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Abstract

In this work, we analyze the conditions under which information about the context
of an input data point can improve the predictions of deep learning models in new
domains. Following work in marginal transfer learning and domain generalization,
we formalize the notion of context as a permutation-invariant representation of a set
of data points that originate from the same domain as the input itself. We offer a the-
oretical analysis of the conditions under which this approach can, in principle, yield
benefits, and formulate two necessary criteria that can be easily verified in practice.
Additionally, we contribute insights into the kind of distribution shifts for which
the marginal transfer learning approach promises robustness. Empirical analysis
shows that our criteria are effective in discerning both favorable and unfavorable
scenarios. Finally, we demonstrate that we can reliably detect scenarios where
a model is tasked with unwarranted extrapolation in out-of-distribution (OOD)
domains, identifying potential failure cases. Consequently, we showcase a method
to select between the most predictive and the most robust model, circumventing
the well-known trade-off between predictive performance and robustness.

1 Introduction

Distribution shifts are the cause of many failure cases in machine learning [[1, 2] and the root of various
peculiar phenomena in classical statistics, such as Simpson’s paradox [3 14]. Domain Generalization
(DG) seeks models that are robust to distribution shifts by utilizing data from distinct environments
during training [5,16]. In the context of DG, marginal transfer learning enhances a model with context
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Figure 1: Conceptual sketch of our setup and approach. A) Data-generating process (DGP) that
fulfills our criteria. We assume that the environment F is a source node that is not caused by any
system variable and that the relationship between X and Y varies with the environment. S(™) is a
set of n i.i.d. inputs available in the new environment. The bidirectional arrow indicates that the
causal relation between X and Y could be explained by a common cause or Y causing X (or vice
versa). B) The context-aware model (marginal transfer learning approach) in a test environment. A
set-encoder generates a permutation-invariant representation h(S(")) of the context. An inference
network processes the representation along with the target input X and predicts the unknown outcome
of the target input. The set-representation can be combined with the input to reliably detect out-of-
distribution queries and prevent failure cases in domain generalization due to model misspecification.

information to achieve better predictions [7]]. The “context” of a test instance is a set of samples
that stems from the same environment as the instance itself and can be embedded, for instance, by
permutation-invariant neural networks [8]]. In this work, we enhance the fundamental understanding
of settings where marginal transfer learning in DG can reap benefits compared to baseline models.

Consider a probabilistic model p(Y | X) that classifies diseases Y from magnetic resonance (MR)
images X. Since MR images are not fully standardized, the classifier should work slightly differently
for images acquired by different hardware brands. It thus makes sense to inform the classifier about
the current environment E (here: hardware brand) and extend it into p(Y | X, E). This raises a
key question: Under which circumstances will the classifier p(Y | X, E) be superior to p(Y | X)?
This question is important because there might exist a function F = f(X) allowing the classifier
p(Y | X) to deduce E from the data X alone. For example, E might be inferred from the periphery
of the given image, while Y depends on its central region. Then, no additional information is gained
by passing F explicitly, and both classifiers perform identically.

Building on previous work in marginal transfer learning [7]], we aim to learn a continuous embedding
of E from auxiliary data using set-encoders, as depicted in We then establish three criteria
that delineate the circumstances in which p(Y | X, E) is beneficial, and subsequently prove their
necessity. Notably, two of these criteria are empirically testable using standard models and are shown
to be necessary conditions for the success of the approach.

When test environments are highly dissimilar to the training environments, all DG methods enter an
extrapolation regime with unknown prospects of success and an increased risk of silent failures. While
marginal transfer learning is not exempt from this “curse of extrapolation”, we find that it comes
with a natural way to reliably detect novel environments in set-representation space and delineate
its competence region [9]. Accordingly, we propose a method to select between models that are
specialized in the ID setting versus models that are robust to OOD scenarios on the fly. Thus, we can
overcome the notorious trade-off between ID predictive performance and robustness to distribution
shifts [[10H12]. In summary, our contributions are:

* We formalize the necessary and empirically verifiable conditions under which the marginal
transfer learning can improve on standard approaches;

* We show empirically that we can identify cases where context-aware models offer no
advantages or when dangerous extrapolation is necessary;

* We show how the detection of novel environments allows for model selection, overcoming
the trade-off between predictive performance and robustness.



2 Method

2.1 Notation

We denote inputs X € X and outputs as Y € ), without any strict requirements on the input and
output spaces X’ and ), respectively. We treat the (unknown) domain label E as a random variable
and denote with S(™) a set of n further i.i.d. samples from a given domain, whose label E is only
known during training time.

2.2 Context-Aware Models

A context-aware model consists of two key components (also illustrated in[Figure I)): (i) a permutation-
invariant network h,, (“set-encoder”) with parameters 1 that maps a set-input S(™ to a summary
vector h,/,(S(”)), and (ii) an inference network fy with parameters ¢ that maps both the input
X and the summary vector h¢(S(")) to a final prediction. The complete model is denoted as
fo(X,8M) = f4(X, hy(S(™)) with parameters @ = (1, ¢) for short. For a given supervised
learning task, we consider the optimization problem

o~

0= argemin Epx,v,B) [c(fg(X, S(")),Y)} , e

where c is a task-specific loss function (e.g., cross-entropy for classification or mean squared error

for regression). [Algorithm I|details the optimization of

2.3 Criteria for Improvement

In the following, we establish criteria under which context information allows to exploit the distribu-
tion shifts between environments and yield improved predictions.

In total, we propose three criteria that are necessary to achieve incremental improvement. In
[Theorem 2.1, we show how these criteria are related to each other. In the formulations below,
I(X;Y) denotes the mutual information between random vectors X and Y and I(X;Y | Z)
denotes the conditional mutual information given a third random vector Z. The symbol | (resp. f)
between two random vectors X and Y is used to express that the random vectors are independent
(resp. dependent) or conditionally independent (resp. dependent) given a third random vector Z.

First, we require that given an input X, a further set of i.i.d. inputs S from the same environment
provides incremental information about Y. This is exactly what we need to achieve improved
predictive performance, and we can formally define it as our first criterion:

Criterion 2.1. S /Y | X or I(S™; Y | X) > 0.

The second criterion requires that, given a target input X, a set of further i.i.d. inputs S from the
same environment provides additional information about the origin environment of X.

Criterion 2.2. E / S™ | X or I(E; 8™ | X) > 0.

