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ABSTRACT

Graphs offer unique insights into relationships and interactions between entities,
complementing data modalities like text, images, and videos. By incorporating
relational information from graph data, AI models can extend their capabilities
beyond traditional tasks. However, relational data in sensitive domains such as
finance and healthcare often contain private information, making privacy preser-
vation crucial. Existing privacy-preserving methods, such as DP-SGD, which rely
on gradient decoupling assumptions, are not well-suited for relational learning
due to the inherent dependencies between coupled training samples. To address
this challenge, we propose a privacy-preserving relational learning pipeline that
decouples dependencies in sampled relations during training, ensuring differen-
tial privacy through a tailored application of DP-SGD. We apply this method to
fine-tune large language models (LLMs) on sensitive graph data, and tackle the
associated computational complexities. Our approach is evaluated on LLMs of
varying sizes (e.g., BERT, Llama2) using real-world relational data from four text-
attributed graphs. The results demonstrate significant improvements in relational
learning tasks, all while maintaining robust privacy guarantees during training.
Additionally, we explore the trade-offs between privacy, utility, and computational
efficiency, offering insights into the practical deployment of our approach. Code
is available at https://github.com/Graph-COM/PvGaLM.

1 INTRODUCTION

Graph data, commonly used to represent relationships between entities, are widely employed to
model complex systems in the real world (Leskovec et al., 2007; Kwak et al., 2010; Shamsi et al.,
2022; Madani et al., 2022). Recently, the relationships captured by graph structures have been used
to enhance foundation models pretrained on other modalities (e.g., text and images) with comple-
mentary information, which enables these models to more effectively handle multi-entity tasks of
emerging AI applications (Brown et al., 2020; Dosovitskiy et al., 2021; Zhang et al., 2024a; Madan
et al., 2024). For instance, models trained on product descriptions or pictures may not fully capture
the relationships revealed by user behaviors, such as co-purchases or co-viewings. Incorporating re-
lational information can allow AI models to better meet users’ needs (e.g., in product recommenda-
tions). Models pretrained on text or images and subsequently fine-tuned with relational information
from graphs have recently been found applications in various domains (Ling et al., 2023), including
healthcare (Wu et al., 2021; Zhang et al., 2022; Gao et al., 2023), finance (Ouyang et al., 2024),
and computer vision (Li et al., 2023a). However, the relationships involved in these applications of-
ten contain sensitive information, such as patient-hospital visits for clinical diagnosis (Lu & Uddin,
2023), financial transactions for fraud detection (Kurshan & Shen, 2020), and social connections for
recommendations (Zheng et al., 2022). This raises critical concerns about how to protect the privacy
of relational data when exposed to AI models, motivating this research.

Differential Privacy (DP) (Dwork, 2006; Dwork et al., 2014) is widely considered the gold stan-
dard for measuring the privacy guarantees of data-processing algorithms (Xu et al., 2021; Pan et al.,
2024). Current DP methods for model training, such as DP-SGD (Song et al., 2013; Abadi et al.,
2016; Ponomareva et al., 2023), are primarily designed for tasks other than relational learning. DP-
SGD, in particular, operates under the assumption that the gradient in each training step can be
decoupled with respect to individual training samples that require privacy protection. Under this

1

https://github.com/Graph-COM/PvGaLM


Published at Building Trust Workshop at ICLR 2025

assumption, DP-SGD controls the norm of the gradient induced by each sample, obfuscates it by
adding Gaussian noise, and thus ensures a privacy guarantee. However, relational learning on graphs
introduces unique challenges because each loss term typically involves multiple relationships (e.g.,
observed and unobserved relations from the graph), and each relationship involves multiple enti-
ties. Consequently, the gradient in relational learning cannot be decomposed into specific privacy-
preserved samples, which violates the per-sample decoupling assumption, rendering DP-SGD not
directly applicable.

Recent studies on privacy-preserving training of graph neural networks (GNNs) (Daigavane et al.,
2021; Olatunji et al., 2023; Sajadmanesh & Gatica-Perez, 2021; Mueller et al., 2022; Sajadmanesh
et al., 2023; Sajadmanesh & Gatica-Perez, 2024; Chien et al., 2024) do not address this issue, though
they also work with relational data. These works are mainly designed for training with node clas-
sification labels, where the loss term is decomposable to specific nodes given the representations
of these nodes output by GNNs. Their methods, which obfuscate the message-passing process to
prevent privacy leakage during GNN encoding, do not mitigate privacy risks arising from relational
learning, where the loss term cannot be decomposed on the supervision side. We further discuss the
critical gap of current DP-GNNs in solving the problem of differentially private relational learning
in Appx. A.1.

This study aims to introduce a privacy-preserving pipeline to address the gap in relational learning,
where each loss term typically involves an observed relation paired with one or more unobserved
relations for contrast. Common practice often couples the sampling of observed and unobserved
relations, where removing or adding an observed relation may impact the gradients of multiple loss
terms within the sampled batch, causing sensitive relational information leakage. Our key insight is
to decouple the sampling process for observed and unobserved relations. By doing so, we ensure
that removing or adding an observed relation affects at most one loss term, thereby limiting the
sensitivity of data perturbation in relational learning and making it theoretically compatible with the
privacy accounting of the DP-SGD framework.

As an application, we apply this privacy-preserving pipeline to fine-tune pretrained models using
graph data, choosing LLMs as a proof of concept. Modern privacy libraries like Opacus (Yousef-
pour et al., 2021), TensorFlow Privacy (McMahan et al., 2018), and JAX Privacy (Balle et al., 2022)
support clipping per-sample gradients to apply DP-SGD, but they are designed for each sample
with a single input. The per-sample gradient computing relies on caching intermediate results of
backpropagation, which are tracked through individual input tokens for sequence models (LLMs
included) and leading to common inefficiencies. Relational learning introduces another dimension
to the problem: Each loss term typically involves K entities, and each entity with textual attributes
contains M tokens. Naively computing per-sample gradients requires keeping O(KM) gradient
copies in memory per loss term, where modern GPUs easily run into out-of-memory issues for large
models at moderate batch sizes. To eliminate the instantiation of O(KM) gradients, we propose to
directly compute per-loss-term gradients by utilizing the low-rank structure of gradients through in-
dividual tokens. This approach alleviates memory constraints for models with billions of parameters,
enabling efficient private fine-tuning on relational data with large batch sizes, which are empirically
preferred to enhance privacy preservation (Li et al., 2021; Anil et al., 2022; Räisä et al., 2024).

We evaluate the proposed pipeline by testing whether target models can learn from private domains
rich in relational data and generalize to new domains lacking such information to infer relationships
between entities. Using real-world relational data from four text-attributed graphs, we fine-tune
BERT (Devlin et al., 2019) and Llama2 (Touvron et al., 2023) at various model sizes (110M, 340M,
7B) under different levels of DP (ϵ ≤ 10) to stimulate two popular use cases that require data
privacy: Cross-category co-purchase recommendation and Cross-region model deployment. Our
results demonstrate that LLMs can effectively learn from relational data to address relational learn-
ing tasks, even with DP guarantees. The privacy risks of these fined-tuned models are empirically
examined by conducting membership inference attacks. Additionally, we investigate the trade-offs
between utility, privacy, and computational efficiency in LLM-based relational learning, extend-
ing existing research of privacy-preserving learning with LLMs on standard (non-relational) text
data (Li et al., 2021). These findings offer valuable insights for the practical deployment of LLMs
in privacy-preserving relational learning scenarios.
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2 PRELIMINARIES: NOTATIONS AND STANDARD LEARNING VIA DP-SGD

Graph (V, E , X) consists of a relation set E that describes the relationship between entities in V =
[N ]. Each entity v ∈ V is associated with an attribute Xv of text, images, or other data modalities.

