
Published as a conference paper at ICLR 2025

BOOSTING MULTIPLE VIEWS FOR PRETRAINED-BASED
CONTINUAL LEARNING

Quyen Tran1†, Lam Tran1†, Khanh Doan1, Toan Tran1, Dinh Phung3, Khoat Than2∗, Trung Le3∗
1 Qualcomm AI Research∗∗ 2 Hanoi University of Science and Technology 3 Monash University

ABSTRACT

Recent research has shown that Random Projection (RP) can effectively improve
the performance of pre-trained models in Continual learning (CL). The authors
hypothesized that using RP to map features onto a higher-dimensional space can
make them more linearly separable. In this work, we theoretically analyze the
role of RP and present its benefits for improving the model’s generalization ability
in each task and facilitating CL overall. Additionally, we take this result to the
next level by proposing a Multi-View Random Projection scheme for a stronger
ensemble classifier. In particular, we train a set of linear experts, among which
diversity is encouraged based on the principle of AdaBoost, which was initially very
challenging to apply to CL. Moreover, we employ a task-based adaptive backbone
with distinct prompts dedicated to each task for better representation learning. To
properly select these task-specific components and mitigate potential feature shifts
caused by misprediction, we introduce a simple yet effective technique called the
self-improvement process. Experimentally, our method consistently outperforms
state-of-the-art baselines across a wide range of datasets.

1 INTRODUCTION

Continual Learning (CL) is a field of Machine Learning that focuses on enabling deep neural networks
to learn continually from a sequence of tasks with different data distributions. Sequential training
on such data often leads to catastrophic forgetting (French, 1999) of old knowledge, where model
parameters are overwritten by new tasks’s learning. To overcome this problem, recent CL methods
proposed leveraging the generalizability of pre-trained models (Han et al., 2021; Jia et al., 2022) as
frozen backbones to continually solve the series of emerging tasks overtime (Janson et al., 2022;
Wang et al., 2022c; Zhou et al., 2023; Smith et al., 2023; Li et al., 2024).

Among these pretrained-based CL methods, one promising work is RanPAC (McDonnell et al.,
2023), which is based on Random projection (RP) to facilitate the classification ability of models.
In particular, this method proposes using a random matrix to project the features obtained from a
pre-trained backbone onto a new space with significantly higher dimensions (e.g., from d = 768
to d′ = 10, 000). The motivation for utilizing RP is based on their empirically supported but not
explicitly theoretically proven hypothesis, that features are more linearly separable and easier to
classify in higher-dimensional space. In our work, we theoretically explain the roles of RP followed
by a nonlinear activation function, showing that the margin of a training data point in the higher-
dimensional space is almost surely larger by the rate of O(

√
d′). This means that RP increases the

(nonlinear) separability between classes and tasks. We also analyze RP’s implications regarding
generalization ability for each specific task and facilitating CL overall.

In addition, to take advantage of RP for enhancing separability, a straightforward solution is to set
the dimension of the projected space (i.e., d′) to be significantly large. However, this naive idea
would be infeasible as training the classifier involves computing the inverse of a Gram matrix of
size d′ × d′. To overcome this obstacle while leveraging the multiple-view learning paradigm for

†,∗Equally contributed.
∗∗Qualcomm Vietnam Company Limited

1

Published as a conference paper at ICLR 2025

a stronger classifier, we instead consider handling K projected spaces with smaller manageable
dimensions and employing K corresponding projection matrices. We refer to each space as an atomic
view (i.e., d′a). During training, the classifiers on these views will be encouraged to diversify through
exploiting the principle of Adaboost (Freund & Schapire, 1997) in CL for the first time. We also
theoretically argued that computations on a huge view, which is composed of k ≤ K atomic views,
could be conducted through similar operators on these smaller views by some relaxation. Therefore,
given the responses from K atomic views, we can generate up to 2K − 1 huge-view responses and
implement a voting strategy to obtain the final prediction, harnessing the potential of the boosting
algorithm in CL.

Furthermore, we argue that the first task adaptation strategy (Panos et al., 2023) in RanPAC, while
bridging the gap between pre-trained data and CL tasks, may cause overlapping representations from
later tasks, potentially limiting model performance as subsequent tasks may differ from the first. To
effectively adapt incoming tasks, we follow prompt-based CL methods (Wang et al., 2022c; Smith
et al., 2023), assigning each task to different prompts and utilizing the prompted model to obtain
features for RP. However, we observe that occasionally, incorrect prompt selection can lead to feature
shifts between the training and testing phases, resulting in poor performance. Therefore, to mitigate
the risk of selecting the wrong prompt, we propose a self-improvement process for appropriately
selecting prompts for each task sample.

Finally, we name our method as "Boosting Multiple Views for pretrained-based Continual Learning
(BoostCL)", and summarize our main contributions as follows:

• We theoretically analyze the benefits of random projection (RP) mapping representations
onto a higher-dimensional space, which is explicitly unsolved in the previous work. We
show that RP increases the margin of each training instance, making features more separable.
Besides, RP can increase a model’s generalization ability for each specific task and facilitate
CL overall.

• Based on our theoretical results, to handle a vastly high-dimensional space, we propose a
novel Multi-View random projection scheme for training a strong ensemble classifier. This
scheme involves leveraging an adaptive AdaBoost strategy, which initially poses a significant
challenge when applied directly to CL.

• Additionally, together with integrating task-specific prompts into the CP-based backbone
for better adaptation, we propose a self-improvement process, a simple but effective strategy
to help select prompts more accurately when inference.

• We empirically evaluate the effectiveness of our method against current state-of-the-art
pre-trained-based baselines across various benchmarks. Specifically, denoting BoostCL-
m(d′;K) as our approach with K views and d′ dimensions for each view, we consider the
following variants: BoostCL-m (d′ = 768;K = 13), BoostCL-m (d′ = 10, 000;K = 15),
and BoostCL-m (without random projection;K = 15) for comparison with RandAC and
other baselines. Our variant BoostCL-m (d′ = 10, 000;K = 15) outperforms all baselines
by a significant margin. Interestingly, BoostCL-m (d′ = 768;K = 13), which uses the
same random-projection dimension as RanPAC, also surpasses the baseline by a remarkable
margin, showcasing the effectiveness of our multi-view learning strategy. Notably, the
variant BoostCL-m (without random projection;K = 13), applying multi-view without
random projection, also significantly outperforms RanPAC and other baselines, reinforcing
the value of our multi-view learning approach.

2 RELATED WORK

Class Prototype-based approach leverages pre-trained models and introduces prototype-based
strategies for continual learning (CL). In particular, the nearest class mean (NCM) classifier applied
to prototypes from frozen pre-trained models is a strong baseline (Janson et al., 2022). Later, ADaM
(Zhou et al., 2023) refines this by adapting the pre-trained model to the first task with techniques
like prompt-tuning (Jia et al., 2022) or adaptors (Chen et al., 2022). Building on this, recent work
(McDonnell et al., 2023; Goswami et al., 2023; Zhuang et al., 2023; ZHUANG et al., 2022) further
enhance NCM by using second-order statistics, resulting in advanced classifiers with closed-form
solution.

2

Published as a conference paper at ICLR 2025

Prompt-based approach. Wang et al. (2022d;c); Smith et al. (2023) typically assigns a set of
prompts to each task, enhancing the adaptability of the backbone to downstream tasks and enabling
the ability to distinguish classes within each task. However, the absence of explicit constraints can
lead to feature overlapping between classes from new and previous tasks. Therefore, recent methods
employ some types of contrastive loss (Wang et al., 2023; Li et al., 2023) or utilize Vision Language
models (Wang et al., 2022a; Nicolas et al., 2024) to better separate features from tasks.

Although the methods in these two approaches achieve impressive performance, they only consider
classifiers with a single view, resulting in a limited performance. To create a stronger classifier, we
propose a novel Multi-view Random Projection scheme with an ensemble classifier, including many
diverse views driven by the principle of Adaboost (Freund & Schapire, 1997), where responses from
sub-classifiers of different views are then combined and voted on to produce the final prediction.

3 BACKGROUND

3.1 PROBLEM FORMULATION

We consider Continual Learning setting, where a model learns from a sequence of T classification
tasks without revisiting old task data during training or task ID access during inference. Each task
t ∈ {1, ..., T} has dataset Dt containing nt i.i.d. samples (xt

i, y
t
i)

nt

i=1 of Yt classes.

In this work, we design our model with the following components: a pre-trained ViT backbone fΦ(·)
parameterized by Φ; a set of frozen random projection matrices {U i}Ki=1, and U ′ ∈ Rd×d′

(d′ ≫ d),
where K is the total number of atomic views, d and d′ are the dimensions of original and projected
latent space, respectively; and two classification heads with weight matrices W ,W ′ for class
predictor and prompt predictor, respectively. Similarly to other prompt-based works, we incorporate
a set of prompts P into fΦ and denote the backbone after incorporating the prompts as fΦ,P .

3.2 THE CLOSE-FORM SOLUTION FOR THE CL CLASSIFIER OF RANPAC

RanPAC (McDonnell et al., 2023) is a CP-based method that proposes using a random projection
matrix U ∈ Rd×d′

to project feature vector z = fΦ(x) ∈ R1×d of each sample x onto a significantly
higher dimensional space and then apply a nonlinear activation function a to obtain representation
z̃ = a(zU) ∈ R1×d′

. Let X = {xi}Nt
i=1 be the set of samples up to task t where Nt =

∑t
i=1 ni.

The corresponding projected representations and labels are Z̃ ∈ RNt×d′
and Y ∈ RNt×Kt , where Kt

is the total number of classes up to task t. This method aims to learn a linear classifier W ∈ Rd′×Kt

that can obtain knowledge from all tasks so far without forgetting by solving the following problem:

min
W

∥Z̃W − Y ∥22 +
λ

2
∥W ∥22. (1)

The closed-form solution of (1) is W = (Z̃T Z̃ + λI)−1Z̃TY , which can be updated incrementally
across the arriving tasks. Specifically, let Gt = Z̃T Z̃ ∈ Rd′×d′

and Ct = Z̃TY ∈ Rd′×Kt be the
Gram matrix and class prototype matrix computed at the end of task t, respectively. We have:

• Gt = Gt−1 + Z̃T
t Z̃t where G1 = Z̃T

1 Z̃1, and Z̃i is projected representations from task i.

• Ct = Ct−1 + Z̃T
t Y where C1 = Z̃T

1 Y1, and Yi is one-hot vector labels from task i.
After task T , to classify xtest, we simply perform: ypred = argmaxy z̃T

test(GT + λI)−1cy, where cy
is the yth column of CT .

3.3 THE BOOSTING PRINCIPLE OF ADABOOST/SAMME

AdaBoost (Freund & Schapire, 1997) and SAMME (Hastie et al., 2009) are ensemble learning
methods that combine multiple weak classifiers {gk(·)}Kk=1 to create a strong classifier G(·) by
sequential training on weighted training data D = {(xi, yi)}Ni=1. These methods focus on misclassi-
fied examples in each iteration k to improve the model performance iteratively. Directly applying
AdaBoost/SAMME to CL poses a significant challenge because the data for all tasks is not always
available, and the computational cost for a sufficiently large number of weak learners is infeasible.
Please refer to Appendix B for more details.

3

Published as a conference paper at ICLR 2025

4 FRAMEWORK

In this part, we first analyze the theoretical role of RP and its implications (Section 4.1). Then, we
introduce our proposed Multi-view Random Projection strategy for our classifier (Section 4.2). Finally,
we explain how we adapt the CP-based backbone to new tasks and select task-specific components to
improve accuracy (Section 4.3).

4.1 RANDOM PROJECTION ONTO HIGHER-DIMENSIONAL SPACE CAN IMPROVE INSTANCE
MARGIN, GENERALIZATION, AND CL OVERALL

In RanPAC (McDonnell et al., 2023), the authors hypothesized that performing a random projection
(RP) onto a higher-dimensional space can help the transformed features become more linearly
separable. Nonetheless, they did not provide explicit proof, leaving the motivation and the hypothesis
unsolved. In this section, we theoretically analyze the role of RP and show its vital implications.

Improving margin. According to Sokolić et al. (2017), given a classifier g, the margin of an instance
s = (z, y) can be defined as γ(s, g,Rd) = sup {ν : ∥z − z′∥ ≤ ν ⇒ g(z′) = y,∀z′ ∈ Rd}. When
taking an RP with a transform matrix U ∈ Rd×d′

, each instance s ∈ Rd × Y will have a projection
su = (zT U, y) ∈ Rd′ × Y , where Y is the label space.

