
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

CLOUDNFMM: A HYBRID HIERARCHICAL AND LO-
CAL NEURAL OPERATOR INSPIRED BY THE FAST
MULTIPOLE METHOD

Anonymous authors
Paper under double-blind review

ABSTRACT

The Fast Multipole Method (FMM) is an efficient numerical algorithm used to
calculate long-range forces in many-body problems, leveraging hierarchical data
structures and series expansions. In this work, we present the Cloud Neural FMM
(CloudNFMM), a new neural operator architecture that integrates the hierarchical
structure of the FMM to learn the Green’s operator of elliptic PDEs on point cloud
data. The architecture efficiently learns representations for both local and far-field
interactions. The core innovation is the local attention, a specialised local attention
mechanism which models complex dependencies within a small neighbourhood of
points. We demonstrate the effectiveness of this approach, and discuss possible
extensions and modifications to the CloudNFMM architecture.

1 INTRODUCTION

Solving partial differential equations (PDEs) is fundamental to countless fields in science and engi-
neering. While traditional numerical solvers are highly refined, they can be either brittle – needing
to be tuned for each new problem – or computationally expensive for large computational domains.
This has spurred the development of deep learning-based methods, particularly neural operators,
which aim to learn the underlying solution operator mapping from input parameters to the solution
function. Among these, the Fourier Neural Operator (FNO) (Kovachki et al., 2021a) has emerged as
a state-of-the-art architecture, demonstrating remarkable success by performing convolutions in the
frequency domain. However, a significant limitation of the FNO is its reliance on the Fast Fourier
Transform (FFT), which constrains it to data structured on uniform, regular grids.

Many real-world problems are defined on irregular domains or are naturally represented by unstruc-
tured data, such as point clouds or meshes. To address this, architectures based on Graph Neural
Networks (GNNs) and Transformers (Vaswani et al., 2017) have been proposed. However, neural
operators based on these methods introduce significant bottlenecks for large-scale simulations; ei-
ther requiring many message-passing steps or by relying on global attention mechanisms, incurring
a O(N2) computational cost.

To overcome these challenges, we draw inspiration from a very successful class of direct solver
algorithms: FMM. The FMM is designed to compute long-range interactions in N -Body problems
with near-linear complexity, typically O(N) or O (N log (N)). This is achieved by hierarchically
decomposing the computational domain and using low-rank approximations of the interaction kernel
for far-field interactions. This principle of separating local and global computations provides a
blueprint for a more scalable and geometrically robust neural operator architecture.

Contribution We introduce the CloudNFMM, a neural operator which uses the hierarchical struc-
ture of the FMM for global interactions with a local attention mechanism for local interactions. The
proposed architecture operates directly on unstructured points (point clouds), making it resolution-
invariant and freeing it from the grid-based constraints of methods like the FNO. We demonstrate
the efficacy of the CloudNFMM on a variety of time-harmonic PDE problems, showing that our
model achieves performance that is superior to, or on par with, other established neural operator
architectures at a fraction of the parameter count.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

2 BACKGROUND

2.1 FAST MULTIPOLE METHOD

We will outline a high-level discussion of the FMM’s information flow. For a more detailed discus-
sion of the FMM, see Appendix A. The FMM (Rokhlin, 1985) designed to efficiently compute long-
range forces in N -Body problems utilising both a low-rank approximation of the kernel, G(x, y),
and a hierarchical decomposition of the domain D via a quad-tree in 2D (or an oct-tree in 3D).

The FMM decomposes the domain D into 4L disjoint boxes (in 2D, it is 8L in 3D), βi, where L is
the depth of the FMM’s quad-tree. For all βτ , we partition the domain into its far-field, Fτ , and near-
field, Nτ , neighbours. A source-box βσ belongs to the near-field Nτ of a target-box βτ if we define
the far-field, Fτ , and near-field, Nτ , of βτ respectively, furthermore, we denote the sub-scripts τ
and σ to indicate a given target box and source box respectively. Boxes belong to Fτ if βσ – with
cτ and cσ being the centre of each respective box – satisfies 2bl ≤ |cτ − cσ| with bl being the length
of a box at a given level l.

Upwards Pass: The upwards pass aggregates information from the source points up the tree using
the following operators:
Tofs

σ – this computes the compact representation vector qσ for each box on the leaf level.
Tofo

Σ,σ – shifts the qσ between the tree’s levels towards level 2 of the tree1, creating the outgoing
potential tensors2 for each level l; Ql. This is done to the parent box qΣ from the children boxes,
qσ ∈ CΣ. This operation is described mathematically in equation 9 and equation 10.

Downward Pass: The downward pass gathers the vectors outgoing potentials tensors qσ ∈ Ql

corresponding to boxes βσ ∈ Fτ for each τ ∈ Ql using the following operators:
Tifo

τ,σ – this computes the incoming vector hσ from the outgoing vector qσ .
Tifi

τ,T – shifts hτ between the tree’s levels from level 2 to the leaves, going from a parent box βT to
βτ ∈ CT . This operation is described mathematically in equation 11.

