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Abstract

3D Gaussian Splatting (3DGS) has recently emerged as a fast, high-quality method
for novel view synthesis (NVS). However, its use of low-degree spherical harmonics
limits its ability to capture spatially varying color and view-dependent effects such
as specular highlights. Existing works augment Gaussians with either a global
texture map, which struggles with complex scenes, or per-Gaussian texture maps,
which introduces high storage overhead. We propose Image-Based Gaussian
Splatting, an efficient alternative that leverages high-resolution source images for
fine details and view-specific color modeling. Specifically, we model each pixel
color as a combination of a base color from standard 3DGS rendering and a learned
residual inferred from neighboring training images. This promotes accurate surface
alignment and enables rendering images of high-frequency details and accurate
view-dependent effects. Experiments on standard NVS benchmarks show that our
method significantly outperforms prior Gaussian Splatting approaches in rendering
quality, without increasing the storage footprint.

1 Introduction

Recently, Neural Radiance Fields (NeRF) [23] and 3D Gaussian Splatting (3DGS) [16] have emerged
as advanced techniques for Novel View Synthesis (NVS) thanks to their high-quality image rendering.
3DGS, in particular, outperforms NeRF in terms of rendering speed and faster optimization. However,
since each Gaussian primitive in 3DGS can only represent a single color at a given camera viewpoint,
3DGS struggles to recover high-frequency details of the scene appearance without a large number of
Gaussians [4]. Furthermore, due to the smooth characteristic of the color representation i.e., spherical
harmonic (SH) functions, it is hard for 3DGS to capture complex view-dependent effects such as
reflections and specular highlights [4].

To address this issue, recent works have attempted to model Gaussian’s spatially varying colors by
either mapping each Gaussian-ray intersection to a global texture map [34], or a per-Gaussian texture
map [4, 28, 33]. While global texture maps perform well for single-object scenes [34], they struggle
with complex multi-object scenes due to the difficulty of learning a global mapping. Per-Gaussian
texture map [4, 28, 33] can handle real-world scenes with multiple objects, but it incurs a significant
storage overhead because the number of parameters per Gaussian grows quadratically as the texture-
map resolution increases. This storage overhead constrains the resolution of per-Gaussian’s texture
map, leading to inferior modeling of high-frequency details in the rendered images. Additionally,
such texture map still cannot handle view-dependent effects.

In this work, we propose a drastically different approach to render high-frequency details and handle
view-dependent effects while avoid significantly increasing the storage memory. Specifically, inspired
by image-based rendering techniques [8, 22], we introduce an Image-Based Gaussian Splatting
(IBGS) approach that utilizes the high-frequency details and view-dependent effects captured in
training images. During rendering, the color of a pixel consists of two components i.e., the base color
from the SH functions following the standard rasterization process of 3DGS, and the residual color
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learnt from the corresponding pixel intensities of neighboring training images. The base color is used
to handle most surface appearance while the color residual augments the base color with fine-grained
details and view-dependent effects which are preserved in the training images. To model the color
residuals, we propose a novel color residual prediction module. Specifically, for each ray/pixel, we
first project the intersection points between the ray and Gaussians onto neighboring training images to
obtain pixel colors, which are then aggregated to get warped colors. Then, the warped colors together
with the base colors are processed by a lightweight neural network to predict the color residual for
each pixel. We further introduce an image synthesis loss that leverages those warped colors, enforcing
both geometric accuracy and image quality. This leads to more precise Gaussian parameters with
high opacity centered around the true surface, allowing us to prune more Gaussians of low opacity
while maintaining the rendering quality.

Furthermore, leveraging neighboring views enables our method to address inconsistent exposure
across training views caused by the auto-exposure behavior of modern cameras. Different from prior
work [6, 17] that jointly optimize an affine transformation matrix for each training view, we assume
that images taken at nearby locations share similar global lighting conditions, and thus correct the
camera exposure at novel views by mimicking the exposure setting of the closest source view. Unlike
existing works [6, 17] that only correct the exposure at training views, our strategy can generalize to
images rendered at any viewpoint.

In summary, our contributions are: i) We propose an image-based Gaussian Splatting pipeline that
captures both high-frequency details and view-dependent effects that are challenging for prior methods
to address. ii) We introduce a color residual module that leverages the training images to obtain better
rendering quality with less number of Gaussians. iii) We introduce an exposure correction strategy,
helping to improve the brightness of images rendered at any viewpoint by mimicking the exposure
settings of their nearest neighbouring view. Our method sets a new state-of-the-art performance on
three benchmark datasets: Tanks and Temples, Deep Blending, and Mip-NeRF360.