Given a training set S, we define the margin of g over the training set S as γ(S, g,Rd) =

mins∈S γ(s, g,Rd). The training set S over Rd induces the training set Su over Rd′
through the

transform matrix U . Similarly, we define the margin over Su. According to Sokolić et al. (2017) and
our Corollary A.3 in Appendix A.1, a classifier with higher margins over a training set S generalizes
better to a general distribution from which instances in S are sampled.

To see the benefits of RP, we propose the concept of Bayes margin to measure the highest margin of
the classifiers in a hypothesis family.
Definition 4.1 (Bayes margin). Let H be the set of measurable functions that map from Rd to Y .
The Bayes margin over the training set S is defined as γin(S,H) = supg∈H γ(S, g,Rd).

Note that H is large enough to cover all hypothesis spaces often used in machine learning. Using
a smaller space may not correctly reflect the role of RP. Similarly, let H′ be the set of measurable
functions that map from Rd′

to Y . The Bayes margin of Su is: γin(S
u,H′) = suph∈H′ γ(Su, h,Rd′

).
We have the following result about the role of RP (see Appendix A for proof and more discussions).
Theorem 4.2. Let U be a random matrix of size d′×d, with d′ ≫ d, whose elements are independent
copies of a Gaussian random variable with unit variance and 0 mean. Consider s = (z, y) and its
projection su = (σ(zT U), y) where the element-wise nonlinearity σ is invertible and expansive.1

For every ϵ ∈ (0, 1), with probability at least 1 − (C.ϵ)d
′−d+1 − e−c.d′

where C and c are some
positive constants, we have: γin(S

u,H′) ≥ γin(S,H)(
√
d′ −

√
d− 1)ϵ.

According to this theorem, the Bayes margin of a sample in the new space can increase at a rate of
O(

√
d′), thus potentially enhancing generalization ability. This property of RP is intriguing and has

never been known before. As discussed next, this property should lead to significant consequences
for each task of interest and task sequence.

Implications to generalization ability and CL. Denote Zclass
c and Ztask

t as the sample domains
whose members belong to class c, and task t respectively. The Bayes margin of each class c is defined
as γclass,c = min{γin(S,H) : S ∋ s = (z, c), z ∈ Zclass

c }. The Bayes margin of a task t is defined
as γtask,t = min{γin(S,H) : S ∋ s = (z, y), z ∈ Ztask

t }. The following implications readily follow:

• RP can increase generalization ability for a task. As shown in Theorem 4.2, the margin
of every instance increases in the new space, resulting in γclass,c and γtask,t increase at a
rate of O(

√
d′). Thus, classes in the new space become more separable. Moreover, there

1A function σ is expansive if it satisfies |σ(x)− σ(y)| ≥ |x− y| for all x, y in their domain.
Note: ReLU can work well probably because it approximates functions that satisfy the two conditions above. For
example, a(x) = x+ ξ · log(1 + exp(x)) where ξ ∈ R, which is used in our experiments (see Appendix G.4).

4

Published as a conference paper at ICLR 2025

is a well-known connection between the margin and the generalization ability of a model
(Bartlett et al., 2017; Sokolić et al., 2017). Consequently, the generalization error for each
task t will be smaller. This means the trained model can generalize better on unseen data.
More discussions about this aspect can be found in Appendix A.

• RP can increase task separability and CL overall. As discussed above, the margin γtask,t

for each task t increases, indicating rapid task separability in Rd′
. This improvement in

task separability is crucial in CL, aiding task detection processes. Coupled with enhanced
generalization ability for each task, this provides a theoretical basis for why RP is effective
in CL. This is consistent with previous observations (Kim et al., 2022; Wang et al., 2023).

4.2 MULTIPLE-VIEW RANDOM PROJECTION SCHEME

4.2.1 THE MOTIVATION

Bo
os

tin
g

Bo
os

tin
g

atomic view
huge view

Im
ag

e
em

be
dd

in
g

Task 1

Atomic view 1

Task 2 Task 3

Atomic view k

...

(A)

(B)

Figure 1: (A) - Multiple-view strategy:
in each task, atomic views are trained
in turn, a kth view is trained to fix the
error of the previous one via sample
weight Λk. Then, the output of a huge
view is represented via the answers of
k atomic views, where {αi}ki=1 are aux-
iliary weights of these views obtained
from training. (B) - The process of up-
dating sample weight over CL tasks.

As shown experimentally in RanPAC and theoretically
proven in Section 4.1, projecting feature vectors onto a
higher-dimensional space will make representations more
separable. Therefore, to improve the model’s performance,
a naive workaround could be increasing the dimension d′

as large as possible. However, this idea is unexpectedly
infeasible since it requires inverting a Gram matrix of size
d′ × d′ (See Section 3). To enable learning in a huge di-
mensional space and take advantage of the multiple-view
learning paradigm for a stronger classifier, we consider
K projected spaces with smaller, manageable dimensions
(i.e., K single atomic views), which all share the same
frozen backbone, and each view is generated using a ran-
dom matrix Uk, k ∈ {1, ...,K}.

In what follows, we demonstrate that if we select k ≤ K
atomic views (d′a) and then combine them to produce a
huge view with a higher dimension (e.g., d′ = kd′a), the
computation of the original huge view can be significantly
simplified via operations on these corresponding atomic
views. In particular, let G, Z̃ ∈ RNt×kd′

a , and {Z̃i}ki=1

(each Z̃i ∈ RNt×d′
a) are Gram matrix, representation

matrix on a huge view and corresponding atomic views
respectively. For each huge view, we train a linear expert
W = (G + λI)−1Z̃TY , where Z̃ = [Z̃i]ki=1. We have
the theorem below:
Theorem 4.3. If we approximate the Gram matrix G =

Z̃T Z̃ by a block matrix Ḡ = diag(Z̃i
T
Z̃i)ki=1 then

the optimal linear classifier on the huge view W =
[(W 1)T , ..., (W k)T]T ∈ Rkd′

a×Kt where W i = (Gi +

λI)−1(Z̃i)TY with Gi = (Z̃i)T Z̃i ∈ Rd′
a×Kt is the corresponding optimal linear classifier on the

ith atomic view.

Theorem 4.3 states that under some relaxation, the optimal solution over the huge view can be
decomposed into the optimal one for each atomic view. Moreover, in Appendix C.3, we prove that
(Ḡ+ λI)−1 can approximate well (G+ λI)−1 when λ is sufficiently large. This theorem provides
an approximate and effective solution to compute the optimal linear expert for each huge view based
on the respective atomic views. Furthermore, the following corollary specifies how the prediction of
the linear expert in a huge view can be represented by those of atomic views.

Corollary 4.4. Consider a sample x with the representation in the huge view is z̃ = [z̃i]ki=1 where
z̃i is the representation in the ith atomic view. Let sh(x, y) = z̃W be the huge-view probability
prediction vector. Then sh(x, y) =

∑k
i=1 s

i(x, y) where si(x, y) specifies the corresponding
response in the ith atomic view.

5

Published as a conference paper at ICLR 2025

This corollary provides a convenient way to make a huge-view prediction using atomic-view responses.
With K atomic views, we can create up to 2K − 1 huge-view answers. We then use these responses
in a voting strategy, which will be discussed in the next subsection.

4.2.2 LEARNING DIVERSE AND COMPLEMENTARY MULTIPLE VIEWS VIA THE BOOSTING
PRINCIPLE

Based on the theoretical arguments in the previous sections, we propose producing the output of
the linear expert in each huge view through those of the atomic views. However, we observe that
naively training these classifiers separately does not improve the performance as they yield roughly
the same outputs. Therefore, creating divergent and complementary linear experts in the atomic views
is essential to obtain an efficient ensemble classifier.

Our main idea is that as tasks arrive, we continuously maintain K Gram matrices G1:K
t for K atomic

views up to task t, which can be computed incrementally. Inspired by the AdaBoost principle, we
aim for K classifiers on these atomic views to remain supplementary and complementary throughout
the training process, even as more tasks are introduced.

We now assume that we have K Gram matrices G1:K
t−1 for K atomic views up to the task t− 1 and

we need to incrementally build up the Gram matrices G1:K
t when task t arrives in. In particular,

we apply our multiple-view training strategy to sequentially train a set of linear classifiers for K
different atomic views upon the frozen backbone. Inspired by AdaBoost (Freund & Schapire, 1997)
and SAMME (Hastie et al., 2009), the kth view (k > 1) will be learned to complement the previous
one, using the sample weight vector Λk

t computed based on the error rate of the (k − 1)th view (see
Figure 1). We describe this process for each task t in more detail as follows:

For the first view:

• First, we start with training the linear classifier g1t for the first atomic view (k = 1) in which
all data points possess the same weight of 1 (i.e., Λ1

t = [1, ..., 1]), following the rule from
RanPAC (see Section 3) with the Gram matrix G1

t = G1
t−1 + Z̃1T

t diag(Λ1
t)Z̃

1
t where Z̃1

t

is the data of task t on the view k through the random projection matrix U1.
• After that, we compute error rate err1t =

∑nt

i=1 Λ
1
t,i1g1

t (xi
t) ̸=yi

t
and auxiliary weight α1

t =

log(
∑nt

i=1 Λ1
t,i−err1t

err1t
) + log(|Yt| − 1) for this atomic view where g1t is the linear classifier

on the first view up to the task t.
• We update the sample weight vector w.r.t task t, view k = 2 as follows:

Λ2
t = diag

([
exp

{
α1
t1g1

t (xi
t)̸=yi

t

}]
(xi

t,y
i
t)∈Dt

)
Λ1

t , (2)

where 1A is the indicator function returning 1 if A is true and 0.
• We normalize the sample weight vector Λ2

t so that its zero-norm is 1.

For the k-th view, which was learned based on the (k − 1)-th view:

• We possess the sample weight vector Λk
t for the k-th view. We update the Gram matrix

Gk
t = Gk

t−1+ Z̃kT

t diag(Λk
t)Z̃

k
t which corresponds to the weighted linear classifier gkt w.r.t.

the sample weights across the tasks Λk
1:t. Note that Z̃k

t represents the data of task t on the
view k through the linear random projection Uk.

• Next, we compute error rate errkt =
∑nt

i=1 Λ
k
t,i1gk

t (xi
t)̸=yi

t
and auxiliary weight αk

t =

log(
∑nt

i=1 Λk
t,i−errkt

errkt
) + log(|Yt| − 1) for this atomic view.

• We update the sample weight vector w.r.t task t, view k + 1 as follows:

Λk+1
t = diag

([
exp

{
αk
t 1gk

t (xi
t) ̸=yi

t

}]
(xi

t,y
i
t)∈Dt

)
Λk

t . (3)

• We normalize the sample weight Λk+1
t so that its zero-norm is 1.

6

Published as a conference paper at ICLR 2025

It is worth noting that given the view k, we indeed train the weighted linear classifier gkt with the
sample vectors Λk

1:t on this view across the tasks from 1 to t by solving the following optimization
problem (OP):

min
W k

∥diag(Λk)(Z̃kW k − Y)∥22 +
λ

2
∥W k∥22, (4)

where Λk = [Λk
i]i=1,...,t and Z̃k = [Z̃T

i]
T
i=1,...,t ∈ RNt×d′

a (i.e., the stack of data of tasks from 1 to
t on the view k). The closed-form solution of the OP (4) is given by:

W k =
(
(Z̃k)T diag(Λk)Z̃k + λI

)−1

Z̃kdiag(Λk−1)Y ,

where Z̃k and Y are respectively features vectors on kth view and labels of data so far. This solution
can be updated incrementally across tasks using the Gram matrix Gk

t .

After finishing all T tasks, we obtain K sub-classifiers (see Algorithm 2, Appendix D for the
overview) and use them in our proposed voting strategy to make predictions.

The proposed voting strategy. Given a testing example x, we first allow the linear classifiers in the
atomic views to make their inferences to obtain the prediction probabilities p1(x), ..., pK(x). The
voting strategy is conducted according to the following steps:
❶ Given a threshold γ ∈ [0, 1], we select linear classifiers on the atomic views whose confidence
level is greater than γ (i.e., maxy p

k
y(x) ≥ γ). Denote this set by A ⊂ {1, ...,K}.

❷ We then create 2|A| − 1 huge views from A (where |A| is the cardinality of A). For each huge
view V = {i1, ..., ik} ⊂ A, we compute its prediction probability vector: pV(x) =

∑
k∈V αkpk(x),

where αk = 1
T

∑T
t=1 α

k
t .

❸ We carry out majority voting on 2|A| − 1 responses of vectors pV(x) to obtain the ultimate label.

In this way, in addition to K weak learners, we have at most 2K −K − 1 stronger ones. Then, the
probability of obtaining the correct answer will be higher through majority voting.