Leaf Pass: The leaf pass computes the potential at a point x from the contributions from both Nτ

and Fτ using the following operators:
Ttfi

τ – evaluates the potential hτ at all the points xi ∈ βτ , this is the contribution to the potential
from the points xj ∈ Fτ .
G(x, yj) – is the kernel, which directly evaluates the potential between x and all the points yj ∈ Nτ .
This operation is described mathematically in equation 1:

v(x) =

Near Field Contribution︷ ︸︸ ︷∑
yj∈Nτ\{x}

G(x, yj)f(yj)+

Far Field Contribution︷ ︸︸ ︷
Ttfi

τ (x;hτ) (1)

Collectively, the upward and downward passes constitute the tree-level operations – they are re-
sponsible for communicating information across the domain by aggregating sources into compact
representations (up the tree) and propagating their far-field influence back down (down the tree).
The leaf-level operations – described in the leaf pass – involve direct kernel evaluation in a local
neighbourhood. This separation of long-range (tree) and short-range (leaf) computations is the core
principle we adapt in our architecture.

Requirements: To achieve resolution independence for the NFMM, we need to:
Firstly remove the dependence of the NFMM on requiring that data is on a uniform grid3.
Secondly, reformulate the NFMM’s local interactions to learn a local interaction kernel4, and have
the information flow as the near-field contribution in equation 1.

1As the spatial resolution in the higher levels, levels 0 and 1, is too coarse to allow for separation of the
near-field and far-field.

2Note that each qσ ∈ Ql corresponds to a box βσ on level l of the quad-tree.
3This would require that the Tofs, Ttfi, and Gθ operators are can handle variable sized inputs.
4With the following requirements: One, no self interactions for sources/targets in βτ . Two, that we only

compute the contribution to the points in βτ , from the points in Nτ , not the other way around.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

2.2 NEURAL OPERATOR

Neural operators (Kovachki et al., 2021a; 2024), aim to learn operators between different function
spaces with some light conditions on their domains. Originally outlined by Kovachki et al. (2021a),
and further formalised by Berner et al. (2025), neural operators have two key properties. One, neural
operators should be discretisation-agnostic5. Two, they should have a fixed number of parameters
for every discretisation.

Neural operators were inspired by the DeepONet (Lu et al., 2021), neural operators are fashioned
after a traditional deep learning architecture, where for each layer t contains a linear operation with a
bias followed by a non-linearity. In the neural operators framework, there are 3 major components:
the lifting operator, P , the blocks, {Bt}Tt=1, and the projection operator Q. Note that P and Q
are channel wise and only Bt operate along the spatial domain. There are T blocks, with each
block containing: a channel-wise linear layer, Wt, and spatial kernel operator, Kt, followed by a
non-linearity, σt,

L̃θ = Q ◦ σT (WT +KT + bT)︸ ︷︷ ︸
Block T

◦ · · · ◦ σ1(W1 +K1 + b1)︸ ︷︷ ︸
Block 1

◦P. (2)

Let vt be our solution at our current step and κ(t) be our learnt integral kernel at a layer t, which
may depend on (x, y, a(x), a(y), vt(x), vt(y)). To mathematically define our spatial kernel operator
– dubbed the ‘non-local‘ operator – we represent Kt as an integral. For some measure, dνt(dy), on
the domain of integration D, we define Kt in terms of κ(t) as follows:

(Kt(vt))(x) =

∫
Dt

κ(t)(x, y, a, vt)vt(y) dνt(dy). (3)

Depending on the class of problems and type of kernel we aim to learn, the structure of the kernel,
κ(t), and the computation of the integral transform in equation 3 can be simplified, giving rise to
different architectures. Boullé & Townsend (2023), viewing operator learning through the lens of
linear algebra, outline four main approaches: these are the ‘Graph neural operator’ (GNO), ‘Low-
rank neural operator’, ‘Multipole Graph neural operator’, and the FNO.

2.3 RELATED WORK

Neural Fast Multipole Method We propose the Neural Fast Multipole Method (NFMM), a novel
architecture that integrates the hierarchical information flow of the classical FMM into a neural
operator framework for learning the Green’s operator of elliptic PDEs. The core idea is to replace
the FMM’s traditional, handcrafted translation operators, which depend on an analytically available
Green’s kernel, with MLPs. This approach preserves the FMM’s efficient partitioning of near and
far-field interactions, including its characteristic upward and downward passes through a hierarchical
tree structure, while circumventing the need for a-priori knowledge of the interaction kernel. For
a detailed breakdown of the NFMM architecture, we refer the reader to Appendix B. Our present
work is expanding the NFMM to be discretisation-agnostic – much like the original FMM.

