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Abstract

The competition will advance modern algorithms in AI and machine learning
through a highly topical interdisciplinary competition challenge: The prediction of
hi-res rain radar movies from multi-band satellite sensors requires data fusion of
complementary signal sources, multi-channel video frame prediction, as well as
super-resolution techniques. To reward models that extract relevant mechanistic
patterns reflecting the underlying complex weather systems our evaluation incorpo-
rates spatio-temporal shifts: Specifically, algorithms need to forecast several hours
of ground-based hi-res precipitation radar from lo-res satellite spectral images in a
unique cross-sensor prediction challenge. Models are evaluated within and across
regions on Earth with diverse climate and different distributions of heavy precipita-
tion events. Conversely, robustness over time is achieved by testing predictions on
data one year after the training period.
Now, in its third year, Weather4cast 2024 moves to improve rain forecasts world-
wide on an expansive data set with over a magnitude more hi-res rain radar data,
allowing a move towards Foundation Models through multi-modality, multi-scale,
multi-task challenges. Accurate rain predictions are becoming ever more critical
for everyone, with climate change increasing the frequency of extreme precipitation
events. Notably, the new models and insights will have a particular impact for the
many regions on Earth where costly weather radar data are not available. Join us
on www.weather4cast.net!
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1 Competition description

1.1 Background and impact

Our competition seeks to advance algorithms in AI and machine learning for a range of tasks that
can be phrased as a generalized video prediction under spatio-temporal shifts, employing data
fusion and super-resolution techniques. The challenge is to predict high-resolution rainfall, restating
the problem of weather forecasting as a movie prediction task. This allows for the application of
modern computer vision algorithms to exploit spatio-temporal correlations. This works surprisingly
well, as demonstrated by our NeurIPS competitions on urban traffic forecasts already in 2019[18],
subsequently by Google Research for rainfall [1, 27], and now our Weather4cast competitions[16, 15].
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This year’s challenge goes beyond the state of the art by evaluating models for generalization capability
under spatio-temporal domain shifts in order to extract the physically most meaningful patterns
and the most robust models, a core interest of the machine learning community. Specifically, by
providing over an order of magnitude more hi-res ground truth data, inputs of several modalities,
and a diverse set of training tasks, this year we expressly encourage the development and validation
of Foundation Models with emergent skills. In this, we are also building on, complementing,
and significantly extending the problem setting of ourWeather4cast NeurIPS competitions in 2022
and 2023 where we first pushed to examine model robustness under temporal and spacial domain
shifts [15]. Our competition asks participants to predict hi-res rain radar data reflecting ground
level weather, which is typically expensive to obtain, from lo-res satellite movies which cover large
economical regions. This brings value particularly for weather forecasts in low income countries.

Our Weather4cast challenge thus also includes a super-resolution task because the target rain radar
observations have a much higher spatial resolution than the satellite spectral videos. Besides this
super-resolution challenge, framing the task as video prediction focusing on transfer learning provides
a new real-world domain for demonstrating advances in general computer vision algorithms. We
thus provide a unique cross-disciplinary opportunity for advancing data driven algorithms for the
exploitation of spatial and temporal correlations in multi-sensor weather data. Weather4cast can
thus critically accelerate the development of a new class of models for understanding and predicting
geo-spatial processes in general.

In previous editions of our competition we received over 200 registrations, and 10–30 teams regularly
submitted to the leaderboards, with 300–1,600 submissions scored per competition. Most participants’
interests were in artificial intelligence [6, 9], reflected by a team from Alibaba Cloud team winning
last year’s competition [20]. In 2021, however, the winner notably was a meteorological research
group [19]. We thus again expect around 50 delegates coming from both general artificial intelligence
audience and domain experts to attend the conference in 2024.