Discussion: It is worth noting that directly applying AdaBoost to CL is challenging because this
algorithm requires the data and sample weights of all tasks, which are not always available in CL.
Fortunately, thanks to RanPAC’s ability to accumulate knowledge from all tasks, we developed an
adaptive version of AdaBoost. However, our method is not a simple combination of AdaBoost and
RanPAC. In particular, besides adjusting the calculation of the auxiliary weight αk and normalizing
sample weights within the same atomic view k to form Λk, a crucial operation is to produce 2|A| − 1
huge views and exploit voting to obtain the final result. This is because the standard version of
AdaBoost relies on a large number of weak learners (usually hundreds or thousands or more), which
is impractical for working in high-dimensional space according to the design of RanPAC.

4.3 TASK-ADAPTIVE BACKBONE AND SELF-IMPROVEMENT PROCESS

This section presents how we improve the backbone of the CP-based method by integrating task-
specific prompts and our proposed self-improvement process to select these components properly to
achieve higher accuracy.

Prompt-based task adaptation for CP-backbone. Since RanPAC only adapts the pre-trained
backbone with data from the first task, later task class representations might not be well-separated
and could overlap with those of the first task. Therefore, we aim to learn task-adapted representations
before applying RP, ensuring distinct separation between different classes and clustering within the
same class (see Figure 3, Appendix G.4 for illustration). In this work, we exploit the prompt-based
strategy from HiDE (Wang et al., 2023) for training. Specifically, each task t is devoted to a prompt Pt

and then trains the current task using Cross-Entropy (CE) loss and a contrastive-based regularization
(Reg) loss as follows:

min
θ,Pt

CE (Pt, θ) + βReg (Pt) , (5)

where β > 0 is a trade-off parameter and θ is the weights of temporary classification head of prompted
model fΦ,P . Please refer to Appendix E for more details.

Prompt selection process. To predict prompts when inference, we learn an auxiliary classification
head atop the pre-trained backbone fΦ. Specifically, given a sample x, we use a random matrix U ′

7

Published as a conference paper at ICLR 2025

to project fΦ(x) onto a high dimensional space (e.g., d′ = 10, 000) and train a linear classifier W ′

incrementally like in RanPAC to predict the class labels. Eventually, based on the predicted class
label, we can infer the task id t′ and the selected prompt Pt′ for x. (See Figure 4A, Appendix G.4).

Self-improvement process - a two-step prompt selection strategy. Ideally, the selected prompt Pt′

for x should coincide with the prompt Pt corresponding to the ground-truth task ID of x. However,
we observe that W ′ can sometimes give wrong responses so that fΦ,Pt′ (x) can shift much from
fΦ,Pt

(x). To further relieve the shift in selecting a wrong prompt, we propose a two-step prompt
prediction as follows:
❶ First, we use the prompt ID prediction branch based on fΦ(x) to predict the prompt Pt′ .
❷ Second, we input fΦ,Pt′ (x) into the main class prediction branch to predict the class label and
then map it to a task id t′′ corresponding to the prompt Pt′′ .
Finally, we use the prompt Pt′′ to make the final class prediction using fΦ,Pt′′ (x).

The intuitions behind this self-improvement process include (i) the main class prediction branch
predicts the class labels and hence the task identity better than the other and (ii) if the main class
prediction branch predicts incorrectly the label y′′ / its task id t′′ instead of the ground-truth label y
and task id t of x (i.e., y′′ ̸= y, t′′ ̸= t), the representations of class y′′/task t′′ and y/task t tend to
stay close. Hence there is a less shift between fΦ,Pt′′ (x)

and fΦ,Pt(x), leading to less error if using
the linear classifier W to predict on fΦ,Pt′′ (x)

rather than fΦ,Pt′ (x)
(see Figure 4B in Appendix G.4).

5 EXPERIMENTS

5.1 EXPERIMENTAL SETUP

Benchmarks. We examine widely used CIL benchmarks, including Split CIFAR-100, Split ImageNet-
R, 5-Datasets, and Split CUB-200 (Please refer Appendix F.1 for more details).

Baselines and Metrics. We compare our method with notable methods exploiting pre-trained
models for CL scenario, which belong to CP-based approach: RanPAC (McDonnell et al., 2023),
ADaM (Zhou et al., 2023), SLCA (Zhang et al., 2023) and prompt-based approach: L2P Wang et al.
(2022d), DualPrompt Wang et al. (2022c), S-Prompt++ Wang et al. (2022b), CODA-Prompt Smith
et al. (2023), HiDe-Prompt Wang et al. (2023), CPP Li et al. (2024). We present two key metrics:
the Final Average Accuracy (FAA), denoting the average accuracy after the last task, and the Final
Forgetting Measure (FFM) for all tasks (Appendices F.2 & F.3). The implementation is described in
detail in Appendix F.4.

For convenience, we denote two variations of our method without the self-improvement process: (i)
BoostCL-s is the version that uses the task-adaptive backbone with a single classifier for the CP-based
backbone, while (ii) BoostCL-m(d’;K) is the version that utilizes our proposed ensemble classifier
with the boosting strategy for K multiple views each of which has the dimension of d’.

5.2 EXPERIMENTAL RESULTS

Our approach achieves superior results compared to baselines. Table 1 presents the main results
of all the methods. The key observation is that the gap between our method (BoostCL) and the
runner-up method is around 2% to 4% in terms of FAA on all considered datasets. Notably, with
nearly the same number of additional projection parameters, hence the same high-dimensional
space, BoostCL-m (d’ = 768; K = 13) still outperforms RanPAC, showing our boosting and voting
strategies are beneficial. Furthermore, in the absence of Random Projection, BoostCL-m (w/o RP;
K = 15), requiring no additional projection parameters, also surpasses RanPAC about 1% on Split
CIFAR-100 and Split ImageNet-R.

Additionally, the results show that BoostCL-s outperform the baselines, and BoostCL-m consistently
improves upon this single-view version, indicating the effectiveness of the proposed task-adaptive
backbone and multi-view strategies, respectively. Finally, the self-improvement process enhances
BoostCL-m’s performance by around 1%.

Time/space complexity of our ensemble classifier

Table 2 compares our ensemble classifier and RanPAC’s classifier on Split CIFAR-100. Firstly,
although the classifier of BoostCL-m (d′ = 10, 000;K = 15) requires memory 15 times larger than

8

Published as a conference paper at ICLR 2025

Table 1: Overall performance comparison. We provide FAA and FFM of all methods, with standard
deviation taken over at least 3 runs of different random seeds. The results corresponding to the best
FAA among baselines are underlined.

.
Method

Split CIFAR-100 Split ImageNet-R 5-Datasets Split CUB-200

FAA (↑) FFM (↓) FAA (↑) FFM (↓) FAA (↑) FFM (↓) FAA (↑) FFM (↓)

L2P 83.06 ±0.17 6.58 ±0.40 63.65 ±0.12 7.51 ±0.17 81.84 ±0.95 4.58 ±0.53 74.52 ±0.92 11.25 ±0.23

DualPrompt 86.60 ±0.19 4.45 ±0.16 68.79 ±0.31 4.49 ±0.14 77.91±0.45 13.17 ±0.71 82.05±0.95 3.56 ±0.53

S-Prompt++ 88.81 ±0.18 3.87 ±0.05 69.68 ±0.12 3.29 ±0.05 86.19±0.65 4.67 ±0.72 83.12 ±0.54 2.72 ±0.64

CODA-P 86.94 ±0.63 4.04 ±0.18 70.03 ±0.47 5.17 ±0.22 64.20 ±0.53 17.22 ±0.55 74.34 ±0.68 12.05 ±0.41

HiDe-Prompt 92.61 ±0.28 3.16 ±0.10 75.06 ±0.12 2.17 ±0.19 93.92 ±0.33 0.31 ±0.12 86.62 ±0.35 1.98 ±0.15

CPP 91.12 ±0.12 3.33 ±0.18 74.88 ±0.07 3.65 ±0.03 92.92 ±0.17 0.19 ±0.07 82.35 ±0.23 3.24 ±0.32

ADaM 87.60 - 72.30 - 74.15 - 87.10 -

SLCA 91.50 - 77.00 - 84.71 - 84.70 -

RanPAC 92.20 - 77.90 - 82.85 - 90.30 -

BoostCL-s (d’=10k; K=1) 94.03 ±0.23 1.82 ±0.12 78.52 ±0.12 3.12 ±0.15 94.08 ±0.25 0.25 ±0.15 90.92 ±0.32 2.21 ±0.11

BoostCL-m (d’=768; K=13) 94.56±0.23 1.75 ±0.12 78.65 ±0.12 3.12 ±0.15 94.66±0.41 0.23±0.28 91.25±0.52 2.12±0.19

BoostCL-m (w/o RP; K=13) 94.65±0.25 1.71 ±0.15 78.82 ±0.10 3.03 ±0.15 94.96±0.14 0.25±0.33 91.60±0.46 2.12±0.21

BoostCL-m (d’=10k; K=15) 95.45 ±0.25 1.72 ±0.15 79.62 ±0.10 3.03 ±0.15 95.62 ±0.30 0.22 ±0.13 92.05 ±0.31 2.08 ±0.12

BoostCL 96.55 ±0.32 1.15 ±2.12 80.42 ±0.15 3.05 ±0.12 96.73 ±0.13 0.30 ±0.23 93.03 ±0.32 2.13 ±0.15

RanPAC (d′ = 10, 000), this expense can be worth compensating because our BoostCL-m achieves a
higher FAA by a margin of more than 3%. Additionally, considering BoostCL (d′ = 768;K = 13),
which requires less memory than RanPAC, we can see that with the help of our ensemble strategy,
it can still improve the FAA compared to RanPAC and even BoostCL’s single view (d′ = 10, 000).
We also conduct experiments on the model using RanPAC’s backbone adapting with our ensemble
classifier (RanPAC++). The results once again confirm the effectiveness of our ensemble classifier.
Furthermore, in the case where RanPAC uses d′ = 10, 000× 15 = 150, 000 (RanPAC*), which is
the same as the total dimensions in BoostCL, the cost to store the Gram matrix (with size d′ × d′) or
its inversion is too high and impractical. Meanwhile, BoostCL works well with this setting, as it only
needs to deal with submatrices.

Regrading forward time, comparing with the original RanPAC (d′ = 10, 000), forwarding the
classifier of BoostCL (d′ = 10, 000;K = 15) requires more time. This is obvious because we use an
ensemble strategy for prediction instead of using only one classification head like RanPAC. This cost
is offset by the performance improvement we achieve. In addition, when discussing the potential
of using projection matrices on high-dimensional space, we claimed in our paper that our process
helps to alleviate the "substantial computational cost when computing the inverse of a d′ × d′ Gram
matrix for solving the linear classifier" which is done in RanPAC. In this table, we compare our
BoostCL with RanPAC∗ (d′ = 10, 000× 15) and mark that this version of RanPAC is infeasible to
train because the cost when computing the inversion of a Gram matrix of size d′(= 10, 000× 15) is
O(d′c) for some constant c ∈ [2.3, 3.0], according to Geéron (2017). Therefore, BoostCL has solved
this computational crisis, saving the time cost for a factor of O(15c). Training time for our methods
and baselines is reported in Appendix G.3.

Here we note that the times reported in Table 2 are the forward time of the classification head. The
training times of our approach and baselines are reported in Appendix G.3. We also provide additional
experimental results to scrutinize other aspects of our multiple-view strategy, including the effects of
the total number of atomic views and the dimension of each corresponding projected space, the role of
our voting strategy, the applicability of our ensemble classifier (Appendix G.1) and the time/storage
complexity (Appendix G.3).

Effect of task-adaptive backbone

The results in Table 1, with the outperformance of BoostCL-s over CP-based baselines, indicate
that employing task-specific prompts to adapt to CL tasks is beneficial, confirming our argument.

9

Published as a conference paper at ICLR 2025

Table 2: Computation and storage cost of the classification head of methods, on Split CIFAR-100.

Method
Metric

Params Forward time (s) FAA Can train?

RanPAC (d′ = 10, 000) 100× 104 1.77× 10−4 ± 2.58× 10−5 92.20 Yes

BoostCL (d′ = 10, 000;K = 1) 100× 104 1.77× 10−4 ± 2.58× 10−5 94.03 Yes

BoostCL (d′ = 768;K = 13) less than 100× 104 8.91× 10−4 ± 2.35× 10−5 94.56 Yes

RanPAC* (d′ = 10, 000× 15) 100× 15× 104 2.07× 10−3 ± 2.65× 10−4 - No

BoostCL (d′ = 10, 000;K = 15) 100× 15× 104 3.31× 10−3 ± 4.26× 10−4 95.45 Yes

BoostCL (get 15 outputs) 2.68× 10−3 ± 3.65× 10−4

BoostCL (voting) 6.25× 10−4 ± 6.31× 10−5

Additionally, Figure 2, depicting the latent space of RanPAC’s and our model on Split CIFAR-100,
supports these results by showcasing better clustering of classes with more adapted tasks.