In an instance X cannot be assigned with complete certainty to an environment. Conse-
quentially, further data provides additional information about the environment. In general, the more
data we consider, the better we can predict the originating environment. Crucially, this criterion is
not satisfied if we can recover the origin environment from the singleton input X alone.

The third criterion requires that the singleton input X carries information about Y if we also consider
the origin environment E of X.
Criterion2.3. Y L F |XorI(Y; E | X) > 0.

This criterion can serve as a sanity check in case we have an oracle that can identify the origin
environment of the data with perfect accuracy. In what follows, we show that and

“riterion 2.3|are necessary conditions for [Criterion 2.1l We furthermore prove that if we can extract

the environment label fully from S(™), then|Criterion 2.2|and [Criterion 2.3|are sufficient conditions
for [Criterion 2.1]

Theorem 2.1. The following statements hold:




(a) IfE L S™ | X, it follows that Y 1 S(™) | X. This is equivalent to the implication that if
Criterion 2.2)is unattainable, then|Criterion 2.1|is also not satisfied.

(b) IfE LY | X, we achieve Y L S'™) | X. This statement corresponds to: isa
necessary condition for|[Criterion 2.1}

(c) Assume that there exists a deterministic function g with g(S™) = E, then Y | E | X
implies Y J S | X. This conveys that if we could perfectly infer E from S(™), then
[Criterion 2.3 implies [Criterion 2.1

In our experiments, we observe that a function g(S(™)) = E can already be found for small n (see
for i. In this case, we obtain I(S™); Y | X) = I(E; Y | X) and|Criterion 2.2
and are sufficient to obtain [Criterion 2.1l Unfortunately, we cannot conclude that
Y J S | X follows from [Criterion 2.2|and [Criterion 2.3|in general. A counterexample where

[Criterion 2.2]and [Criterion 2.3|hold, but|Criterion 2.1|is violated, is provided in We

furthermore provide the proof of the theorem, an illustration for the theorem as well as a generalization
of (¢) in

It is worth noting that model misspecification adds another layer of uncertainty when verifying the
criteria. In cases where determining the correct mutual information is not feasible (for instance, when
p(Y | X), p(Y | X,8M), or p(Y | X, E) cannot be learned adequately), two primary issues may
emerge. Firstly, the effective utilization of the set-input S (or E) may be hindered due to either
the restricted expressive power of the model class or a scarcity of training data. As a result, the
context-aware model might not improve on a baseline model that only utilizes X. Consequentially the
criteria could seem unattainable while they actually are. Secondly, after training, we might observe an
apparent advantage of the approximation of p(Y | X, S(™) or p(Y | X, E) over the approximation
of p(Y | X), despite the true model not conferring any advantage. In this scenario, the criteria
may appear to be satisfied, whereas in reality they are not. An example of this case can be easily
constructed by considering a non-linear p(Y | X) and a linear function class.

2.4 Source Component Shift

Using our approach, we can characterize the kind of distribution shift that allows our criteria to be
satisfied. Source component shift refers to the scenario where the data comes from a number of
sources (or environments) each with different characteristics [13]]. The source component shift can be
described by the graphical model in[Figure T} where the environment directly affects both the input X
and the outcome Y. Problems that conform to the graph in[Figure T have two important implications.
First, the input distribution changes whenever the environment changes. Second, the relationship
between inputs and outcomes varies with the environment (corresponding to[Criterion 2.1]). For more
details on this kind of distribution shift, we refer the reader to [[L3]]. It is also worth noting that the
graph in corresponds to Simpson’s paradox [3} 4], which supplies a proof-of-concept for our
approach (see Experiment 1). An important point to highlight is that the frequently encountered
covariate shift where only P(X) in P(X,Y) = P(Y | X)P(X) varies between environments [13],
does not conform to the conditions specified in Hence, context-aware models do not
provide advantages when compared to standard models under covariate shift.

2.5 Detection of Novel Environments

During test time, data could either originate from an environment that corresponds to one of the
training environments (but its origins are unknown) or from a previously unseen environment. In the
following, we explain how we aim to detect the second case that might result in potential failure cases
due to fundamental challenges in extrapolation. Following [9], we can define a score s(h,,(S(™))
on the summary vector hy, (S(™) implicit in our model fo(X,S(™) that aims to predict the target
variable Y. As a score function, we consider the distance of h¢(S(”)) to the k-nearest neighbors in
the training data in the feature space of the set-encoder. Accordingly, set-representations that elicit a
score surpassing a certain threshold are considered to originate from a novel environment.

Following the approach in [9], we consider the score distribution and set a threshold to classify a
specific percentage, denoted as ¢, of in-distribution samples as originating from a known environment.
To establish this threshold, we consider the g-th percentile of scores obtained from the validation



set. We also compare our novel environment detector with the same score function computed from
singleton features g(X) alone (see[Table 2|for a preview).

3 Related Work

3.1 Domain Generalization

Domain Generalization (DG) trains models to perform under distribution shifts without access to test
environments [} 16]. In contrast, Domain Adaptation (DA) assumes test samples are available during
training [14]]. Both exploit multiple source domains, but DG is strictly test-agnostic. Non-marginal
DG approaches fall into three groups [[15]: data manipulation [16}[17], robust representation learning
[18L[19], and learning strategy modification [20, 21] (see |15} 6! for reviews).

Between DA and DG lie test-time adaptation (TTA) and marginal transfer learning. TTA adapts to
unlabeled test samples, often via fine-tuning or domain metadata [22| 23]]. Marginal transfer instead
assumes access to the marginal feature distribution % >, 0(X;) [7], with o implemented via CNNs
[24], kernel embeddings [7, 25], or patch embeddings [26]. While Blanchard et al. [[7]] analyze kernel
embeddings theoretically, existing work leaves open conditions for effectiveness, failure detection,
and context-aware model selection. A recent alternative replaces permutation-invariant embeddings
with transformers that exploit sample order [27].

Marginal transfer parallels in-context learning: labeled samples define context in the latter [28 291,
while unlabeled samples do so in the former. Finally, balancing in-domain and out-of-domain
performance remains a central challenge [[11}12,[30]. Methods like Zhang et al. [30]] mitigate this
trade-off when domain identity is known, whereas our goal is to infer it.

3.2 Learning Permutation-Invariant Representations

Analyzing set-structured data with neural networks has received much theoretical [31} 18} [32]] and
empirical [33H35] momentum in recent years. For instance, [35] build on the set transformer
architecture [34] and augment the attentive encoder with the capability to learn dynamic templates
for attention-based pooling. Differently, [36] proposes to learn set-specific representations, along
with global “prototypes”, using an optimal transport (OT) optimization criterion.