1.2 Novelty

This year, we aim to expand on the prominently recurring theme of Transfer Learning in the
Weather4cast competition series: Much attention has recently focused on the power of Founda-
tion Models, first demonstrated on textual data [29, 8, 22] and images [23]. Remarkably, these have
shown to learn powerful representations of the underlying latent structure in the data, giving rise to
emergent model abilities [7], including surprisingly good performance on tasks for which have not
been trained. Foundation models are typically pre-trained on vast amounts of general data employing
self-supervised training and fine-tuned and evaluated using multi-task learning. While first foundation
models for weather and climate last year showed promise at low resolutions and medium forecasting
horizons (trained at 1.4°, hence > 50–100 km; forecasts for 1/4 to 14 days), extensions to now-casting
and higher resolutions require additional efforts [21]. In Weather4cast, we can specifically examine
the roles of both training corpus and tasks. Our satellite training corpus features a more than ten
times higher resolution for satellite data (ca 4–8 km), with an additional super-resolution challenge
down to ca 2 km for the rain radar target data. Notably, this is comparable to the data underlying the
latest large-scale high-resolution weather models for now-casting like MetNet-3 [2]. Moreover, with
continent-scale high-resolution rain radar data available to augment satellite data, we can explore
models exploiting multiple data modalities, regional to national scales, and their effects on model
generalization. Specifically, models can learn underlying structures from both modalities while
allowing predictions based on only one. From an application perspective, predictions from satellite
data alone support the aim of making state-of-the-art now-casting also available in less developed
economies where radar data are not available.

Emergent capabilities in weather models have received little to no attention to date. In Weather4cast,
we can introduce application endpoint oriented tasks to explore emergent model capabilities, such
as prediction of the likelihood of unusually bad weather in the next hours (‘extreme precipitation
events’), or estimates of cumulative rainfall in the context of flood warnings. Recent advances
in foundation models for videos have identified means to reduce resource requirements in self-
supervised training [13], making research on foundation models accessible to a broader scientific
community. Notably, we represent weather data as multi-channel movies. Orienting the Weather4cast
competitions towards questions supporting the development and benchmarking of foundation models
in 2024 thus seems timely.
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Weather4cast will thus lead the way in providing both unprecedented rich high-resolution weather
data and establishing meteorological endpoint related benchmarking tasks for emergent properties of
potential foundation models to the scientific community at NeurIPS.

In 2024, we enter the third year of the Weather4cast weather movie prediction series. In the
first Weather4cast challenge, movie channels comprised temperature, rainfall, cloud cover, and
turbulence information derived from satellite data and thus provided the first high-resolution multi-
channel forecasting challenge. Following the successful meetings at ACM CIKM 2021 [14] and
the Weather4cast Special Session at IEEE BigData 2021 [16], the competition at NeurIPS 2022
focused on predicting ‘black & white’ hi-res rain radar movies from lo-res multi-channel spectral
satellite images, requiring skills in data fusion, super-resolution, and models that generalize under
spatio-temporal domain shifts [15]. Despite only having to predict rain/no-rain event labels, the task
proved challenging and the best models turned out to incorporate application domain knowledge into
transformers or modified U-Nets. At NeurIPS 2023 we focused on quantitative prediction of rain
rates, moving from classification to zero-inflated regression tasks, while maintaining the need for data
fusion, super-resolution, and generalization under spatio-temporal shifts. Interestingly, the winning
team built on and extended the best complex models from another team the year before. Therefore,
we now wish to investigate whether consolidated paradigms can still generalize to domain-specific
tasks.

This year, besides keeping data fusion and super-resolution tasks, on the road to flexible
foundation models, we move from basic precipitation prediction to testing generalization
performance and emergent capabilities of probabilistic models.

Video prediction is of course a central discipline of artificial intelligence, and typical workshops
and competitions in the field include Traffic4cast at NeurIPS 2019/2020/2021, Precognition: Seeing
through the Future and Large-scale Video Object Segmentation Challenge at CVPR 2020-2023 and
Multi-Modal Video Analysis at ECCV 2020. Interestingly, winning algorithms from computer vision
also excel on non-photorealistic images and videos.

Distribution shifts of various types were studied in our Traffic4cast competition at NeurIPS 2021 [11],
the Shifts Challenge at NeurIPS 2021 (including a weather task using tabular data – representing a
different data domain than our movies), and VisDA: Visual Domain Adaptation at NeurIPS 2021/2022.

