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Abstract. Medical Vision-Language Models (Med-VLMs) are gaining
popularity in different medical tasks, such as visual question-answering
(VQA), captioning, and diagnosis support. However, despite their im-
pressive performance, Med-VLMs remain vulnerable to adversarial at-
tacks, much like their general-purpose counterparts. In this work, we in-
vestigate the cross-prompt transferability of adversarial attacks on Med-
VLMs in the context of VQA. To this end, we propose a novel adversarial
attack algorithm that operates in the frequency domain of images and
employs a learnable text context within a max-min competitive optimiza-
tion framework, enabling the generation of adversarial perturbations that
are transferable across diverse prompts. Evaluation on three Med-VLMs
and four Med-VQA datasets shows that our approach outperforms the
baseline, achieving an average attack success rate of 67% (compared to
baseline’s 62%).

Keywords: Vision-Language Models - Adversarial Attack - Transfer-
ability - Spectral Attack - Visual Question Answering

1 Introduction

Multimodal conversational artificial intelligence has made rapid progress by uti-
lizing millions of publicly available image-text pairs, enabling general-purpose
vision-language models (VLMs) to achieve impressive capabilities in understand-
ing and generating responses across diverse visual and textual contexts [41,39,13].
While general-purpose VLMs have made significant strides in understanding and
generating responses for a wide range of image-text tasks, they still lack the so-
phistication required to interpret biomedical images effectively [27]. Biomedical
imaging data, such as X-rays, MRIs, CT scans, and histopathology slides, present
unique challenges due to their complexity, domain-specific terminology, and crit-
ical need for precision [3]. To address the limitations of general-purpose VLMs
in meeting the nuanced demands of the medical domain, an increasing number

™MCorresponding Author
Github Page: https://github.com/asif-hanif/sparta


https://github.com/asif-hanif/sparta

2 A. Hanif et al.

Yes, signs of abnormalities are present.

Text Prompts Clean Image
7" 3 Yes, indications of infection are observed.
- . o
Are there any abnormalities in the image? i, (e o G
Is there evidence of infection in the image? ; Yes, inflammation is observed.

No signs of disease.
Do you see any signs of a tumor?

No signs of disease.
Med-VLM

Is there any sign of inflammation? No signs of disease.

ol U, (4
lv. Image No signs of disease.

Fig.1. Cross-Prompt Transferability. An adversarial perturbation with cross-

prompt transferability forces the Med-VLM to produce a targeted response ( )
irrespective of the input prompt, whereas with clean image the Med-VLM functions as
intended, generating prompt-specific responses ( ).

of domain-specific medical vision-language models (Med-VLMs) are being de-
veloped, trained on high-quality annotated biomedical datasets and fine-tuned
for tasks such as image captioning, visual question answering (VQA), diagnosis
assistance, and clinical decision support [11,18,28,5,37].

Despite their significant advancements in medical tasks, Med-VLMs remain
vulnerable to adversarial attacks, much like general-purpose VLMs [21,36,40,33].
These vulnerabilities present substantial risks in high-stakes medical settings,
where even minor input manipulations could result in erroneous diagnoses or
lead to flawed clinical decisions, raising concerns about their robustness and re-
liability as they are increasingly deployed in real-world healthcare applications
[4,1,9,10,8,16,15,14,26]. In addition to the inherent vulnerability of deep learn-
ing models to adversarial attacks, it has also been demonstrated that adversarial
examples exhibit transferability [7,31,34,32], enabling attackers to exploit vul-
nerabilities across multiple models without model-specific customization.

