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Abstract

In this work, we analyze the conditions under which information about the context1

of an input data point can improve the predictions of deep learning models in new2

domains. Following work in marginal transfer learning and domain generalization,3

we formalize the notion of context as a permutation-invariant representation of a set4

of data points that originate from the same domain as the input itself. We offer a the-5

oretical analysis of the conditions under which this approach can, in principle, yield6

benefits, and formulate two necessary criteria that can be easily verified in practice.7

Additionally, we contribute insights into the kind of distribution shifts for which8

the marginal transfer learning approach promises robustness. Empirical analysis9

shows that our criteria are effective in discerning both favorable and unfavorable10

scenarios. Finally, we demonstrate that we can reliably detect scenarios where11

a model is tasked with unwarranted extrapolation in out-of-distribution (OOD)12

domains, identifying potential failure cases. Consequently, we showcase a method13

to select between the most predictive and the most robust model, circumventing14

the well-known trade-off between predictive performance and robustness.15

1 Introduction16

Distribution shifts are the cause of many failure cases in machine learning [1, 2] and the root of various17

peculiar phenomena in classical statistics, such as Simpson’s paradox [3, 4]. Domain Generalization18

(DG) seeks models that are robust to distribution shifts by utilizing data from distinct environments19

during training [5, 6]. In the context of DG, marginal transfer learning enhances a model with context20

information to achieve better predictions [7]. The “context” of a test instance is a set of samples21

that stems from the same environment as the instance itself and can be embedded, for instance, by22

permutation-invariant neural networks [8]. In this work, we enhance the fundamental understanding23

of settings where marginal transfer learning in DG can reap benefits compared to baseline models.24

Consider a probabilistic model p(Y | X) that classifies diseases Y from magnetic resonance (MR)25

images X. Since MR images are not fully standardized, the classifier should work slightly differently26

for images acquired by different hardware brands. It thus makes sense to inform the classifier about27

the current environment E (here: hardware brand) and extend it into p(Y | X, E). This raises a28

key question: Under which circumstances will the classifier p(Y | X, E) be superior to p(Y | X)?29

This question is important because there might exist a function E = f(X) allowing the classifier30

p(Y | X) to deduce E from the data X alone. For example, E might be inferred from the periphery31
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Figure 1: Conceptual sketch of our setup and approach. A) Data-generating process (DGP) that
fulfills our criteria. We assume that the environment E is a source node that is not caused by any
system variable and that the relationship between X and Y varies with the environment. S(n) is a
set of n i.i.d. inputs available in the new environment. The bidirectional arrow indicates that the
causal relation between X and Y could be explained by a common cause or Y causing X (or vice
versa). B) The context-aware model (marginal transfer learning approach) in a test environment. A
set-encoder generates a permutation-invariant representation h(S(n)) of the context. An inference
network processes the representation along with the target input X and predicts the unknown outcome
of the target input. The set-representation can be combined with the input to reliably detect out-of-
distribution queries and prevent failure cases in domain generalization due to model misspecification.

of the given image, while Y depends on its central region. Then, no additional information is gained32

by passing E explicitly, and both classifiers perform identically.33

Building on previous work in marginal transfer learning [7], we aim to learn a continuous embedding34

of E from auxiliary data using set-encoders, as depicted in Figure 1. We then establish three criteria35

that delineate the circumstances in which p(Y | X, E) is beneficial, and subsequently prove their36

necessity. Notably, two of these criteria are empirically testable using standard models and are shown37

to be necessary conditions for the success of the approach.38

When test environments are highly dissimilar to the training environments, all DG methods enter an39

extrapolation regime with unknown prospects of success and an increased risk of silent failures. While40

marginal transfer learning is not exempt from this “curse of extrapolation”, we find that it comes41

with a natural way to reliably detect novel environments in set-representation space and delineate42

its competence region [9]. Accordingly, we propose a method to select between models that are43

specialized in the ID setting versus models that are robust to OOD scenarios on the fly. Thus, we can44

overcome the notorious trade-off between ID predictive performance and robustness to distribution45

shifts [10–12]. In summary, our contributions are:46

• We formalize the necessary and empirically verifiable conditions under which the marginal47

transfer learning can improve on standard approaches;48

• We show empirically that we can identify cases where context-aware models offer no49

advantages or when dangerous extrapolation is necessary;50

• We show how the detection of novel environments allows for model selection, overcoming51

the trade-off between predictive performance and robustness.52

2 Method53

2.1 Notation54

We denote inputs X ∈ X and outputs as Y ∈ Y , without any strict requirements on the input and55

output spaces X and Y , respectively. We treat the (unknown) domain label E as a random variable56

and denote with S(n) a set of n further i.i.d. samples from a given domain, whose label E is only57

known during training time.58

2.2 Context-Aware Models59

A context-aware model consists of two key components (also illustrated in Figure 1): (i) a permutation-60

invariant network hψ (“set-encoder”) with parameters ψ that maps a set-input S(n) to a summary61

vector hψ(S(n)), and (ii) an inference network fϕ with parameters ϕ that maps both the input62

X and the summary vector hψ(S(n)) to a final prediction. The complete model is denoted as63
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fθ(X,S
(n)) = fϕ(X, hψ(S

(n))) with parameters θ = (ψ,ϕ) for short. For a given supervised64

learning task, we consider the optimization problem65

θ̂ = argmin
θ

Ep(X,Y,E)

[
c(fθ(X,S

(n)),Y)
]
, (1)

where c is a task-specific loss function (e.g., cross-entropy for classification or mean squared error66

for regression). Algorithm 1 details the optimization of Equation 1.67

2.3 Criteria for Improvement68

In the following, we establish criteria under which context information allows to exploit the distribu-69

tion shifts between environments and yield improved predictions.70

In total, we propose three criteria that are necessary to achieve incremental improvement. In71

Theorem 2.1, we show how these criteria are related to each other. In the formulations below,72

I(X;Y) denotes the mutual information between random vectors X and Y and I(X;Y | Z)73

denotes the conditional mutual information given a third random vector Z. The symbol ⊥ (resp. ̸⊥)74

between two random vectors X and Y is used to express that the random vectors are independent75

(resp. dependent) or conditionally independent (resp. dependent) given a third random vector Z.76

First, we require that given an input X, a further set of i.i.d. inputs S(n) from the same environment77

provides incremental information about Y. This is exactly what we need to achieve improved78

predictive performance, and we can formally define it as our first criterion:79

Criterion 2.1. S(n) ̸⊥ Y | X or I(S(n); Y | X) > 0.80

The second criterion requires that, given a target input X, a set of further i.i.d. inputs S(n) from the81

same environment provides additional information about the origin environment of X.82

Criterion 2.2. E ̸⊥ S(n) | X or I(E; S(n) | X) > 0.83

In Figure 2, an instance X cannot be assigned with complete certainty to an environment. Conse-84

quentially, further data provides additional information about the environment. In general, the more85

data we consider, the better we can predict the originating environment. Crucially, this criterion is86

not satisfied if we can recover the origin environment from the singleton input X alone.87

The third criterion requires that the singleton input X carries information about Y if we also consider88

the origin environment E of X.89

Criterion 2.3. Y ̸⊥ E | X or I(Y; E | X) > 0.90

This criterion can serve as a sanity check in case we have an oracle that can identify the origin91

environment of the data with perfect accuracy. In what follows, we show that Criterion 2.2 and92

Criterion 2.3 are necessary conditions for Criterion 2.1. We furthermore prove that if we can extract93

the environment label fully from S(n), then Criterion 2.2 and Criterion 2.3 are sufficient conditions94

for Criterion 2.1.95

Theorem 2.1. The following statements hold:96

(a) If E ⊥ S(n) | X, it follows that Y ⊥ S(n) | X. This is equivalent to the implication that if97

Criterion 2.2 is unattainable, then Criterion 2.1 is also not satisfied.98

(b) If E ⊥ Y | X, we achieve Y ⊥ S(n) | X. This statement corresponds to: Criterion 2.3 is a99

necessary condition for Criterion 2.1.100

(c) Assume that there exists a deterministic function g with g(S(n)) = E, then Y ̸⊥ E | X101

implies Y ̸⊥ S(n) | X. This conveys that if we could perfectly infer E from S(n), then102