A set-embedding can also be understood as a learned proxy variable for the confounder . Generic
proxy variables for confounding variables have been explored in the context of estimating the causal
effect from X to Y in [37,[38]. While their work focuses on eliminating the effect of the confounding
variable F/, our objective is to leverage it for prediction purposes. Furthermore, they require X
causing Y which does not conform to all prediction tasks. We do not require that X causes Y in our
theoretical analysis and therefore include more scenarios (e.g., when Y is causing X).

3.3 OOD Detection and Selective Classification

Detecting unusual inputs that deviate from the examples in the training set has been a long-standing
problem of conceptual complexity in machine and statistical learning [39-43]. Flagging OOD
instances involves identifying uncommon data points that might compromise the reliability of
machine learning systems [40]. OOD detection is closely related to inference with a reject option
(also termed selective classification) [44} 45]], which allows classifiers to refrain from predicting
ambiguous or novel conditions [46]. The reject option has been extensively studied in statistical and
machine learning [47550], with early work dating back to the 1950s [51} 152} 47].

More recently, [9] explored selective classification in DG settings. They investigated various post-hoc
scores to define a “competence region” in feature space where a classifier is deemed competent.
In this work, we consider a post-hoc score based on the k-nearest neighbours to the training set in
feature space similar to [53]], which applies to both classification and regression settings. Unlike the
approach taken in [9], where the focus lies on features of individual instances, we consider the set
summary provided by the set-encoder. Thus, we can identify novel environments even when singleton
inputs lack sufficient information.
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Figure 2: Experiment 1. Left: Toy dataset that conforms to our theoretical criteria. Without
environmental information, the marked input at x = 2.5 could belong to either one of the domains
numbered 1, 2, or 3 as indicated by the marginal distributions shown on top. Right: Comparison of
environment classification accuracy for a baseline model versus a mean-pooled set-encoder using
different set sizes. Distances between environments refer to the distance between the means of the
environments. Smaller distances produce stronger overlap of the marginals. A detailed description

can be found in

4 Experiments

In the following, we explore various aspects of context-aware models. First, we show on two datasets
that a context-aware model achieves improved performance in ID and OOD settings compared to a
baseline model when the necessary conditions of a source component shift are met. Second, we show
how novel environments can be detected to select between the most predictive (in the ID setting) and
the most robust (in the OOD setting) model. We also show that novel environment detection can be
utilized to avoid failure cases. Third, we demonstrate that the necessary criteria (see
can be validated empirically, identifying cases where no benefits of the method can be expected.
Experimental details can be found in the Appendix and the source code is available atEl

4.1 Evaluation Approach

To approximate |Criterion 2.1} [Criterion 2.2} and |Criterion 2.3| we train five models (Table 1)). Our
context-aware model Y135 leverages context sets, while the baseline f¥!X ignores them. Their
relative improvement is

M(FYPES™) - M(FYX)
M(fYTX)

where M (-) is a test performance metric (negative L2-loss for regression). Ry > 0 indicates that

. . . . (n)
Criterion 2.1/holds. For|Criterion 2.2} we compare the contextual environment predictor f#1%-S

with its baseline fZ1X:

Ri =

; @)

M(fEIXS™) - M)
M(FEX) )

We set n such that fZ1X8" achieves nearly perfect ID accuracy; Ry > 0 supports
—

Finally, to test|Criterion 2.3| we introduce the environment-oracle model f¥!*-¥ and compute

Rll =

MFYE) - M)
M(fYX)
These relative improvement metrics serve as proxies for the theoretical criteria: when M is cross-

entropy under optimal models, they align with mutual information measures. However, if M accuracy,
then this proxy is not isomorphic to the criterion it approximates.

Rm =

“

https://github.com/LarsKue/context-aware-domain-generalization
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Model Symbol Description Purpose
Context-aware (ours)  f¥X5™  Predicts Y from X and S  Test|Criterion 2.1

Baseline fYIX Predicts Y from X Reference
Environment-oracle fYXE Predicts Y from X and E Test|Criterion 2.3
Contextual env. FEXS™  predicts E from X and S Test|Criterion 2.2

Baseline env. fFEIX Predicts E from X Reference for|Criterion 2.2|

Table 1: Five models used to evaluate our approach and verify the theoretical criteria.
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Figure 3: Experiment 1. Relative improvement of marginal transfer learning (shown in I) versus a
baseline model (0 means no improvement is achieved) on a toy example. We also show I (OOD) on
OOD data. II depicts the relative improvement of the environment-oracle model compared to the
baseline model. III demonstrates the relative improvement in predicting the environment when using
contextual information compared to the absence of it. Sampling variation arises from using different
seeds to partition the ID data into training, test, and validation sets.

4.2 Experiment 1: Toy Example

Setup To set the stage, we consider a dataset shown in|Figure 2| The dataset includes data from
five different environments, defined by distinct Gaussian distributions. Each Gaussian deviates due to
its location (i.e. mean vector). The dataset exemplifies Simpson’s paradox, wherein fitting without
accounting for environmental factors would yield a negatively sloped line. This trend reverses to
multiple positively sloped lines when considering environmental factors (see [Figure T1).

Importantly, the dataset meets our necessary criteria, since the environment cannot be inferred from a
single input as indicated by the overlap of the marginal distributions in[Figure 2] The mathematical
details underlying this dataset are described in

Results As a first check of we evaluate whether a set input provides additional
information about the environment compared to a singleton input. [Figure 2]illustrates that additional
set input improves the ability to distinguish between environments significantly and the more samples
we include, the better the distinction. As expected, a decrease in the distance between environment
marginal means necessitates more samples to differentiate between environments.

Next, we assess the predictive capabilities of the context-aware approach across all possible scenarios
of “leave-one-environment-out”. This involves training on all environments except one and treating
the excluded environment as a novel OOD scenario. Here, we consider linear models to ensure an
optimal inductive bias for the problem. We can see that |Criterion 2.1| [Criterion 2.2| and [Criterion 2.3|
are satisfied in Providing contextual information in the form of a set input increases the
performance significantly compared to a baseline model in the ID as well as in the OOD setting
(see I and I (OOD) in[Figure 3). We also observe a slightly higher relative improvement when the
environment label is directly provided (see II) compared to using the output of the set-encoder (see I).
This aligns with our expectations, as the set input does not offer more information about the target
value than the environment label itself. Note that for metric III, we achieve less relative improvement
since we consider the accuracy and not the L2-Loss.




