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ABSTRACT

Deep Learning (DL) has advanced various fields by extracting complex patterns
from large datasets. However, the computational demands of DL models pose envi-
ronmental and resource challenges. Deep Shift Neural Networks (DSNNs) improve
the situation by leveraging shift operations to reduce computational complexity
at inference. Compared to common DNNs, DSNNs are still less well understood
and less well optimized. By leveraging AutoML techniques, we provide valuable
insights into the potential of DSNNs and how to design them in a better way. Since
we consider complementary objectives such as accuracy and energy consumption,
we combine state-of-the-art multi-fidelity (MF) HPO with multi-objective opti-
mization to find a set of Pareto optimal trade-offs on how to design DSNNs. Our
approach led to significantly better configurations of DSNNs regarding loss and
emissions compared to default DSNNs. This includes simultaneously increasing
performance by about 20% and reducing emissions by about 10%. Investigating
the behavior of quantized networks in terms of both emissions and accuracy, our ex-
periments reveal surprising model-specific trade-offs, yielding the greatest energy
savings. For example, in contrast to common expectations, selectively quantizing
smaller portions of the network with low precision is optimal while retaining or
improving performance. We corroborated these findings across multiple backbone
architectures, highlighting important nuances in quantization strategies and offering
an automated approach to balancing energy efficiency and model performance.

1 INTRODUCTION

Deep Learning (DL) is a promising approach to extracting information from large datasets with
complex structures. This includes performing computations in IoT environments and on edge
devices (Li et al., 2018; Zhou et al., 2019), which can come with strict limitations on the energy
consumption. However, with the ever-increasing size and performance of such models due to the
progress in science and industry, running these models is not free of computational costs (Sze et al.,
2017) and minimizing this cost directly affects a model’s environmental impact (Schwartz et al.,
2020). Even if resource consumption should not be considered crucial in view of environmental
impact, efficiently designed neural networks free up resources that can be used for other tasks, e.g.,
edge computing or computations for advanced driver assistance systems (Howard et al., 2017). With
our approach, we contribute to DL by minimizing its environmental footprint and allow applications
in low-resource settings. Of particular interest to us are Deep Shift Neural Networks (DSNNs)
that offer great potential in reducing power consumption compared to traditional Deep Learning
models, e.g., by reducing the inference time by a factor of 4 (Elhoushi et al., 2021). Instead of
expensive floating point arithmetic, they leverage cheap shift operations — specifically, bit shifting —
as the computational unit, which boosts efficiency by replacing costly multiplication operations in
convolutional networks. Although DSNNs offer great promise, so far, the different design decisions,
including training hyperparameters and shift architecture, have not been well-studied and there is
little knowledge about their full potential. We suspect that the configuration of DSNNs has a huge
impact on both performance and computational efficiency.

One of the key challenges with DSNNs is determining the appropriate level of precision for shift
operations to minimize quantization errors without excessively increasing the computational load.
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To address this challenge, we propose to apply automated machine learning (AutoML) to DSNNs
to find their optimal configuration. This is achieved by hyperparameter optimization (HPO) (Bischl
et al., 2023) and a neural architecture search on a macro-level (Elsken et al., 2019). Integrating
multi-fidelity (MF) and multi-objective optimization (MO) techniques (Belakaria et al., 2020) facili-
tates an optimal exploration of the configuration space that trades off predictive performance and
energy consumption (Deb, 2014). To this end, we extended the SMAC3 approach (Lindauer et al.,
2022), a state-of-the-art HPO package (Eggensperger et al., 2021), such that its MO implementation
effectively balances the trade-off between achieving high predictive accuracy and minimizing energy
consumption. Employing tools like CodeCarbon (Lacoste et al., 2019; Lottick et al., 2019) during the
training and evaluation phases provides insights into the energy consumption and carbon emissions
associated with each model configuration. The MF aspect allows for the efficient use of computational
resources by evaluating configurations at varying levels of approximation. Our work is in the spirit of
Green AutoML (Tornede et al., 2023) by considering efficient AutoML for gaining insights into the
design of efficient DSNNs.

Contributions. Overall, we contribute to Green AutoML w.r.t. DSNNs by:

1. Specifying the first configuration space tailored to DSNNs which is efficiently optimized by
a combination of multi-objective and multi-fidelity AutoML approaches;

2. Empirically exploring how specific design choices in DSNNs lead to different trade-offs
between accuracy and energy efficiency, enabling stakeholders and researchers to leverage
these findings to develop energy-efficient applications that maintain high computational
accuracy; and

3. Identifying specific configurations of DSNNs that surpass the baseline results in both
dimensions of the performance-efficiency optimization problem.

2 RELATED WORK

Both multi-fidelity optimization (MF) (Bischl et al., 2023) and multi-objective optimization (MO)
(Morales-Hernández et al., 2022) for AutoML have gotten a lot of traction in recent years. The
combined integration of multi-fidelity multi-objective optimization (MFMO) has seen some ad-
vancements to enhance the efficiency of model training while minimizing environmental impact.
Belakaria et al. (2020) proposed an acquisition function based on output space entropy search for
multi-fidelity multi-objective Bayesian optimization (MFMO-BO-OSES). Their method addresses
the exploration-exploitation dilemma by prioritizing the acquisition of data points that significantly
reduce the entropy of the Pareto front. This approach enables more strategic sampling decisions and
leverages lower-fidelity evaluations to approximate the Pareto front effectively, aligning with the
sustainability goals of Green AutoML. Similarly, Schmucker et al. (2020) considered a combination
of multi-objective and multi-fidelity optimization but focused on fairness as the second objective.
With our MFMO approach, we contribute an algorithm tailored specifically for performing efficient
HPO tasks using BO, directly minimizing emissions in the process.