Criterion 2.3 implies Criterion 2.1.103

In our experiments, we observe that a function g(S(n)) = E can already be found for small n (see104

for instance Figure 2). In this case, we obtain I(S(n); Y | X) = I(E; Y | X) and Criterion 2.2105

and Criterion 2.3 are sufficient to obtain Criterion 2.1. Unfortunately, we cannot conclude that106

Y ̸⊥ S(n) | X follows from Criterion 2.2 and Criterion 2.3 in general. A counterexample where107

Criterion 2.2 and Criterion 2.3 hold, but Criterion 2.1 is violated, is provided in Appendix C.2. We108

3



furthermore provide the proof of the theorem, an illustration for the theorem as well as a generalization109

of (c) in Appendix C.110

It is worth noting that model misspecification adds another layer of uncertainty when verifying the111

criteria. In cases where determining the correct mutual information is not feasible (for instance, when112

p(Y | X), p(Y | X,S(n)), or p(Y | X, E) cannot be learned adequately), two primary issues may113

emerge. Firstly, the effective utilization of the set-input S(n) (or E) may be hindered due to either114

the restricted expressive power of the model class or a scarcity of training data. As a result, the115

context-aware model might not improve on a baseline model that only utilizes X. Consequentially the116

criteria could seem unattainable while they actually are. Secondly, after training, we might observe an117

apparent advantage of the approximation of p(Y | X,S(n)) or p(Y | X, E) over the approximation118

of p(Y | X), despite the true model not conferring any advantage. In this scenario, the criteria119

may appear to be satisfied, whereas in reality they are not. An example of this case can be easily120

constructed by considering a non-linear p(Y | X) and a linear function class.121

2.4 Source Component Shift122

Using our approach, we can characterize the kind of distribution shift that allows our criteria to be123

satisfied. Source component shift refers to the scenario where the data comes from a number of124

sources (or environments) each with different characteristics [13]. The source component shift can be125

described by the graphical model in Figure 1, where the environment directly affects both the input X126

and the outcome Y. Problems that conform to the graph in Figure 1 have two important implications.127

First, the input distribution changes whenever the environment changes. Second, the relationship128

between inputs and outcomes varies with the environment (corresponding to Criterion 2.1). For more129

details on this kind of distribution shift, we refer the reader to [13]. It is also worth noting that the130

graph in Figure 1 corresponds to Simpson’s paradox [3, 4], which supplies a proof-of-concept for our131

approach (see Experiment 1). An important point to highlight is that the frequently encountered132

covariate shift where only P (X) in P (X,Y) = P (Y | X)P (X) varies between environments [13],133

does not conform to the conditions specified in Criterion 2.3. Hence, context-aware models do not134

provide advantages when compared to standard models under covariate shift.135

2.5 Detection of Novel Environments136

During test time, data could either originate from an environment that corresponds to one of the137

training environments (but its origins are unknown) or from a previously unseen environment. In the138

following, we explain how we aim to detect the second case that might result in potential failure cases139

due to fundamental challenges in extrapolation. Following [9], we can define a score s(hψ(S(n)))140

on the summary vector hψ(S(n)) implicit in our model fθ(X,S(n)) that aims to predict the target141

variable Y. As a score function, we consider the distance of hψ(S(n)) to the k-nearest neighbors in142

the training data in the feature space of the set-encoder. Accordingly, set-representations that elicit a143

score surpassing a certain threshold are considered to originate from a novel environment.144

Following the approach in [9], we consider the score distribution and set a threshold to classify a145

specific percentage, denoted as q, of in-distribution samples as originating from a known environment.146

To establish this threshold, we consider the q-th percentile of scores obtained from the validation147

set. We also compare our novel environment detector with the same score function computed from148

singleton features g(X) alone (see Table 2 for a preview).149

3 Related Work150

3.1 Domain Generalization151

Domain Generalization (DG) trains models to perform under distribution shifts without access to test152

environments [5, 6]. In contrast, Domain Adaptation (DA) assumes test samples are available during153

training [14]. Both exploit multiple source domains, but DG is strictly test-agnostic. Non-marginal154

DG approaches fall into three groups [15]: data manipulation [16, 17], robust representation learning155

[18, 19], and learning strategy modification [20, 21] (see 15, 6 for reviews).156
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Between DA and DG lie test-time adaptation (TTA) and marginal transfer learning. TTA adapts to157

unlabeled test samples, often via fine-tuning or domain metadata [22, 23]. Marginal transfer instead158

assumes access to the marginal feature distribution 1
n

∑
i σ(Xi) [7], with σ implemented via CNNs159

[24], kernel embeddings [7, 25], or patch embeddings [26]. While Blanchard et al. [7] analyze kernel160

embeddings theoretically, existing work leaves open conditions for effectiveness, failure detection,161

and context-aware model selection. A recent alternative replaces permutation-invariant embeddings162

with transformers that exploit sample order [27].163

Marginal transfer parallels in-context learning: labeled samples define context in the latter [28, 29],164

while unlabeled samples do so in the former. Finally, balancing in-domain and out-of-domain165

performance remains a central challenge [11, 12, 30]. Methods like Zhang et al. [30] mitigate this166

trade-off when domain identity is known, whereas our goal is to infer it.167

3.2 Learning Permutation-Invariant Representations168

Analyzing set-structured data with neural networks has received much theoretical [31, 8, 32] and169

empirical [33–35] momentum in recent years. For instance, [35] build on the set transformer170

architecture [34] and augment the attentive encoder with the capability to learn dynamic templates171

for attention-based pooling. Differently, [36] proposes to learn set-specific representations, along172

with global “prototypes”, using an optimal transport (OT) optimization criterion.173

A set-embedding can also be understood as a learned proxy variable for the confounder E. Generic174

proxy variables for confounding variables have been explored in the context of estimating the causal175

effect from X to Y in [37, 38]. While their work focuses on eliminating the effect of the confounding176

variable E, our objective is to leverage it for prediction purposes. Furthermore, they require X177

causing Y which does not conform to all prediction tasks. We do not require that X causes Y in our178

theoretical analysis and therefore include more scenarios (e.g., when Y is causing X).179

3.3 OOD Detection and Selective Classification180

Detecting unusual inputs that deviate from the examples in the training set has been a long-standing181

problem of conceptual complexity in machine and statistical learning [39–43]. Flagging OOD182

instances involves identifying uncommon data points that might compromise the reliability of183

machine learning systems [40]. OOD detection is closely related to inference with a reject option184

(also termed selective classification) [44, 45], which allows classifiers to refrain from predicting185

ambiguous or novel conditions [46]. The reject option has been extensively studied in statistical and186

machine learning [47–50], with early work dating back to the 1950s [51, 52, 47].187

More recently, [9] explored selective classification in DG settings. They investigated various post-hoc188

scores to define a “competence region” in feature space where a classifier is deemed competent.189

In this work, we consider a post-hoc score based on the k-nearest neighbours to the training set in190

feature space similar to [53], which applies to both classification and regression settings. Unlike the191

approach taken in [9], where the focus lies on features of individual instances, we consider the set192

summary provided by the set-encoder. Thus, we can identify novel environments even when singleton193

inputs lack sufficient information.194

4 Experiments195

In the following, we explore various aspects of context-aware models. First, we show on two datasets196

that a context-aware model achieves improved performance in ID and OOD settings compared to a197

baseline model when the necessary conditions of a source component shift are met. Second, we show198

how novel environments can be detected to select between the most predictive (in the ID setting) and199

the most robust (in the OOD setting) model. We also show that novel environment detection can be200

utilized to avoid failure cases. Third, we demonstrate that the necessary criteria (see Section 2.3)201

can be validated empirically, identifying cases where no benefits of the method can be expected.202

Experimental details can be found in the Appendix and the source code is available at 1.203

1https://anonymous.4open.science/r/context-aware-domain-generalization-2AF2/
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Figure 2: Experiment 1. Left: Toy dataset that conforms to our theoretical criteria. Without
environmental information, the marked input at x = 2.5 could belong to either one of the domains
numbered 1, 2, or 3 as indicated by the marginal distributions shown on top. Right: Comparison of
environment classification accuracy for a baseline model versus a mean-pooled set-encoder using
different set sizes. Distances between environments refer to the distance between the means of the
environments. Smaller distances produce stronger overlap of the marginals. A detailed description
can be found in Appendix E.1.