2 Related Works

Image-based rendering aims to generate novel views by “borrowing” pixels from a set of source
images. The target pixel is a weighted blending of corresponding pixels obtained from those images.
In early works [8, 11, 22], such blending weights are computed based on ray distance [22] or scene
geometry [8]. Other works either tried to improve the scene geometry [5, 13] or use optical flow for
better correspondence [1, 3, 9]. More recently, with the advance of neural rendering techniques [23],
researchers have explored integrating it with image-based rendering [29, 31]. In particular, to render
a target pixel/ray, Suhail et al. [29] first finds the corresponding epipolar lines in source views and
sample points along such lines to obtain color features. These features are further fed into two feature
aggregation modules subsequently for the final color. IBRNet [31] follows the volume rendering
process as in NeRF [23]. The color and densities of the sampled points on target ray are computed
by a transformer [30] with the features from source views as input. Despite their impressive results,
their rendering is time-consuming due to the use of large feature aggregation networks (i.e., the
transformers) and uniform sampling along the ray. By contrast, to the best of our knowledge, we
propose the first image-based Gaussian splatting method that not only obtains fine-grained details
from source images but also maintain fast rendering. Thanks to 3DGS, we only require projecting
intersection points of ray with Gaussians, which are fairly sparse, to source views for aggregating
image features. Moreover, instead of directly learning the final color from a large network, we propose
to learn a residual to the base color, which only requires a lightweight network i.e., a nine-layer
convolutional network with 3× 3 with kernels.

Gaussian Splatting. 3DGS [16] renders images at novel-views by performing alpha blending of the
Gaussians color splatted onto the image plane. Although each splatted Gaussian can have a large
extent, its color is shared across all pixels, making it challenging for 3DGS to reconstruct fine-grained
textures without using many Gaussians. To address this problem, prior works [4, 28, 33, 34] attempt to
model Gaussian spatially varying color by learning a mapping from each Gaussian-ray intersection to
a texture map. However, while learning a global texture map is challenging in scenes having multiple
objects, learning per-Gaussian texture maps [4, 28, 33] leads to higher storage requirement since it
requires to store texture maps of all Gaussians. Additionally, these methods struggle in recovering
complex view-dependent color as they utilize low-degree SH functions which have limited capacity
to handle complex view-dependent colors [4]. Unlike these methods, we leverage information from
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Figure 1: Our pipeline. The color of each pixel (cfinal) consists of two components: a base color c (in
pink boxes) which follows the standard 3DGS rendering process and a color residual ∆c predicted
from the warped color of different source views cwarp

m . While the figure shows an example of using
only two source views, in practice, our method can process an arbitrary number of source views.

training views to render photorealistic images by predicting high residuals for pixels whose color
cannot be fully recovered via Gaussian rasterization (i.e., the base color), especially in regions with
fine-grained details or view-dependent colors.

Apart from color modeling, existing works also target improving other aspects of Gaussian Splatting.
In particular, [7, 12, 15] pursue more accurate 3D reconstruction by enforcing flat Gaussians via
a hard [7, 15] or soft constraint [12]. On the other hand, [10, 25, 26] propose compression and
quantization methods to reduce the memory requirements for storing optimized Gaussians while
preserving rendering quality. [35] improves the adaptive density control strategy of 3DGS by
exploiting the per-pixel gradient directions, whereas [18] views the Gaussian densification process as
state transition of Markov Chain Monte Carlo samples. Our method is orthogonal to these works and
can be integrated with them to further boost the performance or reduce memory usage.

3 Method

3.1 Preliminary: 3D Gaussian Splatting

3DGS [16] represents the scene as a set of 3D Gaussian primitives. Each 3D Gaussian G is pa-
rameterized by a 3D position µ ∈ R3 and a covariance matrix Σ ∈ R3×3, where the covariance
is decomposed into a rotation matrix R ∈ SO(3) and a diagonal scale matrix S ∈ R3×3 such that
Σ = RSSTRT . To render an image at a viewpoint, each 3D Gaussian G is splatted on the image
plane to obtain a 2D Gaussian G2D. The color of a pixel p can be then computed using the volume
rendering equation,

c(p) =

K∑
i=1

wi ci =

K∑
i=1

wi Ψl

(
hi,vi

)
, where wi = αiTi, and Ti =

i−1∏
j=1

(
1− αj

)
, (1)

with vi denoting the vector from the camera center to the center of the ith Gaussian, Ψl(h,v)
mapping the SH coefficients h of the Gaussian to a color c, conditioned on the direction v. l ∈ R
indicates the SH degree, which determines the expressivity of Ψl(h,v). The weight αi = oiG2D

i (p)
is defined as the product of the Gaussian opacity oi and 2D Gaussian value evaluated at pixel p.