(ϵ, δ)-Differential Privacy. A randomized mechanismM satisfies an (ϵ, δ)-differential privacy if
for any adjacent datasets D,D′ that differ in one sample, and any output set S ⊂ Range(M),
P(M(D) ∈ S) ≤ eϵP(M(D′) ∈ S) + δ, where ϵ, δ ≥ 0 measure the privacy loss and smaller
values imply stronger privacy guarantees. The notion of adjacent datasets can be generalized to
relational data. Two relation sets E , E ′ are considered adjacent if one can be obtained from the other
by adding or removing a relation. We provide the formal definition of the DP guarantees provided
by this work in Sec. 3.1.

Standard DP Learning Paradigm. Consider training a neural network using a mini-batch B of b
samples. The model parameters Θ is updated iteratively as Θt+1 = Θt − ηgt(B), where η is the
learning rate, and gt(B) = ∂ℓ(Θt;B)/∂Θt is the gradient of the loss ℓ on B w.r.t the parameters Θt

at step t. Adding or removing one sample from B may change g(B), causing privacy leakage that
can be measured by the sensitivity ∆2 = maxB,B′ ||g(B) − g(B′)||2, where B′ and B are different
in one sample |(B\B′) ∪ (B′\B)| = 1.

DP-SGD (Song et al., 2013; Abadi et al., 2016) (see Alg. 1) was proposed to achieve data
privacy for training deep learning models. It first clips per-sample gradients to control
the sensitivity and then adds Gaussian noise to obfuscate the potential change as g̃(B) =
1
b

[∑
xi∈B Clip(g(xi), C) +N (0, σ2C2I)

]
, where g(xi) is the parameter gradient of the loss on

sample xi, and Clip(g, C) = g/max(1, ||g||2/C) for some constant C > 0. At each step of param-
eter update, clipping per-sample gradients limits the sensitivity to at most C, and the Gaussian noise
with standard deviation σC is added to achieve DP based on the Gaussian mechanism (Dwork et al.,
2014). To obtain the DP guarantee for the entire training procedure, the composition theorem (Balle
& Wang, 2018) is used to account for the total privacy loss over T steps. Mini-batch sampling also
allows for some privacy amplification, for which interested readers may check relevant works for
more details (Balle et al., 2018; Wang et al., 2019).

3 METHODOLOGY

In this section, we first introduce the technical difficulty of applying standard DP-SGD when train-
ing models in relational learning. Then, we propose a pipeline that addresses this difficulty and can
provably achieve differential privacy in learning from relational data. Lastly, we address the comput-
ing challenge induced by the control of gradient sensitivity involving multiple relations and entities,
especially when applying the proposed pipeline to sequence models on text-attributed graphs.

Enhance Models with Relational Data. Relationships provide complementary information to
models trained on a specific modality, enabling them to more effectively handle tasks involving
multiple entities. Suppose the representation of each entity u is obtained from a model parameterized
by Θ encoding its attribute, i.e., hu = fΘ(Xu). A common approach of relational learning is to
use relationships between entities to refine their representations (Yasunaga et al., 2022b; Duan et al.,
2023; Xie et al., 2023). This is typically achieved via training based on a loss ℓ that can be generally
written as the following form (Hadsell et al., 2006; Schroff et al., 2015; Song et al., 2016; Sohn,
2016; Ying et al., 2018; Oord et al., 2018). Given a tuple Ei, consisting of an observed (positive)
relation e+i ∈ E and several unobserved (negative) relations {e−ij}kj=1 where e−ij /∈ E , the loss is
denoted as ℓ(Θ;Ei). For a mini-batch B of tuples, the loss sum for B is computed as

LΘ(B) =
∑

Ei∈B
ℓ(Θ;Ei) =

∑

Ei∈B
ℓ(Θ; (e+i , {e−i1 , . . . , e

−
ik
})). (1)

For convenience, let ze = Γ(hu,hw) denote the joint representations of entities in each re-
lationship. One popular choice of ℓ is the InfoNCE loss (Oord et al., 2018): ℓ(Θ;Ei) =

− ln
(
exp(ze+i

)/
∑

e′∈Ei
exp(ze′)

)
. Another choice is the pairwise Hinge loss ℓ(Θ;Ei) = [γ +

ze−i·
− ze+i

]+, which is commonly used for learning from complex multi-relations in knowledge
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graphs (Bordes et al., 2013; Wang et al., 2014; Yang et al., 2015; Lin et al., 2015). Here, γ repre-
sents the margin, and ze also encodes the representation of the relationship besides the entities. Note
that our method for relational learning can potentially be extended to the case where each relation-
ship contains more than two entities, such as network motifs (Milo et al., 2002; Benson et al., 2016)
and hyperedges (Berge, 1984), although the later discussion focuses on pairwise relationships.

3.1 CHALLENGES IN PRIVATELY LEARNING RELATIONS

For relational learning, the information subjected to be protected is the existence of a relation e in
the relation set E , formally defined as follows.

DP for Relational Data. An (ϵ, δ)-DP algorithm for relational data ensures that the output obtained
from a randomized mechanismM : X → Y for any adjacent relation sets E , E ′ ∼ X and measur-
able sets Y ⊂ Y satisfy: P(M(E) ∈ Y ) ≤ eϵP(M(E ′) ∈ Y ) + δ. Achieving DP for relational
data limits the ability of the best possible adversary to uncover any specific relationship between
entities used for training from the model parameters. When the set of relations is defined by a plain
graph, the above concept reduces to edge-level DP, which is widely used in privacy-preserving graph
algorithms (Hay et al., 2009).

Recall that DP-SGD relies on clipping per-sample gradients to control the sensitivity of the gradient
sum of a mini-batch. In relational learning, the gradient sum g(B) of a mini-batch B is given by

g(B) = ∂LΘ(B)
∂Θ

=
∑

Ei∈B
g(Ei) =

∑

Ei∈B

[
∂ℓ(Θ;Ei)

∂ze+i
·
∂ze+i
∂Θ

︸ ︷︷ ︸
Positive Relation

+

k∑

j=1


∂ℓ(Θ;Ei)

∂ze−ij

·
∂ze−ij
∂Θ




︸ ︷︷ ︸
Negative Relations

]
. (2)
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Ei

High Sensitivity

Positive Negative

Figure 1: Challenges in differentially private re-
lational learning: Each loss term typically involves
coupled relations through negative sampling in a
mini-batch, where perturbing one relation may affect
multiple loss terms in the same batch (e.g., removing
relation (u,w) from the set E may affect all tuples
in B). Decoupled sampling (e.g., pairing negatives
from the set V) limits such perturbation to affect at
most one relation tuple Ei in a mini-batch.

The challenge comes from the fact that practical
sampling of negative relations is usually coupled
with positive relations in the same mini-batch. As
a result, removing or adding a positive relation
e ∈ E will not only change the tuple Ei that con-
tains e but also potentially affect other tuples in
the batch B. The impact on multiple terms in
the sum of gradients in Eq. (2) prohibits us from
properly controlling the sensitivity of g(B) by
clipping each individual gradient g(Ei). Specif-
ically, In-batch Negative is commonly used to
obtain negative relations for training large mod-
els, due to its simplicity and memory efficiency
(for the privacy concerns of other negative sam-
pling methods, see Appx. A.2) (Chen et al., 2020;
You et al., 2020; Gao et al., 2021; Radford et al.,
2021). Specifically, given a positive relation e+i ,
In-batch Negative implicitly samples negatives by
pairing one end of e+i with any entity in other pos-
itive relations sampled in the same batch as neg-
ative relations (see the upper right of Fig. 1). This practice can lead to the worst case with high
sensitivity that perturbing one positive relation impacts the whole mini-batch: If a positive relation
e+i sampled in the batch B is removed, the loss of every other tuple Ej ∈ B will be affected as the
entities in e+i may be used to form negative relations in Ej .