Model Symbol Description Purpose
Context-aware (ours) fY|X,S(n)

Predicts Y from X and S(n) Test Criterion 2.1
Baseline fY|X Predicts Y from X Reference
Environment-oracle fY|X,E Predicts Y from X and E Test Criterion 2.3
Contextual env. fE|X,S(n)

Predicts E from X and S(n) Test Criterion 2.2
Baseline env. fE|X Predicts E from X Reference for Criterion 2.2

Table 1: Five models used to evaluate our approach and verify the theoretical criteria.

4.1 Evaluation Approach204

To approximate Criterion 2.1, Criterion 2.2, and Criterion 2.3, we train five models (Table 1). Our205

context-aware model fY|X,S(n)

leverages context sets, while the baseline fY|X ignores them. Their206

relative improvement is207

RI =
M(fY|X,S(n)

)−M(fY|X)

M(fY|X)
, (2)

whereM(·) is a test performance metric (negative L2-loss for regression). RI > 0 indicates that208

Criterion 2.1 holds. For Criterion 2.2, we compare the contextual environment predictor fE|X,S(n)

209

with its baseline fE|X:210

RII =
M(fE|X,S(n)

)−M(fE|X)

M(fE|X)
. (3)

We set n such that fE|X,S(n)

achieves nearly perfect ID accuracy; RII > 0 supports Criterion 2.2.211

Finally, to test Criterion 2.3, we introduce the environment-oracle model fY|X,E and compute212

RIII =
M(fY|X,E)−M(fY|X)

M(fY|X)
. (4)

These relative improvement metrics serve as proxies for the theoretical criteria: whenM is cross-213

entropy under optimal models, they align with mutual information measures. However, ifM accuracy,214

then this proxy is not isomorphic to the criterion it approximates.215
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Figure 3: Experiment 1. Relative improvement of marginal transfer learning (shown in I) versus a
baseline model (0 means no improvement is achieved) on a toy example. We also show I (OOD) on
OOD data. II depicts the relative improvement of the environment-oracle model compared to the
baseline model. III demonstrates the relative improvement in predicting the environment when using
contextual information compared to the absence of it. Sampling variation arises from using different
seeds to partition the ID data into training, test, and validation sets.

4.2 Experiment 1: Toy Example216

Setup To set the stage, we consider a dataset shown in Figure 2. The dataset includes data from217

five different environments, defined by distinct Gaussian distributions. Each Gaussian deviates due to218

its location (i.e. mean vector). The dataset exemplifies Simpson’s paradox, wherein fitting without219

accounting for environmental factors would yield a negatively sloped line. This trend reverses to220

multiple positively sloped lines when considering environmental factors (see Figure 11).221

Importantly, the dataset meets our necessary criteria, since the environment cannot be inferred from a222

single input as indicated by the overlap of the marginal distributions in Figure 2. The mathematical223

details underlying this dataset are described in Appendix E.1.224

Results As a first check of Criterion 2.2, we evaluate whether a set input provides additional225

information about the environment compared to a singleton input. Figure 2 illustrates that additional226

set input improves the ability to distinguish between environments significantly and the more samples227

we include, the better the distinction. As expected, a decrease in the distance between environment228

marginal means necessitates more samples to differentiate between environments.229

Next, we assess the predictive capabilities of the context-aware approach across all possible scenarios230

of “leave-one-environment-out”. This involves training on all environments except one and treating231

the excluded environment as a novel OOD scenario. Here, we consider linear models to ensure an232

optimal inductive bias for the problem. We can see that Criterion 2.1, Criterion 2.2 and Criterion 2.3233

are satisfied in Figure 3. Providing contextual information in the form of a set input increases the234

performance significantly compared to a baseline model in the ID as well as in the OOD setting235

(see I and I (OOD) in Figure 3). We also observe a slightly higher relative improvement when the236

environment label is directly provided (see II) compared to using the output of the set-encoder (see I).237

This aligns with our expectations, as the set input does not offer more information about the target238

value than the environment label itself. Note that for metric III, we achieve less relative improvement239

since we consider the accuracy and not the L2-Loss.240

In Appendix E all scenarios where one environment is left out for testing can be found. Additionally,241

we present there similar results for non-linear models and also demonstrate that the specific choice of242

permutation-invariant network does not significantly impact the prediction of the environment label.243

Furthermore, in Appendix B, we conduct an additional experiment resembling Experiment 1, but244

with high-dimensional inputs and achieve similar results.245

4.3 Experiment 2: Colored MNIST246

Setup The ColoredMNIST dataset [54] is an extension of the standard MNIST dataset, wherein247

the number of classes is reduced to two classes (digits < 5 and ≥ 5). Furthermore, label noise is248
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Accuracy [%] ↑
ID OOD

Baseline 84.6± 0.3 10.2± 0.3
Invariant 72.8± 0.9 73.1± 0.2

Selection (Ours) 84.1± 0.3 73.1± 0.2
Selection (Baseline) 84.0± 0.3 14.0± 0.4

Bayes Optimal 85.0 75.0

Table 2: Experiment 2. Accuracy across model types and domain settings. Our context-aware model
yields improved OOD detection compared to the baseline, allowing model selection at inference time.
See Appendix K for more details.

deliberately added, such that only in 75% of all cases, the label can be correctly predicted from the249

shape. To make things more challenging, the image background can take two colors that are also250

associated with the image label. In the first environment, the association is 90% and in the second251

one 80%. Therefore, a baseline model would tend to utilize the background for prediction instead252

of the actual shape. However, in a third environment, the associations are reversed, so that a model253

based on the background color would achieve only 10% accuracy (i.e., worse than random).254

This dataset implies a trade-off between predictive performance in ID domains versus robustness255

in OOD domains, as discussed in [54, 30]. For instance, an invariant model that relies solely on256

an object’s shape would be robust to domain shift at the cost of lower accuracy in the first two257

environments (75% vs. 80% or 90%). In contrast, a baseline model would achieve greater accuracy258

in the first domains (80% and 90%), but would fail dramatically in the third domain (only 10%).259

Results Here, we assume the invariant model to be given, but it could also be obtained by invariant260

learning, e.g. Invariant Risk Minimization [54]. With our novel environment detection approach261

(see Section 2.5) we can get the best of both worlds, circumventing the inherent trade-off. When262

identifying the ID setting, we utilize the baseline model that achieves the highest predictiveness263

within the observed environments. In case we detect the OOD setting, we employ the invariant model.264

We compare this kind of model selection due to the features hψ(S(n)) inherent to our model versus265

the features extracted by the baseline model.266

The results can be found in Table 2. By utilizing model selection based on the set-summary hψ(S(n)),267

we nearly recover the ID accuracy while maintaining identical performance to the invariant model268

on OOD data. Evidently, the novel environment detection only works with set summaries. A269

feature extracted from a single sample does not provide enough information to reliably detect270

distribution shifts, leading to difficulties in effectively selecting between baseline and invariant model,271

as demonstrated in Table 2. Details on this experiment can be found in Appendix G.272

4.4 Experiment 3: Violated Criteria273

Setup To demonstrate the effects of criterion violation, we consider the PACS dataset [55], as well274

as the OfficeHome dataset [56], each with the Art environment chosen as the novel (OOD) domain.275

Results As expected, when the criteria are not met, context-aware models cannot achieve a benefit276

over the baseline (see Figure 4). Validating the criteria empirically, we find that Criterion 2.2 is277

not satisfied for PACS, as a single sample is sufficient to infer the source domain with near-perfect278

accuracy. Furthermore, Criterion 2.3 is not satisfied, as Figure 4a depicts.279

On the OfficeHome dataset we find that Criterion 2.2 is not satisfied, while Criterion 2.3 is. Results280

are depicted in Figure 4b. We observe that the set input offers benefits for predicting the source281

environment corresponding to Criterion 2.3. However, even when providing the target classifier with282

the environment label, we do not achieve a benefit, suggesting that Criterion 2.2 is not satisfied. For283

experimental details, see Appendix H.284

4.5 Experiment 4: Failure Case Detection285

Setup Besides unfulfilled criteria, another reason why a context-aware approach might fail to286

reap benefits is when the distribution shift requires extrapolation. This might be unattainable by287
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(a) Environment Art in PACS dataset. The environ-
ment is almost completely inferable from one input
sample (Criterion 2.2 not satisfied). Conclusively
the context-aware approach does not yield benefits.