Satellite image analysis is an active field of research including on questions of super-resolution and
data fusion: Tackling Climate Change with ML (NeurIPS 2020–2023, ICLR 2023, ICML 2021),
EarthVision (CVPR 2020–2023), MultiEarth (CVPR 2022–2023), Perception Beyond the Visible
Spectrum (CVPR 2020–2023), Agriculture–Vision (CVPR 2020–2023), Computer Vision in Plant
Phenotyping and Agriculture (ECCV, 2020, ICCV 2021 & 2023), Computer Vision in the Ocean
(ICCV 2021, ECCV 2022), AI for Earth Sciences (NeurIPs 2020 and ICLR 2020 & 2022). Workshops,
however, are not focused on the specific challenges of modelling weather, with even the ‘climate’
workshop including just 1–2 weather relevant contributions.

We thus build on the efforts of these related communities. Our competition will both bring these com-
munities together and provide a rare opportunity to foster interdisciplinary work for the advancement
of modern AI algorithms.

1.3 Data

We provide three types of data for the competition, with different types of data as an input and
high-resolution rain radar data as target:

• Meteosat Second Generation SEVIRI data: 11 spectral bands (8 infrared + 3 visible bands)
from the Meteosat Second Generation (MSG) satellites by EUMETSAT [26], transformed
by projection and minor noise to permit public distribution.

• OPERA radar data: rain rates (mm/h) from ground-based radar variables provided by
EUMETNET OPERA; rain rates [17] through AEMET.

• Static maps containing the location (latitude and longitude) and the elevation per pixel.

This year, we provide 36× as much hi-res rain radar data as in previous years, covering not just
the central areas of interest but the whole context regions, in order to support multi-modality and
multi-scale training.
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We have compiled a unique resource of (11+2)-channel weather movies spanning across Europe
(see Figure 1 - Right Panel) with ∼ 4 ∗ 1011 data points for training: 13 bands× 2 years× 330 days×
96 time-bins × 10 regions × (252 × 252) pixels. These cover 90% of days spanning 2 years. The
remaining days are withheld to provide independent test data. The comprehensive full context rain
radar data we provide for the first time in 2024 add another ∼ 1012 data points for (pre-)training:
2 years × 330 days × 96 time-bins × 10 regions × (252× 252) pixels, for a total of almost 2× 1012

data points.

Figure 1: Regions and data availability. Left: The whole area shown is covered by satellite while we
have radar data only for some regions (full coverage = red, partial cover = black, no cover = yellow).
Note that radar coverage is absent to limited in less wealthy economies and countries that have not
opted into the OPERA program, such as Italy. Right: We selected regions for core pre-training and
new regions for spatial transfer learning.

The selected regions span across the whole of Europe to cover different precipitation patterns.
To select regions we calculated monthly frequencies of rain events according to four rain rates
classification (no rain between 0-0.1 mm/hour, low between 0.1-2.5 mm/hour, moderate for 2.5-7
mm/hour and heavy when above 7 mm/hour) from February 2019 until December 2021. Then we
examined the number of rain events accumulated monthly during this time for each region focusing
on regions with the highest amount of rain events. We noted that rain events belonging to moderate
or heavy precipitation rate class are quite rare across the years and their monthly occurrences are
highly variable over the year reflecting seasonal precipitation patterns. Finally, for the competition we
picked regions as to balance between regions having more events with low rainfall rates and regions
having less frequent but more intense rainfall rates.

These regions serve several specific purposes (also see Figure 2):

• Core regions: Seven regions where we provide extensive data across 2019 and 2020 for
pre-training.

• Regions for spatial transfer learning: Test sets from 3 new regions across 2019 and 2020
to test the spatial generalization ability of models. No training data is provided from these
regions.

• Regions for tests under temporal shifts: Test data from 2021 for the 7+3 regions described
above. No training data is provided for 2021. With test data for 2021 from the 7 regions
known from training for 2019 and 2020 we examine the temporal generalization ability of
models. Test data from the 3 new regions test the joint temporal and spatial generalization
performance.

