemplar-based meth-

ds (MRF, LLE, SSD and RSLCR) demonstrate the effectiveness of

he proposed two-stage method. In addition, from the experiments

n cross-dataset, we find that using the proposed pFCN as pre-

rocessing can improve the generalization ability of the exemplar-

ased method. 
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