3.2 PRIVACY-PRESERVING RELATIONAL LEARNING

To address the above challenge, we propose to decouple the sampling of negative relations from
the set of positive relations. Specifically, the sampling method to form negative relations should
not rely on accessing the relation set E nor leverage sampled positive relations in the same batch.
One direct way is to randomly pair one end of the positive relation e+i with k entities (vi1 , . . . , vik)
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sampled uniformly at random from the whole entity set V as negatives {e−ij}kj=1
1 for each tuple Ei,

illustrated in the upper middle of Fig. 1. Now, removing or adding a positive relation will change
at most one tuple Ei in a mini-batch B. Therefore, by clipping the norm of the gradient of each
tuple g(Ei), we can bound the sensitivity of the gradient sum g(B), independent of the batch size:
The k-many negative relations {e−ij}kj=1 also contribute to the gradient computation of g(B), but in
this new strategy, they only depend on the positive relation e+i in the same tuple and their effect is
bounded through clipping g(Ei). Overall, this sampling method is compatible with DP-SGD: Each
aggregated gradient g(Ei) in a mini-batch is clipped and noised as

g̃(B) = 1

b

[ ∑

Ei∈B
Clip (g(Ei), C) +N (0, σ2C2I)

]
. (3)

With decoupled negative sampling and gradient obfuscation via Eq. a(3), the privacy analysis of
standard DP-SGD holds for relational learning with the loss of Eq. (1), since each relation e ∈ E
influences the gradient sum at most C. The full pipeline to achieve (ϵ, δ)-DP for relational learning
is summarized in Alg. 3, Appx. C.

Another challenge in applying DP-SGD is computing the per-sample gradient, which requires cor-
rectly tracking the norm of the gradient for each training sample. This is a common bottleneck
in private learning and is amplified in relational learning tasks. Modern privacy libraries such as
Opacus (Yousefpour et al., 2021) support tracking the parameter gradient through a training sample
when one sample takes only one data point. In the case of relational learning, a relation tuple con-
tains multiple entities, which makes these libraries not directly applicable. A naı̈ve implementation
is to hook the parameter gradient through each entity g(u|e′, Ei) =

∂ℓ(Θ;Ei)
∂ze′

· ∂ze′
∂hu
· ∂hu

∂Θ during a
backward pass. This means that the gradient g(Ei) of model parameters through one tuple needs to
be calculated via all entities in this tuple, i.e., g(Ei) =

∑
e′∈Ei

∑
u∈e′ g(u|e′, Ei). Computing and

caching gradients through each entity g(u|e′, Ei) incurs significant overhead for tuples with large
sizes k. This issue becomes more pressing for training large models. Next, we aim to address this
computational problem.

3.3 EFFICIENT GRADIENT CLIPPING IN RELATIONAL LEARNING

The main computational bottleneck in applying DP-SGD is the tuple size k introduced by relational
learning and the lack of support for tracking tuple-level gradients g(E). The situation worsens when
the relational data contain textual attributes and the target model is a language model (Jin et al.,
2023a). Specifically, when DP-SGD is applied to sequence models (e.g., Transformers (Vaswani
et al., 2017)) that take in multiple tokens, the parameter gradient through each token prediction will
be hooked. This means that when the proposed pipeline is applied to LLMs for privacy-preserving
relational learning, the parameter gradient through each token m in entity u is actually hooked,
which introduces intractable memory cost. Prior work (Lee & Kifer, 2021; Li et al., 2021) proposed
some strategies to address this issue for privately fine-tuning LLMs on standard text data, but we
find that these techniques are insufficient for relational learning.

Next, we present a tailored approach for efficiently computing the per-tuple gradient g(E), which
exploits the low-rank characterization of per-sample gradient (Goodfellow, 2015) and the structure
of g(E) in relational learning. We use the linear (or embedding) layer of Transformers for demon-
stration, while non-sequence models can be treated as the case without the token dimension.

For a linear layer in Transformers, its weight matrix is W ∈ Rp×d, where d, p are the input and
output dimensions, respectively. For a tuple E, let a ∈ RK×M×d denote the concatenated input,
which contains K = 2(k + 1) entities, and each entity is associated with M tokens. Let s ∈
RK×M×p be the output, where si,j = Wai,j corresponds to the j-th token of the i-th entity in
the tuple. Denote the gradient w.r.t. si,j as ri,j = ∂ℓ(Θ;E)

∂si,j
. Then, the gradient of W through si,j

can be represented as ∇W|si,j ℓ = ∂ℓ(Θ;E)
∂si,j

· ∂si,j∂W = ri,ja
T
i,j ∈ Rp×d. To compute the per-tuple

gradient w.r.t. W, i.e.,
∑K

i=1

∑M
j=1∇W|si,j ℓ, it is costly to first compute ri,ja

T
i,j for each token

1Decoupled negative sampling may treat entity pairs with observed relations as negatives with a low proba-
bility (similar to in-batch negatives), but no obvious harm to utility is observed in practice.
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and then sum them over. Instead, a cheaper way is to record r = [· · · , ri,j , · · · ] ∈ RK×M×p

and a = [· · · ,ai,j , · · · ] ∈ RK×M×d, and compute ra⊤ to accomplish the sum. This strategy can
reduce the memory cost fromO(KMpd) toO(KM(p+d)+pd). Our experiments use Llama2-7B
(Touvron et al., 2023), where K ∈ [10, 34] and M = 32 while p = d = 4096 in attention blocks and
p = 32000, d = 4096 in the embedding block. So, pd ≫ KM(p + d) and thus the overall saving
based on the above approach is a factor of O(KM). In addition, some parameter-efficient fine-
tuning techniques such as LoRA (Hu et al., 2022) can be incorporated to further reduce the memory
cost to O(KM(p+ d+ 2r) + (p+ d)r), where r is the rank of adjustment△W for parameter W.

4 EXPERIMENTS

Problem Setting & Datasets. Our experiment design aims to simulate common scenarios of ap-
plying relational learning in sensitive domains, where the graph data used to enhance target models
contain personal or proprietary relations that need to be protected, such as in applications of e-
commerce (Peng et al., 2024), finance (Wu et al., 2023; Ouyang et al., 2022), and healthcare (Gao
et al., 2023). We consider two specific use cases: Cross-category recommendation - When launching
new product lines, RecSys models often face the problem of lacking historical data for prediction
(e.g., co-purchase), which can be alleviated by utilizing user purchase history of complementary
categories. Sensitive user behaviors contained in these co-purchase relations should be protected.
Cross-regional model deployment - Financial institutions operate in multiple regions, and their ser-
vice models (e.g., fraud detection) are normally trained on transaction data collected from major
markets and then deployed to multiple regions after fine-tuning. Such practices must comply with
data export and protection regulations.

Two publicly available real-world text-attributed graphs with millions of entities/relationships
are selected to simulate the two scenarios above: the e-commerce network from Amazon
(AMAZ) (McAuley et al., 2015) and the academic network from Microsoft Academic Graph
(MAG) (Sinha et al., 2015). In the AMAZ dataset, each entity is a shopping item, and the rela-
tion between them indicates that they were co-purchased by customers. It is split into two domains
based on the item category: clothing and sports. In the MAG dataset, each entity is a research pa-
per, and the relation between them reflects one cited the other. It is split into two domains based
on the region of the main authors: USA and China. In total, four domain-specific subgraphs (see
Table 8, Appx. D) are used for relational learning, where the target model is evaluated on the cor-
responding test domain, such as trained on co-purchased relations from AMAZ-Cloth and tested on
AMAZ-Sports.

We conduct a comprehensive set of empirical studies with the objective of addressing two key re-
search questions: RQ1 Can the target model learn relational knowledge from the training graph
with privacy preservation and generalize to relational learning tasks on new test domains? RQ2
How does negative sampling size k impact the results in relational learning? What about the choice
of other hyperparameters, such as the batch size, learning rate, and privacy hyperparameters σ,C?
Does it follow the same rules of the private non-relational setting (Li et al., 2021)?

Tasks & Metrics. Privately fine-tuned models are deployed to new test domains under the settings
of zero-shot and 16-shot for relation prediction, and 8-shot for entity classification. We use ranking
metrics of top@1 precision (PREC@1) and mean reciprocal rank (MRR) to evaluate each model on
in-batch negative samples with a batch size of 256 (same as Jin et al. (2023b)) for relation prediction,
while Macro-F1 and Micro-F1 for entity classification.