Satellite images are available every 15 minutes. We consider regional areas of interest of size 42× 42
pixels in satellite resolution (100–200 km), surrounded by a large context area of size 252×252 pixels
(‘national’ scale, 600–1,200 km). Predictions comprise a sequence of up to 32 images representing
probabilities of different rain intensities from ground-radar reflectivities. While predictions have
the same temporal resolution of 15 minutes, super-resolution techniques need to be employed to
obtain a 6× higher spatial resolution, with a 252× 252 pixel image in OPERA rain radar resolution
corresponding to the 42× 42 pixel areas of interest in satellite resolution. Correspondingly, a full
context prediction at rain radar resolution spans 1, 512× 1, 512 pixels.
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The projection for raw OPERA data is Lambert Azimuthal Equal Area with a pixel size of 2km×2km.
This projection preserves area with respect to the earth surface. On the other hand, the MSG satellite
data are in geostationary projection. In this projection areas corresponding to a pixel are bigger for
pixels farther away from the point right under the satellite, increasing from 3 km×3 km at the equator
to polygonal pixels with a side size larger than 24 km over Iceland.

So in addition to forecasting, converting satellite sensor inputs to ground-radar rain rate estimates,
this adds a super-resolution task due to the coarser spatial resolution of the satellite data as one pixel
in the satellite resolution corresponds to six pixels in OPERA radar resolution. To ease the training of
models the radar data has been re-projected to a geostationary grid. With this, both OPERA and MSG
data (2D image-like data) match geographically and can also be combined easily in pre-training.

1.4 Tasks and application scenarios

Prior work by Google Research and DeepMind has demonstrated that Convolutional Neural Networks
performed well for the first 4-6h at this task [27, 12, 2, 24]. However, the high-resolution data
used to train these models has never been made available, and the model performance exponentially
decreases when making predictions beyond 4–6 hours, and short-term prediction (‘now-casting’)
remains a challenging task. Conversely, different applications have different requirements regarding
the accuracy of forecasts in terms of location, time, and precipitation intensity. Our selection of
diverse pre-training and down-stream tasks reflects this application heterogeneity.

1.4.1 Pre-training and fine-tuning for multi-modality, multi-scale, multi-task learning

The pre-training challenge tasks are to predict hi-res precipitation radar images up to 8 h (32×15mins)
into the future. Forecasts can be fine-tuned to explore ranges of 1 h to 8 h, where short-term predictions
until 4 h are considered easier than longer term projections. Input data is provided for 1 h before
the prediction window (4 × 15mins). Input data can be from one or several modalities: OPERA
hi-res rain radar data, 11-band spectral satellite image data, and static data. The multiple information
sources are complementary. The eventual application goal is to learn underlying true weather patterns,
with an aim of predicting weather without the more expensive radar data.

In the pre-training challenges we provide a baseline and test new models for the accurate prediction
of weather, focusing on model generalization performance and prediction quality over time. This
includes a transfer-learning aspect and a super-resolution challenge, both of which are crucial for
transferring insights to the future and other parts of the world. Finally, in contrast to the MetNet
studies, by making the data available to the community we establish a state-of-the-art reference
benchmark for the development of advanced spatio-temporal forecast models.

The prediction tasks directly correspond to real operational forecasting problems in meteorological
agencies. While state-of-the-art models provide suitable short-term predictions where they have
been trained, they have not been developed with a focus on generalization outside the training
domain, which is essential both for covering rare extreme weather events, dealing with shifts due to
climate change, and bringing high-quality now-casting also to economically less strongly developed
communities, where radar data are typically not available. Consequently, to focus on generalization
performance, predictions are evaluated in regions and/or in years different from the training data, and
on different subsets of input modalities (see regions in Fig. 2).

1.4.2 Downstream tasks

To assess how well models develop emerging skills, we introduce complementary downstream tasks
(Fig. 2). We will start with two easily introduced application scenarios outlined below and will add
further tasks as they become available.

Cumulative rainfall prediction in selected flood risk areas: In many cases, rather than requiring
a point by point rain movie, applications actually require a cumulative view of how much
rain is likely to come down in a defined area over a given period. Typical examples of
that might include cities concerned about the risk of their rain runoff sewer capacities or
catchment areas of river basins. In either case, the cumulative rain determines flood risk.
We will test the ability of models to predict the probability of cumulative rain amounts in
selected areas and time spans.
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Figure 2: The schema shows data sources and tasks for pre-training and down-stream tasks.
The success of pre-training can be tested and models fine-tuned for multi-task learning using a range
of complementary rain rate probability prediction tasks, covering multiple input modalities and a
range of spatial and temporal scales. Emerging skills .