Multipole Graph Neural Operator: The Multipole Graph Neural Operator (MgNO) (Li et al.,
2020) is a model that merges concepts from graph neural operators and low-rank neural operators to
efficiently learn PDE solution operators. Inspired by the FMM and H2-matrices, it uses a message-
passing algorithm called a V-Cycle on hierarchical graphs to enforce a low-rank structure on the
interaction kernel, particularly for long-range components. This architecture functions as an iter-
ative solver, with the final learned kernel resembling a hierarchical H-matrix (Martinsson, 2019).
The MgNO differs significantly from the NFMM; while both draw inspiration from the FMM, the
NFMM is a more direct adaptation that replaces the FMM’s handcrafted operators with learnable
MLPs, while explicitly preserving the upward and downward pass structure. In contrast, the MgNO
employs a more generalised graph-based V-Cycle for its message passing, focusing on kernel de-
composition rather than adapting the FMM’s information flow.

5This is typically loosened to being resolution-agnostic for architectures such as the FNO.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Graph Neural Operators: Work on learning physics simulations directly on meshes has been sig-
nificantly advanced by modern deep learning architectures. The MeshGraphNets (Pfaff et al., 2020)
architecture is a Graph Neural Network (GNN) using an Encode-Process-Decode structure. Its key
innovation is a dual message-passing scheme that operates in two distinct spaces: mesh-space, us-
ing the mesh’s connectivity to model internal dynamics like material properties, and world-space,
using proximity-based edges to capture external interactions such as collisions. Building on this,
EAGLE (Janny et al., 2023) addresses the challenge of modelling more complex, unsteady turbu-
lent flows and the inefficiency of iterative message passing for capturing long-range dependencies
using a novel mesh transformer architecture. To overcome the quadratic complexity of attention on
large meshes, the model first performs geometric clustering and learned graph pooling to create a
coarser representation of the mesh, then applies multi-head self-attention on the expressive cluster
embeddings. This allows the model to integrate global information and capture long-range interac-
tions, such as airflow patterns, in a single step, outperforming iterative GNNs like MeshGraphNet
on complex benchmarks. Similarly, the CloudNFMM also avoids the quadratic-complexity of trans-
formers by solving the global solve on a coarse-grid, however, EAGLE only uses attention on the
coarse graph and uses a decoder to update the fine global mesh.

Transformer Neural Operators: Recent advancements in neural operators have focused on over-
coming the geometric and discretisation limitations of earlier models for solving PDEs, leveraging
the improvements in transformer implementation and theory. The Geometry-aware Fourier Neural
Operator (Geo-FNO) (Li et al., 2022b) addresses a key constraint of the popular FNO, which is
its reliance on uniform rectangular grids due to its use of the Fast Fourier Transform (FFT). The
Geo-FNO introduces a framework that learns a diffeomorphic deformation to map from an irregular
domain into a regular domain where the FNO can be efficiently applied, before the result is mapped
back to the irregular domain. The Operator Transformer (OFormer) (Li et al., 2022a) proposes
an attention-based architecture that makes few assumptions about the input grid structure. It lever-
ages self and cross-attention to function as a learnable integral operator, with the cross-attention
mechanism decoupling the input and output domains to allow for queries at arbitrary locations.
For time-dependent problems, the OFormer employs a recurrent MLP to propagate the system’s
dynamics efficiently in the latent space. The grapH transforMer neurAl opEraTor (HAMLET)
(Bryutkin et al., 2024) is the first neural operator framework to employ a graph transformer for solv-
ing PDEs. HAMLET constructs a graph from the input data and uses graph transformer blocks for
encoding, a cross-attention operator for integrating query locations, and a similar recurrent MLP as
OFormer for time-dependent PDEs. These neural operators are similar to the CloudNFMM, using
a transformer-based architecture to learn an integral operator. However, the CloudNFMM differs
from these approaches by splitting the computational domain into long-range and local interactions,
as opposed to using an attention-mechanism between all points in the domain.

3 METHOD

3.1 CLOUD NFMM

In the CloudNFMM, we expand upon the original NFMM – outlined in Appendix B – by reworking
the Tofs,Ttfi, and A operators; although we will denote A as Gθ in this work. The driving mo-
tivation behind this work is to replace the Kt from equation 2 with an operator which models the
information flow of the FMM. As the FMM is a hierarchical algorithm, our FMM-inspired neural
operator is also a hierarchal algorithm; having both a tree pass and a leaf pass. The tree pass is
handled by the original version of the NFMM and was constructed by simply replacing each FMM
operator with either a linear layer, or a 2−layer MLP. The leaf pass is the focus of this work, and is
implemented via the use of a spatially local attention mechanism. In order to exchange information
between the leaf level and the tree level, we also need to rework the Tofs and Ttfi operators from the
original NFMM to meet the requirements outlined above.

Data Preprocessing To enable the hierarchical structure of the NFMM for point-based data, the
input domain is first partitioned into a uniform grid of square cells, referred to as boxes, similar
to the patches used by a Vision Transformer (Dosovitskiy et al., 2020). Our input data, consisting
of {xi}Ni=1 points represented as a tensor of feature vectors fi ∈ RdL , with the pre-processing
partitioning assigning each point xi to a specific patch. As this architecture should be resolution

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

invariant, in general there will not be a constant number of points within each patch. To create a
tensor with full dimensions, each patch’s point list is processed to have a fixed size, Nb, which is the
maximum number of points in a given patch6. The output of this preprocessing step is a structured
tensor of shape [B,M,Nb, dL], where B is the batch size, M is the number of boxes, Nb is the
(maximum) number of points in each box, and dL is the dimension of the leaf feature space. This
format is crucial for the hybrid local and hierarchical structure of the NFMM, as the hierarchical
FMM operator works on the box grid while the local operator works on the points in the spatial
boxes.