(b) Environment Product in OfficeHome dataset.
Although the environment is not inferable from
one input sample (Criterion 2.2), the environment
information does not yield benefits (Criterion 2.3).

Figure 4: Experiment 3. Tell-tale examples where at least one of the necessary criteria is not satisfied
and the context-aware approach cannot possibly yield benefits.

Winter MSE ↓ AUROC
[%] ↑ID OOD

Baseline 2.21± 0.11 6.08± 0.13 58.2± 0.7
Ours 2.09± 0.12 5.7± 0.4 100.0± 0.0

Table 3: Experiment 4. Inference performance (MSE) and novel environment detection (AUROC)
comparison between our context-aware model and the baseline for the winter domain in the Bike-
Sharing dataset. See Appendix K for more details.

the model, making the inclusion of a reject option beneficial. Using the BikeSharing dataset [57],288

we demonstrate that in cases where different seasons like summer or winter represent distinct289

environments, extrapolation might be necessary. We consider the task of predicting the number of290

bikes rented across the day based on weather data. Here we explore the scenario where we train on291

all seasons except winter. Details about the dataset, pre-processing steps, and other testing scenarios292

can be found in Appendix J.293

Results In Table 3 we demonstrate that the context-aware approach is slightly superior compared294

to the baseline model in the ID settings. However, both the baseline and the context-aware approach295

experience performance degradation in the novel winter environment. To detect the novel environment296

and, consequentially, potential failure cases, we compute the score as suggested in Section 2.5297

and evaluate how well it distinguishes between ID versus OOD environments. We designate an298

independent ID test set and use the environment excluded during training (here winter) as the OOD299

set for evaluation. The area under the ROC-curve (AUROC) in Table 3 demonstrates that the score300

based on the permutation-invariant embedding allows for perfect detection of the novel environment,301

whereas the standard approach fails as expected.302

5 Conclusions303

In this work, we aimed to advance the theoretical understanding of marginal transfer learning in304

domain generalization. Accordingly, we formalized criteria that are necessary for context-aware305

models to yield benefits and are also verifiable in practice. Moreover, we pinpointed the source306

component shift as a scenario where context-aware models can offer advantages, enabling the307

identification of favorable settings and the identification of potential failure cases. The latter allows308

us to perform real-time model selection between the best performing model on ID data and the most309

robust (i.e., domain-invariant) model on OOD data. Future research should investigate generalization310

bounds, the learner’s behavior in finite-data regimes, and the generalization behavior of the learner as311

the number of training domains increases (i.e., the domain efficieincy).312
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A Pseudocode488

Algorithm 1: Optimizing Equation 1 for context-aware domain generalization.
Data: Samples from the joint distribution p(X,Y, E)
Input :Composite model parameters θ, set size n, batch size m, loss-function c, number of

iterations k, learning rate schedule α(k)
1 for i = 1, . . . , k do
2 Sample mini-batch B = {(x1,y1, env1), . . . , (xm,ym, envm)} from p(X,Y, E)
3 for j = 1, . . . ,m do
4 Sample set s(n)j = {x1, . . .xn} from p(X | E = envj)
5 Replace envj with s

(n)
j in B

6 end
7 Update θ using adaptive mini-batch gradient descent (or any variant):

θk ← θk−1 − α(k)∇θ

 m∑
j=1

c
(
fθ(xj , s

(n)
j ),yj

)
8 end

Output :Trained context-aware model fθ

B Additional Experiment: ProDAS489

Setup We utilize the ProDAS library [58] to generate high-dimensional image data that meets our490

dataset requirements. The dataset comprises objects of shape square and circle, exhibiting variations491

in their texture, background color, rotation, and size. Additionally, the background varies in color492

and texture, resulting in a complex scenario. For examples see Figure 10. We consider the task of493

predicting the object size. Difficulties arise due to the presence of distinct environments with varying494

characteristics. Specifically, depending on the environment, a constant is added to the observed object495

size to get the actual target variable that we aim to predict:496

Ygt = Yobserved + j · const1 (5)

Here, j ∈ {1, 2, 3, 4} denotes the environment, while Ygt represents the ground truth (or factual) size,497

obtained as a sum of the observed size Yobserved (relative to the image frame) and a constant depending498

on j.499

The background color follows a normal distribution N (µj ;Σ) where the mean depends on the500

environment in the following way: µj = µ0 + j · const2. Here we assign a small value to const2 to501

enforce the background distributions to overlap between different environments. Specifically, this502

construction implies that the relation between input X and target Y differs across environments.503

This corresponds to Criterion 2.3. Notably, inferring the originating environment from a single504

sample is unattainable due to overlapping background distributions (corresponding to Criterion 2.2).505

Samples of different environments are shown in Appendix F. This example could be inspired by506

microscopy data where different microscopes correspond to distinct environments, each exhibiting its507

own characteristics. During training, we assume to have access to the ground truth value Ygt.508

Results In line with the results from the previous toy example, we can demonstrate a strong relative509

improvement in the ProDAS dataset, as depicted in Figure 5. All formal criteria are satisfied and a510

very significant improvement is achieved, both in the ID and the OOD setting, by considering the511

contextual information from the environment. Additional details for this experiment can be found in512

Appendix F.513
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Figure 5: Experiment 2: Relative improvement of set-encoder (shown in I) approach versus baseline
model (0 means, no improvement is achieved) on ProDAS dataset. We also show I (OOD) on
OOD data. II depicts the relative improvement of the environment-oracle model compared to the
baseline model. III demonstrates the relative improvement in predicting the environment when using
contextual information compared to the absence of it. Variations arise from using different seeds to
partition the ID data into training, test and validation set.

C Theory514

C.1 Generalization of Theorem 2.1 to Noisy Environments515

Theorem C.1. In addition to Theorem 2.1, the following holds:516

(d) Assume that there exists a function g and a noise variable Z that elicits the relation E =517

g(S(n)) + Z and satisfies S(n) ⊥ Z | X as well as S(n) ⊥ Z | X, Y . Furthermore, assume518

that Y ̸⊥ E | X and I(Y;E | X) > I(Z;Y | X). Then, we achieve Y ̸⊥ S(n) | X,519

recovering Criterion 2.1.520

The proof can be found in Appendix C.3.521

C.2 Insufficiency of Criteria 2 and 3 for Criterion 1522

Criterion 2.2 and Criterion 2.3 are not sufficient to imply Criterion 2.1. This can be seen in an523

example with three environments j ∈ {1, 2, 3}. Assume the first two have completely identical524

input distributions. We presume that both input distributions adhere to a uniform distribution U [a, b].525

Furthermore, we assume that the third input distribution also follows a uniform distribution that is526

slightly shifted, i.e. U [a + a+b
2 , b + a+b

2 ]. Due to the overlap between the third and the first two527

environments, a set input provides additional information about E compared to a single sample X ,528

verifying Criterion 2.2.529

Regarding the mechanism relating inputs to outputs, we assume that on [a, a+b2 ] the relation between530

input X and output Y differs, e.g., two constant functions with distinct values. We further assume531

that on (a+b2 , b+ a+b
2 ] the relation between input X and output Y does not vary with the environment,532

e.g., is constant. This aligns with Criterion 2.3: if we know the environment, we can improve the533

prediction, specifically on [a, a+b2 ].534

However, Criterion 2.1 is not satisfiable. The set input allows us to distinguish environment 3 (i.e.535

the one with support U [a+ a+b
2 , b+ a+b

2 ]) from the other ones. Yet, we cannot distinguish between536

environment 1 and environment 2. Since the relation between X and output Y differs only in the537

supports of environment 1 and environment 2 (specifically, it differs in U [a, a+b2 ]), the set input538

cannot provide additional information about the output Y compared to the single input X , i.e. it539

holds Y ⊥ S(n) | X .540

It is also worth noting that Criterion 2.3 might be achievable while Criterion 2.2 is unattainable541

and vice versa. For instance, when we can infer the originating environment from one sample542