During training, the attributes of each Gaussian, including (1) its colors represented using spherical
harmonic coefficients h ∈ R3(l+1)2 , (2) the opacity o ∈ R, (3) the center µ ∈ R3, (4) the rotation
matrix parameterized by a quaternion q ∈ R4, (5) scaling factors s ∈ R3 are optimized using the
color rendering loss.
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3.2 Modeling Spatially Varying and View-Dependent Color

In the color modeling of 3DGS [16], at a given viewpoint, although a Gaussian Gi can cover multiple
pixels in the image, it represents only a single color, as the SH coefficients h and view direction
v are shared across all pixels. This limits the model’s capacity in modeling color of regions with
high-frequency details. Moreover, due to the low-degree SH function (l ≤ 3) utilized by 3DGS [16]
to model view-dependent color, this method struggles to capture complex view-dependent effects,
such as reflections or specular highlights. A naive solution is to increase the SH degree l, which
quadratically increases the number of SH coefficients, thereby leading to high storage requirement.

In this work, we present a solution to model high-frequency details and view-dependent color of
the image without increasing the storage footprint. Specifically, we propose IBGS, an image-based
Gaussian splatting method that models (1) the base color from SH functions, (2) a color residual
term capturing view-specific and high-frequency information from neighboring source images. We
formulate it as follows:

cfinal(p) =

N∑
i=1

wi Ψl(hi,vi)︸ ︷︷ ︸
Base color c(p)

+ F
(
c(p), d(p), {∆cm(p)}Mm=1, {∆dm(p)}Mm=1

)
︸ ︷︷ ︸

Color residual ∆c(p)

,
(2)

where d(p) ∈ R3 is the direction of the camera ray passing through pixel p. ∆cm ∈ R3 and
∆dm ∈ R4 denotes appearance and camera features extracted from the mth nearby source view,
respectively. F(·) is a lightweight network that takes the extracted features as input to predict a
residual term ∆c(p) supplementing the base color, c(p), produced by Gaussian rasterization.

Given the extracted multi-view features ∆cm that capture high-frequency details and color variation
across different viewpoints, we use this features to predict the pixel color in the current view. By
utilizing the multi-view color observations, our model learns how lighting effect changes across
viewpoint, thus being able to produce accurate view-dependent color for the target view.

In the following sections, we first describe the two main components of our method: feature extraction
from source views (Sec. 3.3) and color residual prediction (Sec. 3.4). Then, we present an exposure
correction approach (Section. 3.5) to correct errors in the brightness of the rendered images caused
by inconsistent exposure camera setting. Fig. 1 depicts the overall pipeline of our method.

3.3 Feature Extraction from Source Views

To predict color residual, ∆c(p), we first extract features from multiple source images. For a
target pixel p, we obtain the color information ∆cm(p) from each source image by first finding the
intersection between (1) the camera ray originating at the camera center o with direction d(p) and
(2) the plane parameterized by the Gaussian center µi and its normal vector ni,

xi(p) = o+
nT
i (µi − o)

nT
i d(p)

d(p). (3)

Here we incorporate a normal vector ni ∈ R3 as an additional learnable attribute of each Gaussian
Gi. Given the intersection point xi(p), we project it onto the image plane of nearby source views
from which the color information is extracted. For the mth source view, this is achieved as,

cwarp
i,m (p) = B(πm(xi(p)),C

real
m ) (4)

with πm(x) denoting a function that projects the intersection point to the image plane of the source
view. The function B(·) takes an image coordinate as input to produce bilinear-interpolated color
obtained from the input source image Creal

m ∈ RH×W×3.