Figure 1: The architecture of the CloudNFMM neural operator.

3.2 CLOUD NFMM COMPONENTS

3.2.1 OFS OPERATOR

The Tofs operator is responsible for the crucial aggregation step in the upward pass of the NFMM.
Its primary purpose is to compress the rich information contained within a set of points in a single
box into a compact, representative feature vector for the box. This is achieved by first lifting the
leaf-level features – xi ∈ RdL – into a higher-dimensional – qi ∈ RdT – space using a MLP. The
representative vector – qσ – for each box is then computed as a magnitude-weighted centre of mass
of these lifted features. The magnitude of each lifted feature vector is used to determine the relative
contribution of each point to the final aggregated vector. This approach – outlined in equation 4 –
is similar to a soft aggregation, allows points with more significant or prominent features to have a
greater influence on the final aggregated vector.

3.2.2 TFI OPERATOR

The Ttfi operator is the final stage of the downward pass, translating the coarse-level FMM approxi-
mations into point-level updates. It takes the aggregated feature vector from a parent box and uses it

6The value of Nb only needs to be done per example or batch, however to speed up training we process all
examples in a dataset to have nb points.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

to update the individual point representations within each of its child boxes. This is achieved by an
inverse-weighted update mechanism, which is outlined in equation 5. First, the operator calculates
the distance between each individual point’s feature vector and the incoming representative vector in
the high-dimensional space – di = ∥qi−hτ∥2. This distance is then used to compute an interaction
weight, using an inverse weighting scheme, which is then normalised. The point’s features are then
updated by ’pulling’ them toward the incoming vector, with the strength of this pull determined by
the calculated weight. The updated features, q̃i, now incorporating information from the parent box,
are projected back to the original dimension using a MLP,

qσ =
∑
i∈βσ

∥qi∥2 · qi∑
i∈βσ

∥qi∥2
, (4) q̃i = qi +

∥qi − hτ∥−1
2 · (hτ − qi)∑

i∈βτ
∥qi − hτ∥−1

2

. (5)

3.2.3 LOCAL ATTENTION OPERATOR

In order to satisfy the requirements outlined above, the only architectures available were either
GNNs, transformer-based architectures, and state-space architectures. Latent-space models were
not considered for A due to the fixed state dimension found within these models7, leaving GNNs
and transformers as possible architectures to build the Gθ operator. We note that transformers are
a special class of message passing neural networks – this is outlined in Appendix C, with a similar
discussion seen within (Bryutkin et al., 2024) – thus, we have focused on transformers due to existing
efficient implementations and as we do not need to construct graphs due to the patched nature of the
data.

Figure 2: The architecture of the Local Attention Operator, where G is a gathering operation for the
local boxes.

The algorithm represented in Figure 2 is a shared attention mechanism, using the same learnable
parameters for both cross and self-attention but constructing the sequences from both the near field
– Nτ – and the points in βτ respectively8. The new near-field operator, Gθ(xi, xj) – represented
in Figure 2 – is a local attention-based operator modelling the local contribution from equation 1.
This is achieved by implementing a shared multi-head attention mechanism to compute interactions
within the spatially local 3 × 3 neighbourhood. For each box, it gathers the features of the central
box and their eight neighbours, performing two parallel attention passes: self-attention for within
each box, and a cross-attention pass that incorporates the influence from neighbouring boxes. These
outputs are added, and passed through an MLP and residual connections are applied – approximat-
ing the direct pairwise interaction kernel. We satisfy most of the requirements, as we mask-out
self-interactions via a masked self-attention mechanism and cross-attention only computes the con-
tribution from Nσ to βτ . However – as we do not currently use a relative position encoding scheme
– we currently use RoPE (Su et al., 2021) in the local attention operator, however, using a relative
position encoding scheme is a current focus of future work.

7As learning a fixed rank approximation to the Greens function – G(x, y) – may cause an issue for oscilla-
tory PDE problems.

8We split up the attention between the self and local contribution, this is done to prevent saturation of the
Softmax within the attention scores.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

4 NUMERICAL EXPERIMENTS

To evaluate the CloudNFMM against other neural operators, we utilised two time-harmonic datasets;
PDEBench (KHOO et al., 2020), and WaveBench (Liu et al., 2024a). These datasets are both for
time-harmonic PDE problems, these were used as the CloudNFMM is a direct solver and is in its
present form not designed to solve time-dependent PDE problems.

The same hyperparameters were used for all the following numerical experiments on the Cloud-
NFMM architecture. All scores in the tables below are the average relative L2 error9, E rel

2 , values
over the validation set. We trained the CloudNFMM using the average relative L2 loss, Lrel

2 , for
more information on training and implementation details see Appendix D.