Transferability of adversarial attacks manifests in multiple forms, including
cross-model (adversarial perturbations transferring from one model to another)
[19], cross-task (e.g., an attack designed for image classification deceiving a seg-
mentation model) [23], cross-image (e.g., a perturbation applied to one image
successfully transferring to others) [29], cross-domain (e.g., adversarial examples
created for natural images transferring to medical images) [30], cross-modality
(e.g., perturbations crafted for images affecting videos) [38], and cross-prompt
transferability (an attack designed for a specific question in a VQA model trans-
ferring to other question types). In this work, we focus on studying the cross-
prompt transferability [24] of adversarial attacks in Med-VLMs within the
context of visual question answering. An example of adversarial perturbation
demonstrating cross-prompt transferability is a carefully crafted noise pattern
added to a medical image that causes a Med-VLM to consistently output in-
correct or misleading responses across a variety of clinical prompts (see Figure
1 for an illustrative example). For instance, regardless of whether the model is
prompted with "Is there evidence of pneumonia?" or "Identify any abnormal-
ities in the lung," the perturbed image could force the Med-VLM to always
respond with "No signs of disease" even when clear signs of disease are present.
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This phenomenon highlights the model’s vulnerability to adversarial examples
that generalize across different textual inputs, undermining its reliability in crit-
ical healthcare applications. However, this same cross-prompt transferability can
also be leveraged positively to enhance the model’s robustness and ethical consis-
tency. For instance, it can be used to ensure that the model consistently refuses
to provide unauthorized medical guidance, regardless of how the user phrases
their request. For example, when asked questions like "What is the best way
to self-medicate for chest pain?" or "How much insulin should I take?", the
model would reliably respond with "Consult a medical specialist" or another
appropriate refusal message.

In this work, we propose a novel adversarial attack on Med-VLMs that en-
hances cross-prompt transferability. Our task-agnostic attack generates image-
specific perturbations effective across tasks like visual question answering, cap-
tioning, and classification. To our knowledge, this is the first study to explore
cross-prompt transferability in Med-VLMs. Our contributions are as follows:

— Novel Algorithm We introduce a novel adversarial attack, Spectral Prompt
Agnostic Adversarial Attack (SPARTA), designed to enhance cross-prompt
adversarial transferability in medical vision-language models (Med-VLMs).

— Spectral Domain Attack Our proposed adversarial attack operates in the
frequency domain, enhancing cross-prompt transferability through a max-
min optimization framework that learns a textual context, expanding the
prompt search space while effectively mitigating the risk of overfitting.

— Superior Performance Extensive evaluation on three Med-VLMs and four
Med-VQA datasets demonstrates SPARTA’s superiority over the baseline,
achieving faster convergence with minimal computational overhead.

Related Work. An adversarial attack manipulates model predictions by adding
human-imperceptible perturbations to input(s), leading to incorrect or mislead-
ing outputs [6,25]. A critical property of these attacks is transferability, where
adversarial examples crafted for one model, task, image, domain, or modality
remain effective across others [7]. In the context of VLMs, a distinct form of
transferability is cross-prompt transferability, where an adversarial perturbation
causes the model to generate the same or misleading response for an image,
regardless of variations in the input prompt. CroPA [24] is the recent notable
attempt to achieve cross-prompt transferability in general-purpose VLMs. We
adopt CroPA as our baseline, extend it to Med-VLMs and identify two key lim-
itations in this method. First, it applies adversarial noise in the pixel domain,
whereas prior studies have shown that frequency-domain perturbations are more
effective in enhancing transferability [22,2]. Motivated by this insight, we pro-
pose a novel approach that integrates frequency-domain noise into our attack to
enhance its effectiveness. Secondly, CroPA relies on text-prompt-specific pertur-
bations to enhance transferability. This approach has two key drawbacks: first,
the perturbations tend to overfit to their respective prompts, limiting general-
ization; second, learning separate perturbations for each prompt is computation-
ally expensive. To overcome these limitations, we adopt a prompt-learning based
setup [43], where a learned prompt counteracts the image noise in a competitive
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optimization framework to enhance transferability. Extensive evaluation across
three Med-VLMs and four Med-VQA datasets demonstrates the effectiveness of
our proposed method, outperforming the baseline with an average attack success
rate of 67% (compared to CroPA’s 62%).