Implementation Details. The pretrained models are fine-tuned under the supervision of relational
information with the InfoNCE loss and optimized by DP-Adam through our proposed pipeline (see
Alg. 3). The privacy loss is tracked through PRV accounting (Gopi et al., 2021). Following prior
work on private fine-tuning of LLMs (Li et al., 2021; Yu et al., 2022), we consider privacy levels
ϵ ∈ {4, 10} and δ = 1

|Etrain| for a training set of size |Etrain|. Hyperparameters are tuned under given
privacy parameters. See Appx. D for other details.

Baselines. To the best of our knowledge, our approach is the first for relational learning with dif-
ferential privacy. DP-GNNs are excluded from baselines due to their insufficiency in properly pre-
serving privacy in relational learning. To compare with feasible privacy-preserving techniques that
satisfy DP for relational data, we apply the standard randomized response (RR) baseline to the re-
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Privacy Target Model MAG-USA MAG-CHN AMAZ-Cloth AMAZ-Sports
PREC@1 MRR PREC@1 MRR PREC@1 MRR PREC@1 MRR

zero-shot

BERT.base 4.41 9.94 6.48 12.69 14.90 22.41 8.36 14.04
base model BERT.large 2.00 5.48 2.71 6.39 5.72 10.11 3.78 7.37

SciBERT 8.70 17.12 13.89 23.96 - - - -
LinkBERT.large 1.09 4.01 1.46 4.75 4.01 8.60 2.06 5.37
Llama2-7B 4.24 8.68 5.21 9.71 19.45 27.41 6.13 10.11

BERT.base 28.07 39.11 41.93 53.91 36.13 47.07 29.84 39.61
BERT.large 26.37 37.73 40.90 53.16 36.89 47.50 29.30 39.76ϵ =∞
Llama2-7B 32.80 46.67 45.65 58.59 41.01 52.39 29.21 41.44

BERT.base 3.28 8.70 5.10 11.47 19.97 29.76 8.03 13.73
BERT.large 5.67 11.75 8.65 15.43 22.81 32.31 7.36 12.15ϵ = 10 (RR)
Llama2-7B 13.64 22.33 9.92 16.67 30.39 41.48 19.63 27.66

ϵ = 10 (Ours)
BERT.base 23.29 33.98 35.64 47.74 32.63 43.17 26.66 36.76
BERT.large 22.71 33.76 35.18 47.03 31.20 41.28 28.18 38.68
Llama2-7B 24.07 37.53 34.58 48.76 40.16 51.25 29.54 39.90

ϵ = 4 (Ours)
BERT.base 22.08 32.69 31.42 43.54 33.24 43.67 26.82 36.80
BERT.large 21.78 32.60 34.84 46.62 29.73 39.63 27.63 38.06
Llama2-7B 22.55 35.47 32.50 46.68 39.67 51.09 29.25 39.35

Table 1: Results on zero-shot relation prediction with privacy-preserving relational learning.

lation set E and then perform model fine-tuning on the processed relation set that achieves ϵ-DP
(Epasto et al., 2022). Given an entity u, for each pair (u, v), v ∈ V, v ̸= u, we apply the randomized
response mechanism (Dwork et al., 2014). With probability p = 1/(1 + exp(ϵ)), the relation label
of (u, v) is flipped; otherwise, the original label is kept. Note that this baseline requires Θ(N2) time
complexity and drastically increases the number of relations for small values of ϵ, which severely
limits its applicability.

4.1 EVALUATION OF PRIVATELY FINE-TUNED MODELS (RQ1)

In this section, we study the effectiveness of the proposed pipeline by evaluating privately fine-tuned
models on new test domains for relation prediction and entity classification. The scale of privacy
noise σ and the exact privacy loss ϵ on relational data used for training each model are reported in
Table 9, Appx. E. The privacy risks of fine-tuned models are empirically examined via membership
inference attacks.

Relation Prediction. This task aims to estimate the likelihood of forming a relationship between
two entities with specific semantics. Under the zero-shot setting, all pretrained language models
are privately fine-tuned on relations from the training graph and then are directly deployed on the
test domain for inference. This is often faced in cold-start recommendation problems, where the
test domain lacks relational information. Results of zero-shot relation prediction in Table 1 show
that using co-purchase/citation relations from training graphs to fine-tune language models through
our approach can improve their base models’ performance on new test domains under DP guaran-
tee ϵ = {4, 10}. There is only a modest performance drop compared to the non-private fine-tuned
baselines (ϵ = ∞, oracle), which is much smaller than all results from training on relational sets
processed by the randomized response mechanism (not computationally feasible for ϵ = 4). This
observation validates the effectiveness of privacy-preserving relational learning in light of capturing
generalizable relational patterns and knowledge without compromising individual privacy. Among
different types of target models, decoder-only models tend to perform worse than encoder models
in embedding text (Li & Li, 2024; BehnamGhader et al., 2024), as reflected in the performance dis-
parity between their base models in Table 1. Through (private) relational learning, Llama2-7B can
generate rich contextual representations to predict relations and outperform the widely used BERT-
based encoder. Next, we consider the few-shot setting used for cases like cross-regional model
deployment, which is often limited by resource or data availability. The model obtained above is
further fine-tuned using 16 training and 16 validation relations from the test domain. Table 2 shows
that privately fine-tuned language models still outperform their base models if few-shot fine-tuning
is allowed. In particular, they outperform SciBERT (Beltagy et al., 2019) and LinkBERT (Yasunaga
et al., 2022a) on the MAG dataset, both of which are pretrained on documents and associated rela-
tionships in the scientific domain.
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Privacy Model MAG-USA MAG-CHN AMAZ-Cloth AMAZ-Sports
PREC@1 MRR PREC@1 MRR PREC@1 MRR PREC@1 MRR

few-shot

BERT.base 10.24 18.94 17.10 27.84 20.42 29.74 14.70 23.46
base model BERT.large 6.57 13.88 9.61 17.75 19.57 28.69 11.23 17.80

SciBERT 22.27 34.24 32.42 46.10 - - - -
LinkBERT.large 21.76 31.93 35.09 47.80 13.41 19.24 23.21 30.95
Llama2-7B 6.21 12.26 6.29 11.51 20.25 28.42 7.17 11.79

BERT.base 27.28 38.61 39.15 51.28 33.45 44.42 29.57 39.71
BERT.large 26.19 37.69 37.91 49.93 34.60 45.48 29.85 40.79ϵ =∞
Llama2-7B 35.45 49.30 45.89 58.84 41.42 52.59 31.92 44.83

ϵ = 4 (Ours)
BERT.base 24.56 35.55 33.62 45.72 33.40 44.23 28.64 38.34
BERT.large 23.09 34.21 37.23 48.65 30.39 40.78 27.80 37.87
Llama2-7B 22.88 35.94 32.07 46.22 39.94 51.10 29.78 40.27

Table 2: Results on 16-shot relation prediction with privacy-preserving relational learning.

Privacy Model MAG-USA MAG-CHN AMAZ-Cloth AMAZ-Sports
Macro-F1 Micro-F1 Macro-F1 Micro-F1 Macro-F1 Micro-F1 Macro-F1 Micro-F1

few-shot

BERT.base 2.40 3.06 2.08 3.18 9.75 16.31 7.26 8.39
base model BERT.large 2.89 4.97 2.83 3.44 4.44 15.32 1.07 2.28

SciBERT 4.70 10.01 5.14 6.51 - - - -
LinkBERT 0.81 1.32 1.45 1.77 10.45 36.06 0.16 10.90
Llama2-7B 9.3 11.43 8.76 8.64 38.41 60.01 32.26 49.14

BERT.base 2.02 2.88 1.88 2.23 29.05 31.37 17.50 19.81
BERT.large 6.88 11.57 4.90 5.32 26.31 35.59 23.53 24.42ϵ =∞
Llama2-7B 14.97 18.77 11.52 10.85 32.94 50.65 57.53 63.15

ϵ = 4 (Ours)
BERT.base 3.61 8.49 2.40 4.74 23.42 26.43 17.87 18.63
BERT.large 6.31 11.16 3.07 6.45 16.77 22.98 21.71 22.67
Llama2-7B 16.55 18.59 13.56 13.29 35.43 54.85 44.74 50.47

Table 3: Results on 8-shot entity classification with privacy-preserving relational learning.