4.1 RESULTS

4.1.1 WAVEBENCH

Table 1 shows the results of the CloudNFMM against the WaveBench benchmarks, which contain
different Helmholtz problems. These results for the baseline architectures are referenced from the
WaveBench paper, they have all been trained with the protocol outlined in Appendix D.

Table 1: Results of neural operators on the 2D acoustic Helmholtz datasets
GRF Type Freq. CloudNFMM FNO-depth-4 FNO-depth-8 U-Net-ch-64 UNO-modes-16

Isotropic

10 Hz 0.037 0.063 0.040 0.063 0.054
15 Hz 0.059 0.093 0.057 0.087 0.081
20 Hz 0.064 0.122 0.070 0.106 0.114
40 Hz 0.111 0.283 0.165 0.191 0.301

Anisotropic

10 Hz 0.034 0.059 0.025 0.119 0.051
15 Hz 0.050 0.098 0.039 0.165 0.093
20 Hz 0.064 0.135 0.060 0.176 0.129
40 Hz 0.160 0.315 0.172 0.231 0.343

Total Parameters 1.8M 4.2M 8.4M 31.0M 17.9M

Figure 3: The first 6 epochs of the CloudNFMM model training on the ‘Anisotropic 40Hz‘ dataset.

We present Figure 3, where we have visualised the first 6 epochs of the CloudNFMM model be-
ing trained on the ‘Anisotropic 40Hz‘ dataset. We also conduct an experiment comparing training
protocols and dataset sizes on the CloudNFMM, this is outlined in Appendix E.

9This is also occasionally called the normalised root mean squared error (nRMSE).

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

4.1.2 PDEBENCH

Table 2 shows the results of the CloudNFMM against the Darcy Flow benchmarks. These results for
the baseline architectures are referenced from the HAMLET paper (Bryutkin et al., 2024), this was
done so that we could best compare the CloudNFMM against other graph and transformer-based
neural operators. They were all trained with the hyperparameters from the default implementation
of baseline methods found within their respective papers10, and trained and evaluated on 64 × 64
grids.

Table 2: Results of Neural Operators on the 2D Darcy Flow datasets.
Darcy Flow β U-Net FNO DeepONet OFormer GeoFNO HAMLET CloudNFMM

β = 0.01 4.00e-03 8.00e-03 3.31e-03 2.21e-03 2.70e-03 2.45e-03 2.53e-01
β = 0.1 4.80e-03 6.20e-03 4.88e-03 2.55e-03 4.15e-03 2.60e-03 1.06e-01
β = 1.0 6.40e-03 1.20e-02 9.65e-03 3.00e-03 6.20e-03 2.74e-03 4.50e-02
β = 10.0 1.40e-02 2.10e-02 6.79e-02 7.32e-03 2.08e-02 5.51e-03 1.39e-02
β = 100.0 7.30e-02 1.10e-01 6.21e-01 4.91e-02 1.65e-01 3.37e-02 1.18e-02

We also conduct further experiments with the CloudNFMM, training the model on the 128 × 128
version of the Darcy flow dataset; these results are found in Table 7 in Appendix E.

Figure 4: Examples from the validation set of: (Top) Darcy Flow β = 100, (Middle) Helmholtz
Anisotropic 20Hz, and (Bottom) Helmholtz Anisotropic 40Hz

4.2 ANALYSIS

The results indicate that the CloudNFMM approach, outlined in this paper, is a potentially power-
ful performance-to-parameter efficiency class of neural operators. This is most apparent from the
WaveBench dataset results – see Table 1, Figure 4, and Figure 3. Here, the model demonstrates
exceptional performance, consistently outperforming most baseline models – particularly at higher

10The authors note that the, ”...dataset-specific hyperparameters follow the PDEBench setting, while model-
specific hyperparameters follow the default setting of baseline methods suggested by the code repositories or
their papers.”.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

frequencies – while having the lowest parameter count (1.8M) by a significant margin. This sug-
gests that the FMM-inspired hierarchical structure is highly effective at capturing the complex, this
is supported by the first few epochs within training – as seen in Figure 3. Here the model quickly
builds robust representations for far-field interactions using the hierarchical component, while the
local transformer layer uses these to produce a smooth field. Conversely, the model’s performance
on the PDEBench Darcy Flow dataset – see Table 2 – is less competitive, especially for low to mod-
erate values of the permeability coefficient β. Here the current CloudNFMM approach struggles
compared to fully transformer-based operators – like OFormer and HAMLET.

4.3 LIMITATIONS AND NEXT STEPS

However, it is noteworthy that as β increases to 100.0 – representing a very high-contrast problem
– the CloudNFMM’s performance improves to best-in-class. This result suggests that the current
mechanism for exchanging information between the hierarchical FMM tree and the local attention
operator may be a cause of the performance bottleneck. This suggests that the mechanism linking
the coarse FMM tree and the fine-grained leaf interactions needs refinement. The current Tofs and
Ttfi operators might prevent local operator from building good representations for classes of PDEs
with very smooth solutions.