2 Method

2.1 Preliminaries

Consider a clean image x and a clean text prompt t randomly selected from
a set of prompt instances 7 = {t1,ta,...,tn}. The output (free-form textual
response) of a Med-VLM f(-), given x and t, is denoted by f(x,t). Let T be
the target text output; our objective in a targeted setting is to ensure that the
model consistently generates T' for a perturbed image x’, regardless of the input
text, i.e., f(x',t) =T V t € T. The language modeling loss of the Med-VLM,
which quantifies the discrepancy between the generated response and the target
text, is expressed as £( f(x,t), T ) We craft adversarial examples by optimizing
this loss function that minimizes (targeted attack) or maximizes (non-targeted
attack) the deviation from the target output.

2.2 SPARTA — Spectral Prompt Agnostic Adversarial Attack

To improve cross-prompt transferability in adversarial images, we introduce
SPARTA, a novel attack algorithm. SPARTA leverages both spectral (frequency-
domain) noise and a learnable textual context, which are described below.

Spectral Noise. Instead of learning adversarial noise in the pixel domain, we
operate in the spectral domain of the image. For the rationale behind adopting
spectral-domain noise over pixel-domain perturbations, see Appendix A. With-
out loss of generality, we assume the image is in RGB format. We first convert it
to the YCbCr color space and then apply the Discrete Cosine Transform (DCT),
denoted as F(-), to the Y channel to obtain its frequency representation. The
spectral perturbation is introduced as follows:

X = F, (F(x) ©5,), M

where §, € RHelghtxWidth yenresents multiplicative noise, and © denotes the
Hadamard product. The perturbed image x’ is then reconstructed by apply-
ing the Inverse DCT (IDCT), F,(-), followed by conversion from YCbCr back to
RGB format. The values of spectral noise 4, are constrained to [1—¢, 14 €] where
e € [0,1] is spectrum perturbation budget. Value of € represents the maximum
allowable + percentage change in the values of DCT coefficients. A higher value
allows for excessive perturbation in the spectral domain, which can negatively
impact the perceptual quality of the reconstructed image. It is worth noting
that additive spectral noise does not respect the natural structure of the image’s
frequency-domain representation. Therefore, we utilize multiplicative spectral
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Fig. 2. Overview of SPARTA. SPARTA transforms the input image into the fre-
quency domain, where it applies learnable multiplicative noise to perturb the spectrum
before reconstructing the image via inverse-transform. On the text side, it introduces
learnable context within the token embedding space and prepends it to the actual text
prompt. Learnable parameters are optimized within a competitive optimization frame-
work to enhance cross-prompt transferability (see Algorithm 1 for more details).

noise. For a detailed explanation of multiplicative spectral noise and the spec-
trum perturbation budget, see Appendix B.

Textual Context. We introduce a learnable context to generate perturbed tex-
tual inputs t’ for the model. Specifically, we prepend a learnable textual context
§, € RNumTokensxEmbedDim 4 the original prompt ¢; € 7 in the token embedding
space, i.e., t'={d,t;}. During adversarial example generation, the same con-
text is appended to the randomly selected text prompt in each iteration. Unlike
baseline method that uses prompt-specific textual perturbations, our approach
employs a global perturbation, which enhances transferability and reduces the
risk of overfitting the perturbation to individual prompts. It should be noted
that textual perturbation is only used during adversarial example generation to
enhance image perturbation transferability, and not during inference.