RanPAC Ours

Figure 2: t-SNE visualization for Split CIFAR-100 on data
of Task 1 (class 0 → 9) and Task 2 (class 10 → 19).

Effect of self-improvement process

Employing multiple steps for prompt
prediction enhances model accuracy
in general, as evident in Table 1,
where 2 steps improve FAA by around
1% across all datasets. In addition, Ta-
ble 3 provides a detailed perspective,
showing that as the number of steps
increases, model performance further
improves. The most significant im-
provement is observed when transi-
tioning from 1 step to 2 steps, with in-
creases of 1.1% on Split CIFAR-100
and 0.8% on Split ImageNet-R. This
improvement tends to gradually converge in subsequent steps, with growths of less than 0.2% from
step 4 to step 5 in both datasets. This limitation may stem from the simplicity of the method itself;
however, it could serve as an interesting suggestion for future research.

Table 3: Performance when increasing the number of prompt prediction steps

Benchmark
Number of steps

1 2 3 4 5

Split CIFAR-100 95.45 96.55 96.85 97.03 97.05

Split ImageNet-R 79.62 80.42 80.62 80.65 80.66

6 CONCLUSION

In this work, we first consider the role and implications of a technique that is experimentally effective
in previous work, using random projection for pre-trained models in CL. Then, the benefits of RP
in high-dimensional space motivated us to embark on a journey of theoretical thinking and propose
a multi-view strategy for an efficient classifier, in which the principle of Adaboost is adapted to
overcome inherent obstacles and applied for the first time in CL. In addition, our self-improvement
process technique, although simple, also shows significant effectiveness in selecting proper task-
specific prompts. The experimental results demonstrate a positive impact of our proposed method in
improving model quality while only applying to linear classifiers.

10

Published as a conference paper at ICLR 2025

Limitations: A primary limitation lies in the computational and storage costs for our ensemble
classifier. Like other ensemble methods, we need to train and store many weak learners than usual
(see Appendix G.3). However, thanks to the voting strategy, we do not need to train as many
weak learners to achieve significant performance as the original methods (Adaboost and SAMME
often need hundreds of weak learners to show improvement). Another potential limitation can be
the computational overhead of the self-improvement process. As we discussed computational
complexity in Section G.3.3, two rounds of this process can already bring improvement, and its time
complexity is not too significant, so it could be used with any prompt-based methods. Nevertheless,
in cases where downstream data is too different from that of the pre-trained-ViT, the simple design of
the prompt predictor may hinder its performance. Consequently, adding more self-improvement steps
may not increase accuracy.

ACKNOWLEDGMENT

Trung Le and Dinh Phung were supported by ARC DP23 grant DP230101176 and by the Air Force
Office of Scientific Research under award number FA2386-23-1-4044.

REFERENCES

Peter L Bartlett, Dylan J Foster, and Matus J Telgarsky. Spectrally-normalized margin bounds for
neural networks. In Advances in Neural Information Processing Systems, volume 30, 2017.

Yaroslav Bulatov. Notmnist dataset. 2011.

Shoufa Chen, Chongjian Ge, Zhan Tong, Jiangliu Wang, Yibing Song, Jue Wang, and Ping Luo.
Adaptformer: Adapting vision transformers for scalable visual recognition. Advances in Neural
Information Processing Systems, 35:16664–16678, 2022.

Sayna Ebrahimi, Franziska Meier, Roberto Calandra, Trevor Darrell, and Marcus Rohrbach. Adver-
sarial continual learning. In European Conference on Computer Vision, pp. 386–402. Springer,
2020.

Robert M French. Catastrophic forgetting in connectionist networks. Trends in cognitive sciences, 3
(4):128–135, 1999.

Yoav Freund and Robert E Schapire. A decision-theoretic generalization of on-line learning and an
application to boosting. Journal of computer and system sciences, 55(1):119–139, 1997.

Aureélien Geéron. Hands-on machine learning with Scikit-Learn and TensorFlow : concepts,
tools, and techniques to build intelligent systems. O’Reilly Media, Sebastopol, CA, 2017. ISBN
978-1491962299.

Dipam Goswami, Yuyang Liu, Bartłomiej Twardowski, and Joost van de Weijer. Fecam: Exploit-
ing the heterogeneity of class distributions in exemplar-free continual learning. arXiv preprint
arXiv:2309.14062, 2023.

Xu Han, Zhengyan Zhang, Ning Ding, Yuxian Gu, Xiao Liu, Yuqi Huo, Jiezhong Qiu, Yuan Yao,
Ao Zhang, Liang Zhang, et al. Pre-trained models: Past, present and future. AI Open, 2:225–250,
2021.

Trevor Hastie, Saharon Rosset, Ji Zhu, and Hui Zou. Multi-class adaboost. Statistics and its Interface,
2(3):349–360, 2009.

Paul Janson, Wenxuan Zhang, Rahaf Aljundi, and Mohamed Elhoseiny. A simple baseline that
questions the use of pretrained-models in continual learning. arXiv preprint arXiv:2210.04428,
2022.

Menglin Jia, Luming Tang, Bor-Chun Chen, Claire Cardie, Serge Belongie, Bharath Hariharan, and
Ser-Nam Lim. Visual prompt tuning. In European Conference on Computer Vision, pp. 709–727.
Springer, 2022.

11

Published as a conference paper at ICLR 2025

Kenji Kawaguchi, Zhun Deng, Kyle Luh, and Jiaoyang Huang. Robustness implies generalization via
data-dependent generalization bounds. In Kamalika Chaudhuri, Stefanie Jegelka, Le Song, Csaba
Szepesvari, Gang Niu, and Sivan Sabato (eds.), International Conference on Machine Learning,
volume 162 of Proceedings of Machine Learning Research, pp. 10866–10894. PMLR, 2022.

Gyuhak Kim, Changnan Xiao, Tatsuya Konishi, Zixuan Ke, and Bing Liu. A theoret-
ical study on solving continual learning. In Sanmi Koyejo, S. Mohamed, A. Agar-
wal, Danielle Belgrave, K. Cho, and A. Oh (eds.), Advances in Neural Informa-
tion Processing Systems 35: Annual Conference on Neural Information Processing Sys-
tems 2022, NeurIPS 2022, New Orleans, LA, USA, November 28 - December 9,
2022, 2022. URL http://papers.nips.cc/paper_files/paper/2022/hash/
20f44da80080d76bbc35bca0027f14e6-Abstract-Conference.html.

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images.
Technical report, Citeseer, 2009.

Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning applied to
document recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

Zhuowei Li, Long Zhao, Zizhao Zhang, Han Zhang, Di Liu, Ting Liu, and Dimitris N Metaxas.
Steering prototype with prompt-tuning for rehearsal-free continual learning. arXiv preprint
arXiv:2303.09447, 2023.

Zhuowei Li, Long Zhao, Zizhao Zhang, Han Zhang, Di Liu, Ting Liu, and Dimitris N Metaxas.
Steering prototypes with prompt-tuning for rehearsal-free continual learning. In Proceedings of
the IEEE/CVF Winter Conference on Applications of Computer Vision, pp. 2523–2533, 2024.

Mark D McDonnell, Dong Gong, Amin Parveneh, Ehsan Abbasnejad, and Anton van den Hengel.
Ranpac: Random projections and pre-trained models for continual learning. arXiv preprint
arXiv:2307.02251, 2023.

Yuval Netzer, Tao Wang, Adam Coates, Alessandro Bissacco, Bo Wu, and Andrew Y Ng. Reading
digits in natural images with unsupervised feature learning. 2011.

Julien Nicolas, Florent Chiaroni, Imtiaz Masud Ziko, Ola Ahmad, Christian Desrosiers, and Jose
Dolz. Mop-clip: A mixture of prompt-tuned CLIP models for domain incremental learning. In
IEEE/CVF Winter Conference on Applications of Computer Vision, WACV 2024, Waikoloa, HI,
USA, January 3-8, 2024, pp. 1751–1761. IEEE, 2024. doi: 10.1109/WACV57701.2024.00178.
URL https://doi.org/10.1109/WACV57701.2024.00178.

Aristeidis Panos, Yuriko Kobe, Daniel Olmeda Reino, Rahaf Aljundi, and Richard E Turner. First
session adaptation: A strong replay-free baseline for class-incremental learning. arXiv preprint
arXiv:2303.13199, 2023.

Mark Rudelson and Roman Vershynin. Smallest singular value of a random rectangular matrix.
Communications on Pure and Applied Mathematics: A Journal Issued by the Courant Institute of
Mathematical Sciences, 62(12):1707–1739, 2009.

James Seale Smith, Leonid Karlinsky, Vyshnavi Gutta, Paola Cascante-Bonilla, Donghyun Kim, Assaf
Arbelle, Rameswar Panda, Rogerio Feris, and Zsolt Kira. Coda-prompt: Continual decomposed
attention-based prompting for rehearsal-free continual learning. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pp. 11909–11919, 2023.

Jure Sokolić, Raja Giryes, Guillermo Sapiro, and Miguel RD Rodrigues. Robust large margin deep
neural networks. IEEE Transactions on Signal Processing, 65(16):4265–4280, 2017.

Catherine Wah, Steve Branson, Peter Welinder, Pietro Perona, and Serge Belongie. The caltech-ucsd
birds-200-2011 dataset. 2011.

Liyuan Wang, Jingyi Xie, Xingxing Zhang, Mingyi Huang, Hang Su, and Jun Zhu. Hierarchical
decomposition of prompt-based continual learning: Rethinking obscured sub-optimality. arXiv
preprint arXiv:2310.07234, 2023.

12

http://papers.nips.cc/paper_files/paper/2022/hash/20f44da80080d76bbc35bca0027f14e6-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/20f44da80080d76bbc35bca0027f14e6-Abstract-Conference.html
https://doi.org/10.1109/WACV57701.2024.00178

Published as a conference paper at ICLR 2025

Yabin Wang, Zhiwu Huang, and Xiaopeng Hong. S-prompts learning with pre-trained trans-
formers: An occam’s razor for domain incremental learning. In Sanmi Koyejo, S. Mo-
hamed, A. Agarwal, Danielle Belgrave, K. Cho, and A. Oh (eds.), Advances in Neural
Information Processing Systems 35: Annual Conference on Neural Information Process-
ing Systems 2022, NeurIPS 2022, New Orleans, LA, USA, November 28 - December 9,
2022, 2022a. URL http://papers.nips.cc/paper_files/paper/2022/hash/
25886d7a7cf4e33fd44072a0cd81bf30-Abstract-Conference.html.

Yabin Wang, Zhiwu Huang, and Xiaopeng Hong. S-prompts learning with pre-trained transformers:
An occam’s razor for domain incremental learning. Advances in Neural Information Processing
Systems, 35:5682–5695, 2022b.

Zifeng Wang, Zizhao Zhang, Sayna Ebrahimi, Ruoxi Sun, Han Zhang, Chen-Yu Lee, Xiaoqi Ren,
Guolong Su, Vincent Perot, Jennifer Dy, et al. Dualprompt: Complementary prompting for
rehearsal-free continual learning. In European Conference on Computer Vision, pp. 631–648.
Springer, 2022c.

Zifeng Wang, Zizhao Zhang, Chen-Yu Lee, Han Zhang, Ruoxi Sun, Xiaoqi Ren, Guolong Su, Vincent
Perot, Jennifer Dy, and Tomas Pfister. Learning to prompt for continual learning. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 139–149, 2022d.

Yihong Wu and Yingxiang Yang. Lecture 14: Packing, covering, and consequences on minimax risk,
2016.

Han Xiao, Kashif Rasul, and Roland Vollgraf. Fashion-mnist: a novel image dataset for benchmarking
machine learning algorithms. arXiv preprint arXiv:1708.07747, 2017.

Huan Xu and Shie Mannor. Robustness and generalization. Machine learning, 86(3):391–423, 2012.

Gengwei Zhang, Liyuan Wang, Guoliang Kang, Ling Chen, and Yunchao Wei. SLCA: slow learner
with classifier alignment for continual learning on a pre-trained model. In IEEE/CVF International
Conference on Computer Vision, ICCV 2023, Paris, France, October 1-6, 2023, pp. 19091–19101.
IEEE, 2023. doi: 10.1109/ICCV51070.2023.01754. URL https://doi.org/10.1109/
ICCV51070.2023.01754.

Da-Wei Zhou, Han-Jia Ye, De-Chuan Zhan, and Ziwei Liu. Revisiting class-incremental learn-
ing with pre-trained models: Generalizability and adaptivity are all you need. arXiv preprint
arXiv:2303.07338, 2023.