Based on Eq. 4, the warped color cwarp
i,m (p) is only accurate if the intersection point xi(p) is close to

the actual surface. This implies that it is not necessary to project all the Gaussian-ray intersections
to the source views, as floating Gaussians that are far from true surface introduce noise into the
extracted appearance features. Following 2DGS [15], we consider the actual surface lies near the
median intersections such that the accumulated transmittance Ti (see Eq. 1) is close to 0.5, and thus
only project the K median intersection points {xk,m}Kk=1 to the source views. As a result, we obtain
a set of K warped colors {cwarp

k,m }Kk=1 for each source view m.
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Subsequently, we compute the weighted average color for each source view and measure its deviation
from the Gaussian-rasterized color c(p) (computed via Eq. 1) as below,

∆cm(p) = cwarp
m (p)− c(p), cwarp

m (p) =

K∑
k=1

wk c
warp
k,m (p)∑K
k=1 wk

, (5)

where wk is the same blending weight of the Gaussian colors computed from Eq. 1. Intuitively,
cwarp
m (p) is used to approximate the true pixel color by leveraging the information from neighboring

views. Thus, it constrains the weight wk of the Gaussians near the true surface to be larger than those
of others. Apart from the appearance features, we also compute ∆dm, the difference in the camera
position and orientation between the target and each source view,

∆dm =

[
om − o

dm(p)Td(p)

]
, dm(p) =

x(p)− om

||x(p)− om||2
, x(p) =

K∑
k=1

wk xk(p)∑K
k=1 wk

, (6)

with om being the camera center of the mth source view. We repeat this feature extraction process
for the M nearby source views, yielding a set of color features {∆cm}Mm=1 and camera features
{∆dm}Mm=1 which are used as input to the color residual prediction network.

3.4 Color Residual Prediction

We employ a lightweight network to predict the color residuals, consisting of two main components:
a per-pixel feature extractor E(·) and a CNN decoder D(·). The extractor has a PointNet-style
structure [27] to handle an arbitrary number of source views M . For each view m, it processes the
color feature ∆cm(p) and camera features ∆dm(p) through two linear layers of 32 output dimension
followed by ReLU activation function,

fm(p) = E
(
∆cm(p), ∆dm(p)

)
. (7)

We then apply max-pooling to the set of vectors {fm(p)}Mm=1 to obtain the aggregated feature f̄(p) ∈
R32. Assembling these features across all pixels yields a feature map F ∈ RH×W×32. Similarly, by
stacking c(p) and d(p) over all pixels, we form the Gaussian-rasterized image C ∈ RH×W×3 and
the ray-direction map D ∈ RH×W×3, respectively. This information are then fed into a nine-layer
convolutional decoder (with kernel size of 3) to predict the color residual map ∆C ∈ RH×W×3.

∆C = D(C,D,F). (8)

Finally, we obtain the final image by adding the predicted residuals to the Gaussian-rasterized image,

Cfinal = C+∆C (9)

3.5 Exposure Correction

Due to varying lighting conditions at different locations, cameras with an auto-exposure setting can
capture images with inconsistent brightness, which introduces noise into the optimization of the
Gaussians. To stabilize the training, prior works [6, 17] optimize an color affine transformation matrix
for each training view. This approach, however, can not generalize to correct the exposure of images
rendered at novel views. To address this issue, we assume that images taken at nearby locations share
similar global lighting conditions and thus propose to correct the exposure of the Gaussian-rasterized
image by mimicking the exposure setting of the closest source view. In particular, we first obtain an
affine transformation matrix A⋆ representing the exposure at the target view by solving the following
least-square problem,

A⋆ = arg min
A∈R3×4

∑
p∈χ

∥∥∥A [
c(p)
1

]
− cwarp

1 (p)
∥∥∥2
2

(10)

where χ is a set of pixels with valid coordinate when mapping to the source view, and cwarp
1 (p) is

color warped from the nearest source view. After that, we use A⋆ to correct the exposure of the

rendered image as, cexpo(p) = A⋆

[
c(p)
1

]
. Note that if exposure correction is applied, the color

with corrected exposure cexpo(p) is used in place of the originally rendered color c(p) for computing
appearance features (Eq. 5), residual prediction (Eq. 8) and obtaining the final image (Eq. 9).
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3.6 Optimization

The overall loss function used to train our method is,
L = Lrgb + λ1Lphoto + λ2Lnormal (11)

where λ1, λ2 are loss weights.