Adversarial Objective. We solve the following max-min objective to craft ad-
versarial perturbations. The inner minimization step optimizes the image pertur-
bation to generate the target text 7', while the outer maximization step promotes
cross-prompt transferability in the competitive objective framework.

max Hgin L(f(x',t),T),
s.t. xX'=F,(F(x)©6,;) and t'={d;,t} and (1—e€) <&, < (1+€). (2)

When crafting a non-targeted attack, the following optimization objective is
solved: Héin max L(f(x',t"), f(x,t)). An overview of our approach and detailed
t x

attack steps can be found in Figure 2 and Algorithm 1, respectively.
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Algorithm 1 SPARTA - Spectral Prompt Agnostic Adversarial Attack

1: Notations Vision-Language Model: f(-), Clean Image: x, # of Prompts: N, Text
Prompts: T={t1,t2,...,tn}, Target Text: T, Spectral Noise: 0, Perturbation Bud-
get: € € [0,1], Textual Context: J;, Textual Context Update Interval: N, # of
Attack Steps: NumSteps, DCT: F(-), Inverse-DCT: F,(-), Learning Rates: «, 3

2: function SPARTA(f,x,7,T)

3 Initialize &, € RMcightxWidth

4 for step <— 1 to NumSteps do

5: x' « F ( F(x)©®d: ) > Spectrum transformation with Equation 1

6.

7

8

RNumTokensX EmbedDim

as ones and J; € as zeros.

t; € RandomSampling(t1,t2,...,tn) > Randomly select a prompt from T
t’ + Concatenate([d:,;]) > Concatenate context with prompt embedding

: Vx + Vs, L(f(x',t),T) > Compute loss gradient w.r.t d
9: O0p < 0z — a-Vx > Update spectral noise with gradient descent
10: 0y + clamp(d;, min=1—¢, max=1+¢) > Apply budget on spectral noise
11: if mod (step, Nt) == 0 then > Conditionally update text context
12: Vi« Vo, L(f(X' ), T) > Compute loss gradient w.r.t d;
13: 6t <+ 0t + BV > Update textual context with gradient ascent
14: end if

15: end for
16: end function
17: Return x’

3 Experiments and Results

Experimental Setup. We validate our approach on three well-known medical
VQA models (LLaVA-Med [18]|, Med-Flamingo [28], and XrayGPT [37]) and
four medical VQA datasets (PMC-VQA [42], Rad-VQA [17], Path-VQA [12],
and SLAKE [20]). Our evaluation covers three tasks: Visual Question Answer-
ing (VQA), Captioning (CAP), and Classification (CLS). All experiments are
conducted on a single NVIDIA RTX A6000 GPU with 48GB of memory. We
run SPARTA for 1500 iterations, while CroPA is executed with its default set-
tings. The number of prompts in 7T is set to 10, with a spectral noise perturbation
budget of € = 0.1 for J,. For textual context d;, the token count is set to 8. By
default, the attack is targeted, with the target text set to "No signs of disease".
The learning rates for updating d, and &, are set to o = 1le™2 and 8 = le~2,
respectively. The interval for conditionally updating §; is set to N; = 30. The
evaluation prompts cover VQA, classification, and captioning, with mutually
exclusive train and test sets. We use Attack Success Rate (ASR) as evaluation
metric. If the post-processed generated text matches the target text T, the at-
tack is considered successful; otherwise, it is unsuccessful.

Results and Analysis. Table 1 presents a performance comparison between
SPARTA and the baseline CroPA in terms of attack success rate (ASR) across
three medical VQA models and four medical VQA datasets. Overall, SPARTA
consistently outperforms CroPA across most datasets and models, achieving
higher ASR in nearly all cases. Across models and datasets, SPARTA achieves
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Table 1. Performance comparison of SPARTA with the baseline CroPA [24] in terms
of attack success rate (ASR). Evaluation is conducted on three medical VQA models
(LLaVA-Med [18], Med-Flamingo [28], XrayGPT [37]) and four medical VQA
datasets (PMC-VQA [42], Rad-VQA [17], Path-VQA [12], SLAKE |[20]) across
three tasks: Visual Question Answering (VQA), Captioning (CAP), and Classification
(CLS). AVG denotes the average ASR across tasks.