HUIPING ZHUANG, Zhenyu Weng, Hongxin Wei, RENCHUNZI XIE, Kar-Ann Toh, and Zhiping
Lin. ACIL: Analytic class-incremental learning with absolute memorization and privacy protection.
In Alice H. Oh, Alekh Agarwal, Danielle Belgrave, and Kyunghyun Cho (eds.), Advances in
Neural Information Processing Systems, 2022. URL https://openreview.net/forum?
id=Vc4QUfqr4do.

Huiping Zhuang, Zhenyu Weng, Run He, Zhiping Lin, and Ziqian Zeng. Gkeal: Gaussian kernel
embedded analytic learning for few-shot class incremental task. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR), pp. 7746–7755, June 2023.

13

http://papers.nips.cc/paper_files/paper/2022/hash/25886d7a7cf4e33fd44072a0cd81bf30-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/25886d7a7cf4e33fd44072a0cd81bf30-Abstract-Conference.html
https://doi.org/10.1109/ICCV51070.2023.01754
https://doi.org/10.1109/ICCV51070.2023.01754
https://openreview.net/forum?id=Vc4QUfqr4do
https://openreview.net/forum?id=Vc4QUfqr4do

Published as a conference paper at ICLR 2025

Appendices

A WHY DOES RANDOM PROJECTION ONTO HIGHER DIMENSION SPACE HELP
INCREASE THE MARGIN?

We first consider the role of RP without activation function. Let H be the set of all measurable
functions that map from Rd to Y , and H′ be the set of all measurable functions that map from Rd′

to
Y . The following theorem shows the benefit of random projection onto a high-dimensional space.
Theorem A.1. Let U be a random matrix of size d′×d, with d′ ≫ d, whose elements are independent
copies of a Gaussian random variable with unit variance and 0 mean. Consider s = (z, y) and its
projection su = (zT U, y). For every ϵ > 0, with probability at least 1− (C.ϵ)d

′−d+1 − e−c.d′
where

C and c are some constants, we have

γin(S
u,H′) ≥ γin(S,H)(

√
d′ −

√
d− 1)ϵ

This theorem suggests that the margin in the new space after applying RP should increase fast as
d′ increases. The increase rate is O(

√
d′). This property of RP is intriguing and has never been

known before. Note that such an increase may not appear in the cases of class overlapping due
to γin(s,H) = 0 for some sample s. Therefore, RP will provide a crucial benefit in the cases of
(nonlinear or linear) separability.

In practice, RP is often followed by a fixed nonlinear operation. One main reason is that this
nonlinearity can keep the crucial benefits of RP when used before, e.g., linear models or neural
networks. Without nonlinearity, the effect of RP can be absorbed into a trainable linear operation.
Therefore, we need to incorporate nonlinearity into the analysis of RP to explain the overall benefits
in practice.

In general, nonlinearity often poses challenges for analyzing RP. We restrict our analysis to nonlinear
operations which are invertible and expansive.2 Note that such invertible and expansive nonlinearities
are prevalent, such as σ(x) = bx2 in domain [1,∞) for any b ≥ 1, σ(x) = bex in domain
[0,∞), σ(x) = b sin(x) in domain [−a, a] for some small a > 0, σ(x) = b ln(x) in domain (0, 1),
σ(x) = bx, LeakyReLU(x) = max(0, x) + bmin(0, x), etc,. This leads to our Theorem 4.2

A.1 MARGIN AND GENERALIZATION ERROR

We next recall a well-known connection (Bartlett et al., 2017; Sokolić et al., 2017; Xu & Mannor,
2012) between the margin and generalization ability of a classifier.

Consider a learning problem specified by a model (or hypothesis) class H, an instance set X , and
a loss function ℓ : H × X → R≥0, where each input instance x ∈ X has a corresponding output
y ∈ Y . However, without loss of generality, we omit the output y for simplicity of presentation.
Given a distribution P defined on X , the quality of a model h ∈ H is measured by its expected
loss F (P,h) = Ex∼P [ℓ(h,x)]. The empirical loss F (S,h) = 1

|S|
∑

x∈S ℓ(h,x) is defined from a
finite set S = {x1, ...,xn} ⊆ X of size n.

Let Γ(X) :=
⋃K

i=1 Xi be a partition of X into K disjoint nonempty subsets. Denote Si = S ∩ Xi,
and ni = |Si| as the number of samples falling into Xi, meaning that n =

∑K
j=1 nj . Denote

T = {i ∈ [K] : S ∩ Xi ̸= ∅}.

The following result is a simple consequence from algorithmic robustness (Kawaguchi et al., 2022;
Xu & Mannor, 2012).
Theorem A.2. Consider a model h and a dataset S which consists of n i.i.d. samples from
distribution P . Let ℓ(h,x) be the loss of h at instance x, and Ch = supx∈X ℓ(h,x), ϵ(S) =
supi∈[K] supx∈Xi,s∈Si

|ℓ(h,x) − ℓ(h, s)|. For any δ > 0, the following holds with probability at
least 1− δ:

F (P,h) ≤ F (S,h) + ϵ(S) + 3Ch

√
|T | ln(2K/δ)

n
+

2Ch|T | ln(2K/δ)

n
(6)

2A function σ is expansive if it satisfies |σ(x)− σ(y)| ≥ |x− y| for all x, y in their domain.

14

Published as a conference paper at ICLR 2025

This theorem implies that the expected loss of a model can be bounded by using robustness level ϵ(S)
of the model around the training samples. A more robust model can suggest better generalization on
unseen data.

Next we connect the margin and generalization ability of a model. Let N (X , ∥ · ∥, λ) be the λ-
covering number of X according to some metric ∥ · ∥ and Γ(X) be the corresponding covering of
X , where λ is a positive constant. This means K = N (X , ∥ · ∥, λ). When the input space X ⊆ Rd

has diameter at most R, a classical fact (Wu & Yang, 2016) says that N (X , ∥ · ∥, λ) ≤
(

2R
√
d

λ

)d
.

Furthermore, Example 1 in (Xu & Mannor, 2012) shows that ϵ(S) = 0 for any λ ≤ 0.5γh and 0-1
loss ℓ, where γh = max{v : ∥x − s∥ ≤ v ⇒ h(x) = h(s) for all x ∈ X , s ∈ S} denotes the
margin of h for the training set. Combining those observations with Theorem A.2 will lead to the
following.
Corollary A.3. Given the notations in Theorem A.2 with 0-1 loss ℓ and X ⊆ Rd with diameter at
most R. Denote γh = max{v : ∥x− s∥ ≤ v ⇒ h(x) = h(s) for all x ∈ X , s ∈ S} as the margin
of h, and A = ln(2/δ) + d ln(4R

√
d/γh). If γh > 0, then the following holds with probability at

least 1− δ:

F (P,h) ≤ F (S,h) + 3

√
|T |A
n

+
2|T |A

n
(7)

This result suggests that a model with larger margin can lead to smaller bound for the expected loss,
suggesting better generalization ability. Combining this with the RP’s ability to increase margin,
we can conclude that RP can facilitate better generalization ability of a model in high dimensional
spaces.

A.1.1 PROOF OF THEOREM A.2

Proof. Firstly, we make the following decomposition:

F (P,h)

= F (P,h)−
K∑
i=1

ni

n
Ex[f(h,x)|x ∈ Xi] +

K∑
i=1

ni

n
Ex[f(h,x)|x ∈ Xi]− F (S,h) + F (S,h) (8)

Secondly, consider A1 = F (P,h)−
∑K

i=1
ni

n Ex[f(h,x)|x ∈ Xi]. Observe that:

A1 = F (P,h)−
K∑
i=1

ni

n
Ex[f(h,x)|x ∈ Xi] (9)

= Ex[f(h,x)]−
K∑
i=1

ni

n
Ex[f(h,x)|x ∈ Xi] (10)

Note that (n1, ..., nK) is an i.i.d multinomial random variable with parameters n and
(P (X1), ..., P (XK)). Therefore

A1 =

K∑
i=1

P (Xi)Ex[f(h,x)|x ∈ Xi]−
K∑
i=1

ni

n
Ex[f(h,x)|x ∈ Xi] (11)

=

K∑
i=1

Ex[f(h,x)|x ∈ Xi]
[
P (Xi)−

ni

n

]
(12)

≤ Q

√
|T | log(2K/δ)

n
+ ac

2|T | log(2K/δ)

n
(13)

We have the last inequality with probability at least 1− δ, according to Theorem 3 in (Kawaguchi
et al., 2022), where Q = at

√
2 + ac, at = maxi∈T Ex[f(h,x)|x ∈ Xi], and ac =

maxj /∈T Ex[f(h,x)|x ∈ Xj]. Note that Ex[f(h,x)|x ∈ Xi] ≤ Ch for any index i. It suggests that
Q ≤ 3Ch and ac ≤ Ch. As a result,

A1 ≤ 3Ch

√
|T | log(2K/δ)

n
+

2Ch|T | log(2K/δ)

n
(14)

15

Published as a conference paper at ICLR 2025

Third, consider A2 =
∑K

i=1
ni

n Ex[ℓ(h,x)|x ∈ Xi]− F (S,h). Observe that

A2 =

K∑
i=1

ni

n
Ex[ℓ(h,x)|x ∈ Xi]−

1

n

∑
s∈S

ℓ(h, s)

=
∑
i∈T

ni

n
Ex[ℓ(h,x)|x ∈ Xi]−

1

n

∑
i∈T

∑
s∈Si

ℓ(h, s)

=
1

n

∑
i∈T

(
niEx[ℓ(h,x)|x ∈ Xi]−

∑
s∈Si

ℓ(h, s)

)

=
1

n

∑
i∈T

∑
s∈Si

(Ex[ℓ(h,x)|x ∈ Xi]− ℓ(h, s))

=
1

n

∑
i∈T

∑
s∈Si

Ex [ℓ(h,x)− ℓ(h, s)|x ∈ Xi]

≤ 1

n

∑
i∈T

∑
s∈Si

sup
x∈Xi

|ℓ(h,x)− ℓ(h, s)|

≤ 1

n

∑
i∈T

∑
s∈Si

ϵ(S)

= ϵ(S) (15)

Finally, decomposition (8) shows that F (P,h) = A1 +A2. Combining this with (14), and (15) will
complete the proof.

A.2 PROOF OF THEOREM A.1

Let s ∈ S be an instance and gh ∈ H be the classifier such that γ(s, gh,Rd) = γin(s,H). We first
consider the ball that reflects the region around instance s = (z, y), for which the classifier gh has no
misclassification. Denoting ν = γin(s,H), the ball is:

B(s, ν) = {z′ ∈ Rd : ∥z − z′∥ ≤ ν, gh(z
′) = y} (16)

The diameter of this ball represents the margin of the classifier at sample s. Every point in this ball
will be assigned the same label with z. When projecting this ball onto a higher-dimensional space by
transform matrix U of size d× d′, we obtain an ellipse as

Bu(s, ν) = {z′TU : z′ ∈ B(s, ν)} (17)

Denote g′(v) = gh((UUT)−1Uv) for any v ∈ Rd′
. Note that g′ is a classifier, defined in the new

space, and hence g′ ∈ H′. This function almost surely exists since UUT is invertible, almost surely
Rudelson & Vershynin (2009). Observe the margin of su = (zTU , y) w.r.t g′:

γ(su, g′,Rd′
) = sup{µ : ∥zTU − v∥ ≤ µ ⇒ g′(v) = y,∀v ∈ Rd′

} (18)

= sup{µ : ∥zTU − v∥ ≤ µ ⇒ gh((UUT)−1Uv) = y,∀v ∈ Rd′
} (19)

= sup{µ : ∥zTU − z′TU∥ ≤ µ ⇒ gh(z
′) = y,∀z′ ∈ Rd} (20)

= sup{µ : ∥(z − z′)TU∥ ≤ µ ⇒ gh(z
′) = y,∀z′ ∈ Rd} (21)

This suggests that γ(su, g′,Rd′
) represents the smallest diameter of Bu(s, ν). Furthermore, the

smallest diameter of this ellipse Bu is, in fact, the smallest singular value of matrix νU . It means

γ(su, g′,Rd′
) = σmin(νU) = νσmin(U) (22)

where σmin(U) denotes the smallest singular value of matrix U .