Color Rendering Loss Lrgb. We compute the loss for both the final image and the Gaussian-
rasterized image (i.e., the base image). The two terms are balanced by the weight γ as follows,

Lrgb = γL(C,Creal) + (1− γ)L(Cfinal,Creal). (12)
In particular, L is defined as

L(C,Cgt) = βL1(C,Cgt) + (1− β)LSSIM(C,Cgt). (13)
where β is set to 0.8 and C, Cgt ∈ RH×W×3 are the rendered and ground-truth image, respectively.

Multi-view Color Consistency Loss Lphoto. We also enforce photometric consistency across
neighboring views to encourage accurate pixel matching,

Lphoto =
1

M

M∑
m=1

L(Cwarp
m ,Creal), (14)

where Cwarp
m is the warped image obtained by stacking all cwarp

m (p) computed in Eq. 5.

Normal Consistency Loss Lnormal. Following 2DGS [15], we apply the normal consistency loss to
improve the overall geometry,

Lnormal =
1

|Ω|
∑
p∈Ω

(1−N(p)TNdepth(p)) (15)

with Ω being a set of all pixel coordinates and N denoting the rasterized normal map. Ndepth is the
normal map derived via finite difference of the point map X constructed from x(p) (see Eq. 6).

Visibility-based Source Views Selection. To find the nearby source views, we first compute the
distance between the target and each source view, then use the closest S views as candidates to search
for M visible source views (i.e., M ≤ S). Specifically, for each pixel p, we only use the sth source
view for feature extraction if it satisfies the following the condition,

|z(x(p))− z(xwarp
s (p))|

z(x(p)) + z(xwarp
s (p))

≤ τ, with xwarp
s (p) = B(πs(x(p)), X̃s) (16)

where τ is a depth error threshold, z(x) denotes the depth value of the 3D point x. The point map
X̃s can be obtained by transforming the point map Xs of source view to the coordinate system of the
target view. Intuitively, this approach performs depth consistency check to exclude the source views
in which the point x(p) is not visible.

4 Experiments

4.1 Experimental Setup

Dataset. Following 3DGS [16], we evaluate the NVS performance of our method using 2 scenes in
the Tanks and Temples (TNT) [20] dataset, 2 scenes in the Deep Blending [14] dataset, and 9 scenes
in the Mip-NERF360 [2] dataset. We also show the results on 3 scenes in the Shiny dataset [32] which
pose challenging view-dependent effects including specular highlight, reflection and disc diffraction.
For all scenes, we use every 8th image for evaluation, and the rest for training.

Implementation Details. Similar to 3DGS [16], we train our method for 30, 000 iterations. During
the first 7, 000 iterations, we set λ1 = λ2 = 0 and only activate the photometric and normal
consistency loss thereafter with λ1 = 0.3 and λ2 = 0.03. The weight γ is initially set to 1, and
then decreased to 0.5 during the last 20, 000 iterations. Regarding hyper-parameters, we set SH
degree l = 2, number of median intersection points K = 4, number of candidate source views
S = 4, number of visible source views M = 3 and depth error threshold τ = 0.001. We also prune
Gaussians with opacity lower than 0.05. Following [6], we apply the exposure compensation from [6]
and our proposed exposure correction method only to the TNT dataset. We use Adam optimizer [19]
to train the residual prediction network. The initial learning rate is 0.001, which halves at iterations
18,000 and 25,000. All experiments are conducted using a single RTX 4090 GPU.
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Table 1: Comparison between our method and previous works in three datasets. We measure the
storage memory (Mem) in MB and the number of Gaussians (#Gauss) in millions. We report two
released result from TexturedGaussian [4], with and without total memory usage.
Dataset Mip-NeRF 360 Tanks&Temples (TNT) Deep blending
Method | Metric PSNR↑ SSIM↑ LPIPS↓ #Gauss Mem PSNR SSIM LPIPS #Gauss Mem PSNR SSIM LPIPS #Gauss Mem
Mip-NeRF 360 [2] 27.69 0.792 0.237 × 8.6 22.22 0.759 0.257 × 8.6 29.40 0.901 0.245 × 8.6
Instant-NGP [24] 25.30 0.671 0.371 × 13 21.72 0.723 0.330 × 13 23.62 0.797 0.423 × 13
3DGS [16] 27.69 0.825 0.203 3.22 764 23.11 0.840 0.184 1.75 415 29.53 0.904 0.242 3.14 745
SuperGauss [33] 27.31 0.815 0.209 3.04 1021 23.72 0.847 0.179 1.50 502 28.83 0.901 0.250 2.27 762
TexturedGauss [4] 27.35 0.827 0.186 – – 24.26 0.854 0.168 – – 28.33 0.891 0.270 – –
TexturedGauss⋆ [4] 27.26 – – 3.50 1047 24.28 – – 1.30 691 28.52 – – 1.00 668
Ours 28.33 0.837 0.186 1.59 291 24.84 0.869 0.148 0.75 143 30.12 0.912 0.237 1.11 197