Prediction of rare extreme weather events: Extreme weather events are rare but can be high im-
pact. With recent climate change, these extreme events are getting more frequent, yet
remain difficult to predict. We will test the ability of models to predict the probabilities of
extreme weather events in selected regions and time spans, focusing on properties of the
event (location, start time, duration, intensity).

1.5 Metrics

To support richer models and facilitate homogenization in multi-task learning, this year in general
we shift to probabilistic forecasts, naturally leading to negative log-likelihood losses or metrics.
Incidentally, this turns out to feature better properties than other widely used alternatives like the
Brier score [5]. For predictions of rain intensities, we ask for the prediction of the probabilities of
rain intensity at a particular time and place to fall into a particular value range bin. This suitably
deals with the highly skewed value distribution, where most of the time and in most places there is no
detectable rain. Models can internally of course generate a richer output representation with a large
number of bins, like the MetNet class of models do [27, 12, 2]. To keep the sizes of model output
uploads to leaderboards manageable, however, we will assess a small number of meteorologically
distinct intensity ranges (see Fig. 3). The actual bins for final leaderboards may be adapted after
Stage-1 in response to feedback by participants and meteorological partners. (We note that different
agencies seem to use slightly different classes and boundaries).

Accordingly, we can use the same negative log-likelihood losses or metrics for the cumulative rainfall
prediction downstream task. Here, we assess the probabilities predicted for cumulative rain amounts
over the forecast window at a selected region to fall into a particular value range bin.

In Stage-2, additional downstream tasks will be introduced, such as the prediction of rare extreme
weather events. For these, it actually makes sense to expressly acknowledge the different costs of
false positives and false negatives, such as through a Value Score curve [28]. We assess the prediction
further by assessing the prediction of event properties, including the likely cumulative and peak event
intensities, start, and duration (again assessed by negative log-likelihood). Spatial extent prediction
can be assessed by 2D-Wasserstein distance in O(N) [4] relative to a gold standard derived by
spatio-temporal clustering and domain-specific thresholding from the ground truth data [3].
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Figure 3: Radar rain rate distribution for 2019–2021. Left: most of the regions contain about
5,000 to 6,000 events of no or minimal rain (blue) and less than 1,000 events of light rain (green).
Right: moderate (orange) and high precipitation (red) are found in much fewer events.

1.6 Baseline, code, and material provided

We will again provide baseline models like U-Nets [25] with code including data loaders and
documentation on the Weather4cast Github repo to make it easy for anyone to get started. A beta
phase is planned for 1 month prior to the live competition. Scientist at SUT, AEMET, and ESA will
test the competition setup internally for feedback and improve the competition baseline.

1.7 Website, tutorial and documentation

The competition website will be hosted at weather4cast.net, which currently shows information
about last year’s competition. All content for the current competition will be updated by the time
we release the data (see Section 2.3). We provide forums for discussion and scientific exchange
weather4cast.net/forums/ and can be reached on w4c24@weather4cast.org.

2 Organizational aspects

2.1 Protocol

Participants need to register before they can download the competition data hosted. Participants
submit their predictions in the Hierarchical Data Format (HDF5), for which there is good library
support in many languages including Python. Our website gives detailed submission instructions,
and our GitHub repo provides examples. When participants upload their predictions, the system
compares them with the ground truth (see Section 1.5 re Metrics). Score are updated hourly for timely
feedback.

The multi-task nature of this year’s challenge already reduces the risk of model overfitting [10]. In
addition we limit the number of concurrent submissions per team, and leaderboard scores are updated
hourly, reducing the overall number of submissions that can be tried.

Data access required accepting the competition terms and conditions. Radar measurements are
not public but provided specifically for this competition. Ground truth data is kept confidential.
Participants need to provide their code and learned weights hosted in a public online repository like
GitHub and outline their approach in a detailed scientific abstract.