A well-explored technique for reducing the computational complexity of neural networks themselves
is network quantization. It involves lowering the precision of weights and activations, which decreases
the model’s memory footprint and accelerates inference. Works by Courbariaux et al. (2015) and
Rastegari et al. (2016), for example, have demonstrated that techniques such as BinaryConnect
and XNOR-Net not only reduce computational requirements but also maintain near state-of-the-art
performance, underscoring the potential of quantization to balance performance with computational
efficiency. This has also been transferred into the field of LLMs, where 1-Bit transformer architectures
are used to address the challenges of increasing model size (Wang et al., 2023). Strongly related to
network quantization, Deep Shift Neural Networks (DSNNs), proposed by Elhoushi et al. (2021),
represent an advancement towards quantization combined with efficient operators. DSNNs employ
bitwise shift operations instead of traditional multiplications, thus further reducing the computa-
tional overhead and power consumption. This innovation is particularly crucial for deploying Deep
Learning models in power-sensitive or resource-constrained environments, further contributing to the
environmental sustainability of AI technologies.

DSNNs offer a more balanced trade-off between computational efficiency and accuracy compared
to binary methods like BinaryConnect and XNOR-Net by replacing multiplications with bitwise
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shifts, which are more power-efficient yet maintain greater precision, reducing the accuracy loss
typically associated with binary quantization. This allows DSNNs to achieve better performance in
resource-constrained environments while still minimizing computational overhead (Elhoushi et al.,
2021).

AdderNet (Chen et al., 2020) is another approach for reducing the amount of computationally expen-
sive multiplications during network training and inference by using the ℓ1-norm distance between
input and filter vectors to compute activations. There are efforts in mixed-precision quantization,
where different bit-widths are assigned to different layers or channels of the network. It allows
for higher precision where necessary and lower precision where possible, optimizing the trade-off
between accuracy and efficiency (Motetti et al., 2024). Similarly, ternary quantization constrains the
weights to three discrete values: {−1, 0,+1}. To mitigate the accuracy loss from reduced precision,
approaches like trained ternary quantization (TTQ) introduce learned scaling factors, allowing net-
works to maintain performance comparable to their full-precision counterparts while significantly
reducing memory and power usage (Rokh et al., 2023). HPO combined with DSNNs further opti-
mizes both performance and resource efficiency by tailoring shift depths and quantization strategies,
allowing for fine-tuned control over energy consumption and accuracy in constrained environments,
making them ideal for mixed-precision and quantization-aware neural network applications.

3 BACKGROUND

The following chapter introduces foundational concepts for our approach.

3.1 DEEP SHIFT NEURAL NETWORKS

A Deep Shift Neural Network (DSNNs) is an approach to reduce the computational and energy
demands of Deep Learning (Elhoushi et al., 2021). They achieve a considerable reduction in latency
time by simplifying the network architecture such that they replace the traditional multiplication
operations in neural networks by bit-wise shift operations and sign flipping, making DSNNs suitable
for computing devices with limited resources. There are two methods for training DSNNs (Elhoushi
et al., 2021): DeepShift-Q (Quantization) and DeepShift-PS (Powers of two and Sign). DeepShift-Q
involves training regular weights constrained to powers of 2 by quantizing weights to their nearest
power of two during both forward and backward passes. In DeepShift-Q, the weights are quantized to
powers of two by rounding the logarithm of the absolute weights to the nearest integer. This process
simplifies the weight representation and ensures compatibility with bitwise shift operations. The sign
is then applied to preserve the original weight polarity. DeepShift-PS directly includes the values of
the shifts and sign flips as trainable hyperparameters, offering finer control over weight adaptation.
This approach removes the need for explicit rounding during training, potentially leading to improved
precision at the cost of additional parameter updates.

The DeepShift-Q approach obtains the sign matrix S from the trained weight matrix W as
S = sign(W ). The power matrix P is the base-2 logarithm of W ’s absolute values, i.e.,
P = log2(|W |). After rounding P to the nearest power of two, Pr = round(P ), the quantized
weights W̃q are calculated by applying the sign from S, shown as

W̃q = flip(2Pr , S) . (3.1)

The DeepShift-PS approach optimizes neural network weights by directly adapting the shift (P̃ ) and
sign (S̃) values. The shift matrix P̃ is obtained by rounding the base-2 logarithm of the weight values,
P̃ = round(P ), and the sign flip S̃ is computed as S̃ = sign(round(S)). Weights are calculated as

W̃ps = flip(2P̃ , S̃) , (3.2)

where the sign flip operation S̃ assigns values of −1, 0, or +1 based on s.

Directly training shift and sign values could allow for more precise control in optimizing the network’s
computational efficiency by reducing mathematical imprecision. On the other hand, training the
floating point weights and only rounding them during the forward and backward pass might increase
the precision and reduce the error in training the weights.
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3.2 HYPERPARAMETER OPTIMIZATION

The increasing complexity of Deep Learning algorithms enhances the need for automated hyper-
parameter optimization (HPO) to increase model performance (Bischl et al., 2023). Consider a
dataset D = {(xi, yi)}Ni=1 ∈ D ⊂ X × Y , where X is the instance space and Y is the target
space, and a hyperparameter configuration space Λ = {λ1, . . . , λL}, L ∈ N. In our work, M
denotes the space of possible DSNN models. The dataset D is split into disjunct training, validation,
and test sets: Dtrain,Dval, and Dtest respectively. An algorithm A : D × Λ → M trains a model
M ∈ M, instantiated with a configuration of L hyperparameters sampled from Λ, on the training
data Dtrain. The performance of the algorithm is assessed via an expensive-to-evaluate loss function
L :Mλ × D → R, which involves both the training on Dtrain and the evaluation of the model on
Dval. The direct optimization objective of HPO is to find the configuration λ∗ ∈ Λ with minimal
validation loss L, such that:

λ∗ ∈ argmin
λ∈Λ
L
(
A(Dtrain, λ),Dval

)
. (3.3)

Finally, the model’s final performance is assessed on Dtest.