16

Published as a conference paper at ICLR 2025

Remember that U is a random matrix whose elements are independent copies of a Gaussian random
variable with unit variance and zero mean. According to Theorem 1.1 in (Rudelson & Vershynin,
2009), for every ϵ > 0, we have

Pr(σmin(U) < ϵ[
√
d′ −

√
d− 1]) ≤ (C.ϵ)d

′−d+1 + e−c.d′

for some constants C and c. This implies that

Pr(σmin(U) ≥ ϵ[
√
d′ −

√
d− 1]) > 1− (C.ϵ)d

′−d+1 − e−c.d′

As a consequence

Pr(γ(su, g′,Rd′
) ≥ νϵ[

√
d′ −

√
d− 1]) > 1− (C.ϵ)d

′−d+1 − e−c.d′

Note that, by definition, the Bayes margin γin(s
u,H′) cannot be less than γ(su, g′,Rd′

) due to
g′ ∈ H′. Therefore

Pr(γin(s
u,H′) ≥ νϵ[

√
d′ −

√
d− 1]) > 1− (C.ϵ)d

′−d+1 − e−c.d′

The margin of each instance is enlarged by a factor of ϵ[
√
d′ −

√
d− 1]). Therefore γ(S, gh,Rd) =

mins∈S γ(s, gh,Rd) is also enlarged by the same factor, completing the proof.

A.3 PROOF OF THEOREM 4.2

Let s ∈ S be an instance and gh ∈ H be the classifier such that γ(s, gh,Rd) = γin(s,H). We first
consider the ball that reflects the region around instance s = (z, y), for which the classifier gh does
not have any misclassification. Denoting ν = γin(s,H), the ball is:

B(s, ν) = {z′ ∈ Rd : ∥z − z′∥ ≤ ν, gh(z
′) = y} (23)

= {z′ ∈ Rd : ∥z − z′∥ ≤ ν, gh(z
′) = gh(z)} (24)

The diameter of this ball represents the margin of the classifier at sample s. Every point in this ball
will be assigned the same label with z. When projecting this ball onto a higher-dimensional space by
transform matrix U of size d× d′, we obtain the following ellipse:

Bu(s, ν) = {z′TU : z′ ∈ B(s, ν)} (25)

Denote g′(v) = gh((UUT)−1Uσ−1(v)) for any v ∈ Rd′
, where σ−1 denotes the inverse function

of σ. Note that g′ is a classifier, defined in the new space, and hence g′ ∈ H′. This function almost
surely exists since UUT is invertible, almost surely Rudelson & Vershynin (2009). Observe the
margin of su = (σ(zTU), y) w.r.t g′:

γ(su, g′,Rd′
) = sup{µ : ∥σ(zTU)− v∥ ≤ µ ⇒ g′(v) = y,∀v ∈ Rd′

} (26)

= sup{µ : ∥σ(zTU)− v∥ ≤ µ ⇒ gh((UUT)−1Uσ−1(v)) = gh(z),∀v}(27)

= sup{µ : ∥σ(zTU)− σ(z′TU)∥ ≤ µ ⇒ gh(z
′) = gh(z),∀z′ ∈ Rd} (28)

The last equality comes from the fact that σ is an one-to-one mapping which maps each v ∈ Rd′
to

σ(z′TU), where z′ = (UUT)−1Uσ−1(v).

Since σ is an expansive function, we have ∥σ(zTU) − σ(z′TU)∥ ≥ ∥zTU − z′TU∥ = ∥(z −
z′)TU∥. Combining this fact with (28) implies that γ(su, g′,Rd′

) is not less than the smallest
diameter of Bu(s, ν). Furthermore, the smallest diameter of Bu is, in fact, the smallest singular value
of matrix νU . It means

γ(su, g′,Rd′
) ≥ σmin(νU) = νσmin(U) (29)

where σmin(U) denotes the smallest singular value of matrix U .

Remember that U is a random matrix whose elements are independent copies of a Gaussian random
variable with unit variance and zero mean. According to Theorem 1.1 in (Rudelson & Vershynin,
2009), for every ϵ > 0, we have

Pr(σmin(U) < ϵ[
√
d′ −

√
d− 1]) ≤ (C.ϵ)d

′−d+1 + e−c.d′

17

Published as a conference paper at ICLR 2025

for some constants C and c. This implies that

Pr(σmin(U) ≥ ϵ[
√
d′ −

√
d− 1]) > 1− (C.ϵ)d

′−d+1 − e−c.d′

As a consequence

Pr(γ(su, g′,Rd′
) ≥ νϵ[

√
d′ −

√
d− 1]) > 1− (C.ϵ)d

′−d+1 − e−c.d′

Note that, by definition, the Bayes margin γin(s
u,H′) cannot be less than γ(su, g′,Rd′

) due to
g′ ∈ H′. Therefore

Pr(γin(s
u,H′) ≥ νϵ[

√
d′ −

√
d− 1]) > 1− (C.ϵ)d

′−d+1 − e−c.d′

The margin of each instance is enlarged by a factor of ϵ[
√
d′ −

√
d− 1]). Therefore γ(S, gh,Rd) =

mins∈S γ(s, gh,Rd) is also enlarged by the same factor, completing the proof.

Note: Based on the proof, we can see that Theorem 4.2 still holds for the case of any data instance.

B ADABOOST AND SAMME ALGORITHMS

Algorithm 1 AdaBoost / SAMME

1: Input: Dataset D = {(xi, yi)|1 ≤ i ≤ N} size N , number of classes C (yi ∈
{1, 2, ..., C},∀1 ≤ i ≤ N), number of weak learners M

2: Initialize sample weight Λ = [Λi =
1
N]Ni=1

3: for m = 1 to M do
4: Train a classifier T (m) with D and Λ
5: Compute error rate:

err(m) = ΣN
i=1Λi · 1T (m)(xi)̸=yi

6: Compute the auxiliary weight α(m):
• AdaBoost:

α(m) = log

(
1− err(m)

err(m)

)
• SAMME:

α(m) = log

(
1− err(m)

err(m)

)
+ log(C − 1)

7: Update sample weight Λ:

Λi = Λi · exp{α(m) · 1T (m)(xi)̸=yi
},∀1 ≤ i ≤ N

8: Re-normalize Λ:
Λi =

Λi

ΣN
i=1Λi

,∀1 ≤ i ≤ N

9: end for
10: Output:

y(x) = argmax
c

M∑
m=1

α(m) · 1T (m)(x)=c

In the realm of classification problems, boosting stands as a formidable strategy. AdaBoost Freund
& Schapire (1997) and SAMME Hastie et al. (2009), which addresses Adaboost’s limitations
in handling multi-class situations, are ensemble learning techniques that combine multiple weak
classifiers {gk(·)}Kk=1 to create a strong classifier G(·) by sequential training on weighted training
data D = {(xi, yi)}Ni=1 including C classes, focusing more on misclassified examples in each
iteration k to improve the model performance iteratively as follows:

• For k = 1, weak learner gk is trained on D with the sample weight vector Λ = [Λi =
1
N]Ni=1.

After training, gk will be evaluated the error rate err(k) =
∑N

i=1 Λi · 1gk(xi) ̸=yi , and

18

Published as a conference paper at ICLR 2025

then the auxiliary weight α(k) = log(1−err(k)

err(k)) + log(C − 1), which is used to update
the sample weight of D for the learning in the next iteration: Λi = Λi · exp{α(m) ·
1g(k)(xi)̸=yi},∀1 ≤ i ≤ N . Following this, the weight of wrongly predicted samples will
be increased.

• For k > 1, the weak learner gk will be trained on D with updated Λ from the previous
iteration. In which, the sample with a higher corresponding weight will be focused more
during the training process. Therefore, the later weak learner will focus more on the mistake
of the previous one and will learn to complement that previous classifier. The next operations
are similar to the case when k = 1.

• Finally, the prediction of G for test sample x is represented by: y(x) =

argmaxc
∑K

k=1 α
(m) · 1g(m)(x)=c.

Detailed pseudocode of both algorithms are provided in Algorithm 1.

Note that applying Adaboost to CL is inherently challenging:

• Adaboost’s algorithm requires the whole training set, which is not always available in CL
when only accessing the current task’s data during training.

• Regarding experimental results, Adaboost often gives superior results with a large enough
number of weak learners, usually hundreds or thousands. If there are too few learners,
Adaboost will not show a clear advantage (see the results in Table 4).

Fortunately, these challenges have been addressed for the first time in our work, as discussed in
section 4.2.2.

C PROVING THE THEORY OF OUR MULTI-VIEW RANDOM PROJECTION SCHEME

C.1 PROOF OF THEOREM 4.3

If we approximate G by Ḡ, the optimal solution is W = (Ḡ+ λI)−1Z̃TY . We further have

Ḡ+ λI =

(Z̃1)T Z̃1 + λI 0 0 0

0 (Z̃2)T Z̃2 + λI 0 0
0 0 ... 0

0 0 0 (Z̃k)T Z̃k + λI

=

 G1 + λI 0 0 0
0 G2 + λI 0 0
0 0 ... 0
0 0 0 Gk + λI

 .

−→
(
Ḡ+ λI

)−1
=

(
G1 + λI

)−1
0 0 0

0
(
G2 + λI

)−1
0 0

0 0 ... 0

0 0 0
(
Gk + λI

)−1

 .

Besides, Z̃ = [Z̃i]ki=1 Therefore, we reach

W =

 W 1

W 2

...
W k

 .

19

Published as a conference paper at ICLR 2025

C.2 PROOF OF COROLLARY 4.4

We derive as follows

sh (x, y) = z̃TW =
[
z̃1

T
z̃2

T
... z̃k

T
] W 1

W 2

...
W k

=

k∑
i=1

si (x, y) .

C.3 THE TIGHTNESS OF THE INVERSION APPROXIMATION

We prove that (Ḡ+ λI)−1 approximates well (G+ λI)−1 when λ becomes large enough.

Firstly, we show that both G and Ḡ are positive semi-definite matrices. For any arbitrary vector
v ∈ RKd′

vTGv = vT Z̃T Z̃v

= (Z̃v)T (Z̃v)

≥ 0

vT Ḡv = vT

Z̃1

T
Z̃1 0 0 0

0 Z̃2
T
Z̃2 0 0

0 0 . . . 0

0 0 0 Z̃K
T
Z̃K

v

= vT

 Z̃1

T
Z̃1 0 0 0

0 0 0 0
0 0 . . . 0
0 0 0 0

+ · · ·+

0 0 0 0
0 0 0 0
0 0 . . . 0

0 0 0 Z̃K
T
Z̃K

v

= vT

 Z̃1
T

0
. . .
0

 [Z̃1 0 . . . 0
]
v + vT

0

Z̃2
T

. . .
0

 [0 Z̃2 . . . 0
]
v+

+ · · ·+ vT

0
0
. . .

Z̃K
T

[0 0 . . . Z̃K

]
v

=
([

Z̃1 0 . . . 0
]
v
)T ([

Z̃1 0 . . . 0
]
v
)
+

+
([

0 Z̃2 . . . 0
]
v
)T ([

0 Z̃2 . . . 0
]
v
)
+

+ · · ·+
([

0 0 . . . Z̃K

]
v
)T ([

0 0 . . . Z̃K

]
v
)

≥ 0

Hence, each eigenvalue of G or Ḡ is a non-negative real number.

Besides, we also notice that both G+ λI and Ḡ+ λI are positive semi-definite, which leads to their
eigenvalues are also their singular values.

Consider a matrix A, denote:

20

Published as a conference paper at ICLR 2025

• rank(A): rank of A

• ξmin(A): the smallest eigenvalue of A

• σmin(A): the smallest singular value of A

• Ξ(A): Set of all eigenvalues of A

It is well-known that Ξ(A+ λI) = {ξ + λ|ξ ∈ Ξ(A)}.

From the above we have

σmin(G+ λI) = ξmin(G+ λI)

= ξmin(G) + λ

≥ 0 + λ

= λ

And similarly σmin(Ḡ+ λI) ≥ λ.

Secondly

||(Ḡ+ λI)−1 − (G+ λI)−1||F
≤ ||(Ḡ+ λI)−1||F + ||(G+ λI)−1||F

≤
√
rank((Ḡ+ λI)−1) · ||(Ḡ+ λI)−1||2 +

√
rank((G+ λI)−1) · ||(G+ λI)−1||2

≤
√
Kd′ · (||(Ḡ+ λI)−1||2 + ||(G+ λI)−1||2)

=
√
Kd′ · (1

σmin(Ḡ+ λI)
+

1

σmin(G+ λI)
)

Assume that λ > 0, we reach

||(Ḡ+ λI)−1 − (G+ λI)−1||F ≤ 2
√
Kd′

λ

completing the proof.

D OUR ALGORITHM FOR DIVERSIFYING MULTIPLE VIEWS WITH BOOSTING
PRINCIPLE

This section provides a concise pseudo-code for our proposed technique, which is presented in Section
4.2.2. This step is performed after the backbone is frozen. In general, we need to pre-determine the
number of atomic views K, and eventually, we obtain K prediction matrices W1:K

t corresponding to
these K views. In particular, for each task t, we first initialize the sample weight, a vector whose
elements are all 1, corresponding to nt data samples. Then, we will learn K atomic views in turn; for
each view, we calculate the prediction matrix based on (4) and then update the sample weight vector
to learn the next view.