The competition leaderboards will again be hosted on the competition website as in previous years
(see, e. g., Core Leaderboard of Weather4cast at NeurIPS 2023).

2.2 Rules and Engagement

The challenge invites researchers from diverse backgrounds, and lowers the technical, economic,
and logistic barriers of entry by providing baseline code, tutorials, and lively competition forums,
encouraging participation of colleagues new to the field or from underrepresented communities.
Extending the data universe from previous years facilitates longer term community building. Since
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our challenge requires access to extensive computational resources, for participants who do not have
access to such compute power, we will reach out to sponsors to provide free cloud GPU grants. For
participants struggling to afford travel to the NeurIPS conference in person we will accommodate
virtual presentations. Participants must accept the terms & conditions, which include the below rules:

• Participants must submit predictions to the competition leaderboards on time.
• Participants must submit an extended academic abstract describing their work and publish

their code and model parameters under the Apache 2.0 open source license. This maximizes
impact in the diverse research communities as desired by the competition.

• Winners need to discuss their approach in a scientific presentation at the conference.
• No one with access to the withheld ground truth data can participate in the competition.

As a precaution, all employees of the institutions of the organizers are excluded from
participating.

2.3 Schedule and readiness

1. 15 May 2024: Announcement and advertising of the beta-test phase of the competition,
community discussion and forum updates.

2. 17 June 2024: STAGE1 Data Release & Leaderboard open.
3. 15 July 2024: STAGE2 Data Release & Leaderboard open..
4. 6 October 2024: Test dataset submission deadline.
5. 9 October 2024: Invitation to submit conference abstracts and code.
6. 16 October 2024: Deadline for abstract and code submissions.
7. 25 October 2024: Acceptance notification.

2.4 Competition promotion and incentives

The competition will be heavily advertised by the main academic organizer of the challenge, AEMET
as the data provider, as well as ESA, CNR, and ECMWF(TBC) in their respective academic commu-
nities. Various mailing lists and social media channels will be employed.

Apart from the core ML community, due to the interdisciplinary nature of the competition, we will
also directly reach out to members of the Earth Observation, Climate and Meteorologist communities,
via established working relationships with different research groups as well as mailing lists and other
channels. Incentives to participate emphasize the academic nature of the competition:

• Post-competition joint publication
• Invitation to presenting at the conference.
• Like in the past where we have hosted leading keynotes by Piotr Mirowski of DeepMind and

Nal Kalchbrenner of Google Brain, we will again invite exciting keynote speakers, which
will be advertised early to raise interest in the meeting in the wider research community.

3 Resources

3.1 Organizing team

The interdisciplinary committee represents 5 countries, while 20% of the organizers are female. It
brings together expertise in machine learning and artificial intelligence, complex heterogeneous data
sets, and meteorology. Committee members contribute decades of experience organizing competitions
and workshops at leading conferences: Coordinators: Gruca, Kreil; Data providers: Lliso, Calbet,
Rípodas; Baseline methods: Gruca, Le Saux; Beta tests: Serva, Le Saux, Calbet; Evaluators:
Kreil, Rípodas, Gruca, Le Saux, Hochreiter.

Aleksandra Gruca, Silesian University of Technology, Poland is a professor of machine learning.
Her research focuses on predictive models and the integrated analysis of challenging large-scale
heterogeneous datasets. Since 2010 she organizes the annual Symposium of the Polish Bioinformatics
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Society. In 2009–2019 she was the organizer of the Int. Conference on Man-Machine Interactions.
She also co-organized the Traffic4cast Special Sessions at NeurIPS 2020, the Weather4cast Special
Session at the IEEE 2021 BigData Conference, and Weather4cast at NeurIPS 2022 and 2023. She
was the organiser of the 1st Workshop of Complex Data Challenges in Earth Observation (CDCEO
2021) at ACM CIKM 2021, and 2nd CDCEO at IJCAI/ECAI 2022. She was also a co-chair of the
IEEE BigData Cup in 2022, and a workshop chair at IEEE BigData 2023.

Llorenç Lliso, Spanish Meteorological Agency (AEMET), Spain a is Physicist who works as
a meteorologist at AEMET. His work focuses on the software development and maintenance for
satellite data processing, data interoperability, and OGC data diffusion.