Accuracy [%] 1

ID OOD
Baseline 84.6 0.3 10.2+0.3
Invariant 72.84+0.9 73.14+0.2

Selection (Ours) 84.14+03 731402
Selection (Baseline) 84.0+0.3 14.0+04
Bayes Optimal 85.0 75.0

Table 2: Experiment 2. Accuracy across model types and domain settings. Our context-aware model
yields improved OOD detection compared to the baseline, allowing model selection at inference time.

See for more details.

In all scenarios where one environment is left out for testing can be found. Additionally,
we present there similar results for non-linear models and also demonstrate that the specific choice of
permutation-invariant network does not significantly impact the prediction of the environment label.
Furthermore, in we conduct an additional experiment resembling Experiment 1, but
with high-dimensional inputs and achieve similar results.

4.3 Experiment 2: Colored MNIST

Setup The ColoredMNIST dataset [54] is an extension of the standard MNIST dataset, wherein
the number of classes is reduced to two classes (digits < 5 and > 5). Furthermore, label noise is
deliberately added, such that only in 75% of all cases, the label can be correctly predicted from the
shape. To make things more challenging, the image background can take two colors that are also
associated with the image label. In the first environment, the association is 90% and in the second
one 80%. Therefore, a baseline model would tend to utilize the background for prediction instead
of the actual shape. However, in a third environment, the associations are reversed, so that a model
based on the background color would achieve only 10% accuracy (i.e., worse than random).

This dataset implies a trade-off between predictive performance in ID domains versus robustness
in OOD domains, as discussed in [54, 130]]. For instance, an invariant model that relies solely on
an object’s shape would be robust to domain shift at the cost of lower accuracy in the first two
environments (75% vs. 80% or 90%). In contrast, a baseline model would achieve greater accuracy
in the first domains (80% and 90%), but would fail dramatically in the third domain (only 10%).

Results Here, we assume the invariant model to be given, but it could also be obtained by invariant
learning, e.g. Invariant Risk Minimization [54]. With our novel environment detection approach
(see we can get the best of both worlds, circumventing the inherent trade-off. When
identifying the ID setting, we utilize the baseline model that achieves the highest predictiveness
within the observed environments. In case we detect the OOD setting, we employ the invariant model.
We compare this kind of model selection due to the features A, (S(™)) inherent to our model versus
the features extracted by the baseline model.

The results can be found in[Table 2} By utilizing model selection based on the set-summary hq;, (S(™),
we nearly recover the ID accuracy while maintaining identical performance to the invariant model
on OOD data. Evidently, the novel environment detection only works with set summaries. A
feature extracted from a single sample does not provide enough information to reliably detect
distribution shifts, leading to difficulties in effectively selecting between baseline and invariant model,

as demonstrated in Details on this experiment can be found in

4.4 Experiment 3: Violated Criteria

Setup To demonstrate the effects of criterion violation, we consider the PACS dataset [55]], as well
as the OfficeHome dataset [56], each with the Art environment chosen as the novel (OOD) domain.

Results As expected, when the criteria are not met, context-aware models cannot achieve a benefit

over the baseline (see [Figure 4)). Validating the criteria empirically, we find that is

not satisfied for PACS, as a single sample is sufficient to infer the source domain with near-perfect

accuracy. Furthermore, [Criterion 2.3]is not satisfied, as [Figure 4a] depicts.
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(a) Environment Art in PACS dataset. The environ- (b) Environment Product in OfficeHome dataset.
ment is almost completely inferable from one input Although the environment is not inferable from
sample (Criterion 2.2]not satisfied). Conclusively one input sample (Criterion 2.2), the environment
the context-aware approach does not yield benefits. information does not yield benefits (Criterion 2.3).

Figure 4: Experiment 3. Tell-tale examples where at least one of the necessary criteria is not satisfied
and the context-aware approach cannot possibly yield benefits.

Winter MSE | AUROC

ID 00D (%] 1
Baseline 2.21 +£0.11 6.08 =0.13 58.2£0.7
Ours 2.09 +0.12 5.7+0.4 100.0 £ 0.0

Table 3: Experiment 4. Inference performance (MSE) and novel environment detection (AUROC)
comparison between our context-aware model and the baseline for the winter domain in the Bike-

Sharing dataset. See for more details.

On the OfficeHome dataset we find that[Criterion 2.2]is not satisfied, while [Criterion 2.3|is. Results
are depicted in [Figure 4b] We observe that the set input offers benefits for predicting the source
environment corresponding to [Criterion 2.3] However, even when providing the target classifier with
the environment label, we do not achieve a benefit, suggesting that[Criterion 2.2]is not satisfied. For

experimental details, see[Appendix H|

4.5 Experiment 4: Failure Case Detection

Setup Besides unfulfilled criteria, another reason why a context-aware approach might fail to
reap benefits is when the distribution shift requires extrapolation. This might be unattainable by
the model, making the inclusion of a reject option beneficial. Using the BikeSharing dataset [57]],
we demonstrate that in cases where different seasons like summer or winter represent distinct
environments, extrapolation might be necessary. We consider the task of predicting the number of
bikes rented across the day based on weather data. Here we explore the scenario where we train on
all seasons except winter. Details about the dataset, pre-processing steps, and other testing scenarios

can be found in[AppendixJ]

Results In we demonstrate that the context-aware approach is slightly superior compared
to the baseline model in the ID settings. However, both the baseline and the context-aware approach
experience performance degradation in the novel winter environment. To detect the novel environment
and, consequentially, potential failure cases, we compute the score as suggested in [Section 2.3]
and evaluate how well it distinguishes between ID versus OOD environments. We designate an
independent ID test set and use the environment excluded during training (here winter) as the OOD
set for evaluation. The area under the ROC-curve (AUROC) in demonstrates that the score
based on the permutation-invariant embedding allows for perfect detection of the novel environment,
whereas the standard approach fails as expected.




5 Conclusions

In this work, we aimed to advance the theoretical understanding of marginal transfer learning in
domain generalization. Accordingly, we formalized criteria that are necessary for context-aware
models to yield benefits and are also verifiable in practice. Moreover, we pinpointed the source
component shift as a scenario where context-aware models can offer advantages, enabling the
identification of favorable settings and the identification of potential failure cases. The latter allows
us to perform real-time model selection between the best performing model on ID data and the most
robust (i.e., domain-invariant) model on OOD data. Future research should investigate generalization
bounds, the learner’s behavior in finite-data regimes, and the generalization behavior of the learner as
the number of training domains increases (i.e., the domain efficieincy).
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A Pseudocode

Algorithm 1: Optimizing[Equation I|for context-aware domain generalization.