3.3 BAYESIAN OPTIMIZATION

For a given dataset, Bayesian Optimization (BO) for HPO is a strategy for global optimization of
black-box loss functions L(λ) :Mλ × D −→ R that are expensive to evaluate (Jones et al., 1998).

BO uses a probabilistic surrogate model S to approximate the loss function, commonly given by a
Gaussian Process or a Random Forest (Rasmussen & Williams, 2006; Hutter et al., 2011; Shahriari
et al., 2016). An acquisition function α : Λ −→ R guides the search for the next optimal evaluation
points by balancing the exploration-exploitation trade-off, based on the set of previously evaluated
configurations {(λ1,L1), ..., (λm−1,Lm−1)} at time m. Common choices for acquisition functions
include expected improvement (EI) (Jones et al., 1998) since it calculates the expected improvement
in the objective function value and guides the search towards regions where improvements are most
likely.

Entropy-based methods like Entropy Search (ES) (Hennig & Schuler, 2012) and Predictive Entropy
Search (PES) (Hernández-Lobato et al., 2014) aim to reduce the entropy of the posterior distribution
of the maximizer, focusing on information-rich regions.

The Knowledge Gradient (KG) (Frazier et al., 2009) offers a strategy for maximizing the expected
improvement of the objective considering all potential outcomes, valuable in scenarios with noisy
measurements. BO is particularly well-suited for hyperparameter optimization in Deep Learning,
where evaluating the performance of a model configuration can be computationally expensive
because of the training of each configuration. BO is sample-efficient in evaluating L on only a few
configurations.

3.4 MULTI-FIDELITY OPTIMIZATION

Since it is not feasible to fully train multiple configurations of DSNNs for comparison due to
computational efficiency, we employ a multi-fidelity (MF) approach (Li et al., 2017), which is a
common strategy in AutoML to navigate the trade-off between performance and approximation
error (Hutter et al., 2019). MF approaches train cheap-to-evaluate proxies of black-box functions
following different heuristics, e.g., allocating a small number of epochs to many configurations in the
beginning and training the best-performing ones on an increasing number of epochs. Formally, we
define a space of fidelities F and aim to minimize a function F ∈ F (Kandasamy et al., 2019):

min
λ∈Λ

F (λ) . (3.4)

We approximate F ∈ F , using a series of lower-fidelity, i.e., less expensive approximations
{f(λ)1, . . . , f(λ)j = F (λ)}, where j denotes the total number of fidelity levels. The target function
F ∈ F corresponds to the loss function L of HPO and BO. The allocated resources for evaluating a
model’s performance at various fidelities are referred to as a budget, e.g., training a DNN for only n
epochs instead of until convergence. MF typically assumes that the highest fidelities approximate the
black-box function best. The longer a model is trained, the more accurate its approximation of an
underlying function gets.
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3.5 MULTI-OBJECTIVE OPTIMIZATION

Multi-objective optimization (MO) addresses problems involving multiple, often competing, objec-
tives. This approach is used in scenarios where trade-offs between two or more conflicting objectives
must be navigated, such as, in the context of DSNNs, enhancing accuracy alongside reducing energy
consumption. MO aims to identify Pareto optimal solutions (Deb, 2014). New points are added
based on the current observation dataset Dobs = {(λ1,L(λ1)), . . . , (λn,L(λn))} at time n + 1.
These points augment the surface formed by the non-dominated solution set D⋆

n, which satisfies the
condition for d objective variables and a loss function L = (L1, . . . ,Ld), where Lk corresponds to
the loss regarding objective k (Wada & Hino, 2019):

∀λ, (λ,L(λ)) ∈ D⋆
n ⊂Dn, (λ

′,L(λ′)) ∈ Dn (3.5)

∃k ∈ {1, . . . , d} : Lk(λ) ≤ Lk(λ
′).

W.l.o.g. we assume the minimization of all objectives. The observation dataset Dobs is iteratively
updated to search for solutions that approximate the Pareto front.

4 APPROACH

Our goal is to provide insights into the structure of DSNNs. We want to optimize these for performance
and efficiency and show how their specific hyperparameters affect that optimization.

4.1 CONFIGURATION SPACE EXPLORATION

The foundation of our approach lies in defining and exploring a robust configuration space tailored
specifically for DSNNs. This space includes a range of hyperparameters that influence the network’s
performance and energy efficiency. Key hyperparameters under consideration include:

Shift Depth determines the number of network layers converted to employ shift operations, replacing
conventional floating point operations and thereby reducing computational overhead.

Shift Type selects the method of shift operation, either quantization (DeepShift-Q) or direct training
of shifts (DeepShift-PS), impacting the network’s training dynamics and inference efficiency.

Bit Precision for Weights and Activations influences the network’s accuracy and the granularity
of its computations, affecting both performance and power consumption.

Rounding Type affects how weight adjustments are handled during training, with options for deter-
ministic or stochastic rounding, each offering trade-offs in terms of computational stability
and performance.