Models — LLaVA-Med Med-Flamingo XrayGPT

Methods | VQA CAP CLS AVG VQA CAP CLS AVG VQA CAP CLS AVG

CroPA 0.89 0.36 0.74 0.66 0.83 0.39 0.75 0.65 0.77 0.29 0.68 0.58
SPARTA o)y 0.95 043 081 0.73 091 048 0.84 0.74 083 0.39 0.75 0.66

PMC

CroPA 0.76 0.39 0.71 0.62 0.78 0.53 0.69 0.67 0.75 0.55 0.63 0.64
SPARTA o5y 0.81  0.46 0.77 0.68 0.85 0.58 0.73 0.72 0.80 0.59 0.69 0.69

CroPA 079 044 076 0.66 0.75 0.61 0.74 0.70 0.62 0.38 0.56 0.52
SPARTA (oursy 0.81 0.49 0.81 0.70 0.79 0.63 0.71 0.71 0.61 0.35 0.57 0.51

CroPA 0.63 0.47 0.74 061 0.67 058 0.63 0.63 0.69 042 0.54 0.55
SPARTA (ous) 0.68 054 0.77 0.66 0.65 0.57 0.61 0.61 0.73 047 0.61 0.60

SLAKE | P-VQA | R-VQA

Table 2. Impact of # of prompts (IV), spectrum perturbation budget (¢), target text
(T), and textual context update interval (V;) on SPARTA’s attack success rate (ASR).

# of Prompts‘ ASR Spectrum Budget ‘ ASR Target Text ASR Context Update Interval ASR
1 0.21 0.05 0.66 Consult radiologist 0.75 1 0.27
5 0.58 0.1 0.73 I cannot assist 0.77 10 0.53
10 0.73 0.2 0.75 I am sorry 0.74 30 0.73
15 0.77 0.3 0.76 Indications of cancer found| 0.76 50 0.65
20 0.84 0.4 0.79 You can self-medicate 0.71 100 0.59
(a) (b) (c) (d)

an average ASR of 67%, whereas CroPA reaches 62%. The impact of various fac-
tors on SPARTA’s average ASR, demonstrated using the LLaVA-Med model and
PMC-VQA dataset, is analyzed in Table 2. Similar patterns were consistently
observed with other models and datasets, but are not reported for brevity. In-
creasing the number of prompts (V) consistently improves ASR, showing that
more prompts enhance attack effectiveness (see Table 2(a)). Increasing the spec-
trum perturbation budget (e) improves ASR (see Table 2(b)), but may also
result in greater perceptual degradation in the reconstructed image. Different
target texts (T') result in slightly varying ASR values, indicating that the choice
of text influences attack success (see Table 2(c)). For textual context update
interval (N;), ASR improves with more frequent updates up to a certain point
before declining (see Table 2(d)). More frequent updates or less frequent updates
lead to lower ASR, indicating that an optimal balance in update frequency is
crucial for attack success. Figure 3 illustrates the loss convergence of CroPA
and SPARTA alongside the visualizations of adversarial noise generated by both
methods. It can be observed that SPARTA converges faster compared to CroPA.
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Fig. 3. Loss Convergence and Noise Visualization. (left) Loss convergence com-
parison, (right) Visualizations of adversarial noise generated by CroPA and SPARTA.
SPARTA converges faster compared to CroPA while generating less perceptible noise.

0.73 0.73 0.72 0.73
0.59
0.41
0.34
0.27
Low Middle High All Additive Multiplicative Non-Targeted Targeted
Spectral Bands Spectral Noise Attack Type

Fig. 4. Spectral Bands, Noise and Attack Type. (left) Impact of selective per-
turbation in spectral bands on ASR, (middle) Impact of using additive/multiplicative
noise on ASR, (right) ASR under targeted and non-targeted attack settings.