Entity Classification. This task aims to investigate whether injecting relational information helps
language models classify entities with textual attributes in adjacent domains. It is motivated by the
above observation, where introducing structural knowledge between entities can go beyond con-
textual semantics and help models refine internal entity representations across domains. We use
the language model as an encoder and attach a classifier to take entity embeddings for classification.
The parameters of language models are frozen, where only limited examples are used to initialize the
classifier. The entity classes are coarse-grained category names from AMAZ and MAG networks. 8
labeled training and 8 validation entities of each class are used for training, while thousands of new
entities are reserved for testing. Table 3 shows that models fine-tuned privately on relational data
generally produce entity embeddings of better quality than those directly generated from base mod-
els. In some cases, private models outperform non-private models (ϵ =∞), which can be attributed
to the regularization effect of DP-SGD under the setting of limited examples. The performance
drop on AMAZ-cloth is due to the potential misalignment between the objective of relation-based
fine-tuning and entity classification, which has been observed in the non-private relational learning
setting by Xie et al. (2023) and in the private non-relational setting by Li et al. (2021).

Method ϵ
MAG-USA MAG-CHN

TPR@0.05 FPR WSRT p-value TPR@0.05 FPR WSRT p-value
Non-DP ∞ 0.0687 3.14e-82 0.0551 1.39e-48
Ours 10 0.0672 4.36e-54 0.0480 4.72e-25
Ours 4 0.0600 1.51e-46 0.0469 6.69e-20

Table 4: Attack results against LLama2-7B fine-tuned on
training graphs of MAG-USA/CHN. A smaller p-value in
the Wilcoxon test shows the difference observed between
member and non-member distributions is statistically signif-
icant, indicating more leakage.

Privacy Attacks. We perform the mem-
bership inference attacks (MIAs) on rela-
tion samples to empirically estimate the
privacy risk of models fine-tuned on the
training graph. The high computational
cost of training multiple copies of shadow
models (Shokri et al., 2017) makes it in-
tractable to perform such attacks on LLM-
based relational learning. Thus, we con-
sider an unsupervised approach to deter-
mine the membership of target relations
based on a distance-based score function (He et al., 2021; Wang & Wang, 2023). We follow a
similar setting as He et al. (2021), where the adversary has knowledge of the target dataset’s entity
attributes. The attack relies on the posteriors of entity embeddings obtained from the target model to
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Figure 2: Effects of negative sample k, batch size b, and noise multiplier σ for zero-shot relation
prediction with privacy preservation.

measure the score between entity pairs and classify the membership of their relations. To evaluate
the attack, we use the True-Positive Rate (TPR) at low False-Positive Rates (FPR) (Carlini et al.,
2022), and p-value of the Wilcoxon signed-rank test (WSRT) (Wilcoxon, 1992) conducted on the
score distributions obtained over relations contained in and not in training (Kim et al., 2024). The
small p-value suggests that the observed difference between two distributions is statistically signif-
icant. From Table 4.1, we observe that attacks on non-private fine-tuned models (ϵ = ∞) have a
higher success rate than models trained by our approach on both datasets, where the stricter privacy
budget of ϵ leads to lower success rate of MIAs both in terms of the TPR at 0.05 FPR and the sta-
tistical test. We also include the plotting of score distributions obtained from different target models
in Fig. 3, Appx. E.

4.2 UTILITY, PRIVACY AND COMPUTATIONAL EFFICIENCY TRADE-OFFS (RQ2)

In this section, we study the trade-offs between utility, privacy, and computational complexity in
privacy-preserving relational learning. We first investigate the hyperparameters of negative sampling
k, batch size b, and learning rate η in a realistic setting, where the training steps are fixed. Fig. 2
(Left) shows the impact of negative sampling in relational learning: Increasing k generally improves
prediction performance while with a rapidly decreasing marginal benefit. To achieve a trade-off
between performance and computational complexity, the optimal region is located at k ∈ [4, 8].
Fig. 2 (Middle) shows the effect of batch size b on different models under the same privacy budget:
Larger b leads to better model performance and quick convergence, especially for Llama2-7B. This
observation is consistent with non-relational private learning, where increasing b achieves a better
signal-to-noise ratio between the sum of clipped gradients and the Gaussian noise added via Eq. (3).
The joint effect of batch size b and learning rate η is further studied and depicted in Fig. 4 (Left),
Appx. F: Larger batches and learning rates together lead to good performance under fixed training
steps, which echoes the findings in privately fine-tuning LLMs on standard text data (Li et al.,
2021). The main obstacle to using larger b is the linearly increased privacy computing and memory
cost associated with controlling per-sample gradients as discussed in Sec. 3.3.

Next, we study how privacy parameters impact model utility. Fig. 2 (Right) plots the privacy-utility
curve of BERT.base on zero-shot relation prediction over MAG-USA/CHN datasets using differ-
ent privacy budgets ϵ by adjusting noise multiplier σ while keeping other parameters constant. In
this case, the scale of privacy noise added solely determines the privacy leakage, where the model
performance decays proportionally as the value of σ increases. The threshold of norm clipping C
does not affect the privacy budget ϵ but is crucial to the utility performance of DP models (Bu et al.,
2024), and its impact on relational learning tasks is shown in Fig. 4 (Right), Appx. åF. Picking a
threshold C that is larger than the actual gradient norm means that most clipping through Eq. (3) is
not effective, and the noise σC is added more than necessary. In general, small values of C work
better for relational learning, which aligns with the general practice and observation of DP learning
on non-relational data in both vision and language tasks (Tramer & Boneh, 2021; Li et al., 2021).

5 RELATED WORK

LLMs with Relational Data. Extensive work has focused on using relational data to enhance foun-
dation models, especially for fine-tuning LLMs on graphs, in light of their strong generalization
ability. These methods can be classified into two types. Objective-only: Yasunaga et al. (2022b);
Duan et al. (2023); Xie et al. (2023) proposed to associate entity representations from LLMs with
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relational information by optimizing the objective based on specific graph tasks. For example, re-
lation prediction is a typical task in unsupervised graph learning, as adopted in this work. Graph-
encoder-based: Chien et al. (2022); Yasunaga et al. (2022a); Zhu et al. (2024); Xie et al. (2023); Jin
et al. (2023b) pair LLMs with a graph encoder (e.g., GNNs (Kipf & Welling, 2017)) to incorporate
relational information in an end-to-end manner, where LLMs act as feature extractors for textual
attributes, and their output with associated graph topology is fed into GNNs for aggregation and
prediction. These models may be privatized by combining the approach proposed in this work with
the privatized method for graph encoders (Sajadmanesh et al., 2023; Chien et al., 2024), though the
entire pipeline could be complex and beyond the scope of this work.

Privacy-preserving for LLMs. Data privacy in LLMs focuses on safeguarding sensitive infor-
mation that could be exposed during operations (Yao et al., 2024). Recent efforts have utilized
DP-SGD for both pretraining and fine-tuning LLMs. For instance, Anil et al. (2022) trained a
privacy-preserving BERT.large model from scratch. However, due to the resource-intensive nature
of LLMs, the focus has shifted towards private fine-tuning of publicly pretrained models. Hoory
et al. (2021) explored private full fine-tuning of BERT models with domain-specific data, while re-
cent advancements in this field include the works of Basu et al. (2021); Kerrigan et al. (2020); Senge
et al. (2022); Li et al. (2021). There is growing interest in efficient private fine-tuning techniques. Yu
et al. (2022) applied parameter-efficient fine-tuning methods for private fine-tuning of LLMs, and Li
et al. (2021) introduced ghost clipping to accelerate gradient clipping in DP-SGD. However, these
methods primarily address privacy concerns for standard text data. In contrast, our work extends
these privacy-preserving techniques to relational data, filling an important gap in this research area.