Table 1 details the configuration space for a ResNet20 model adapted for DSNNs, outlining the range
and default values of each hyperparameter considered in our study.

4.2 MULTI-FIDELITY MULTI-OBJECTIVE OPTIMIZATION FRAMEWORK

To computationally enhance Deep Shift Neural Networks (DSNN) via AutoML, we employ
multi-fidelity optimization (MF), see Section 3. A well-known MF algorithm is successive halv-
ing (Jamieson & Talwalkar, 2016), where nc configurations are trained on an initial small budget
bI . It addresses the trade-off between bI and nc, or between approximation error and exploration
inherent in successive halving, using the HyperBand algorithm for MF. HyperBand (Li et al., 2017)
runs successive halving in multiple brackets, where each bracket provides a combination of nc and a
fraction of the total budget per configuration so that they sum up to the total budget.

We extend this to multi-fidelity multi-objective optimization (MFMO). We simultaneously address the
accuracy of the model as well as its energy consumption using a two-dimensional objective function:

LMO : Λ −→ R2, LMO(λ) =
(
Lloss(λ),Lemission(λ)

)
, (4.1)

where, given a configuration λ ∈ Λ, Lloss(λ) aims to minimize the loss, enhancing the model’s
accuracy, and Lemission(λ) seeks to minimize the energy consumption during training and inference,
promoting environmental sustainability. We aim to solve the following optimization problem:

argmin
λ∈Λ
LMO(λ) . (4.2)

5
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Our approach utilizes the MFMO framework to efficiently navigate the defined configuration space
with less computationally expensive proxies of the full training regimen—that enable a broader
exploration of the hyperparameter space within feasible computational limits.

4.3 ALGORITHMIC IMPLEMENTATION OF MFMO

Table 1: Configuration search space of ResNet20.
The first half includes commonly used training

hyperparameters for DL, whereas the second half
is specific to DSNNs.

Hyperparameter Search Space Default

Batch Size [32, 128] 128
Optimizer {SGD, Adam,

Adagrad,
Adadelta,
RMSProp,
RAdam,
Ranger}

SGD

Learning Rate [0.001, 0.1] 0.1
Momentum [0.0, 0.9] 0.9
Weight Decay [1e-6, 1e-2] 0.0001

Weight Bits [2, 8] 5
Activation Inte-
ger Bits

[2, 32] 16

Activation Frac-
tion Bits

[2, 32] 16

Shift Depth [0, 20] 20
Shift Type {Q, PS} PS
Rounding {deterministic,

stochastic}
deterministic

We use the ParEGO algorithm (Knowles, 2006)
to compute Pareto optimal configurations. It
transforms the multi-objective problem into a
series of single-objective problems by introduc-
ing varying weight hyperparameters for the ob-
jectives in each iteration of HyperBand. Thus
optimizing a different scalarization per evalua-
tion to approximate the Pareto front. The result-
ing single-objective optimization function can
then be evaluated in an MF setting. All config-
urations having survived a successive halving
bracket are checked against the current Pareto
front approximation and the Pareto set is up-
dated if necessary. The computational strat-
egy initially involves computing a broad array
of configurations and leveraging the successive
halving method to efficiently narrow down the
field to the most promising candidates. We
specifically target solutions that represent both
extremes of the Pareto front—those that excel
in one objective at the potential expense of the
other—and configurations that provide a bal-
anced compromise between the two objectives.
For easier understanding of our approach, we
included pseudocode of our algorithmic imple-
mentation in Algorithm 1 in the appendix.

5 EXPERIMENTS

In the following section, we detail the setup
and methodology used to evaluate our approach
discussed in Section 4, focusing on optimizing
Deep Shift Neural Networks (DSNNs) through multi-fidelity, multi-objective optimization (MFMO),
and extending the DSNN objective function to multi-objective to compute a Pareto front for optimality
regarding performance and efficiency. We discuss how our approach successfully navigates the model
performance and environmental impact trade-offs. From this, we gain insights into DSNNs and how
specific design choices might affect their performance. By identifying optimal configurations for
both or either objectives, we draw conclusions about how the DSNN specific hyperparameters in the
network architecture interact with each other.

5.1 EVALUATION SETUP

We train and evaluate our models on the CIFAR10 dataset (Krizhevsky et al., 2009) and the Cal-
tech101 dataset (Fei-Fei et al., 2004), using NVIDIA A100 GPUs. For hyperparameter optimization
(HPO), we extend SMAC3 (Hutter et al., 2011; Lindauer et al., 2022), as well-known state-of-the-art
HPO package (Eggensperger et al., 2021). For multi-objective optimization, we aim to compute
a Pareto front of optimal configurations for performance and energy consumption. To incorporate
the environmental impact into our HPO workflow, we use the CodeCarbon emissions tracker (La-
coste et al., 2019; Lottick et al., 2019) to track carbon emissions from computational processes
by monitoring energy use and regional energy mix in gCO2eq , grams of CO2 equivalents. These
emission values are incorporated into SMAC3 alongside DSNN’s performance metric, in this case
1− accuracy. As a starting point, we chose the well-known ResNet20 (He et al., 2016) architecture as

6
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used by Elhoushi et al. (2021). Overall, this architecture is well understood and allows us to study
DSNNs with few confounding factors. Additionally, we evaluate our approach using the well-known
GoogLeNet (Szegedy et al., 2015) and MobileNetV2 architectures (Sandler et al., 2018). We follow
the model implementation of Elhoushi et al. (2021) to ensure comparability. The configuration space
is given in Table 1, for which we focus on the DSNN-specific hyperparameters (lower part of the
table) and general training hyperparameters (upper part). The fidelities are the number of epochs.