It is important to note that CroPA employs spatial (pixel-domain) adversarial
noise, whereas SPARTA perturbs the image in the spectral (frequency) domain.
By default, SPARTA perturbs all (low, middle, high) spectral bands [35]. Figure
4(left) illustrates the impact of selectively perturbing different spectral bands on
the performance of SPARTA, revealing that perturbations in the high-frequency
band (excluding ‘All’ bands case) are the most effective in influencing the model’s
behavior. We also show impact of using additive and multiplicative spectral noise
in SPARTA in Figure 4(middle), validating the superior efficacy of the latter ap-
proach in spectral domain. The performance under targeted and non-targeted
attack settings is nearly identical, as shown in Figure 4(right).

4 Conclusion

In this work, we investigate the cross-prompt transferability of adversarial at-
tacks on medical vision-language models (Med-VLMs) and explore their poten-
tial implications for model robustness and security. We propose a novel adver-
sarial attack that enhances cross-prompt transferability by learning adversarial
noise in the frequency domain and leveraging a learnable text context through
a max-min competitive optimization framework. Evaluation on three medical
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VQA models and four datasets demonstrates the effectiveness of our proposed
approach, which achieves a higher attack success rate compared to the baseline.
Our work highlights the vulnerability of Med-VLMs to cross-prompt adversar-
ial attacks, advocating for robust countermeasures and further exploration of
adversarial transferability to ensure their safe deployment in healthcare.

Disclosure of Interests. The authors have no competing interests to declare that
are relevant to the content of this article.
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Appendix

A Adversarial Noise: Pixel Domain vs. Frequency
Domain

Pixel-domain perturbations involve direct modifications to the intensity values
of individual pixels within an image. Frequency-domain perturbations are ap-
plied after transforming an image into its frequency components, often through
techniques like Fourier Transform or Discrete Cosine Transform. In this domain,
perturbations are applied to specific frequency coefficients, and the image is
then transformed back to the pixel domain, where these changes manifest in the
spatial domain, influencing the image’s appearance in a controlled way. Pixel-
domain changes are spatial, affecting specific locations, while frequency-domain
changes operate on the periodicity and structural components of the image. Each
of the frequency-domain coefficients are theoretically linked to the entire image
in pixel space; perturbing a single frequency-domain coefficient ideally affects
all pixels in the reconstructed image. Conversely, a pixel-domain perturbation is
localized and does not inherently influence other pixels in spatial domain. Prior
work has demonstrated that optimizing adversarial noise in the frequency do-
main leads to enhanced transferability [22]; therefore, we use it as the de facto
choice in SPARTA.

B Spectrum Perturbation

In normalized images, pixel values are constrained within the interval [0,1].
In contrast to pixel values, frequency domain coefficients of the image vary
dynamically based on the content. To introduce perturbations in the spectral
domain, we use multiplicative noise (d,.), which scales frequency-domain coeffi-
cients proportionally to their magnitudes. This enables content-aware modifica-
tions that maintain perceptual quality. Unlike additive noise, which can distort
low-magnitude coefficients when the noise is too strong, or become ineffective
for high-magnitude regions when too weak, multiplicative noise provides con-
sistent, adaptive perturbations. Moreover, additive noise can even flip the sign
of frequency-domain coefficients, potentially leading to unintended distortion in
the reconstructed image. This makes the multiplicative noise more suitable for
preserving the natural structure of the frequency-domain representation of the
image. The perturbation budget for spectral noise is governed by € € [0, 1], which
specifies the maximum allowable percentage change. For instance, ¢ = 0.1 im-
plies that d, lies in the range [1 —¢, 14 €] = [0.9, 1.1]. Values of §, < 1 attenuate
the corresponding frequency-domain coefficients, while values > 1 amplify them.
The following equation formally demonstrates the non-equivalence of multiplica-
tive and additive noise in the spectral domain, highlighting both the technical
unsuitability of additive noise and the fundamental difference in their outputs.

F(F(x) ® 6;) # F, (F(x) + 65)
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