(Criterion 2.2 is not attainable), the relation between X and Y might still vary with the environment543

(Criterion 2.3 is achievable).544
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Environments indistinguishable by set

𝐸 ⟂ 𝐒(𝑛) | 𝑋
→→→→→→→→→→→→→
(𝑎) Set-embedding cannot improve prediction

𝑌 ⟂ 𝐒(𝑛) | 𝑋

𝑝(𝑦|𝑥) differs across environments

𝑌 ⟂/ 𝐸 | 𝑋

𝑝(𝑦|𝑥) same in environments

𝑌 ⟂ 𝐸 | 𝑋

Set-embedding cannot improve prediction

𝑌 ⟂ 𝐒(𝑛) | 𝑋
←←←←←←←←←←←←←
(𝑏) 𝑝(𝑦|𝑥) same in environments

𝑌 ⟂ 𝐸 | 𝑋

𝑝(𝑦|𝑥) differs across environments

𝑌 ⟂/ 𝐸 | 𝑋

Set-embedding can improve predictions

𝑌 ⟂/ 𝐒(𝑛) | 𝑋
←←←←←←←←←←←←←
(𝑐) 𝑝(𝑦|𝑥) differs across environments

𝑌 ⟂/ 𝐸 | 𝑋

Figure 6: Illustration of Theorem 2.1. The first row depicts (a), the second row (b) and the third row
(c). The pink framed plots show the conditional distributions along the pink marker as shown on the
right.

C.3 Illustration and Proof of Theorem 2.1545

In the following, we give proofs of Theorem 2.1 (a) - (d).546

Proof. For the upcoming proofs, we extensively employ the chain rule of mutual information:547

I(Y;Z,X) = I(Y;Z | X) + I(Y;X) (6)

Additionally, we have the inequalities I(Y;S(n) | X) ≤ I(Y;E | X) and I(S(n);Y | X) ≤548

I(E;Y | X) that follow from the data processing inequality and how S(n) relates to the other549

variables (see Figure 1).550

For (b): We easily achieve551

I(Y ;S(n),X) = I(Y;S(n) | X) + I(Y;X) (7)
≤ I(Y;E | X) + I(Y;X) (8)
= I(Y;X) (9)

Therefore, we have552

0 ≤ I(Y;S(n) | X) = I(Y;S(n),X)− I(X;Y) ≤ 0 (10)

which proves (b).553

For (a): We can write554

I(S(n);Y,X) = I(S(n);Y | X) + I(S(n);X) (11)

≤ I(S(n);E | X) + I(S(n);X) (12)

= I(S(n);X) (13)

and therefore555

0 ≤ I(Y;S(n) | X) = I(S(n);Y,X)− I(X;S(n)) ≤ 0 (14)

and conclusively Y ⊥ S(n) | X.556
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For (c) is easily seen that 0 < I(Y;E | X) = I(Y; g(S(n)) | X) ≤ I(Y;S(n) | X) and therefore557

(c) holds true.558

For (d), we also employ the entropy h(X) as well as the conditional entropy h(X | Y). We first559

establish that I(A+B;C) ≤ I(A;C) + I(B;C) for any RVs A,B,C with A ⊥ B and A ⊥ B | C:560

I(A+B;C) = h(A+B)− h(A+B | C)
(⋆)
= (h(A) + h(B)− h(A | A+B))− (h(A | C) + h(B | C)− h(A | A+B,C))

= I(A;C) + I(B;C)− h(A | A+B) + h(A | A+B,C)

(⋆⋆)

≤ I(A;C) + I(B;C) (15)

(⋆) follows with the chain rule for entropy561

h(A,A+B) = h(A) + h(A+B | A) (16)

= h(A) + h(B | A) A⊥B
= h(A) + h(B) (17)

= h(A+B) + h(A | A+B) (18)

which implies h(A+B) = h(A) + h(B)− h(A | A+B) and equally when conditioning on C.562

(⋆⋆) follows since h(A | A+B,C) ≤ h(A | A+B).563

Equation 15 can be extended to the conditional mutual information if A ⊥ B | D and A ⊥ B | D,C:564

I(A+B;C | D) ≤ I(A;C | D) + I(B;C | D) (19)

Since S(n) ⊥ Z | X and S(n) ⊥ Z | X, Y , we achieve565

0 < I(Y;E | X) = I(Y ; g(S(n)) + Z | X) (20)

≤ I(Y; g(S(n)) | X) + I(Y;Z | X) (21)

≤ I(Y;S(n) | X) + I(Y;Z | X) (22)

and therefore566

0 < I(Y;E | X)− I(Y;Z | X) ≤ I(Y;S(n) | X) (23)

which concludes the proof.567

In the following, we discuss the assumptions in (c) and (d). In our experiments, we observed that in568

most datasets a relatively small sample size suffices to infer the environment label with approximately569

100% accuracy (see Table 6). Therefore, the assumption that there exists a function g(S(n)) = E570

seems justified if n is sufficiently large. To generalize the assumption where the environment label is571

not fully inferable, we have to make assumptions. For one, we require S(n) | Z | X. This can be572

interpreted as “increasing the set size does not improve the prediction of E”. Also S(n) ⊥ Z | X, Y573

can be interpreted similarly: increasing the set size and considering the ground truth label/value does574

not enhance the predictability of E. Both assumptions should hold approximately if n is large enough.575

With the assumption I(Y;E | X) > I(Z;⊥ Y | X) we assume that the noise Z is less predictive of576

Y compared to E if X is given. This can be roughly interpreted as the noise does not prove useful577

for predicting Y from X compared to the ground truth environment label.578

D Experiments: General Remarks579

We define the relative improvementsRII andRIII as580

RII =
M(fE|X,S(n)

)−M(fE|X)

M(fE|X)
(24)

and581

RIII =
M(fY|X,E)−M(fY|X)

M(fY|X)
(25)
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RII signifies the relative performance gain in predicting the environment when the set input is given582

compared to the solitude input. In contrast,RIII denotes the relative performance improvement of the583

environment-oracle model compared to the baseline model.584

Due to the large amount of settings, we did only little hyper-parameter optimization (we looked into585

batch size, learning rate, and network size). For a given dataset we optimized only on one scenario586

where an environment is left out during training. The found hyper-parameters were then applied587

to all other scenarios. To ensure that the baseline model is comparable to ours, we ensure that the588

inference network (and feature extractor) in Figure 1 have a comparable number of parameters as589

the baseline model. In all cases, the set-encoder is kept simple and its hyper-parameters are selected590

for optimal performance of the contextual environment predictor fE|X,S(n)

. For an overview, see591

Table 6. Throughout all experiments, we employ a mean-pooling operation.592

We show the accuracies of classifying the environment of the contextual-environment model fE|X,S(n)

593

and the baseline environment model fE|X in Table 6. Here we only consider the datasets where we594

performed a full evaluation of all criteria.595

D.1 Computational complexity596

We run all experiments using four Titan X GPUs, with 12GB VRAM each. On this hardware, each597

experiment requires between two and three days to run to completion. Our code base provides several598

utilities to reduce the overall memory footprint, allowing reproduction of our experiments on less599

powerful hardware.600

E Experiment 1: Details601

E.1 Data Generation602

Simpson’s Paradox [3, 4] describes a statistical phenomenon wherein several groups of data exhibit a603

trend, which reverses when the groups are combined. There are several famous real-world examples604

of Simpson’s Paradox, such as a study examining a gender bias in the admission process of UC605

Berkeley [59] or an evaluation of the efficacy of different treatments for kidney stones [60].606

To replicate this, we create a dataset inspired by an illustration of Simpson’s Paradox on Wikipedia607

[61]. The dataset consists of a mixture of 2D multivariate normal distributions, with the intent of using608

the first dimension as a feature, and the second as a regression target. Unless otherwise specified, we609

generate the data by taking an equal number of samples from each mixture component, defining the610

environment as a one-hot vector over the mixture components.611

The mixture components are chosen to lie on a trend line that is opposite to the trend within each612

mixture. We achieve this by using a negative global trend and choosing the covariance matrix of each613

mixture as a scaled and rotated identity matrix with an opposite trend.614

Setting Value Controls
n_domains 5 number of mixture components
n_samples 10000 number of samples per mixture component
spacing 2.0 spacing between means of the mixture components
noise 0.25 overall noise level

noise_ratio 6.0 ratio of the primary to secondary noise axis
rotation_range (45.0, 45.0) min (leftmost) and max (rightmost) mixture rotation angle