5.2 RESULTS

5.2.1 QUANTITATIVE RESULTS

We first discuss the quantitive results, then the importance of the optimized hyperparameters, and
finally, the implications for the configuration space. Note that we focus on the insights gained
regarding DSNNs and not on how efficient our (or others’) HPO approach is. In Figure 16, we present
the computed Pareto fronts of a ResNet20, MobileNetVs and GoogLeNet architecture, optimized
with our multi-fidelity multi-objective (MFMO) framework, on the CIFAR10 and Caltech101 datasets.
Shown is a diverse set of optimal configurations that either minimize or balance the primary objectives
of model accuracy and energy consumption. These are aggregated results over three seeds. The Pareto
front shown results from aggregating the three individual Pareto fronts and extracting the Pareto
optimal points. The default value is the mean over the loss and emissions of the default configuration
on the three seeds. The Pareto fronts in Figure 16 depict how each configuration performs relative to
the others within the defined hyperparameter space. The configurations were evaluated regarding
classification loss and emissions emitted during inference of the model instantiated with the respective
configuration.

Although we expect that Elhoushi et al. (2021) optimized their hyperparameters at least manually,
we can show that our AutoML approach found even better trade-offs of the two objectives. The
default configuration for the DSNN, as designed by Elhoushi et al. (2021), is in fact not part of the
Pareto front in Figure 16. This holds for all architectures on both datasets. This means that there are
better configurations that dominate the default configuration regarding both loss and emissions on the
GoogLeNet (Figures 13 and 12), MobileNetV2 (Figures 11 and 10) and ResNet20 (Figures 15 and
14) architectures on Caltech101 and CIFAR10.

Having a closer look at Figure 15, the underlying goal of our MFMO optimization remains to balance
performance and efficiency. Hence, the configurations at the bottom left of the Pareto front are
especially relevant since they minimize both objectives simultaneously instead of heavily prioritizing
either. There is an absolute reduction in loss of approx. 13%-33% in these configurations compared to
the defaults. At the same time, relative emission reduction ranges from approx. 10%-12%. Similarly,
in Figure 11, the emission reduction between the default and the next Pareto optimal solution is about
20%. Emission reductions for the other architectures range from about 5-10%. Additionally, we
achieved a maximum loss reduction of about 20% for the ResNet20 on CIFAR10. This validates
the need for proper HPO tuning since we found better configurations that take the energy-efficient
DSNNs a significant step further by improving their accuracy and energy consumption.

5.2.2 HYPERPARAMETER IMPORTANCES

Another crucial aspect is the analysis of hyperparameter importance to learn their influence on
a model and lay the foundation of our DSNN design insights in the next subsection. We use
DeepCAVE (Sass et al., 2022) for analyzing the Pareto front of our MFMO analysis in Figure 15,
and computing the hyperparameter importance using fANOVA (Hutter et al., 2014). fANOVA fits
a random forest surrogate model to the hyperparameter optimization landscape and decomposes
the model’s variance into components corresponding to hyperparameters. This allows fANOVA to
estimate the marginal impact of individual hyperparameters or pairs of hyperparameters. For an
extension to MO optimization, fANOVA can be applied to each objective’s performance surface
separately. The hyperparameter importances are then computed for different weightings of the
objectives.

Figures 8 and 9 show the hyperparameter importances of a ResNet20 on Cifar10 w.r.t. loss and
emissions, respectively. The MO-fANOVA analysis for different weightings of the objectives loss
and emissions can be found in Figure 17 in the appendix. The most important DSNN-specific
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Figure 1: MobileNet on Caltech101
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Figure 2: MobileNet on CIFAR10
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Figure 3: GoogLeNet on Caltech101
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Figure 4: GoogLeNet on CIFAR10

0.5 0.6 0.7 0.8
Loss

0.0004

0.0006

0.0008

0.0010

0.0012

Em
iss

io
ns

Figure 5: ResNet20 on Caltech101
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Figure 6: ResNet20 on CIFAR10

Figure 7: Comparison of Pareto fronts for MobileNet, GoogLeNet, Resnet20 on Caltech101 and
CIFAR10 datasets on multiple seed. We show the loss in % and the emissions in gCO2eq . We

calculate the mean Pareto front w.r.t. loss, including error bars, as well as an aggregated Pareto front
of Pareto optimal solutions from all runs. The star denotes the averaged performance of the default

configuration of a DSNN.

hyperparameters for emissions in Figure 9 include activation integer and fraction bits. This hints at
the precision of the activation quantization being the most controlling factor for energy efficiency.
Naturally, precision is a key factor since it controls the amount of operations in the network. Regarding
loss in Figure 8, the shift depth is the most important hyperparameter. The proportion of the network
converted to perform shift operations naturally controls the amount of information retained in the
network. This is crucial for the overall performance of the network.

Notably, the shift type has a low importance value in Figures 8 and 9. This could indicate that the shift
type is marginally relevant for both objectives. In practice, this insight could aid in model training by
allocating fewer resources to tuning this hyperparameter, allocating resources tailored to the use case.

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Figure 8: Hyperparameter importance according
to fANOVA w.r.t. loss.

Figure 9: Hyperparameter importance according
to fANOVA w.r.t. emissions.

This is supported further by looking at Tables 2 to 7. About 50% of the Pareto optimal configurations
use either shift type, meaning they are not leaning toward either to maximize either objective.