Secondly, the current architecture is only formulated as a direct solver for time-harmonic prob-
lems11. We suggest addressing this using the same mechanism used by Bryutkin et al. (2024) in
HAMLET, and originally outlined by Li et al. (2022a) for the OFormer – incorporating a recurrent
structure in the latent space after the final layer of the model (before we apply Q in equation 2),
which would propagate solutions through time.

Finally, while we deploy RoPE within the local attention layer, we aim to build representations
which are informed by a learnt relative positional encoding. The absence of this information12

may be preventing the CloudNFMM from learning fine-grained, geometry-dependent physical laws
within the local neighbourhood.

Additional directions we aim to address in future work are: experimenting with replacing the MLPs
in the CloudNFMM with SIREN (Sitzmann et al., 2020) – and KAN (Liu et al., 2024b) – models, and
more comprehensive testing of the CloudNFMM on variable point densities and irregular samplings.

5 CONCLUSION

In this work, we introduced the Cloud Neural Fast Multipole Method (CloudNFMM), a
discretisation-agnostic neural operator designed to solve time-harmonic PDEs on variable point den-
sities (point cloud) data. We achieve this by adapting the information flow of the FMM, creating a
hybrid method containing a hierarchical and local component. This allows our model to efficiently
capture both long-range and short-range physical interactions without being constrained to a regu-
lar grid. Our experiments demonstrate that the CloudNFMM achieves state-of-the-art performance
and remarkable parameter efficiency on challenging, highly oscillatory wave propagation problems.
While its performance on smooth problems is an area of improvement in the coupling of local and
global information flow, the results underscore the significant potential of this simple approach. The
CloudNFMM represents a promising step towards creating scalable, discretisation-agnostic neural
operators, indicating that fusion of principled numerical algorithms and deep learning architectures
is a fruitful path for the future of scientific machine learning.

11This could be formulated as a fixed time horizon solver as well.
12This already included as an input to P in equation 2, but this indicates that this is a weak signal to the local

attention operator.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

ACKNOWLEDGMENTS

We acknowledge the use of Google’s LLM, Gemini, as a writing assistant. The model was used
to enhance grammar, improve phrasing, and improve the overall clarity of the text – but was not
used for retrieval, discovery, or ideation. The authors carefully reviewed, revised, and take full
responsibility for the scientific integrity and final content of this paper.

REFERENCES

Julius Berner, Miguel Liu-Schiaffini, Jean Kossaifi, Valentin Duruisseaux, Boris Bonev, Kamyar Az-
izzadenesheli, and Anima Anandkumar. Principled approaches for extending neural architectures
to function spaces for operator learning. 2025.

Nicolas Boullé and Alex Townsend. A Mathematical Guide to Operator Learning, December 2023.
URL http://arxiv.org/abs/2312.14688. arXiv:2312.14688 [cs, math].

Andrey Bryutkin, Jiahao Huang, Zhongying Deng, Guang Yang, Carola-Bibiane Schönlieb, and
Angelica Aviles-Rivero. HAMLET: Graph transformer neural operator for partial differential
equations. 2024.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszko-
reit, and Neil Houlsby. An image is worth 16x16 words: Transformers for image recognition at
scale. 2020.

Steeven Janny, Aurélien Béneteau, Madiha Nadri, Julie Digne, Nicolas Thome, and Christian Wolf.
Eagle: Large-scale learning of turbulent fluid dynamics with mesh transformers. 2023.

YUEHAW KHOO, JIANFENG LU, and LEXING YING. Solving parametric pde problems with
artificial neural networks. European Journal of Applied Mathematics, pp. 1–15, Jul 2020. ISSN
1469-4425. doi: 10.1017/s0956792520000182. URL http://dx.doi.org/10.1017/
S0956792520000182.

Nikola Kovachki, Zongyi Li, Burigede Liu, Kamyar Azizzadenesheli, Kaushik Bhattacharya, An-
drew Stuart, and Anima Anandkumar. Neural Operator: Learning Maps Between Function
Spaces. arXiv:2108.08481 [cs, math], September 2021a. URL http://arxiv.org/abs/
2108.08481. arXiv: 2108.08481.

Nikola B. Kovachki, Zongyi Li, Burigede Liu, Kamyar Azizzadenesheli, Kaushik Bhattacharya,
Andrew M. Stuart, and Anima Anandkumar. Neural operator: Learning maps between function
spaces. CoRR, abs/2108.08481, 2021b.

Nikola B Kovachki, Samuel Lanthaler, and Andrew M Stuart. Operator learning: Algorithms and
analysis. 2024.

Zijie Li, Kazem Meidani, and Amir Barati Farimani. Transformer for partial differential equations’
operator learning. 2022a.

Zongyi Li, Nikola Kovachki, Kamyar Azizzadenesheli, Burigede Liu, Kaushik Bhattacharya, An-
drew Stuart, and Anima Anandkumar. Multipole graph neural operator for parametric partial
differential equations. June 2020.

Zongyi Li, Daniel Zhengyu Huang, Burigede Liu, and Anima Anandkumar. Fourier neural operator
with learned deformations for PDEs on general geometries. 2022b.