Data: Samples from the joint distribution p(X,Y, F)
Input : Composite model parameters 0, set size n, batch size m, loss-function ¢, number of
iterations k, learning rate schedule (k)

1 fori=1,...,kdo
2 Sample mini-batch B = {(x1,y;,envi), ..., (Xm, Y, €0V, )} from p(X, Y, E)
3 forj=1,...,mdo
4 Sample set sgn) = {xl), ...Xy,} from p(X | E = env,)
5 Replace env; with s§" in B
6 end
7 Update 0 using adaptive mini-batch gradient descent (or any variant):

6 01— alk)Vo | > (folxssi").y,)

j=1

8 end

Output : Trained context-aware model fg

B Additional Experiment: ProDAS

Setup We utilize the ProDAS library [S8] to generate high-dimensional image data that meets our
dataset requirements. The dataset comprises objects of shape square and circle, exhibiting variations
in their texture, background color, rotation, and size. Additionally, the background varies in color
and texture, resulting in a complex scenario. For examples see[Figure T0] We consider the task of
predicting the object size. Difficulties arise due to the presence of distinct environments with varying
characteristics. Specifically, depending on the environment, a constant is added to the observed object
size to get the actual target variable that we aim to predict:

}/gt = Yobserved + J - consty )

Here, j € {1,2,3,4} denotes the environment, while Yy, represents the ground truth (or factual) size,
obtained as a sum of the observed size Yypservea (relative to the image frame) and a constant depending
onj.

The background color follows a normal distribution A (p;;3) where the mean depends on the
environment in the following way: p; = p + j - consty. Here we assign a small value to consty to
enforce the background distributions to overlap between different environments. Specifically, this
construction implies that the relation between input X and target Y differs across environments.
This corresponds to Notably, inferring the originating environment from a single
sample is unattainable due to overlapping background distributions (corresponding to[Criterion 2.2)).
Samples of different environments are shown in This example could be inspired by
microscopy data where different microscopes correspond to distinct environments, each exhibiting its
own characteristics. During training, we assume to have access to the ground truth value Yy,.

Results In line with the results from the previous toy example, we can demonstrate a strong relative
improvement in the ProDAS dataset, as depicted in All formal criteria are satisfied and a
very significant improvement is achieved, both in the ID and the OOD setting, by considering the
contextual information from the environment. Additional details for this experiment can be found in
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Figure 5: Experiment 2: Relative improvement of set-encoder (shown in I) approach versus baseline
model (0 means, no improvement is achieved) on ProDAS dataset. We also show I (OOD) on
OQOD data. II depicts the relative improvement of the environment-oracle model compared to the
baseline model. III demonstrates the relative improvement in predicting the environment when using
contextual information compared to the absence of it. Variations arise from using different seeds to
partition the ID data into training, test and validation set.

C Theory

C.1 Generalization of Theorem 2.1 to Noisy Environments

Theorem C.1. In addition to[Theorem 2.1] the following holds:

(d) Assume that there exists a function g and a noise variable Z that elicits the relation F =
g(S™) + Z and satisfies S"™ | Z | X as well as S™ 1 Z | X, Y. Furthermore, assume

that Y ) E | Xand I(Y;E | X) > I(Z;Y | X). Then, we achieve Y J S | X,
recovering [Criterion 2.1}

The proof can be found in

C.2 Insufficiency of Criteria 2 and 3 for Criterion 1

[Criterion 2.2] and [Criterion 2.3| are not sufficient to imply This can be seen in an
example with three environments j € {1,2,3}. Assume the first two have completely identical
input distributions. We presume that both input distributions adhere to a uniform distribution U|a, b].
Furthermore, we assume that the third input distribution also follows a uniform distribution that is
slightly shifted, i.e. U[a + “T*b, b+ ‘IT“’] Due to the overlap between the third and the first two
environments, a set input provides additional information about E' compared to a single sample X,

verifying Citerion 2.3
a+b

Regarding the mechanism relating inputs to outputs, we assume that on [a, 3] the relation between
input X and output Y differs, e.g., two constant functions with distinct values. We further assume
that on (‘%‘b, b+ “T'H’] the relation between input X and output Y does not vary with the environment,
e.g., is constant. This aligns with [Criterion 2.3} if we know the environment, we can improve the

prediction, specifically on [a, %H’]

However, [Criterion 2.1]is not satisfiable. The set input allows us to distinguish environment 3 (i.e.
the one with support U[a + ‘%H’, b+ “7‘%]) from the other ones. Yet, we cannot distinguish between
environment 1 and environment 2. Since the relation between X and output Y differs only in the
supports of environment 1 and environment 2 (specifically, it differs in [a, %“’D, the set input
cannot provide additional information about the output Y compared to the single input X, i.e. it

holds Y L S | X.
It is also worth noting that might be achievable while is unattainable

and vice versa. For instance, when we can infer the originating environment from one sample
Criterion 2.2|is not attainable), the relation between X and Y might still vary with the environment
Criterion 2.3|is achievable).
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Figure 6: Illustration of [Theorem 2.1} The first row depicts (a), the second row (b) and the third row
(c). The pink framed plots show the conditional distributions along the pink marker as shown on the
right.

C.3 Illustration and Proof of Theorem 2.1
In the following, we give proofs of (a) - (d).

Proof. For the upcoming proofs, we extensively employ the chain rule of mutual information:

I(Y;:Z2,X)=1(Y; Z | X) + I(Y;X) (6)

Additionally, we have the inequalities 7(Y;S™ | X) < I(Y;E | X) and I(S™;Y | X) <
I(E;Y | X) that follow from the data processing inequality and how S(") relates to the other

variables (see [Figure TJ).
For (b): We easily achieve

I(Y;S™ . X) = I(Y;S™ | X) + I(Y;X) (7
<SI(Y;E|X)+1(Y;X) ®)
=I(Y;X) ©)

Therefore, we have
0<I(Y;8™ | X)=1I(Y;S™ X) - I(X;Y) <0 (10)
which proves (b).
For (a): We can write
1(8™;Y,X) = I(S™; Y | X) + I(S™; X) (11)
<I(S™:E | X)+1(8™;X) (12)
= 1(S™;X) (13)
and therefore
0<I(Y;8™ | X)=1(S™;Y,X) - I(X;8™) <0 (14)

and conclusively Y L S(™) | X,
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For (c) is easily seen that 0 < I(Y; E | X) = I(Y;g(S™) | X) < I(Y;S™ | X) and therefore
(c) holds true.