Table 4: Default Settings for the Simpson’s Paradox Dataset. Samples from the dataset constructed
with these settings can be seen in Figure 2

The YouTube channel minutephysics also published a short descriptive video on this phenomenon in615

2017 [62].616

E.2 Training Details617

We consider five distinct settings, where in each setting, one domain is left out during training, and618

considered for evaluation as a novel environment. To gauge the uncertainty stemming from data619
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sampling, we also consider five dataset seeds for partitioning into training, validation, and test sets.620

For each dataset seed and model, we consider the results due to the best performance on the validation621

set.622

We enforced that our approach and the baseline model have a similar amount of parameters for the623

feature extractor and final inference model. We conducted minimal hyperparameter tuning (focusing624

on parameters such as the learning rate schedule, batch size, and the number of parameters), and this625

was performed solely within one “leave-one-environment-out” setting. In total, we trained the five626

models outlined in Table 1 using five distinct dataset seeds. Consequently, a total of 5 · 5 · 5 = 125627

models were trained. In all cases, the set-encoder is kept simple and its hyper-parameters are selected628

for optimal performance of the contextual environment predictor fE|X,S(n)

. We choose the mean as629

the pooling operation.630

Figure 7: Experiment 1. Predictions performed on the toy dataset illustrated in Figure 2. We show
predictions made by both our set-encoder approach and the vanilla model in the ID and OOD settings.

Now, we visualize the predictions of the baseline approach and our set-encoder approach in Figure 7631

for one trained model. Our model captures and utilizes the characteristics of each environment for632

prediction. In contrast, the baseline approach struggles to discern between environments due to633

the significant overlap between environments, resulting in an inability to deal with environmental634

differences. Note that we obtained the best results by considering a class of linear models that aligns635

with the data-generating process. However, we observe that extrapolation performance drops when636

the considered models are overly complex and lack a strong inductive bias (see Appendix E.3).637

E.3 Non-Linear Models638

In the experiments in Section 4.2, we considered linear models for our model and the baseline. In the639

following, we show results for the non-linear model class in Figure 8. We compare predictions of a640

baseline model and our model on all environments in Figure 9. We see that the extrapolation task641

fails in some cases as in environment 1. This is due to the mismatch of the considered model class642

and ground truth model.643

F Additional Experiment: Details644

Data samples from different environments are depicted in Figure 10. The process of how inputs relate645

to outputs is described in Appendix B.646

During training, we employ a convolutional network to extract features g(X). These features are647

passed to the inference network and the set-encoder. The feature extractor is then jointly trained with648
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Figure 8: Experiment 1. Verification of criteria. In I we depict the relative improvement of
our approach versus a baseline model. We also show I (OOD) on OOD data. In II we show the
relative improvement of the oracle model compared to the baseline. In III we compare the relative
improvement of the contextual environment model with respect to the baseline environment model.

Figure 9: Experiment 1. Models are trained on all environments except the OOD environment.
“Extrapolation”, i.e. when environment 1 or 5 is OOD, is a particularly hard task in this setting.
The set-based model shows slightly better extrapolation capabilities. Generally, our model exhibits
adaptability to diverse environments, addressing a limitation present in the baseline model.

(a) Environment 1 (b) Environment 2

(c) Environment 3 (d) Environment 4

Figure 10: Additional Experiment. We generate four distinct domains synthetically. Notably, the
background color within each domain follows a normal distribution. However, there are variations in
the means across these domains Note that there is a huge overlap between the environments.
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the inference network and set-encoder. We ensured that the feature extractor plus inference network649

and the baseline model have a comparable amount of parameters. The set-encoder is kept simple and650

its hyper-parameters are selected for optimal performance of the contextual environment predictor651

fE|X,S(n)

. As a pooling operation we choose the mean-pooling.652

G Experiment 2: Details653

To select between the baseline model and the invariant model, we are required to distinguish between654

ID and OOD data. Therefore, we follow the approach proposed in Section 2.5. We consider the655

k-nearest neighbors of the training set to compute the score sψ where k = 5. Since we compare the656

scores elicited by features of the baseline model with the scores elicited by the features extracted by657

the set-encoder, we restricted both architectures to have the same feature dimension. To establish a658

threshold for distinguishing between ID and OOD samples, we designate samples with scores below659

the 95% quantile of the validation set as ID and those above as OOD (see Section 2.5 for details).660

In total, we explore five dataset seeds to partition into training, validation, and test sets. To train661

an invariant model, we considered the same split in training, validation, and test set where the662

background color has no association with the label. Therefore the invariant model learns to ignore the663

background color and only utilize the shape for prediction. To learn effectively about the environment,664

we considered a large set input, namely 1024 samples in S(n). We employed a simple set-encoder665

incorporating a mean pooling operation.666

H Experiment 3 and 4: Details667

For the BikeSharing dataset we consider a simple feed-forward neural network in all models. For668

the PACS as well as the OfficeHome dataset we consider features g(X) that are kept fixed and not669

optimized. Here, we employ the Clip features proposed in [63]. The inference model, baseline model,670

and set-encoder are kept simple and employ only linear layers followed by ReLU activation functions.671

Given that Clip features considerably simplify the task, we performed a minimal hyper-parameter672

search and ensured that the inference model had a similar number of parameters as the baseline673

model. In all cases, the set-encoder is kept simple and its hyper-parameters are selected for optimal674

performance of the contextual environment predictor fE|X,S(n)

.675

Spring

MSE ↓
AUROC [%] ↑

ID OOD

Baseline 2.89 ± 0.15 𝟐.𝟗𝟒 ± 0.05 50.8 ± 2.2
Ours 𝟐.𝟏𝟑 ± 0.13 3.23 ± 0.11 𝟗𝟗.𝟕 ± 0.2

Summer

MSE ↓
AUROC [%] ↑

ID OOD

Baseline 2.99 ± 0.17 𝟐.𝟕𝟒 ± 0.10 65 ± 5
Ours 𝟐.𝟐𝟕 ± 0.13 3.8 ± 0.4 𝟏𝟎𝟎.𝟎 ± 0.0

Fall

MSE ↓
AUROC [%] ↑

ID OOD

Baseline 2.29 ± 0.12 𝟕.𝟎 ± 0.4 76.4 ± 2.6
Ours 𝟐.𝟏𝟗 ± 0.09 14.90 ± 1.30 𝟏𝟎𝟎.𝟎 ± 0.0

Winter

MSE ↓
AUROC [%] ↑

ID OOD

Baseline 2.21 ± 0.11 6.08 ± 0.13 58.2 ± 0.7
Ours 𝟐.𝟎𝟗 ± 0.12 𝟓.𝟕 ± 0.4 𝟏𝟎𝟎.𝟎 ± 0.0

Table 5: Experiment 4. Performance comparison between our model and the baseline, broken down
by target domain. We compare their performance in the ID and OOD setting (MSE), as well as
their capability to detect a novel environment (AUROC). Both models experience a performance
drop in the OOD setting, but our model can detect with strong certainty when this is the case. See
Appendix K for more details.

In all cases, the set-encoder is kept simple and its hyper-parameters are selected for optimal perfor-676

mance of the contextual environment predictor fE|X,S(n)

.677
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Dataset / Set Size Simpson / 32

Domain 1 2 3 4 5

fE|X 86.3± 1.3 90.8± 1.3 90.7± 0.8 90.4± 0.9 85.5± 0.8

fE|X,S(n)

100.0± 0.0 100.0± 0.0 100.0± 0.0 100.0± 0.0 100.0± 0.0

Dataset / Set Size ProDAS / 128 OfficeHome / 4 PACS / 4

Domain 1 2 3 4 Product Art

fE|X 43.8± 1.1 50.0± 1.3 49.9± 2.3 44.4± 1.0 86.16± 0.33 99.72± 0.33

fE|X,S(n)

99.6± 0.6 99.5± 1.0 98.7± 1.6 98.0± 3.2 98.49± 0.24 100.0± 0.0

Table 6: Environment classification accuracy for different models and datasets, broken down by
domain. As in Table 5, the uncertainty (mean and standard deviation) is computed over multiple
seeds for dataset splits. In all cases, the set-based model outperforms the baseline.