Table 2: Comparison on three scenes in the Shiny dataset with challenging view-dependent colors.
Scene (effect) Guitars (specular highlight) Lab (reflection) CD (diffraction)
Method|Metric PSNR↑ SSIM↑ LPIPS↓ #Gauss Mem PSNR SSIM LPIPS #Gauss Mem PSNR SSIM LPIPS #Gauss Mem
3DGS [16] 29.37 0.947 0.131 0.41 97 29.17 0.927 0.123 0.63 150 29.10 0.935 0.110 0.51 121
SuperGauss [33] 30.43 0.952 0.121 0.39 131 29.38 0.932 0.107 0.61 204 29.49 0.944 0.091 0.70 234
Ours 35.65 0.953 0.105 0.18 46 35.06 0.966 0.056 0.27 66 35.23 0.955 0.060 0.27 69

4.2 Results

In Tab. 1, we show the comparison of our method with prior methods in terms of NVS performance,
number of Gaussians and storage usage. The results reveal that our method consistently achieve the
best image quality across all datasets. For the PSNR metrics, our method gains an improvement of at
least 0.64, 0.56 and 0.59 dB in the Mip-NeRF 360, TNT and Deep blending datasets, respectively.
Notably, on the Mip-NeRF 360 and TNT datasets, our method reduces the number of Gaussians
and the storage by at least 62% and 42%, respectively, compared to existing Gaussian Splatting
methods [4, 16, 33] and still outperforms them. For the Deep blending dataset, although we use
slightly more Gaussians than TexturedGauss [4], our method consumes 70% less storage. This is
because TexturedGauss needs to store the texture maps of all Gaussians, which requires significantly
more memory compared to storing the source images as in our method.

Tab. 2 presents the comparisons on three scenes in the Shiny [32] dataset with challenging view-
dependent effects. For this dataset, we train 3DGS [16] and SuperGaussian [33] using their official
implementations. Despite using fewer Gaussians, our method achieves significantly better NVS
performance, with at least a 5.22 dB gain in PSNR. This demonstrates the superior capability of our
method in modeling view-dependent color compared to previous works.

Qualitative Results. Fig. 2 shows the qualitative comparison between our method, 3DGS [16] and
SuperGauss [33]. The results in the first two scenes reveal that 3DGS and SuperGauss struggle in
reconstructing high-frequency details, while our method delivers more photorealistic results. We
also show the two color components of our method, including a base image and a predicted residual
map. While the base image alone exhibits the same detail deficiencies as 3DGS, adding our predicted
color residuals helps to restore realistic textures. For scenes with complex view-dependent color,
our method also demonstrates more compelling visual results, as shown in the last two scenes of
Fig. 2. In these cases, 3DGS [16] and SuperGaussian [4] fail to capture the specular highlights and
reflection effects, while our method successfully recovers the complex view-dependent colors in the
final rendered images by predicting high residuals for these challenging regions. Interestingly, in
the zoomed-in region of the Guitars scene, our method can decompose the color into a diffuse and
specular component modeled via the base color and predicted residuals, respectively. Comparisons
with more baseline methods and additional qualitative results can be found in the supplementary
material.

4.3 Ablation Studies

Tab. 3 presents the ablation study results. Base color only: Discarding the predicted color residual
leads to a significant drop in the image quality. This highlights the importance of the color residual
module. W/o color consistency loss Lphoto: Training without the loss Lphoto results in less accurate
projections onto the source views, thereby reducing the quality of the rendered images. Use source
colors cm as network’s input: Here, we use the full colors cwarp

m obtained from the source images
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Ground-truth 3DGS [16] SuperGaussian [33]

Our final image Cfinal Our base image C Our predicted residuals ∆C

Figure 2: Qualitative results. Our method can render images with both high-frequency details
(first two scenes) and view-dependent effect (last two scenes). However this cannot be achieved by
3DGS [16] and SuperGaussian [33]
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Table 3: Ablation study on the exposure correction, color consistency loss and the network’s input.