With the analysis of hyperparameter importance in our study, we offer a baseline of which hyperpa-
rameters to include for future training and inference purposes. Including only the significant ones is a
promising way of further boosting the energy efficiency of the DSNNs and the optimization process
(Probst et al., 2019).

5.2.3 INSIGHTS INTO THE DESIGN OF DSNNS

Table 2 shows the specific configurations of the aggregated Pareto front of the ResNet20 architecture
on CIFAR10 dataset, see the appendix for similar tables for the other architectures and datasets.

When looking at the specific configurations in Table 2, most solutions have a surprisingly small shift
depth s ∈ {1, 3}, compared to 20 as the maximal value and the setting of the default. Hence, the
Pareto optimal solutions are consistent with a very low shift depth. At the same time, the number of
activation fraction bits is often rather high. This leads to the assumption that the bulk of information
to be retained is in the fraction part of the activation value. A valid expectation since we used batch
normalization in the ResNet20, same as Elhoushi et al. (2021). In batch normalization, the layer inputs
are re-scaled and re-centered using the mean and variance of the corresponding dimension (Ioffe
& Szegedy, 2015). This usually leads to small weights, highlighting the importance of activation
fraction precision, which is higher in Pareto optimal configurations ranging from 8 to 32. This is still
likely to be a contributing factor to the emission reduction.

Intuitively, we assumed that the shift depth is proportionate to the savings in emissions. The
interaction between shift layers and other hyperparameters, such as the bit precision in weights
and activations, adds another layer of complexity. However, these hyperparameters interact in a
non-linear manner, influencing the model’s overall energy consumption and performance in ways that
are not immediately apparent. These results of the Pareto front analysis suggest that the relationship
between the configuration of shift layers — a hyperparameter anticipated to be directly proportional
to performance improvements and inversely proportional to loss — is not as straightforward as we
initially hypothesized. We must recognize the intricate relationships among architectural decisions,
hyperparameter configurations, and their consequent effects on model emissions and energy efficiency.
Meaning, an increase in the number of shift layers does not uniformly lead to enhanced energy savings.

Another contributing factor to emission reduction is the precision of weight representation. Here,
however, there is no clear trend visible in the ResNet20 configurations examined before. This suggests
that this is a model-specific intricacy that needs to be tuned individually for each dataset.

These insights are corroborated when looking at the additional experiments in the appendix. Ad-
ditionally to the Resnet20 on CIFAR10, we computed the Pareto fronts of our MOMF analysis on
MobileNetV2 and GooGLeNet on CIFAR10. The corresponding results are shown in Figures 11 and
13. The overall Pareto optimal configurations from multiple seeds can be found in the appendix in
Tables 3 and 4. Again, the shift depths are generally very low, either one or three, with two exceptions
of seven and fourteen. The number of activation fraction bits is usually close to the upper bound of
32 bits.

We have also computed Pareto fronts of our MFMO approach on the Caltech101 dataset, using
three architectures: ResNet20, MobileNetV2 and GoogLeNet. The results can be seen in Figures
14, 10 and 12. The configurations on the Pareto fronts are detailed in Tables 5, 6 and 7. Again, the
large majority configurations have a low shift depth in the range of s ∈ {1, 2, 3, 4, 5, 6}. Only two
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GoogLeNet configurations have a shift depth of eight and 9. This is still relatively low, given that
GoogLeNet is a complex architecture with 22 layers in total.

The number of weight bits ranges from two to eight. As with the previously discussed results, this
contributes to the reduction of emissions while not impacting the performance. Generally, the number
of activation fraction and integer bits increases with lower shift depth and vice versa. This confirms
our previous findings from the thoroughly discussed Resnet20 on CIFAR10.

6 CONCLUSION

In this work, we presented our Green AutoML approach towards the sustainable optimization of
DSNNs through a multi-fidelity, multi-objective (MFMO) HPO framework. Our approach effectively
addressed the critical intersection between advancing the capabilities of Deep Learning and envi-
ronmental sustainability. By leveraging AutoML tools and integrating the environmental impact as
an objective, we adeptly navigated the trade-off between model performance and efficient resource
utilization.

Our experimental results focused on a better understanding of DSNNs. We successfully optimized
DSNNs to achieve higher accuracy while minimizing energy consumption, surpassing the default
configuration settings in both aspects. Through systematic experimentation, we identified key
hyperparameters that significantly influence performance and emissions, such as shift depth and
number of weight bits. By optimizing these hyperparameters, our MFMO approach did not just
improve one dimension of the problem – it concurrently enhanced both model loss and energy
efficiency, showcasing a balanced improvement across essential performance metrics. We have
thoroughly explored the configuration space for DSNNs, introduced a Green AutoML approach for
efficiency-driven model development (Tornede et al., 2023), and provided valuable insights into the
design decisions impacting DSNN performance.

In this work, we conducted our experiments on the NVIDIA A100, a widely-used, state-of-the-art
GPU standard in research and industry. Its computational capabilities and availability in many high-
performance clusters make it a popular choice in the machine learning and deep learning communities.
By using the A100, we ensure our findings are broadly applicable and relevant to real-world scenarios,
aligning with hardware commonly utilized for training and deploying advanced neural networks.
While testing on other hardware, such as low-power chips or alternative GPUs, could offer additional
insights into hardware-specific performance trade-offs, this choice maximizes the potential impact
and accessibility of our research.