I Comparison of Permutation-Invariant Architectures678

As a pilot experiment, we estimate the contextual information contained in a set input by evaluating679

the binary classification accuracy of a set-based model compared to a baseline model with singleton680

sample input.681

Importantly, we postulate that for stronger domain overlap, the contextual information contained682

within the single sample decreases significantly, while the contextual information within the set683

decreases only weakly, depending on the set size. Domains that do not overlap exactly will remain684

distinguishable, so long as the set size is large enough.685

Therefore, we construct the toy dataset as described in Appendix E.1, but use the setting n_domains686

= 2 and vary the distance between environments for each experiment.687

We train each architecture on this dataset for 20 epochs, using 5 different seeds. We evaluate a688

total of 30 domain spacings, linearly distributed between 0.05 and 1.5 (both inclusive). Since we689

evaluate a baseline model, plus 3 set-based models at 3 different set sizes, this brings us to a total of690

30 · 20 · 5 · (1 + 3 · 3) = 30000 model epochs. We choose the batch size at 128 fixed.691

Each architecture consists of a linear projection into a 64-dimensional feature space, followed by a692

fully connected network with 3 hidden layers, each containing 64 neurons and a ReLU [64] activation.693

For the set-based methods, this is followed by the respective pooling. We choose 8 heads for the694

attention-based model.695

Finally, the output is linearly projected back into the 2-dimensional logit space, where the loss is696

computed via cross-entropy [65].697

For methods that support a non-unit output set size, we choose the output set size as 4. The output set698

is mean-pooled prior to projection into the logit space.699

J Bike Sharing Dataset700

This dataset, taken from the UCI machine learning repository [57], consists of over 17000 hourly and701

daily counts of bike rentals between 2011 and 2012 within the Capital bike share system.702

Each dataset entry contains information about the season, time, and weather at the time of rental.703

Casual renters are also distinguished from registered ones.704

Similar to [66], we only consider the hourly rental data. We drop information about the concrete705

date and information about casual versus registered renters. We choose the season variable (spring,706

summer, fall, winter) as the environment and the bike rental count as the regression target. Since we707

deal with count data, we also apply square root transformation on the target similar to [66].708
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Figure 11: Comparison of different architectural choices for the permutation-invariant network in
predicting the data’s originating environment. We consider various distances between environments
and different set sizes n. As anticipated, the plots illustrate that smaller environment distances make
it more challenging to differentiate between them. Moreover, with a larger set size n, our ability
to predict the environment label improves. Notably, the baseline model shows significantly poorer
performance compared to the model utilizing contextual information in the form of a set input.

K Table Details709

For tables 2, 3, and 5, we present the mean and standard deviation computed over 5 different training710

runs using separate seeds for partitioning the data into training, validation, and test sets.711

We compute the AUROC by calculating a score for each sample as described in Section 2.5. The712

AUROC is then determined by calculating the AUC of the ROC curve, which is associated with the713

task of predicting the environment.714

We highlight models within the 95% confidence interval of the best one for each respective category715

in bold.716

L Potential Societal Impacts717

This paper presents a foundational study, with societal impacts reliant mostly on the application of our718

methods. Nevertheless, we estimate that good-faith applications of our methods can have a positive719

societal impact. This manifests in improved performance results when our criteria are satisfied, as720

well as increased trustworthiness of these results due to the reliant detection of novel environments.721

This is particularly important for safety-critical applications, e.g., in medicine.722

Negative societal impacts may also manifest in bad-faith applications, as the improved results may be723

misused. Furthermore, there is a risk that our methods may inadvertently perpetuate existing biases724

in data, particularly if environments are chosen in bad faith.725

M Technical Appendices and Supplementary Material726

Technical appendices with additional results, figures, graphs and proofs may be submitted with727

the paper submission before the full submission deadline (see above), or as a separate PDF in the728

ZIP file below before the supplementary material deadline. There is no page limit for the technical729

appendices.730
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Question: Do the main claims made in the abstract and introduction accurately reflect the733

paper’s contributions and scope?734

Answer: [Yes]735

Justification: We claim to empirically and theoretically analyse the conditions under which736

set-encodings can benefit marginal transfer learning. We show this via mathematical proofs737

and on a range of experiments, including possible failure cases.738

Guidelines:739

• The answer NA means that the abstract and introduction do not include the claims740

made in the paper.741

• The abstract and/or introduction should clearly state the claims made, including the742

contributions made in the paper and important assumptions and limitations. A No or743

NA answer to this question will not be perceived well by the reviewers.744

• The claims made should match theoretical and experimental results, and reflect how745

much the results can be expected to generalize to other settings.746

• It is fine to include aspirational goals as motivation as long as it is clear that these goals747

are not attained by the paper.748

2. Limitations749

Question: Does the paper discuss the limitations of the work performed by the authors?750

Answer: [Yes]751

Justification: We provide an extensive discussion of the limitations of our approach through-752

out the paper. For instance, we consider the scenario when our theoretical criteria are753

violated in Section 4.4.754
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• The answer NA means that the paper has no limitation while the answer No means that756

the paper has limitations, but those are not discussed in the paper.757

• The authors are encouraged to create a separate "Limitations" section in their paper.758

• The paper should point out any strong assumptions and how robust the results are to759

violations of these assumptions (e.g., independence assumptions, noiseless settings,760

model well-specification, asymptotic approximations only holding locally). The authors761

should reflect on how these assumptions might be violated in practice and what the762

implications would be.763

• The authors should reflect on the scope of the claims made, e.g., if the approach was764

only tested on a few datasets or with a few runs. In general, empirical results often765

depend on implicit assumptions, which should be articulated.766

• The authors should reflect on the factors that influence the performance of the approach.767

For example, a facial recognition algorithm may perform poorly when image resolution768

is low or images are taken in low lighting. Or a speech-to-text system might not be769

used reliably to provide closed captions for online lectures because it fails to handle770

technical jargon.771

• The authors should discuss the computational efficiency of the proposed algorithms772

and how they scale with dataset size.773

• If applicable, the authors should discuss possible limitations of their approach to774

address problems of privacy and fairness.775

• While the authors might fear that complete honesty about limitations might be used by776

reviewers as grounds for rejection, a worse outcome might be that reviewers discover777

limitations that aren’t acknowledged in the paper. The authors should use their best778

judgment and recognize that individual actions in favor of transparency play an impor-779

tant role in developing norms that preserve the integrity of the community. Reviewers780

will be specifically instructed to not penalize honesty concerning limitations.781
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Question: For each theoretical result, does the paper provide the full set of assumptions and783

a complete (and correct) proof?784

Answer: [Yes]785

Justification: We jointly show our assumptions and proofs in Appendix C.3.786

Guidelines:787

• The answer NA means that the paper does not include theoretical results.788

• All the theorems, formulas, and proofs in the paper should be numbered and cross-789

referenced.790

• All assumptions should be clearly stated or referenced in the statement of any theorems.791

• The proofs can either appear in the main paper or the supplemental material, but if792
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by formal proofs provided in appendix or supplemental material.796
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4. Experimental result reproducibility798

Question: Does the paper fully disclose all the information needed to reproduce the main ex-799

perimental results of the paper to the extent that it affects the main claims and/or conclusions800

of the paper (regardless of whether the code and data are provided or not)?801

Answer: [Yes]802

Justification: We fully discuss experimental details, including a description of architectures803

and parameters, in Appendix D. All datasets used are publicly available, and ready to use804

from within our code base, where we also provide further instructions for reproducibility.805
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• The answer NA means that the paper does not include experiments.807

• If the paper includes experiments, a No answer to this question will not be perceived808

well by the reviewers: Making the paper reproducible is important, regardless of809

whether the code and data are provided or not.810

• If the contribution is a dataset and/or model, the authors should describe the steps taken811

to make their results reproducible or verifiable.812

• Depending on the contribution, reproducibility can be accomplished in various ways.813