Method
Tanks&Temples (TNT) MipNeRF-360

PSNR↑ SSIM↑ LPIPS↓ PSNR SSIM LPIPS
Full 24.84 0.869 0.148 28.33 0.837 0.186
Base color only 23.06 0.836 0.202 27.08 0.814 0.227
W/o color consistency loss Lphoto 24.70 0.866 0.152 28.31 0.833 0.192
Use source color cwarp

m as network’s input 24.61 0.867 0.150 28.21 0.837 0.187
W/o exposure correction 24.28 0.866 0.152 – – –

Table 4: Ablation study on opacity threshold.
Dataset Mip-NeRF 360 Tanks&Temples Deep blending
Method (threshold) PSNR↑ SSIM↑ LPIPS↓ #Gauss Mem PSNR SSIM LPIPS #Gauss Mem PSNR SSIM LPIPS #Gauss Mem
3DGS (0.005) 27.69 0.825 0.203 3.22 764 23.11 0.840 0.184 1.75 415 29.53 0.904 0.242 3.14 745
Ours (0.005) 28.42 0.836 0.183 2.61 456 24.76 0.869 0.146 1.23 220 29.91 0.907 0.234 2.41 405
3DGS (0.05) 27.51 0.818 0.221 1.46 346 23.52 0.837 0.202 0.74 175 29.16 0.902 0.256 1.03 243
Ours (0.05) 28.33 0.837 0.186 1.59 291 24.84 0.869 0.148 0.75 143 30.12 0.912 0.237 1.11 197

as input to the residual prediction network, instead of their difference ∆cm from the base color. As a
result, this approach performs consistently worse than our full model. W/o exposure correction:
Removing the exposure correction also results in performance drop in the TNT dataset which exhibits
inconsistent camera exposure across viewpoints [2]. Fig. 3 illustrates that our method can improve
the exposure of the rendered image in both underexposure and overexposure cases, leading to higher
image quality. More ablation studies can be found in the supplementary materials.

Additionally, we compare the sensitivity of our method and 3DGS [17] to the total number of
Gaussians. For this experiment, we train our method and 3DGS with different opacity thresholds
(0.005 and 0.05) used for pruning the Gaussians. Tab. 4 reveals that 3DGS requires a large number
of low-opacity Gaussians to achieve good rendering quality, as its performance degrades when a
higher opacity threshold is used. In contrast, with the same large threshold, our method can reduce
the number of Gaussians while retaining most of the image quality.

5 Conclusion
In this paper, we present IBGS, an image-based Gaussian Splatting pipeline that is capable of
rendering photorealistic images with both high-frequency details and view-dependent effects. Our key
contribution is the color residual module, which leverages fine-grained textures and view-dependent
information in nearby source images to predict a residual term added to the base Gaussian-rasterized
color. Moreover, we introduce the exposure correction module to improve the brightness of the
rendered image by mimicking the exposure of the closest source view. Extensive experimental results
show that our method consistently outperforms previous works across different datasets.

Ground truth With exposure correction W/o exposure correction

Figure 3: Comparison of rendered images with and without exposure correction. Our method can
correct the exposure in both underexposure (top) and overexposure (bottom) cases.
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Limitations. Our method may struggle in a sparse-view setting, in which obtaining dense pixel
correspondences used for residual prediction is challenging. Additionally, due to the additional
computations in the rendering process, our method achieves lower rendering speed and requires
higher runtime memory compared to 3DGS [16]. We discuss this in more detail in the supplementary
material.

Broader Impacts. Our method has no immediate societal impacts. However, its downstream
applications, such as 3D reconstruction [15] or controllable human modeling [21], can potentially be
abused for malicious purposes such as unauthorized reconstructions, identity fraud.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: Our claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope. We further demonstrate it in our methodology and experiment
sections.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: Yes, we discuss the limitation of our method in the main paper.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [NA]

Justification: The paper does not include theoretical results.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We provide all the information needed to reproduce the main experimental
results in the main paper, supplementary materials

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [No]
Justification: Our code will be released upon acceptance.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: We provide experimental details in the main paper and supplementary material.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [No]
Justification: This paper does not report error bars.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)
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• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: We provide experimental details, including the computer resources needed to
reproduce the experimental results in the main paper and supplementary material.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: This work conforms with the NeurIPS Code of Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: We provide discussion on the potential societal impacts of our method in the
main paper.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The paper poses no such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We have cited the original owners of all assets used in this paper properly.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: That the paper does not release new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
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Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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