Tianlin Liu, Jose Antonio Lara Benitez, Florian Faucher, AmirEhsan Khorashadizadeh, Maarten V.
de Hoop, and Ivan Dokmanić. Wavebench: Benchmarking data-driven solvers for linear wave
propagation PDEs. Transactions on Machine Learning Research, 2024a. ISSN 2835-8856. URL
https://openreview.net/forum?id=6wpInwnzs8.

Ziming Liu, Yixuan Wang, Sachin Vaidya, Fabian Ruehle, James Halverson, Marin Soljačić,
Thomas Y Hou, and Max Tegmark. KAN: Kolmogorov-Arnold networks. 2024b.

10

http://arxiv.org/abs/2312.14688
http://dx.doi.org/10.1017/S0956792520000182
http://dx.doi.org/10.1017/S0956792520000182
http://arxiv.org/abs/2108.08481
http://arxiv.org/abs/2108.08481
https://openreview.net/forum?id=6wpInwnzs8

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Lu Lu, Pengzhan Jin, Guofei Pang, Zhongqiang Zhang, and George Em Karniadakis. Learn-
ing nonlinear operators via DeepONet based on the universal approximation theorem of
operators. Nature Machine Intelligence, 3(3):218–229, March 2021. ISSN 2522-5839.
doi: 10.1038/s42256-021-00302-5. URL https://www.nature.com/articles/
s42256-021-00302-5. Number: 3 Publisher: Nature Publishing Group.

Per-Gunnar Martinsson. Fast Direct Solvers for Elliptic PDEs. Society for Industrial and Applied
Mathematics, January 2019. ISBN 9781611976045. doi: 10.1137/1.9781611976045. URL
http://dx.doi.org/10.1137/1.9781611976045.

Tobias Pfaff, Meire Fortunato, Alvaro Sanchez-Gonzalez, and Peter W Battaglia. Learning mesh-
based simulation with graph networks. 2020.

V Rokhlin. Rapid solution of integral equations of classical potential theory. Journal of Computa-
tional Physics, 60(2):187–207, September 1985. ISSN 0021-9991. doi: 10.1016/0021-9991(85)
90002-6. URL http://dx.doi.org/10.1016/0021-9991(85)90002-6.

Vincent Sitzmann, Julien N P Martel, Alexander W Bergman, David B Lindell, and Gordon Wet-
zstein. Implicit neural representations with periodic activation functions. 2020.

Jianlin Su, Yuxin Lu, Shengding Pan, Ahmed Murtadha, Bo Wen, and Yunfeng Liu. Roformer: En-
hanced transformer with rotary position embedding, 2021. URL https://blog.eleuther.
ai/rotary-embeddings/.

Jianlin Su, Yuxin Lu, Shengding Pan, Bo Wen, and Yunfeng Liu. Roformer: Enhanced transformer
with rotary position embedding. arXiv preprint arXiv:2104.09864, 2022.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,
Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. 2017. doi: 10.48550/ARXIV.
1706.03762. URL https://arxiv.org/abs/1706.03762.

Lexing Ying, George Biros, and Denis Zorin. A kernel-independent adaptive fast multipole algo-
rithm in two and three dimensions. Journal of Computational Physics, 196(2):591–626, May
2004. ISSN 00219991. doi: 10.1016/j.jcp.2003.11.021. URL https://linkinghub.
elsevier.com/retrieve/pii/S0021999103006090.

11

https://www.nature.com/articles/s42256-021-00302-5
https://www.nature.com/articles/s42256-021-00302-5
http://dx.doi.org/10.1137/1.9781611976045
http://dx.doi.org/10.1016/0021-9991(85)90002-6
https://blog.eleuther.ai/rotary-embeddings/
https://blog.eleuther.ai/rotary-embeddings/
https://arxiv.org/abs/1706.03762
https://linkinghub.elsevier.com/retrieve/pii/S0021999103006090
https://linkinghub.elsevier.com/retrieve/pii/S0021999103006090

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

A THE FMM

The FMM is originally an efficient, hierarchical, numerical algorithm for computation of long-range
forces in N -Body problems within gravitational and electrostatic fields developed by Rokhlin (1985)
and has been extended by Ying et al. (2004) to apply the FMM to any Elliptic PDE with a Green’s
kernel. We will outline a high-level discussion of the FMM’s information flow, for a deeper handling
and derivation of the FMM we refer you to Martinsson (2019) for reference material. The FMM
belongs to a family with linear or close to linear complexity for evaluating all pairwise interactions
between n-particles, which is achieved by using two key ideas: a low-rank decomposition of the
kernel, as seen in Figure 6, and hierarchically partitioning the spatial domain.13 The FMM was
originally designed to solve a N -Body interaction problems of the form equation 6, with G(x, y)
being the Green’s kernel of the underlying physical problem, xi the set of point locations, ϕi the
set of corresponding sources, and u(xi) being the set of potentials we wish to compute for all
1 ≤ i ≤ N .