Algorithm 2 Multiple-views learning for adapting T tasks sequentially

1: Input: Data {Dt = (Xt,Yt)}t=1,...T , Number of atomic views: K
2: for task t = 1 to T do
3: Initialize observation weights for data samples of Dt:

Λ0
t = [Λ0

t,i = 1]nt
i=1

4: for view k = 1 to K do
5: Calculate Wk

t of kth view incrementally using (4) with weights Λk−1
t .

6: Update the weights Λk
t according to (2).

7: end for
8: end for
9: Output: Prediction matrices W1:K

t

21

Published as a conference paper at ICLR 2025

Looking closer at the algorithm, since the prediction matrices are calculated based on accumulating
knowledge from data of tasks so far, thus we used Λ0

t = [Λ0
t,i = 1]nt

i=1 for initialization (Line 3),
instead of Λ0

t = [Λ0
t,i =

1
nt
]nt
i=1 as in the original Algorithm 1. Besides, to create the balance when

learning common classifiers for the sequence of tasks, we also perform a normalization step for this
vector before forming Λk for kth view.

E PROMPT TUNNING FOR TASK-SPECIFIC ADAPTATION

Figure 3 below illustrates more clearly the motivation of our method in utilizing a task-wise prompt-
based task adaptive backbone.

a) Pretrained model +
PETL (first task adaptation)

c) Pretrained model +
Task-specific prompt-tuning

View View

d) Pretrained model +
Task-specific prompt-tuning +
Multiview random projection

Pr
oj
ec

tio
n Projection Pro

ject
ion

...

Class
Class
Class

Task

Task

Task

Class
Class
Class
Class
Class
Class

b) RanPAC: Pretrained model +
PETL (first task adaptation) +

Random projection

Figure 3: (a)&(b) Visualization of potential overlapping in later tasks of RanPAC in original latent
space and high dimensional space due to the lack of adaptation to these tasks. (c) With task-wise
prompting, the original features of the classes tend to be better distinguished. (d) Multi-view random
projection encourages clearer separations in different views.

Inspired by HiDE, we maintain a set of base prompts Q1:t up to task t and compute the prompt
Pt for task t as Pt = (1 − ζ)Qt + ζ

∑t−1
i=1 Qi, where ζ is a parameter within the range of [0, 1].

During learning task t, the base prompts Q1:t−1 are fixed. After that, we insert Pt into the pre-trained
backbone and train the current task using Cross-Entropy loss and a contrastive-based regularization
loss as follows:

min
θ,Pt

CE (Pt, θ) + βReg (Pt) (30)

where β > 0 is a trade-off parameter and θ is the weights of temporary classification head of prompted
model fΦ,P .

In particular, to learn representation within the current task, we use Cross Entropy loss:

CE(Pt, θ) =
1

nt

nt∑
i=1

CE(hθ(fΦ,Pt(x
i
t)), y

i
t), (31)

where hθ is the auxiliary classification head we employ to learn to representation zt = fΦ,Pt
(x).

In addition, to enforce the separation between features of new task t and previous ones, at the end of
each previous task, we summarize and store the representations of a class k in an old task to a mean

22

Published as a conference paper at ICLR 2025

(A) (B)

Figure 4: Prompt selection process (A) and Self-improvement prompt selection strategy (B)

vector mk by simply averaging those class representations and use the following contrastive loss:

Reg(Pt) =
1

nt

nt∑
i=1

1

|Yt−1|

|Yt−1|∑
k=1

ℓ(zi
t), (32)

where ℓ(zi
t) =

exp (zi
t.mk/τ)∑nt

j=1 exp (z
i
t.z

j
t /τ) +

∑|Yt−1|
k=1 exp (zi

t.mk/τ)
and τ is set to 0.8.

Besides, Figure 4 illustrates more clearly our prompt selection process and our proposed self-
improvement strategy, which are described in detail in Section 4.3.

F EXPERIMENTAL SETTINGS

F.1 DATASETS

We follow the protocols in (McDonnell et al., 2023) to construct the following common benchmarks:

• Split CIFAR-100 Krizhevsky et al. (2009): This dataset comprises images from 100 classes,
each of a small scale. These classes are divided randomly into 10 separate incremental tasks,
with each task featuring a distinct set of classes.

• Split ImageNet-R Krizhevsky et al. (2009): This dataset comprises images from 200 classes,
categorized as large-scale. It includes challenging examples from the original ImageNet
dataset and newly gathered images representing diverse styles. These classes are also
randomly divided into 10 distinct incremental tasks.

• 5-Datasets Ebrahimi et al. (2020): This composite dataset incorporates CIFAR-10
Krizhevsky et al. (2009), MNIST LeCun et al. (1998), Fashion-MNIST Xiao et al. (2017),
SVHN Netzer et al. (2011), and notMNIST Bulatov (2011). Each of these datasets is treated
as a separate incremental task. This structure allows for the assessment of the effects of
significant variations between tasks.

• Split CUB-200 Wah et al. (2011): This dataset consists of fine-grained images of 200
different bird species. Like the others, it is randomly segregated into 10 incremental tasks,
each comprising a unique class subset. Note that we use the same number of training
samples as in RanPAC (McDonnell et al., 2023), which is larger than that used in SLCA
(Zhang et al., 2023).

F.2 BASELINES

In the main paper, we use CL methods with pre-trained ViT as the backbone. We group them into
CP-based and Prompt-based approaches.

23

Published as a conference paper at ICLR 2025

(1) RanPAC (McDonnell et al., 2023): a CP-based method that adapts the first task using parameter-
efficient transfer learning, then projects the features onto a high dimensional space, and finally
incrementally learns a linear classifier. Different from our method, RanPAC only performs adaptation
at the first task and uses one projection matrix, resulting in potential overlapping of future tasks’
features and infeasibility when working with extremely large dimensions.

(2) ADaM(Zhou et al., 2023): another CP-based work that proposes a framework which adapts the
pre-trained model to the first task using several adapting techniques such as prompt-tuning (Jia et al.,
2022), adaptor (Chen et al., 2022) and batch-norm statistics adjustment, so that the representation
could be more specific towards the downstream CL task. At prediction, ADaM only uses the
nearest class mean classifier, which is shown in (Goswami et al., 2023) to be sub-optimal as it lacks
second-order statistics such as the covariance matrix.

(3) SLCA: (Zhang et al., 2023): SLCA is a novel method that proposes learning new tasks with a
small learning rate for the feature extractor and a slightly larger one for the classification head so
that the model can reduce the potential representation shift. It additionally implements a classifier
alignment based on saved features to improve the classification head at inference further. On the one
hand, in SLCA, using a small learning rate will lead to less-shifted representation. However, this also
makes the model become too stable to learn new tasks. This limits the performance of SLCA.

(4) L2P Wang et al. (2022d): the first prompt-based work for CL that proposed using a common
prompt poll, in which the top k most suitable prompts are selected for each sample for training
and testing. This might allow knowledge transfer between tasks but also carries the potential risk
of catastrophic forgetting. In addition, different from us, L2P has not really considered training
classifiers as well as setting constraints on features from old and new tasks during training, which
likely leads to limitations in the model’s predictability.

(5) DualPrompt Wang et al. (2022c) is the prompt-based method that attempts to overcome the
disadvantages of L2P when attaching complementary prompts to the pre-trained backbone instead
of only prompting at input. Besides, DualP also integrates additional prompt sets for each task to
exploit more task-specific "instruction" in addition to task invariant information from the common
pool. However, like L2P, this method does not really focus on learning classification head efficiently.
Moreover, choosing the wrong promptID (for task-specific instruction) during testing could also
reduce model performance.

(6) S-Prompt++ Wang et al. (2022b): is originally proposed for Domain-incremental learning. It
trains a separate prompt and classifier head for each task. At evaluation, it infers domain id as the
nearest centroid obtained by applying K-Means on the training data. To adapt S-Prompt to CIL,
S-Prompt++ uses one common classifier head for all tasks. This method also has the same limitations
as pointed out in DualP: the learning of classification head and the prediction of appropriate prompts
at testing time.

(7) CODA-Prompt Smith et al. (2023): This prompt-based work uses task-specific learnable prompts
for each task, but similar to L2P, CODA employs a pool of prompts and keys and then computes a
weighted sum from these prompts to generate the real prompt. The weights are defined as the cosine
similarity between queries and keys. At the end of the task sequence, to avoid task prediction, its
weighted sum always considers all the prompts. CODA offers improvements over DualP and L2P
in that the optimization of keys and prompts occurs simultaneously, but it still has not solved the
drawbacks we mentioned about DualP above.

(8) HiDe-Prompt Wang et al. (2023): a recent SOTA prompt-based method that decomposes learning
CIL into 3 modules: a task inference, a within-task predictor and a task-adaptive predictor. The
second module trains prompts for each task with a contrastive regularization that tries to push features
of new tasks away from prototypes of old ones. To predict task identity, it trains a classification head
on top of the pre-trained ViT. TAP is similar to a fine-tuning step that aims to alleviate classifier bias
using the Gaussian distribution of all classes seen so far. Although HiDE solves one of the limitations
of the above methods, in comparison with ours, this method still suffers from classifier forgetting,
and its taskID predictor may be sub-optimal if the backbone is too different from downstream CL
tasks, which we tackle by our self-improvement process.

(9) CPP Li et al. (2024): This recent SOTA also uses a contrastive constraint to control features of all
tasks so far during representation learning and achieves roughly equivalent performance to HiDE on

24

Published as a conference paper at ICLR 2025

the same settings. Nevertheless, this method still has the advantages that we pointed out in HiDE,
which we propose to address in our work.

F.3 METRICS

In our study, we employed two key metrics: the Final Average Accuracy (FAA) and the Final
Forgetting Measure (FFM). To define these, we first consider the accuracy on the i-th task after the
model has been trained up to the t-th task, denoted as Ai,t. The average accuracy of all tasks observed
up to the t-th task is calculated as AAt = 1

t

∑t
i=1 Ai,t. Upon the completion of all T tasks, we

report the Final Average Accuracy as FAA = AAT . Additionally, we calculate the Final Forgetting
Measure, defined as FFM = 1

T−1

∑T−1
i=1 maxt∈{1,...,T−1} (Ai,t −Ai,T). The FAA serves as the

principal indicator for assessing the ultimate performance in continual learning models, while the
FFM evaluates the extent of catastrophic forgetting experienced by the model.

F.4 IMPLEMENTATION DETAILS

In our method, we set the contrastive regularization weight β = 0.1, the parameter for prompt
construction ζ = 0.1, and the confidence threshold for expert filtering is 0.5. The default values for
the number of self-improvement steps is 2, the number of expert views is 15, and the dimension of
each atomic view is 10,000.

Our implementation aligns with the methodologies employed in prior research Wang et al. (2022d;c);
Smith et al. (2023). Specifically, our framework incorporates the use of a pre-trained Vision Trans-
former (ViT-B/16) as the backbone architecture. For the optimization process, we utilized the Adam
optimizer, configured with hyper-parameters β1 set to 0.9 and β2 set to 0.999. The training process
was conducted using batches of 128 samples, and a fixed learning rate of 0.005 was applied across all
models except for CODA-Prompt. For CODA-Prompt, we employed a cosine decaying learning rate
strategy, starting at 0.001. Additionally, a grid search technique was implemented to determine the
most appropriate number of epochs for effective training. Regarding the pre-processing of input data,
images were resized to a standard dimension of 224× 224 pixels and normalized within a range of
[0, 1] to ensure consistency in input data format.

93.0

93.5

94.0

94.5

95.0

95.5

96.0

96.5

97.0

FA
A

(%
)

1 10 15 20 25
Number of expert Views

76.5

77.0

77.5

78.0

78.5

79.0

79.5

80.0

80.5

FA
A

(%
)

5K 10K 15K 20K 25K
Dimension of projected Space

Split CIFAR-100
Split ImageNet-R

Figure 5: Performance when the number of atomic
views and the dimension of each projected space
(of each atomic view) vary.

In Table 1 of the main paper, the results of
L2P, DualPrompt, S-Prompt++, CODA-Prompt,
and HiDe-Prompt on Split CIFAR-100 and Split
ImageNet-R are taken from (Wang et al., 2023).
Their results on the other two datasets are pro-
duced from the official code provided by the
authors. For CPP, the reported results are also
reproduced from their official code. Besides, the
results of ADaM and RanPAC on Split CIFAR-
100, Split ImangeNet-R, and CUB are also taken
directly from RanPAC paper (McDonnell et al.,
2023), while the remaining is produced by their
official code.