For (d), we also employ the entropy h(X) as well as the conditional entropy (X | Y). We first
establish that I(A + B; C) < I(A;C)+1(B;C) forany RVs A, B,C with A 1. Band A L B | C:

I(A+ B;C) = h(A+ B) — h(A+ B| C)

Y (h(A) + h(B) — h(A | A+ B)) — (h(A| C)+ h(B| C) — h(A | A+ B,C))
=I1(A;C)+I(B;C)—h(A|A+B)+h(A]| A+ B,C)

a0+ 1(B:C) (15)
(%) follows with the chain rule for entropy
h(A, A+ B) = h(A) + h(A+ B | A) (16)
h(A) + h(B | A) “£” h(A) + M(B) (17)
= h(A+B)+h(A| A+ B) (18)

which implies h(A + B) = h(A) + h(B) — h(A | A + B) and equally when conditioning on C.
(#x) follows since h(A | A+ B,C) < h(A| A+ B).
Equation 15|can be extended to the conditional mutual informationif A L B| Dand A L B | D,C:

I(A+B;C|D)<I(A;C|D)+I(B;C|D) (19)

Since S | Z | X and 8™ 1 Z | X, Y, we achieve
0<I(Y;E|X)=I1(Y;9(8S™)+ 7| X) (20)
<I(Y39(8™) | X) + 1(Y; Z | X) 21)
<I(Y;8™ | X) + I(Y; Z | X) (22)

and therefore

0<I(Y;E|X)—1(Y;Z|X) <I(Y;S$™ | X) (23)
which concludes the proof. O

In the following, we discuss the assumptions in (c) and (d). In our experiments, we observed that in
most datasets a relatively small sample size suffices to infer the environment label with approximately
100% accuracy (see . Therefore, the assumption that there exists a function g(S™) = F
seems justified if n is sufficiently large. To generalize the assumption where the environment label is
not fully inferable, we have to make assumptions. For one, we require S(™) | Z | X. This can be
interpreted as “increasing the set size does not improve the prediction of E”. Also S(™ 1 7 | X,Y
can be interpreted similarly: increasing the set size and considering the ground truth label/value does
not enhance the predictability of E. Both assumptions should hold approximately if n is large enough.
With the assumption I(Y; E | X) > I(Z; L Y | X) we assume that the noise Z is less predictive of
Y compared to E if X is given. This can be roughly interpreted as the noise does not prove useful
for predicting Y from X compared to the ground truth environment label.

D Experiments: General Remarks

We define the relative improvements Ry and Ry as

M(FEIXS™) - Mm(FEX)
M(fEX)

M(fYPOF) — M(FYX)
M)

72[1 =

(24)

and

R = (25)
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Ry signifies the relative performance gain in predicting the environment when the set input is given
compared to the solitude input. In contrast, Ry denotes the relative performance improvement of the
environment-oracle model compared to the baseline model.

Due to the large amount of settings, we did only little hyper-parameter optimization (we looked into
batch size, learning rate, and network size). For a given dataset we optimized only on one scenario
where an environment is left out during training. The found hyper-parameters were then applied
to all other scenarios. To ensure that the baseline model is comparable to ours, we ensure that the
inference network (and feature extractor) in have a comparable number of parameters as
the baseline model. In all cases, the set-encoder is kept simple and its hyper-parameters are selected

fE|X,s<"

. . . ) .
for optimal performance of the contextual environment predictor . For an overview, see

Throughout all experiments, we employ a mean-pooling operation.

. o . . (n)
We show the accuracies of classifying the environment of the contextual-environment model f %S

and the baseline environment model fZX in[Table 6| Here we only consider the datasets where we
performed a full evaluation of all criteria.

D.1 Computational complexity

We run all experiments using four Titan X GPUs, with 12GB VRAM each. On this hardware, each
experiment requires between two and three days to run to completion. Our code base provides several
utilities to reduce the overall memory footprint, allowing reproduction of our experiments on less
powerful hardware.

E Experiment 1: Details

E.1 Data Generation

Simpson’s Paradox [3| 4] describes a statistical phenomenon wherein several groups of data exhibit a
trend, which reverses when the groups are combined. There are several famous real-world examples
of Simpson’s Paradox, such as a study examining a gender bias in the admission process of UC
Berkeley [59]] or an evaluation of the efficacy of different treatments for kidney stones [60].

To replicate this, we create a dataset inspired by an illustration of Simpson’s Paradox on Wikipedia
[61]]. The dataset consists of a mixture of 2D multivariate normal distributions, with the intent of using
the first dimension as a feature, and the second as a regression target. Unless otherwise specified, we
generate the data by taking an equal number of samples from each mixture component, defining the
environment as a one-hot vector over the mixture components.

The mixture components are chosen to lie on a trend line that is opposite to the trend within each
mixture. We achieve this by using a negative global trend and choosing the covariance matrix of each
mixture as a scaled and rotated identity matrix with an opposite trend.

Setting Value Controls
n_domains ) number of mixture components
n_samples 10000 number of samples per mixture component
spacing 2.0 spacing between means of the mixture components
noise 0.25 overall noise level
noise_ratio 6.0 ratio of the primary to secondary noise axis
rotation_range | (45.0,45.0) | min (leftmost) and max (rightmost) mixture rotation angle

Table 4: Default Settings for the Simpson’s Paradox Dataset. Samples from the dataset constructed

with these settings can be seen in [Figure 2]

The YouTube channel minutephysics also published a short descriptive video on this phenomenon in
2017 [62].

E.2 Training Details

We consider five distinct settings, where in each setting, one domain is left out during training, and
considered for evaluation as a novel environment. To gauge the uncertainty stemming from data
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sampling, we also consider five dataset seeds for partitioning into training, validation, and test sets.
For each dataset seed and model, we consider the results due to the best performance on the validation
set.