While our use of CodeCarbon provides valuable insights into the emissions impact of training and
inference for DSNNs, it is important to acknowledge the limitations and assumptions inherent in
these measurements. CodeCarbon relies on real-time power draw metrics from tools like nvidia-smi
and estimates emissions based on the regional energy mix, which we manually specified for accuracy.
However, these estimates assume a steady power draw during computation and do not account for
fluctuations in hardware utilization or dynamic changes in the energy grid. Taking into account these
limitations, we consider CodeCarbon a reasonable approximation for measuring energy consumption.
This is also reflected in recent literature, where studies have been conducted comparing CodeCarbon
measurements to wattmeters that directly measure power consumption on machines (Bouza et al.,
2023).

Future work will focus on revisiting our MFMO implementation to find a more efficient way for
ParEGO and HyperBand to intertwine, such as by finding a more effective way to assign budgets and
weights of objectives. It is a part of our efforts to lighten the computational load when computing
the MFMO Pareto fronts. Further investigations will include exploring more DSNN-specific fidelity
types and multi-objective algorithms to achieve even greater reductions in model emissions. We
consider it especially interesting to use the number of weight bits as a fidelity type. By controlling
the precision of the weight quantization, training can be sped up in the earlier fidelity while regaining
as much information as possible, to use this for full training of the most promising configurations at
maximum precision.

Through these future initiatives, we aim to refine our methodology and extend the environmental
benefits of our optimized DSNNs, thereby contributing significantly to the sustainable advancement
of AI technologies.
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A APPENDIX

Table 2: Pareto optimal solutions on aggregated Pareto front of the ResNet20 architecture on
CIFAR10 on three seeds, including the mean aggregated loss and emissions of the default

configuration.

Hyperpar. Config 124 Config 116 Config 71 Config 38 Config 82 COnfig 28 Config 49 Default

Batch Size 127 127 127 128 127 128 128 128
Optimizer Ranger Ranger Ranger Ranger Ranger Adagrad Adagrad SGD
Learning
Rate

0.0130 0.0327 0.0150 0.0542 0.0129 0.0548 0.0929 0.1

Momentum 0.7489 0.7718 0.1529 0.4983 0.6838 0.6783 0.4825 0.9
Weight De-
cay

0.0001 0.00005 0.0038 0.0001 0.0001 0.0002 0.0003 0.0001

Weight
Bits

2 8 5 2 2 5 5 5

Act. Int.
Bits

11 13 2 9 11 22 24 16

Act. Frac.
Bits

32 30 32 11 27 11 8 16

Shift Depth 1 1 3 1 1 1 1 20
Shift Type PS PS Q PS PS PS PS PS
Rounding Det. Det. Det. Stochastic Det.c Stochastic Stochastic Det.

Loss 0.1127 0.1142 0.1161 0.1172 0.1176 0.1352 0.1443 0.3518
Emissions
(e-4)

7.9802 7.9214 7.5967 7.0880 6.9903 6.8248 6.7444 7.5162

Table 3: Pareto optimal configurations and default DSNN instantiation of MobileNetV2 on CIFAR10

Hyperparameter Config 15 Config 68 Config 66 Config 21 Default

Optimizer Adadelta Adadelta Adadelta SGD SGD
Learning Rate 0.182188 0.186665 0.197817 0.183219 0.1
Momentum 0.726835 0.689596 0.1837 0.76337 0.9
Weight Decay 0.002727 0.003048 0.00306 0.002277 0.0001

Weight Bits 5 5 5 4 5
Activation Inte-
ger Bits

21 19 21 23 16

Activation Frac-
tion Bits

31 31 32 16 16

Shift Depth 14 7 1 1 53
Shift Type PS PS PS PS PS
Rounding Deterministic Deterministic Deterministic Deterministic Deterministic

Loss 0.1683 0.1756 0.1797 0.9016 0.3017
Emissions 0.000755 0.000655 0.000552 0.000549 0.001656
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Table 4: Pareto optimal configurations and default DSNN instantiation of GoogLeNet on CIFAR10

Hyperpar. Config 65 Config 33 Config 28 Config 14 Config 32 Default

Optimizer Adadelta Adadelta Ranger Ranger Adadelta SGD
Learning Rate 0.028997 0.023838 0.020002 0.058610 0.115941 0.1
Momentum 0.209328 0.494258 0.250184 0.673880 0.372339 0.9
Weight Decay 0.008487 0.006737 0.006691 0.002313 0.009464 0.0001

Weight Bits 2 3 2 4 2 5
Activation In-
teger Bits

21 24 29 26 29 16

Activation
Fraction Bits

4 5 4 8 7 16

Shift Depth 1 1 1 1 1 22
Shift Type Q Q Q PS PS PS
Rounding Stochastic Deterministic Deterministic Deterministic Deterministic Deterministic

Loss 0.1347 0.1409 0.1636 0.1748 0.1850 0.1810
Emissions 0.000916 0.000912 0.000876 0.000840 0.000835 0.001388

Table 5: Pareto optimal configurations and default DSNN instantiation of ResNet20 on Caltech101

Hyperparameter Config 26 Config 66 Config 32 Config 76 Default

Activation Frac-
tion Bits

17 27 13 21 16

Activation Inte-
ger Bits

24 21 22 25 16

Learning Rate (lr) 0.023 0.039 0.076 0.015 0.1
Momentum 0.559 0.333 0.344 0.551 0.9
Optimizer Ranger Ranger Ranger RMSProp SGD
Rounding Deterministic Stochastic Stochastic Deterministic Deterministic
Shift Depth 2 2 1 1 20
Shift Type PS PS PS Q PS
Weight Bits 2 5 2 5 5
Weight Decay 0.0033 0.0027 0.0029 0.0069 0.0001