Privacy-preserving Graph Learning. Significant research has focused on privacy-preserving
graph embedding and learning algorithms with DP guarantees (Li et al., 2023b). Daigavane et al.
(2021) proposed a privacy-preserving approach for training GNNs via extensions of DP-SGD.
Olatunji et al. (2023) adopted teacher-student models to enable the DP release of GNNs. Sajad-
manesh et al. (2023) improved utility-privacy trade-offs by decoupling feature propagation and
model training, and their work further got extended in subsequent studies (Sajadmanesh & Gatica-
Perez, 2024; Chien et al., 2024). These methods specialize in generating private node representations
and privatizing the graph exposed to encoders for feature propagation and aggregation, which do not
mitigate privacy risks when relational information is used for supervision.

6 CONCLUSION

Leveraging relational data to enhance AI models holds great promise. This work proposes a novel
privacy-preserving training pipeline that addresses the unique privacy and computational challenges
in relational learning by decoupling the dependencies in sampled relations for training and exploit-
ing gradient structure through individual samples for efficient clipping. We consider scenarios fre-
quently encountered in applying relational learning to fine-tune pretrained language models and
enforce privacy guarantees on the relationships used for training. Our study on privacy-preserving
relational learning shows that fine-tuning language models with our approach can significantly im-
prove their performance on new test domains while keeping the relational training data differentially
private. We further explore the privacy, utility, and computational efficiency trade-offs and conduct
an extensive study on hyperparameter selection for relational learning in private settings.
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A PRIVACY RISKS IN RELATIONAL LEARNING

Relational learning aims to inject observed relational information between entities into target mod-
els, commonly captured by graph data G = (V, E , X). Suppose the representation of each entity
u ∈ V is obtained from a model parameterized by Θ encoding its attribute, i.e., hu = fΘ(Xu). To
make the target model relation-aware, the refinement is usually through optimizing the parameter
Θ via a relation-based loss, generally with the form as ℓ(Θ; (e+i , {e−ij}kj=1)). The following uses
pairwise relation as an example: e+i = (u, v) is observed in a relation set E , usually termed as pos-
itive relation, while the unobserved relation e−ij = (u,w) /∈ E is referred as negative. Let Γ(·) be a
score function that measures or labels the relationship between entities based on their embeddings
output by the model. The intuition behind common loss ℓ used in relational learning (e.g., InfoNCE
loss (Oord et al., 2018) and pairwise Hinge loss (Bordes et al., 2013)), is to promote positive rela-
tions ze+i = Γ(hu,hv) having a higher score than paired negative relations ze−ij

= Γ(hu,hw). The

overall objective can be written as

Θ∗ = argmin
∑

e+i ∈E

ℓ(Θ; (ze+i
, {ze−ij }

k
j=1). (4)
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Here, Θ is the parameter of any target model that can encode entity attributes. The relational infor-
mation is only exposed to the model through the loss function ℓ as labels for supervision and carried
into model parameters during backpropagation. The privacy risk of relational learning through the
above procedure can be mitigated by carefully limiting and obfuscating the update of model param-
eters induced by individual relations, which is the main objective studied in this work.

A.1 DIFFERENTIALLY PRIVATE GNNS ARE INSUFFICIENT FOR RELATIONAL LEARNING
WITH DIFFERENTIAL PRIVACY

Graph neural networks (GNNs) (Kipf & Welling, 2017) are one of the most popular encoders that
can be directly applied to relational data for obtaining entity embeddings. The key mechanism of
GNNs is message-passing, where information is propagated and aggregated among neighborhoods
of entities along graph topology. A typical GNN consists of L sequential graph convolution layers,
which is formulated as

h(l)
u = upd

(
agg

(
{h(l−1)

v : ∀v ∈ N (v)}
)
; Θ(l)

g

)
, (5)

where N (u) = {v : (u, v) ∈ E} denotes the set of neighboring entities to entity u, and h(l−1)
v is

the embedding of an neighboring entity v at layer l − 1. agg(·) is a differentiable, permutation
invariant aggregation function (e.g., sum, mean, or max). upd(·) is a learnable function, such as
a multi-layer perception (MLP), parameterized by Θ

(l)
g that takes the aggregated embeddings and

outputs the updated embedding for the root entity h
(l)
v .

Next, we show why previous methods that build differentially private GNNs cannot handle the chal-
lenges of relational learning with differential privacy. DP-GNNs (Daigavane et al., 2021; Zhang
et al., 2024b; Sajadmanesh et al., 2023; Sajadmanesh & Gatica-Perez, 2024; Chien et al., 2024)
primarily address the privacy issue during graph data encoding. Specifically, in GNN models, per-
turbing a node or an edge affects not only itself and its direct neighbors but also multi-hop neighbors
through recursive layer-wise message passing, as shown in Eq. (5). Existing efforts mainly focus
on limiting such correlation in message passing (e.g., node degree and number of hops) so that the
sensitivity of graph encoding in GNNs can be bounded, which makes it feasible for DP training on
entity- or graph-level tasks. Unfortunately, these techniques are insufficient for relational learning
because coupled relations in the loss (e.g., Eq. (4)) make the gradient not decomposable into spe-
cific privacy-preserved samples and thus still leaves privacy-preserving relational learning an open
problem. We aim to solve this problem in this work.

A.2 PRIVACY CONCERNS WITH OTHER TYPES OF NEGATIVE SAMPLING IN RELATIONAL
LEARNING

As discussed in Sec. 3.1, the main challenge in applying DP-SGD to privacy-preserving relational
learning is the coupled sampling of positive and negative relations during training. Here, we show-
case the coupling caused by other types of negative sampling. Random Negative Sampling is one
of the most widely used methods (Yang et al., 2024). Given a positive relation e+i = (u,w),
it uniformly samples negative relations containing either entity u or w from the complement set
Ē =

(V
2

)
\E , for example, e−ij = (u, v) ∈ Ē . This method requires access to E to obtain Ē for

negative selection and makes the sampled negative relations dependent on the positive relations that
share common entities. If an originally negative relation (u, v) is flipped as positive and added to
the relation set E , all tuples in the batch B that previously sampled (u, v) as negative relations will
be affected. In the worst-case scenario, it may affect the entire mini-batch, introducing a high sen-
sitivity that cannot be properly controlled by clipping the gradient of each tuple. This observation
also makes all sampling methods that require accessing the relation set E ineligible for relational
learning in private settings, such as Popularity-based Negative Sampling and the family of Hard
Negative Sampling that generates true negative samples.

B OTHER RELATED WORK

Private Graph Embedding Methods. Graph embedding encodes nodes into low-dimensional vec-
tors, preserving topological information (Hamilton et al., 2017). Xu et al. (2018) proposed a private
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Algorithm 1: DP-SGD from Abadi et al. (2016)

Input: Training data x1, . . . , xN , loss function L(Θ) = 1
N

∑
i L(Θ, xi); Parameters: learning

rate ηt, batch size b, gradient norm threshold C, noise multiplier σ or privacy budget ϵ.
Initialize find the optimal value of σ via calibration if ϵ is given.
for t = 1 to T do

Subsampling
Randomly sample Bt with sampling probability b/N

Compute Gradient
For each xi ∈ Bt, compute gt(xi)← ∇ΘtL(Θt, xi)

Gradient Clipping
ḡt(xi)← gt(xi)/

[
max

(
1, ||gt(xi)||2

C

)]

Add Noise
g̃t ← 1

b

[∑
i ḡt(xi) +N (0, σ2C2I)

]
Parameter Update

Θt+1 ← Θt − ηtg̃t

end for
Output ΘT and calculate the overall privacy cost (ϵ, δ) using an accounting method if σ is given.

network embedding method using objective perturbation in DeepWalk (Perozzi et al., 2014) but
faced scalability issues for complex sensitivity calculations. Zhang & Ni (2019) addressed these
issues by applying a Lipschitz condition (Raskhodnikova & Smith, 2016) and gradient clipping.
Epasto et al. (2022); Wei et al. (2024) studied DP PageRank methods, which can be leveraged to
generate DP graph embedding as well. These methods specialize in preventing privacy leakage
during generating node embeddings but cannot protect the privacy of relations that are used for
supervision studied in this work.