We enforced that our approach and the baseline model have a similar amount of parameters for the
feature extractor and final inference model. We conducted minimal hyperparameter tuning (focusing
on parameters such as the learning rate schedule, batch size, and the number of parameters), and this
was performed solely within one “leave-one-environment-out” setting. In total, we trained the five
models outlined in [Table T|using five distinct dataset seeds. Consequently, a total of 5 -5 - 5 = 125
models were trained. In all cases, the set-encoder is kept simple and its hyper-parameters are selected

. . . (n)
for optimal performance of the contextual environment predictor fZ1X5™ We choose the mean as
the pooling operation.

OOD Env.: 1 OOD Env.: 3

10
6
2
-2
-2 2 6 10 14 -2 2 6 10 14
X X
Ground Truth (ID) % Ground Truth (OOD)
e  Prediction (Ours) e  Prediction (Baseline)

Figure 7: Experiment 1. Predictions performed on the toy dataset illustrated in We show
predictions made by both our set-encoder approach and the vanilla model in the ID and OOD settings.

Now, we visualize the predictions of the baseline approach and our set-encoder approach in
for one trained model. Our model captures and utilizes the characteristics of each environment for
prediction. In contrast, the baseline approach struggles to discern between environments due to
the significant overlap between environments, resulting in an inability to deal with environmental
differences. Note that we obtained the best results by considering a class of linear models that aligns
with the data-generating process. However, we observe that extrapolation performance drops when
the considered models are overly complex and lack a strong inductive bias (see [Appendix E.3).

E.3 Non-Linear Models

In the experiments in we considered linear models for our model and the baseline. In the
following, we show results for the non-linear model cl We compare predictions of a
Figure 9

baseline model and our model on all environments in Ol We see that the extrapolation task
fails in some cases as in environment 1. This is due to the mismatch of the considered model class
and ground truth model.

F Additional Experiment: Details

Data samples from different environments are depicted in[Figure 10} The process of how inputs relate
to outputs is described in[Appendix B]

During training, we employ a convolutional network to extract features g(X). These features are
passed to the inference network and the set-encoder. The feature extractor is then jointly trained with
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Figure 8: Experiment 1. Verification of criteria. In I we depict the relative improvement of
our approach versus a baseline model. We also show I (OOD) on OOD data. In IT we show the
relative improvement of the oracle model compared to the baseline. In III we compare the relative
improvement of the contextual environment model with respect to the baseline environment model.

OOD Env.: 1 OOD Env.: 2 OOD Env.: 3 OOD Env.: 4 OOD Env.: 5
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% Ground Truth (ID) X Ground Truth (OOD) e Prediction (Ours) . Prediction(Baseline)]

Figure 9: Experiment 1. Models are trained on all environments except the OOD environment.
“Extrapolation”, i.e. when environment 1 or 5 is OOD, is a particularly hard task in this setting.
The set-based model shows slightly better extrapolation capabilities. Generally, our model exhibits
adaptability to diverse environments, addressing a limitation present in the baseline model.

gie e

(a) Environment 1 (b) Environment 2

(c) Environment 3 (d) Environment 4

Figure 10: Additional Experiment. We generate four distinct domains synthetically. Notably, the
background color within each domain follows a normal distribution. However, there are variations in
the means across these domains Note that there is a huge overlap between the environments.
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the inference network and set-encoder. We ensured that the feature extractor plus inference network
and the baseline model have a comparable amount of parameters. The set-encoder is kept simple and
its hyper-parameters are selected for optimal performance of the contextual environment predictor

(n) . . .
fFEIXS™  As a pooling operation we choose the mean-pooling.

G Experiment 2: Details

To select between the baseline model and the invariant model, we are required to distinguish between
ID and OOD data. Therefore, we follow the approach proposed in We consider the
k-nearest neighbors of the training set to compute the score sy, where k = 5. Since we compare the
scores elicited by features of the baseline model with the scores elicited by the features extracted by
the set-encoder, we restricted both architectures to have the same feature dimension. To establish a
threshold for distinguishing between ID and OOD samples, we designate samples with scores below
the 95% quantile of the validation set as ID and those above as OOD (see for details).

In total, we explore five dataset seeds to partition into training, validation, and test sets. To train
an invariant model, we considered the same split in training, validation, and test set where the
background color has no association with the label. Therefore the invariant model learns to ignore the
background color and only utilize the shape for prediction. To learn effectively about the environment,
we considered a large set input, namely 1024 samples in S(™). We employed a simple set-encoder
incorporating a mean pooling operation.

H Experiment 3 and 4: Details

For the BikeSharing dataset we consider a simple feed-forward neural network in all models. For
the PACS as well as the OfficeHome dataset we consider features g(X) that are kept fixed and not
optimized. Here, we employ the Clip features proposed in [63]. The inference model, baseline model,
and set-encoder are kept simple and employ only linear layers followed by ReLU activation functions.
Given that Clip features considerably simplify the task, we performed a minimal hyper-parameter
search and ensured that the inference model had a similar number of parameters as the baseline
model. In all cases, the set-encoder is kept simple and its hyper-parameters are selected for optimal

. . (n)
performance of the contextual environment predictor fZ1%:S™"

MSE | MSE |

D 00D AUROC [%] 1 D 00D AUROC [%] 1
Baseline 2.8940.15 2.94 4 0.05 50.8 +£2.2 Baseline 2.99 £0.17 2.74 4+ 0.10 65+ 5
Ours 2.1340.13 3.2340.11 99.7 £ 0.2 Ours 2.2740.13 38404 100.0 + 0.0
Spring | Summer
Fall | Winter
MSE | MSE |
D 00D AUROC [%] 1 1D OOD AUROC [%] 1
Baseline 2.29 +£0.12 70+04 76.4 4+ 2.6 Baseline 2.21+0.11 6.08 £ 0.13 58.240.7
Ours 2.1940.09 14.904+1.30 100.0 + 0.0 Ours 2.0940.12 5.74+04 100.0 £0.0

Table 5: Experiment 4. Performance comparison between our model and the baseline, broken down
by target domain. We compare their performance in the ID and OOD setting (MSE), as well as
their capability to detect a novel environment (AUROC). Both models experience a performance
drop in the OOD setting, but our model can detect with strong certainty when this is the case. See

for more details.