For example, if the contribution is a novel architecture, describing the architecture fully814

might suffice, or if the contribution is a specific model and empirical evaluation, it may815

be necessary to either make it possible for others to replicate the model with the same816

dataset, or provide access to the model. In general. releasing code and data is often817

one good way to accomplish this, but reproducibility can also be provided via detailed818

instructions for how to replicate the results, access to a hosted model (e.g., in the case819

of a large language model), releasing of a model checkpoint, or other means that are820

appropriate to the research performed.821

• While NeurIPS does not require releasing code, the conference does require all submis-822

sions to provide some reasonable avenue for reproducibility, which may depend on the823

nature of the contribution. For example824

(a) If the contribution is primarily a new algorithm, the paper should make it clear how825

to reproduce that algorithm.826

(b) If the contribution is primarily a new model architecture, the paper should describe827

the architecture clearly and fully.828

(c) If the contribution is a new model (e.g., a large language model), then there should829

either be a way to access this model for reproducing the results or a way to reproduce830

the model (e.g., with an open-source dataset or instructions for how to construct831

the dataset).832

(d) We recognize that reproducibility may be tricky in some cases, in which case833

authors are welcome to describe the particular way they provide for reproducibility.834

In the case of closed-source models, it may be that access to the model is limited in835

some way (e.g., to registered users), but it should be possible for other researchers836

to have some path to reproducing or verifying the results.837
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• The paper should disclose whether the full research project required more compute921

than the experiments reported in the paper (e.g., preliminary or failed experiments that922

didn’t make it into the paper).923

9. Code of ethics924

Question: Does the research conducted in the paper conform, in every respect, with the925

NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?926

Answer: [Yes]927

Justification: We carefully reviewed the NeurIPS Code of Ethics and found no ethical928

concerns for this paper. We discuss potential harmful societal impacts in Appendix L.929

Guidelines:930

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.931

• If the authors answer No, they should explain the special circumstances that require a932

deviation from the Code of Ethics.933

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-934

eration due to laws or regulations in their jurisdiction).935

10. Broader impacts936

Question: Does the paper discuss both potential positive societal impacts and negative937

societal impacts of the work performed?938

Answer: [Yes]939

Justification: We discuss potential positive and negative societal impacts in Appendix L.940
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Guidelines:941

• The answer NA means that there is no societal impact of the work performed.942

• If the authors answer NA or No, they should explain why their work has no societal943

impact or why the paper does not address societal impact.944

• Examples of negative societal impacts include potential malicious or unintended uses945

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations946

(e.g., deployment of technologies that could make decisions that unfairly impact specific947
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to particular applications, let alone deployments. However, if there is a direct path to950

any negative applications, the authors should point it out. For example, it is legitimate951

to point out that an improvement in the quality of generative models could be used to952

generate deepfakes for disinformation. On the other hand, it is not needed to point out953

that a generic algorithm for optimizing neural networks could enable people to train954

models that generate Deepfakes faster.955

• The authors should consider possible harms that could arise when the technology is956

being used as intended and functioning correctly, harms that could arise when the957

technology is being used as intended but gives incorrect results, and harms following958

from (intentional or unintentional) misuse of the technology.959

• If there are negative societal impacts, the authors could also discuss possible mitigation960

strategies (e.g., gated release of models, providing defenses in addition to attacks,961

mechanisms for monitoring misuse, mechanisms to monitor how a system learns from962

feedback over time, improving the efficiency and accessibility of ML).963

11. Safeguards964

Question: Does the paper describe safeguards that have been put in place for responsible965

release of data or models that have a high risk for misuse (e.g., pretrained language models,966

image generators, or scraped datasets)?967

Answer: [NA]968

Justification: We do not consider our contributions to pose a high risk, as we do not release969

large-scale models, image generators, or datasets. Potential misuse of our methodologies is970

discussed in Appendix L.971

Guidelines:972

• The answer NA means that the paper poses no such risks.973

• Released models that have a high risk for misuse or dual-use should be released with974

necessary safeguards to allow for controlled use of the model, for example by requiring975

that users adhere to usage guidelines or restrictions to access the model or implementing976

safety filters.977

• Datasets that have been scraped from the Internet could pose safety risks. The authors978

should describe how they avoided releasing unsafe images.979

• We recognize that providing effective safeguards is challenging, and many papers do980

not require this, but we encourage authors to take this into account and make a best981

faith effort.982

12. Licenses for existing assets983

Question: Are the creators or original owners of assets (e.g., code, data, models), used in984

the paper, properly credited and are the license and terms of use explicitly mentioned and985

properly respected?986

Answer: [Yes]987

Justification: We appropriately cite all original papers of methods, datasets, model archi-988

tectures, evaluation metrics, code repositories, etc. Package versions will be made public989

alongside our code repository upon acceptance.990

Guidelines:991

• The answer NA means that the paper does not use existing assets.992

• The authors should cite the original paper that produced the code package or dataset.993
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• The authors should state which version of the asset is used and, if possible, include a994

URL.995

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.996

• For scraped data from a particular source (e.g., website), the copyright and terms of997

service of that source should be provided.998

• If assets are released, the license, copyright information, and terms of use in the999

package should be provided. For popular datasets, paperswithcode.com/datasets1000

has curated licenses for some datasets. Their licensing guide can help determine the1001

license of a dataset.1002

• For existing datasets that are re-packaged, both the original license and the license of1003

the derived asset (if it has changed) should be provided.1004

• If this information is not available online, the authors are encouraged to reach out to1005

the asset’s creators.1006

13. New assets1007

Question: Are new assets introduced in the paper well documented and is the documentation1008

provided alongside the assets?1009

Answer: [NA]1010

Justification: We do not release new assets with this paper.1011

Guidelines:1012

• The answer NA means that the paper does not release new assets.1013

• Researchers should communicate the details of the dataset/code/model as part of their1014

submissions via structured templates. This includes details about training, license,1015

limitations, etc.1016

• The paper should discuss whether and how consent was obtained from people whose1017

asset is used.1018

• At submission time, remember to anonymize your assets (if applicable). You can either1019

create an anonymized URL or include an anonymized zip file.1020

14. Crowdsourcing and research with human subjects1021

Question: For crowdsourcing experiments and research with human subjects, does the paper1022

include the full text of instructions given to participants and screenshots, if applicable, as1023

well as details about compensation (if any)?1024

Answer: [NA]1025

Justification: The paper does not involve crowdsourcing, nor research with human subjects.1026

Guidelines:1027

• The answer NA means that the paper does not involve crowdsourcing nor research with1028

human subjects.1029

• Including this information in the supplemental material is fine, but if the main contribu-1030

tion of the paper involves human subjects, then as much detail as possible should be1031

included in the main paper.1032

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,1033

or other labor should be paid at least the minimum wage in the country of the data1034

collector.1035

15. Institutional review board (IRB) approvals or equivalent for research with human1036

subjects1037

Question: Does the paper describe potential risks incurred by study participants, whether1038

such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)1039

approvals (or an equivalent approval/review based on the requirements of your country or1040

institution) were obtained?1041

Answer: [NA]1042

Justification: The paper does not involve crowdsourcing, nor research with human subjects.1043

Guidelines:1044
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• The answer NA means that the paper does not involve crowdsourcing nor research with1045

human subjects.1046

• Depending on the country in which research is conducted, IRB approval (or equivalent)1047

may be required for any human subjects research. If you obtained IRB approval, you1048

should clearly state this in the paper.1049

• We recognize that the procedures for this may vary significantly between institutions1050

and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the1051

guidelines for their institution.1052

• For initial submissions, do not include any information that would break anonymity (if1053

applicable), such as the institution conducting the review.1054

16. Declaration of LLM usage1055

Question: Does the paper describe the usage of LLMs if it is an important, original, or1056

non-standard component of the core methods in this research? Note that if the LLM is used1057

only for writing, editing, or formatting purposes and does not impact the core methodology,1058

scientific rigorousness, or originality of the research, declaration is not required.1059

Answer: [NA]1060

Justification: The core method development in this research does not involve LLMs as any1061

important, original, or non-standard components.1062

Guidelines:1063

• The answer NA means that the core method development in this research does not1064

involve LLMs as any important, original, or non-standard components.1065

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)1066

for what should or should not be described.1067
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