G ADDITIONAL EXPERIMENTS

G.1 EXPERIMENTS
ABOUT OUR ENSEMBLE CLASSIFIER

Effect of the number of atomic views and
their dimension. Figure 5 illustrates that over-
all, our model’s FAA gradually improves when
increasing the values of these two quantities.
Notably, a breakthrough occurs when increasing
from 10 to 15 views on Split CIFAR-100 and from 15 to 20 views on Split ImageNet-R. In addition,
on both datasets, the most significant improvement is observed when changing the dimension of the

25

Published as a conference paper at ICLR 2025

projected space from 5,000 to 10,000, with an increase of more than 2%. Besides, we can observe the
convergences of FAA as the two quantities reach certain values. This might be due to the limitation
of the linear classifiers.

The effectiveness of our voting strategy. Table 4 presents additional experimental results showcasing
the advantages of our proposed voting strategy. Our method with voting strategy (B) outperforms the
single-view version (D, or BoostCL-s), multi-view without boosting version (C, whose classifiers
on different atomic views are trained independently), and AdaBoost (A) on two considered datasets.
In particular, using AdaBoost (A) only brings marginal or even negligible improvement compared
to using the single view model (D). This may be due to the limited number of views/learners
(K = 15), which is insufficient for AdaBoost, typically requiring numerous iterations/weak learners
to demonstrate its strength. Meanwhile, with the given number of atomic views, our voting method
can generate at most 215 − 1 responses, leading to better efficiency. Furthermore, simply using
multi-view without boosting will not be effective, as it only yields performance equivalent to the
single-view version. This is because the output of the respective views is almost the same in most
cases.

Table 4: Comparison between our voting strategy and AdaBoost

Method Benchmark
Split CIFAR-100 Split ImageNet-R

(A) AdaBoost (15 leaners) (Boosting w/o voting) 94.15 78.55
(B) Multi-view (K = 15) (Boosting & voting) 95.45 79.62
(C) Multi-view (K = 15) (w/o boosting) 94.03 78.52
(D) Singe view 94.03 78.52

Applicability of our ensemble classifier. Table 5 shows that our ensemble classifier can flexibly
adapt to other prompt-based and CP-based methods and enhance their performance. We observe
that as long as fΦ,Pt′ (x) does not shift much from fΦ,Pt(x), the linear classifier with the weight
matrix W on the main label prediction branch can sufficiently generalize to handle this possible shift.
The results depict the efficiency of our voting ensemble classifier in enhancing the performance of
baselines, where RanPAC ++, SLCA++, and HIDE++ are the versions of RanPAC, SLCA, and HIDE
when using our ensemble classifier, respectively, after training the respective backbone.

Table 5: Using our ensemble classification head for baselines

Method Benchmark
Split CIFAR-100 Split ImageNet-R

RanPAC 92.20 77.90
RanPAC ++ 93.62 78.62
SLCA 91.62 77.10
SLCA ++ 92.82 77.56
HiDE 92.61 75.06
HIDE ++ 93.82 76.01
BoostCL-s 94.03 78.52
BoostCL-m 95.45 79.25

In the absence of Random Projection. To further demonstrate the benefit of out ensemble classifier,
we remove the random projection, i.e. applying the multi-view strategy directly on the original latent
space. The results of this method are presented in Table 6. It can be seen that without Random
Projection, hence no additional parameters for the projection matrix, our BoostCL still significantly
outperforms RanPAC and HiDE. Here we also include BoostCL-m (d’ = 768; K = 13) which has
roughly the same number of parameter compared to RanPAC. This version’s performance is slighly
lower than the one without RP, showing that the benefit of random projection tends to occur when d′

is sufficiently large (c.f, in Figure 5).

26

Published as a conference paper at ICLR 2025

Table 6: Performance (FAA - %) of our method with and w/o using RP.

Method Benchmark
Split CIFAR-100 Split ImageNet-R

RanPAC 92.20 77.90
HiDE 92.61 75.06
BoostCL-s 94.03 78.52
BoostCL-m (d’ = 768; K = 13) 94.56 78.65
BoostCL-m (d’ = 10, 000; K = 15) 95.45 79.25
BoostCL-m w/o RP & K = 13 94.65 78.82

G.2 DETAILED ABLATION STUDY

To summarize each of our proposed components’ pros, we provide detailed ablation study in Table 7
with the following remarks:

• Line 6 > RanPAC: the merits of Task-adaptive backbone.

• Line 4 = Line 5 = Line 6: multi-view without boosting is useless as all the views produce
the same prediction.

• Line 3 > Line 5: AdaBoost only brings slight improvement.

• Line 2 > Line 3: Our voting strategy outperforms AdaBoost.

• Line 7 > Line 6 and Line 1 > Line 2: Self-improvement process is helpful.

(Symbols >,= refers to the comparison between two values of FAA).

Table 7: More detailed ablation study on Split-CIFAR-100

ID self-improve voting boosting RP(d’=10k, K=15) RP(d’=10k, K=1) FAA (%)
1 ✓ ✓ ✓ ✓ × 96.55
2 × ✓ ✓ ✓ × 95.45
3 × × ✓ ✓ × 94.15
4 × ✓ × ✓ × 94.03
5 × × × ✓ × 94.03
6 × × × × ✓ 94.03
7 ✓ × × × ✓ 94.72

G.3 COMPLEXITY ANALYSIS (COMPUTATION AND STORAGE COSTS)

In this section, we present a detailed analysis of our model’s computational costs compared to
baselines. Then, we show details related to our ensemble classifier and the self-improvement process.
The reported results were conducted on 2 machines with Tesla V100-SXM2-32GB-LS.

G.3.1 TIME COMPLEXITY OF MODELS

Table 8 provides the time complexity of our method (w/o self-improvement process) and the two
strongest baselines (RanPAC and HiDE), in terms of forward time and training time.

Table 8: Computational time, measured on Split CIFAR-100 (each image has size 3× 224× 224).

Method Forward time (ms/sample) Training time (min/task)
RanPAC 12.21± 1.04 1.42± 0.22
HiDE 21.88± 1.08 42.62± 1.35
BoostCL 27.80± 1.22 65.52± 1.60
BoostCL (backbone) 24.02± 1.12 44.17± 1.52
BoostCL (ensemble classifier) 3.89± 0.31 21.41± 1.15

27

Published as a conference paper at ICLR 2025

Forward time:

• (1) In general, BoostCL takes the largest amount of time, due to exploiting both prompt-
based backbone and ensemble classifier. However, the cost gap between our method and the
strongest prompt-based baseline, HiDE, is insignificant.

• (2) The most expensive process is for the backbone forwarding. Meanwhile, the time
spent on our proposed ensemble classifier, which works on a set of high-dimensional linear
classifiers, only accounts for a small fraction (14%) compared to the total forward time.

Training time:

We can see that the time spent training our ensemble classifier (d′ = 10, 000;K = 15) accounts for
nearly one-third of the total time for each task. The reason is that our approach exploits the boosting
strategy so that we have to train atomic views sequentially given that the time for training each view
is mostly equal to the time for training each task of RanPAC (d′ = 10, 000). However, we believe
this cost can be offset by the improvement we got.

G.3.2 TIME/SPACE COMPLEXITY OF OUR ENSEMBLE CLASSIFIER

To further analyze the cost and efficacy obtained when using random projection and multiple-view,
we compare our ensemble classifier and RanPAC’s classifier (Table 2):

Storage cost:

• When training BoostCL (d′ = 10, 000;K = 15), we exclusively use one Random Projection
matrix for all atomic views. We also store internally, e.g, put to GPU, the Gram matrix and
weight vector corresponding to the atomic view that is being trained, while the Gram matrices
and weight vectors of other views are stored externally. Therefore, essentially, the internal
memory utilized for training our ensemble classifier (BoostCL with d′ = 10, 000;K = 15)
is equivalent to that of RanPAC (d′ = 10, 000). Thus, in the table below, we only report the
number of trained parameters used at testing time.

• When testing, we can see that the classifier of the version of BoostCL (d′ = 10, 000;K = 15)
requires 15 times more memory than RanPAC (d′ = 10, 000). However, this expense can
be compensated by the more-than-3% improvement in FAA that our BoostCL obtains.
Moreover, considering BoostCL (d′ = 768;K = 13), which requires less memory than
RanPAC, we can see that with the help of our ensemble strategy, it can still improve the
FAA of RanPAC and even BoostCL single view (d′ = 10, 000).

• For the case that RanPAC uses d′ = 10, 000 × 15 = 150, 000, the total dimension in
BoostCL. The cost to store the Gram matrix (with size d′ × d′) or its inversion is too huge
and impractical. Meanwhile, BoostCL works well with this setting, as it only needs to deal
with submatrices.

Regarding the computational complexity:

• Comparing with the original RanPAC (d′ = 10, 000), forwarding the classifier of BoostCL
(d′ = 10, 000;K = 15) requires more time. This is obvious because we use an ensemble
strategy for prediction instead of using only one classification head like RanPAC. This cost
is offset by the performance improvement we achieve.

• Last but not least, when discussing the potential of using projection matrices on high-
dimensional space, we claimed in our paper that our process helps to alleviate the "substantial
computational cost when computing the inverse of a d′ × d′ Gram matrix for solving the
linear classifier" which is done in RanPAC. In this table, we compare our BoostCL with
RanPAC∗ (d′ = 10, 000× 15) and mark that this version of RanPAC is infeasible to train
because the cost when computing the inversion of a Gram matrix of size d′(= 10, 000× 15)
is O(d′c) for some constant c ∈ [2.3, 3.0], according to Geéron (2017). Therefore, BoostCL
has solved this computational crisis, saving the time cost for a factor of O(15c).

28

Published as a conference paper at ICLR 2025

G.3.3 TIME CONSUMPTION OF OUR SELF-IMPROVEMENT STRATEGY

We provide the experimental results depicting the time consumption of our self-improvement strategy
in Table 9. According to the results, such each step costs about 12ms for a sample. However, we just
need 2 prompt prediction steps to significantly improve performance. This is worth compensating.

Table 9: Performance when increasing the number of prompt prediction steps (Split CIFAR-100).

Metric
Number of steps

1 2 3 4 5

FAA (%) 95.45 96.55 96.85 97.03 97.05

Time (ms) 27.80 39.02 50.95 61.84 73.85

G.4 INVERTIBLE AND EXPANSIVE NON-LINEAR ACTIVATION FUNCTIONS FOLLOWING THE RP

The Table 10 below depicts model performance across different datasets when using the ReLU,
Leaky ReLU (negative slop β = 0.01), and the activation function a(x) = x+ ξ · log(1 + exp(x))
where ξ = 100, which we used in our main experiments. The results show that the obtained FAA
corresponding to these activation functions do not differ too much. This may be because these three
functions are basically nearly equivalent, plus the property of the datasets make the results not differ
too much, making ReLU still work well when combined with RP although it violates the invertible
condition in the region of x < 0. We leave a detailed explanation for future research.

Table 10: Performance when using different non-linear activation functions.

Activation function
Split CIFAR-100 Split Imagenet-R

BoostCL-s RanPAC BoostCL-s RanPAC

Leaky ReLU 93.92 92.12 78.43 77.88

ReLU 93.93 92.20 78.45 77.90

Our a(x) 94.03 92.25 78.52 77.96

29

	Introduction
	Related work
	Background
	Problem formulation
	The close-form solution for the CL classifier of RanPAC
	The Boosting principle of AdaBoost/SAMME

	Framework
	Random projection onto higher-dimensional space can improve instance margin, generalization, and CL overall
	Multiple-view Random projection scheme
	The Motivation
	Learning Diverse and Complementary Multiple Views via the Boosting Principle

	Task-adaptive backbone and self-improvement process

	Experiments
	Experimental setup
	Experimental results

	Conclusion
	Why does Random Projection onto higher dimension space help increase the margin?
	Margin and generalization error
	Proof of Theorem A.2

	Proof of Theorem A.1
	Proof of Theorem 4.2

	AdaBoost and SAMME algorithms
	Proving the theory of our multi-view random projection scheme
	Proof of Theorem 4.3
	Proof of Corollary 4.4
	The tightness of the inversion approximation

	Our algorithm for diversifying multiple views with Boosting principle
	Prompt tunning for task-specific adaptation
	Experimental Settings
	Datasets
	Baselines
	Metrics
	Implementation Details

	Additional experiments
	Experiments about our ensemble classifier
	Detailed ablation study
	Complexity analysis (computation and storage costs)
	Time complexity of models
	Time/space complexity of our ensemble classifier
	Time consumption of our self-improvement strategy

	Invertible and expansive non-linear activation functions following the RP