Private Aggregation of Teacher Ensembles. PATE and its variants (Papernot et al., 2018) are
an alternative privacy-preserving method to achieve DP in machine learning, which leverages an
ensemble of teacher models that are trained on disjoint datasets containing sensitive data. These
models are not published but instead used as teacher models for a separate student model. The
student model cannot access any single teacher model or the underlying data. It learns to predict
an output chosen by noisy voting performed across all teacher models. The student is trained on
a publicly available, unlabelled dataset, where the labels come from the aggregate votes of the
teachers. The availability of public data is one notable limitation of PATE, as well as the complexity
of training a collection of teacher models. Olatunji et al. (2023) proposed a PATE framework to
release GNNs with node-DP for node-level tasks. Adopting PATE in graph settings faces challenges
of low utility due to the physical separation of datasets in graph learning that destroys structural
information and limited generality beyond graph classification settings.

Contrastive Learning with Differential Privacy. Existing studies on private contrastive learning
aim to eliminate the risk of sample correlation in contrastive losses and thus protect the privacy of
individual training samples. Li et al. (2022) proposed to add privacy noise to the similarity matrix
between pairs of inputs to reduce the sensitivity of gradients w.r.t. the contrastive loss. Kong et al.
(2025) extended it to similarity-based loss functions by bounding the pairwise similarity gradients.
Bao et al. (2024) proposed to train vision models with the mixup technique under DP by leverag-
ing augmentation multiplicity. These methods focus on learning representations of non-relational
samples differentially private by contrastive views, but they cannot be used to address the privacy
challenges of coupled relations in training models on relational data.

C LEARNING PIPELINES OF STANDARD DP AND RELATIONAL SETTINGS

DP-SGD (see Alg. 1) (Song et al., 2016; Abadi et al., 2016) is proposed for training deep learning
models on (non-relational) samples with a privacy guarantee. DP-Adam (see Alg. 2) works simi-
larly as regular Adam (Kingma & Ba, 2015) but performs updates and moment accumulation with
privatized gradients. The gradient privatization part is the same as that performed in DP-SGD, where
the privacy analysis and guarantees for DP-SGD still hold for DP-Adam due to the post-processing
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Algorithm 2: DP-Adam (Kingma & Ba, 2015; Abadi et al., 2016)

Input: Training data x1, . . . , xN , loss function L(Θ) = 1
N

∑
i L(Θ, xi); Parameters: learning

rate ηt, batch size b, gradient norm threshold C, noise multiplier σ or privacy budget ϵ, initial
moment estimates m0, v0, exponential decay rates β1, β2, avoid division-by-zero constant γ.
Initialize find the optimal value of σ via calibration if ϵ is given.
for t = 1 to T do

Subsampling
Randomly sample Bt with sampling probability b/N

Compute Gradient
For each xi ∈ Bt, compute gt(xi)← ∇Θt

L(Θt, xi)
Gradient Clipping

ḡt(xi)← gt(xi)/
[
max

(
1, ||gt(xi)||2

C

)]

Add Noise
g̃t ← 1

b

[∑
i ḡt(xi) +N (0, σ2C2I)

]
Parameter AdamUpdate

mt+1 ← β1 ·mt + (1− β1) · g̃t, vt+1 ← β2 · vt + (1− β2) · g̃2
t

m̂t+1 ← mt+1/(1− βt
1), v̂t+1 ← vt+1/(1− βt

2)

Θt+1 ← Θt − ηt · m̂t+1/
(√

v̂t+1 + γ
)

end for
Output ΘT and calculate the overall privacy cost (ϵ, δ) using an accounting method if σ is given.

Algorithm 3: Learning on Relational Data with Differential Privacy
Input: target model fΘ (e.g., LLMs), graph G = (V, E , X), scoring function Γ, loss function ℓ;
Parameters: learning rate ηt, batch size b, number of negative samples k, threshold of gradient
norm C, noise multiplier σ or privacy budget ϵ.
Initialize find the optimal value of σ via calibration if ϵ is given.
for t = 1 to T do

Subsampling
I. Randomly sample Bt from E with sampling ratio b/|E|.
II. For each sampled positive relation e+i in the batch, randomly sample k entities (vi1 , . . . , vik)
without replacement from V and pair them with one end of e+i as negatives {e−ij}kj=1, which
forms a tuple of k + 1 relations as Ei = (e+i , {e−ij}kj=1).

Compute & Aggregate Gradient
gt(Ei) =

∑
e′∈Ei

∑
u∈e′

∂ℓ(Θ;Ei)
∂ze′

· ∂ze′
∂hu
· ∂hu

∂Θ , where ze′ = Γ(hu,hv) for relation e′ = (u, v)

and hu = fΘ(Xu) for entity u. Note that the actual computation of gt(Ei) is performed by the
efficient approach proposed in Sec. 3.3.

Gradient Clipping & Add Privacy Noise
g̃t ← 1

b

∑
Ei∈Bt

[
gt(Ei)/max (1, ||gt(Ei)||2/C) +N (0, σ2C2I)

]

Parameter Update
Θt+1 ← Θt − ηtg̃t

end for
Output ΘT and calculate the overall privacy cost (ϵ, δ) using an accounting method if σ is given.

property of DP (Dwork et al., 2014). We use DP-Adam (see Alg. 2) as the default optimizer, same as
previous work (Li et al., 2021; Yu et al., 2022). The proposed privacy-preserving relational learning
pipeline is summarized in Alg. 3.

D EXPERIMENTAL DETAILS

Datasets. Item and paper titles are used as textual attributes associated with entities in the Ama-
zon e-commerce network (AMAZ) (McAuley et al., 2015) and the Microsoft Academic Graph
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AMAZ-Cloth AMAZ-Sports

Label Name Label Name

0 girls 0 accessories
1 men 1 action sports
2 novelty 2 boating & water sports
3 luggage 3 clothing
4 baby 4 cycling
5 fashion watches 5 baby
6 shoes 6 exercise & leisure sports
7 boys 7 fan shop
8 adidas 8 golf

9 hunting & fishing & game room
10 outdoor gear
11 fitness
12 paintball & airsoft
13 racquet sports
14 snow sports
15 team sports

Table 5: Class names of the AMAZ dataset.

Target Model BERT.base BERT.large Llama2-7B

DP Guarantee (ϵ, δ) (-,1/|Etrain|) (-,1/|Etrain|) (-,1/|Etrain|)
Clipping threshold C 1 1 1
Noise multiplier σ [0.3, 0.5] [0.3, 0.5] [0.3, 0.5]

LoRA rank r {2,4,8,16} {2,4,8,16} {2,4,8,16}
LoRA alpha α 16 16 16
LoRA dropout [0, 0.2] [0, 0.2] [0, 0.2]
Target module query, key, value, dense query, key, value, dense q proj, v proj

Batch size B {8, 16, 32, 64} {8, 16, 32, 64} {12, 16, 32, 64, 128}
Learning rate η [10−4, 10−6] [10−4, 10−6] [10−4, 10−6]
LR scheduler linear linear cosine
Weight decay λ [0, 10−3] [0, 10−3] 0
Negative sample k {4, 6, 8, 16} {4, 6, 8, 16} {4, 8, 12, 16}

Table 6: Hyperparameter search range for different models.

Target Model License Model Card

BERT.base Apache License 2.0 https://huggingface.co/google-bert/bert-base-uncased
BERT.large Apache License 2.0 https://huggingface.co/google-bert/bert-large-uncased
SciBERT Apache License 2.0 https://huggingface.co/allenai/scibert_scivocab_uncased
LinkBERT.large Apache License 2.0 https://huggingface.co/michiyasunaga/LinkBERT-large
Llama2-7B Meta Community License https://huggingface.co/meta-llama/Llama-2-7b-hf

Table 7: Model card of pretrained language models.