Xavier Calbet, AEMET, Spain is the science coordinator for the EUMETSAT Nowcasting Satellite
Application Facility (NWC SAF) and AEMET. He has worked with EUMETSAT in Darmstadt
specializing in atmospheric profile retrievals obtained from hyper-spectral sounding instruments,
such as the Infrared Atmospheric Sounding Interferometer, and planning for the future geostationary
hyperspectral sounding mission MTG-IRS. He currently works as a state meteorologist at AEMET.

Pilar Rípodas, AEMET, Spain heads the EUMETSAT NWC SAF for very short range and now-
casting. She played a role in the development of the ICON prediction model at the German national
weather service. She organized NWC SAF user workshops and she was an organizer of the European
Nowcasting Conference 2019 and CDCEO 2021 at ACM CIKM, as well as the Weather4cast
competition at IEEE BigData 2021 and Weather4cast at NeurIPS 2022.

Peter Duben, ECMWF, United Kingdom (TBC) is a head of the Earth System Modelling Section
at the European Centre for Medium Range Weather Forecasts (ECMWF). Previously he was working
as a coordinator of Machine Learning and AI activities at ECMWF. His professional interests include
high-resolution weather and climate simulations, high-performance computing for weather and
climate models, machine learning for weather and climate predictions. He is also a coordinator of the
MAELSTROM EuroHPC Joint Undertaking project which involves seven partners within Europe
and a budget of 4,3 million Euro.

Federico Serva, Institute of Marine Sciences (CNR-ISMAR), Italy holds an MSc in Physics from
the University of Rome Tor Vergata and a PhD in Environmental Sciences from the University of
Naples Parthenope. He currently is a fixed-term research at the Italian National Research Council,
and he has been a joint postdoctoral fellow at ESA Φ-lab and the Italian Space Agency. His research
focuses on climate models and EO data for process studies, the retrieval of parameters from satellite
observations, and the study of extreme events using different data sources.

Bertrand Le Saux, European Space Agency, Italy is a research scientist at the Φ-lab at ESA/ESRIN.
His work is at the crossroads of statistics, machine learning, image processing, computer vision,
and now quantum computing. He is interested in tackling practical problems that arise in Earth
observation, to bring solutions to current environment and population challenges He is an associate
editor of the Geoscience and Remote Sensing Letters (GRSL), co-organises the CVPR Earth Vision
worskhop series (including this year at CVPR’2023) and co-organises the Humanitarian Assistance
and Disaster Response (HADR) workshop at ICCV’2023.

Sepp Hochreiter, IARAI, Linz, Austria is well known pioneer of AI, who identified the vanishing
gradient problem, invented long short-term memory (LSTM), as well as many other deep learning
algorithms and techniques powering the field. He heads the Linz Institute of Technology AI Lab and
is a director of IARAI. His current research interests include deep learning for vision, climate change,
smart cities, drug design, and autonomous driving.

David Kreil, Vienna, Austria is a professor at Boku University Vienna. He runs a bioinformatics
research group that focuses on analysing, calibrating, and benchmarking genome-scale quantita-
tive assays. Since 2008, he organizes the annual Critical Assessment of Massive Data Analysis
(www.camda.info), a well-recognized international contest, attracting over 100 delegates at ISMB,
the largest conference in the field. He also co-organized Traffic4cast at NeurIPS since 2019, the ACM
CIKM CDCEO 2021, Weather4cast in 2021 at IEEE BigData an Weather4cast at NeurIPS in 2022
and 2023.

3.2 Resources provided by organizers

We build on the success of the previous Weather4cast competitions [14, 16, 15].
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• The Silesian University of Technology provides the infrastructure to maintain the competition
website including leaderboards and servers for the evaluation of submissions.

• AEMET provides data and domain specific advice.

3.3 Support requested

The winning teams need to present their work live at the conference. It would help us a lot to know the
number of available complementary tickets at least a month before the conference, as participants
and organizers may need some time to make arrangements for registration and/or visa. We would
love to take part in any travel fellowship scheme for early career researchers or colleagues from
underrepresented communities or countries. Thank you for your support.
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