Loss 0.456 0.532 0.636 0.874 0.679
Emissions 0.00046 0.00044 0.00044 0.00044 0.00109
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Table 6: Pareto optimal configurations and default DSNN instantiation of MobileNetV2 on
Caltech101

Hyperparameter Config 9 Config 65 Config 33 Config 74 Default

Activation Frac-
tion Bits

26 30 7 6 16

Activation Inte-
ger Bits

8 12 11 32 16

Learning Rate (lr) 0.192 0.199 0.004 0.006 0.1
Momentum 0.510 0.545 0.016 0.012 0.9
Optimizer Adadelta Adadelta SGD Adam SGD
Rounding Deterministic Deterministic Deterministic Stochastic Deterministic
Shift Depth 6 3 1 1 53
Shift Type PS PS Q Q PS
Weight Bits 3 2 5 4 5
Weight Decay 0.009 0.004 0.004 0.004 0.0001

Loss 0.274 0.276 0.459 0.870 0.337
Emissions 0.00053 0.00049 0.00046 0.00046 0.00066

Table 7: Pareto optimal configurations and default DSNN instantiation of GoogLeNet on Caltech101

Hyperpar. Config 66 Config 25 Config 44 Config 63 Config 33 Config 21 Config 20 Default

Activation
Fraction
Bits

5 8 19 7 20 4 30 16

Activation
Integer
Bits

25 26 9 10 7 30 7 16

Learning
Rate (lr)

0.058 0.059 0.052 0.13 0.199 0.187 0.017 0.1

Momentum 0.185 0.642 0.194 0.889 0.647 0.367 0.248 0.9
Optimizer Adadelta Adadelta Adadelta Adagrad Radam Adagrad Adam SGD
Rounding Det. Det. Det. Det. Det. Stochastic Stochastic Det.
Shift Depth 8 1 9 1 2 2 2 22
Shift Type Q PS PS PS PS Q Q PS
Weight
Bits

3 4 3 2 4 3 2 5

Weight De-
cay

0.0004 0.0019 0.0029 0.0006 0.0027 0.0048 0.0059 0.0001

Loss 0.356 0.362 0.376 0.563 0.778 0.793 0.922 0.466
Emissions 0.0026 0.0026 0.0023 0.0022 0.0021 0.0021 0.0020 0.0027
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Figure 10: MobileNet on Caltech101
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Figure 11: MobileNet on CIFAR10
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Figure 12: GoogLeNet on Caltech101
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Figure 13: GoogLeNet on CIFAR10
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Figure 14: ResNet20 on Caltech101
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Figure 15: ResNet20 on CIFAR10

Figure 16: Comparison of Pareto fronts for MobileNet, GoogLeNet, Resnet20 on Caltech101 and
CIFAR10 datasets on multiple seed. We show the loss in % and the emissions in gCO2eq . We

calculate the mean Pareto front w.r.t. emissions, including error bars, as well as an aggregated Pareto
front of Pareto optimal solutions from all runs.
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Figure 17: MO analysis of hyperparameter importance of a ResNet20 on CIFAR10 w.r.t. loss and
emissions using the fANOVA method. The x-axis shows wl, the weight of the objective loss, ranging

from 0 to 1. The weight of the objective emissions is thus we = 1− wl. The y-axis shows the
importance of each hyperparameter in the legend.
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Algorithm 1 Multi-Fidelity Optimization with Parego for DSNNs

Require: Configuration space C, objectives L = [Lloss,Lemissions], budget range [Bmin, Bmax], num-
ber of trials N , DSNN architecture A.

Ensure: Pareto optimal configurations PN .
1: Initialize scenario S with C, L, (Bmin, Bmax), and N .
2: Generate initial observation dataset Dinit by sampling k random configurations {λi}ki=1 ⊂ C.
3: Define intensifierH as Hyperband for budget allocation.
4: Initialize optimizer O using Parego andH.
5: for each trial t ∈ {1, . . . , N} do
6: Select a configuration λt ∈ C using Parego.
7: Allocate budget bt ∈ (Bmin, Bmax) usingH.
8: Perform evaluation of λt with budget bt:

1. Convert DSNN A to a shift-based architecture A′:

A′ = convert to shift(A, λt[shift depth], λt[shift type])

w′ = round(w, λt[rounding]), ∀w ∈ A′,

where convert to shift replaces standard operations with shift operations, and round applies
deterministic or stochastic rounding.

2. Train A′ for bt epochs and compute the objective values:

Lloss(λt) =
1

|Dtest|
∑

(x,y)∈Dtest

ℓ(fA′(x), y),

Lemissions(λt) = measure emissions(A′, bt),

where Dtest is the test dataset, ℓ is the cross-entropy loss, and measure emissions computes
the energy consumption.

3. Update observation dataset:

Dt ← Dt−1 ∪ {(λt, [Lloss(λt),Lemissions(λt)])}.

9: Update the Pareto front:

Pt = {(λ,L(λ)) ∈ Dt | ∄λ′ ∈ Dt : L(λ′) ≻ L(λ)},

where L(λ′) ≻ L(λ) denotes that λ′ dominates λ.
10: end for
11: return PN

19


	Introduction
	Related Work
	Background
	Deep Shift Neural Networks
	Hyperparameter Optimization
	Bayesian Optimization
	Multi-Fidelity Optimization
	Multi-Objective Optimization

	Approach
	Configuration Space Exploration
	Multi-Fidelity Multi-Objective Optimization Framework
	Algorithmic Implementation of MFMO

	Experiments
	Evaluation Setup
	Results
	Quantitative Results
	Hyperparameter Importances
	Insights into the Design of DSNNs


	Conclusion
	Appendix