Dataset #Entity #Relation #Entity (Test) #Classes #Relation (Test) Test Domain

AMAZ-Cloth 960,613 4,626,125 476,510 9 10,000 AMAZ-Sports
AMAZ-Sports 357,936 2,024,691 129,669 16 10,000 AMAZ-Cloth
MAG-USA 132,558 702,482 6,653 40 63,635 MAG-CHN
MAG-CHN 101,952 285,991 6,534 40 34,603 MAG-USA

Table 8: Dataset statistics for evaluation.
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(MAG) 2 (Sinha et al., 2015), respectively. OpenAlex API 3 (Priem et al., 2022) is used to ob-
tain metadata of papers in the MAG dataset as the Microsoft Academic service has been retired.
For some items/papers, we concatenate their titles with the corresponding description/abstract fol-
lowing Jin et al. (2023b) since the text of the title is too short. The max length of the input to-
ken M is set to 32. The semantics of relational information used for supervision are “item-co-
purchased-item” and “paper-cited-paper” for AMAZ and MAG networks, respectively. To mimic
the case in the cross-category recommendation, two subgraphs are selected from AMAZ that only
contain items belonging to the category of clothing (AMAZ-Cloth) and sports (AMAZ-Sports).
For entity classification, the class names of the AMAZ dataset are listed in Table 5. Based on
the geographic metadata of the main authors, we select two subgraphs from MAG containing pa-
pers written by authors from the United States (MAG-USA) and China (MAG-CHN) to simulate
the case in cross-regional model deployment. The coarse-grained class of papers in the MAG
dataset is refined by selecting the Top-K-occurrence of 349-class obtained from Open Graph Bench-
mark 4 (Hu et al., 2020) and merging the rest classes into one. The processed data is available at
https://zenodo.org/records/15186566.

Target Models. Off-the-shelf pretrained language models: BERT (Devlin et al., 2019), a language
model pretrained with objectives of masked language modeling (MLM) and next sentence predic-
tion on Wikipedia and BookCorpus, with parameters of 110M (base) and 340M (large). SciBERT
(Beltagy et al., 2019) is trained on 1.14M paper abstracts and full text from Semantic Scholar un-
der the same pertaining as BERT. LinkBERT (Yasunaga et al., 2022b) is pretrained with MLM as
BERT and the relation-based objective for predicting the linkage between documents. Note that
some documents and relations in the MAG dataset may be used during the pretraining of SciBERT
and LinkBERT, which potentially causes some data leakage. Llama2-7B (Touvron et al., 2023) is
one of the most popular open-source pretrained and fine-tuned LLMs with 7 billion parameters.

Environment. We use a server with two AMD EPYC 7543 CPUs, 512GB DRAM, and NVIDIA
Quadro RTX 6000 (24GB) GPUs for BERT-based models and A100 (80GB) GPUs for Llama2-7B
models. The codebase is built on PyTorch 2.1.2, Transformers 4.23.0, PEFT 0.10.0, and Opacus
1.4.1. The source code is included and should be paired with the Transformers and PEFT packages
from HuggingFace and the Opacus library specified above.

Private Fine-tuning. We use DP-Adam, a variant from DP-SGD, as the default optimizer for
updating model parameters in a privacy-preserving manner: given privacy parameters of noise mul-
tiplier σ (or calibrated σ if ϵ is given) and clipping threshold of gradient norm C, with a learning
rate η from 1e-4 to 1e-6, weight decay from 0 to 1e-3, first 10% as warm-up steps. The batch
size of testing is set to 256 for relation prediction, which follows Jin et al. (2023b) that uses in-batch
negatives for computing ranking metrics. We use gradient accumulation over multiple mini-batches
to simulate training at the expected batch size in case the actual memory needs exceed the physical
memory limit of VRAM for large pretrained models. We search optimal training hyperparameters
under given privacy parameters, where their ranges are summarized in Table 6. All pretrained model
weights are publicly available and directly downloaded from Huggingface under proper licenses
listed in Table 7.

Inference Setting. Once the model is privately fine-tuned on relational data, it is deployed for
inference under two settings for relation prediction and entity classification on the corresponding
test domains (see Table 8): Zero-shot, where the model is directly used without further training on
samples from the test domain. This setting is only applied for relation prediction, where the dot
product between entity embeddings is used as the scoring function Γ for inference. Few-shot, where
limited labels from the test domain are provided to further fine-tune the target models obtained
after privacy-preserving relational learning. This setting is used for both relation prediction and
entity classification (the classifier requires some labels for initializing parameters), corresponding to
the scenario of relational data scarcity from the test domain and limited resources to perform full
domain-specific fine-tuning.

2ODC-BY License, refer to https://opendatacommons.org/licenses/by/1-0/
3CC0 License, refer to https://creativecommons.org/public-domain/cc0/
4ODC-BY License
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Privacy Model
MAG-USA MAG-CHN AMAZ-Cloth AMAZ-Sports

σ ϵ r σ ϵ r σ ϵ r σ ϵ r

ϵ = 10
BERT.base 0.32 9.95 4 0.32 8.74 2 0.3 9.71 2 0.3 9.06 8
BERT.large 0.34 8.72 4 0.33 8.56 2 0.3 9.94 8 0.32 7.69 8
Llama2-7B 0.378 7.91 4 0.357 8.16 4 0.326 8.50 8 0.315 8.83 8

ϵ = 4
BERT.base 0.42 3.30 8 0.4 3.99 2 0.4 3.34 2 0.4 2.65 2
BERT.large 0.42 3.82 4 0.41 3.32 2 0.376 4.00 8 0.4 3.27 2
Llama2-7B 0.456 3.97 4 0.433 4.00 4 0.4 4.00 8 0.4 3.88 8

Table 9: Privacy loss ϵ of model fine-tuning on relational data. σ, ϵ, r are noise multiplier, privacy
loss, and LoRA rank.
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Figure 3: Membership inference attacks on target models fine-tuned non-privately vs privately (ours)
over MAG-USA/CHN datasets. The distributions of relationship scores between each entity pair in
the training and test sets are plotted. The p-value obtained from the statistical test using the Wilcoxon
signed-rank test (Wilcoxon, 1992) is reported, where a small p-value suggested that the observed
difference between the score distributions of the training and test set is statistically significant.

E DETAILS FOR STUDIES IN SECTION 4.1

After privately fine-tuning target models on realtions from the training graph, we use the PRV ac-
counting (Gopi et al., 2021) to track privacy loss and convert it to (ϵ, δ)-DP. Table 9 summarizes the
values of noise multiplier σ used and the actual privacy loss ϵ for training each model on sensitive
relational data, which corresponds to the results reported in Table 1 under the zero-shot setting and in
Tables 2, 3 under the few-shot setting. Models under the few-shot setting have the same privacy loss
as zero-shot since the examples used for further fine-tuning are non-private from the test domain.
The scale of noise Cσ determines the privacy budget in DP-SGD, where higher privacy noise leads
to lower privacy leakage ϵ. Training with the same scale of privacy noise may result in different ϵ
reported in Table 9: Different batch sizes b (sampling ratio p = b/|E|) and numbers of iterations T
used in training also impact the privacy accounting in DP-SGD (Balle & Wang, 2018).

F ADDITIONAL RESULTS FOR STUDIES IN SECTION 4.2

Fig. 4 (Left) shows the joint effect of learning rate η and batch size b for BERT.base over zero-
shot relation prediction on AMAZ-cloth under the same privacy parameters: Larger batches and
learning rates together lead to good performance (diagonal area) under fixed training steps. This
observation aligns with the findings in privately fine-tuning LLMs on standard text data (Li et al.,
2021). Fig. 4 (Right) shows the impact of norm clipping threshold C for BERT.base on zero-shot
relation prediction over MAG-USA/CHN datasets, while other hyperparameters remain the same.
The threshold C does not affect the privacy budget ϵ but is crucial to the utility of DP models that
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Figure 4: Effects of learning rate η and batch size b (Left), and clipping norm threshold C (Right)
for zero-shot relation prediction with privacy preservation.

requires tuning in practice (Bu et al., 2024). Picking a threshold C larger than the actual gradient
norm means that most clipping in Eq. (3) is ineffective, and the scale of noise σC is added more
than necessary. For instance, C = 100 always performs the worst in Fig. 4 (Right). In general, small
values of C work better for relational learning as suggested in the general practice and observation
of DP learning over non-relational data (Tramer & Boneh, 2021; Li et al., 2021).
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