In all cases, the set-encoder is kept simple and its hyper-parameters are selected for optimal perfor-

. . (n)
mance of the contextual environment predictor f#1%X:8™"
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Dataset / Set Size Simpson / 32

Domain 1 2 3 4 5

FEX 86.3+1.3 908+13 90.7+0.8 904409 855+08

FEIXS™ 100.0 £ 0.0 100.0 = 0.0 100.0 = 0.0 100.0 % 0.0 100.0 = 0.0
Dataset / Set Size ProDAS /128 OfficeHome /4 PACS/4
Domain 1 2 3 4 Product Art
fEIX 43.8+£1.1 50.0£1.3 49.94+23 444+1.0 86.16+£0.33 99.72 £+ 0.33
fEIXS™ 99.6 0.6 99.5+ 1.0 98.7+1.6 98.0:3.2 98.49+0.24 100.0 % 0.0

Table 6: Environment classification accuracy for different models and datasets, broken down by
domain. As in the uncertainty (mean and standard deviation) is computed over multiple
seeds for dataset splits. In all cases, the set-based model outperforms the baseline.

I Comparison of Permutation-Invariant Architectures

As a pilot experiment, we estimate the contextual information contained in a set input by evaluating
the binary classification accuracy of a set-based model compared to a baseline model with singleton
sample input.

Importantly, we postulate that for stronger domain overlap, the contextual information contained
within the single sample decreases significantly, while the contextual information within the set
decreases only weakly, depending on the set size. Domains that do not overlap exactly will remain
distinguishable, so long as the set size is large enough.

Therefore, we construct the toy dataset as described in|Appendix E.1| but use the setting n_domains
= 2 and vary the distance between environments for each experiment.

We train each architecture on this dataset for 20 epochs, using 5 different seeds. We evaluate a
total of 30 domain spacings, linearly distributed between 0.05 and 1.5 (both inclusive). Since we
evaluate a baseline model, plus 3 set-based models at 3 different set sizes, this brings us to a total of
30-20-5-(1+3-3)= 30000 model epochs. We choose the batch size at 128 fixed.

Each architecture consists of a linear projection into a 64-dimensional feature space, followed by a
fully connected network with 3 hidden layers, each containing 64 neurons and a ReL.U [64] activation.
For the set-based methods, this is followed by the respective pooling. We choose 8 heads for the
attention-based model.

Finally, the output is linearly projected back into the 2-dimensional logit space, where the loss is
computed via cross-entropy [65]].

For methods that support a non-unit output set size, we choose the output set size as 4. The output set
is mean-pooled prior to projection into the logit space.

J Bike Sharing Dataset

This dataset, taken from the UCI machine learning repository [S7]], consists of over 17000 hourly and
daily counts of bike rentals between 2011 and 2012 within the Capital bike share system.

Each dataset entry contains information about the season, time, and weather at the time of rental.
Casual renters are also distinguished from registered ones.

Similar to [66], we only consider the hourly rental data. We drop information about the concrete
date and information about casual versus registered renters. We choose the season variable (spring,
summer, fall, winter) as the environment and the bike rental count as the regression target. Since we
deal with count data, we also apply square root transformation on the target similar to [66].
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Figure 11: Comparison of different architectural choices for the permutation-invariant network in
predicting the data’s originating environment. We consider various distances between environments
and different set sizes n. As anticipated, the plots illustrate that smaller environment distances make
it more challenging to differentiate between them. Moreover, with a larger set size n, our ability
to predict the environment label improves. Notably, the baseline model shows significantly poorer
performance compared to the model utilizing contextual information in the form of a set input.

K Table Details

For tables 2} [3] and[5] we present the mean and standard deviation computed over 5 different training
runs using separate seeds for partitioning the data into training, validation, and test sets.

We compute the AUROC by calculating a score for each sample as described in[Section 2.5] The
AUROC is then determined by calculating the AUC of the ROC curve, which is associated with the
task of predicting the environment.

We highlight models within the 95% confidence interval of the best one for each respective category
in bold.

L Potential Societal Impacts

This paper presents a foundational study, with societal impacts reliant mostly on the application of our
methods. Nevertheless, we estimate that good-faith applications of our methods can have a positive
societal impact. This manifests in improved performance results when our criteria are satisfied, as
well as increased trustworthiness of these results due to the reliant detection of novel environments.
This is particularly important for safety-critical applications, e.g., in medicine.

Negative societal impacts may also manifest in bad-faith applications, as the improved results may be
misused. Furthermore, there is a risk that our methods may inadvertently perpetuate existing biases
in data, particularly if environments are chosen in bad faith.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: We claim to empirically and theoretically analyse the conditions under which
set-encodings can benefit marginal transfer learning. We show this via mathematical proofs
and on a range of experiments, including possible failure cases.

Guidelines:

e The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: We provide an extensive discussion of the limitations of our approach through-
out the paper. For instance, we consider the scenario when our theoretical criteria are
violated in

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
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Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: We jointly show our assumptions and proofs in[Appendix C.3|

Guidelines:

» The answer NA means that the paper does not include theoretical results.

 All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.

. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We fully discuss experimental details, including a description of architectures
and parameters, in All datasets used are publicly available, and ready to use
from within our code base, where we also provide further instructions for reproducibility.

Guidelines:

» The answer NA means that the paper does not include experiments.
* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
* Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.
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5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We provide open access to the experiment code, anonymized for review
purposes. All datasets used are publicly available, and ready to use from our code base. We
also provide further instructions to reproduce the experiments in and in our
code repository.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: We provide extensive detail on experimental settings and parameters in[Ap]
Guidelines:

» The answer NA means that the paper does not include experiments.

» The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: For our evaluation metrics, we derive a mean and standard deviation from
multiple runs using separate seeds for data splitting. When models are within the 95%
confidence interval from the best one, we choose to also highlight it in bold, as discussed in

Guidelines:

* The answer NA means that the paper does not include experiments.
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8.

10.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

¢ It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

* It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

o If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We discuss compute resources in[Appendix D.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines]?

Answer: [Yes]

Justification: We carefully reviewed the NeurIPS Code of Ethics and found no ethical
concerns for this paper. We discuss potential harmful societal impacts in[Appendix T]

Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]
Justification: We discuss potential positive and negative societal impacts in|Appendix L
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12.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.

o If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

* Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: We do not consider our contributions to pose a high risk, as we do not release
large-scale models, image generators, or datasets. Potential misuse of our methodologies is

discussed in

Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We appropriately cite all original papers of methods, datasets, model archi-
tectures, evaluation metrics, code repositories, etc. Package versions will be made public
alongside our code repository upon acceptance.

Guidelines:

* The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.
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13.

14.

15.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: We do not release new assets with this paper.
Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: The paper does not involve crowdsourcing, nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: The paper does not involve crowdsourcing, nor research with human subjects.

Guidelines:
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* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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