The functionality of the FMM stems from approximating far-field interactions using translation
operators while directly computing only near-field interactions. We can best describe how these
translation operators work together to compute a full level of the FMM by inspecting the operators
needed to compute the interaction between two sufficiently separated boxes βσ and βτ . Here the
τ and σ subscripts indicate the target box and source box respectively, and ‘sufficiently separated’
means that 2b ≤ ∥cτ − cσ∥ with cτ and cσ being the centre of βτ and βσ respectively and b being
the length of a box at a given coarseness.

We denote Fτ = {βσ|2b ≤ ∥cτ − cσ∥1} and Nτ = {βσ|2b > ∥cτ − cσ∥1} to be the far-field and
near-field of βτ respectively. We can compute vτ from ϕσ by either a direct evaluation of G(x, y)
or compute it approximately by using the operators defined in equations equation 9 and equation 12.

u(xi) =

N∑
j=1

G(xi, xj)ϕj , i = 1, 2, 3, ..., N (6)

During the upwards pass, the sources ϕσ within a region βσ are translated into a single, compact
outgoing vector, qσ ∈ Rm. Next, the downward pass maps this outgoing vector to a compact
incoming vector, hτ ∈ Rm, which is then propagated from the root down to the leaf level. Finally,
the leaf level pass expands the far-field vector hτ into approximate potentials vτ and combines them
with the direct evaluation of G(x, y) for near-field particles.

A.1 INTUITION FOR THE FMM ALGORITHM

We express the method by which the FMM separates computation between the local and far-field
interactions via an analogy in terms of disjoint sets of our spatial domain, D. Consider a point x ∈
D, and the ball around x of radius r0 – B(x, r0) – we can partition our domain in the following way;
D = B(x, r0)⊔Bc(x, r0). Hierarchically decomposing Bc(x, r0) further, we can express Bc(x, r)
as a union of disjoint annuli: Bc(x, r) = ∪∞

i=1A(x; ri−1, ri), where ri+1 = 2 · ri. Expressing this
in terms of integrals with respect to our kernel, G(x, y):

∫
D

G(x, y)f(y)dy =

∫
B(x,r0)

G(x, y)f(y)dy +

∞∑
i=1

∫
A(x;ri−1,ri)

G(x, y)f(y)dy (7)

=
∑

yj∈Nτ

G(x, yj)f(yj)dy +

∞∑
i=1

∑
yj∈Fi

τ

G(x, yj)f(yj)dy (8)

We arrive at equation 8 by describing equation 7 in-terms of sets of βi. To achieve this, we identify
B(x, r0) with Nτ , bl with ri − ri−1, and A(x; ri−1, ri) with F i

τ = {βσ|2bl ≤ |cτ − cσ|}. As this
paper is focused on modifying the computation of the near-field contribution, we will only outline
the leaf pass.

13This is done via a Quadtree in 2D and an OctTree in 3D.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

A.2 HOW TO CONSTRUCT A QUAD-TREE

The FMM uses a quad-tree to hierarchically decompose a 2D domain, it is constructed in the fol-
lowing way:

• Let the total domain be represented by a unit square [0, 1]× [0, 1].
• This domain is recursively and uniformly subdivided down to a fixed depth, d.
• The number of patches, M , at this finest level, is given by M = 4d.
• Each patch m ∈ {1, . . . ,M} is a square region of side length l = 1/2d.

Figure 5: The Subdivision of the domain D into a QuadTree.

A.3 UPWARDS PASS

We begin with equation 9, which embeds the source terms into an outward potential in Rm. To
avoid repeated computation, this potential, qτ ;l,14 is translated from level l in the tree, to level l− 1.
This is done by another operator,15 Tofo, which combines the four child outward potentials into one
outward potential for the parent box, βΣ, with the potential centred at the centre of the parent box.
This is mathematically represented in equation 10, letting CΣ denote the children boxes of βΣ.

qσ = Tofs (ϕσ) (9)

qΣ =
∑
τ∈CΣ

Tofo
l (qτ) (10)

A.4 DOWNWARD PASS

Starting at level 2 and propagating down to the leaf level16, denoted as level l, we combine potentials
from the far-field. As moving down the quad-tree allows for finer spatial refinement, we can split
up the incoming potential for a box, hτ,k = hP

τ,k + hN
τ,k, into two distinct components to reuse

computation from the previous level. These two distinct components correspond to potential from
the previous level of refinement, hP

τ,k, and a component corresponding to the increased refinement
from descending the tree, hN

τ,k. To compute hN
τ,k we apply Tifo

k to every sufficiently separated box
not within the previous level of refinement, denoted Uτ . The incoming potential from the parent
box corresponds to hP

τ,k, this is shifted from the parent box, βT , to the children boxes, βτ , by Tifi.
We define Dk to be the downward pass for level k, which is mathematically represented for a single
target box, βτ , in equation 11.

14The number corresponds to which level of the tree that the operator or vector corresponds to. For example
Tifo

2 correspond to Tifo on level 2 of the Tree.
15We simplify this process by only having one operator for Tofo and Tifi.
16As the spatial resolution in the higher levels, levels 0 and 1, is too coarse to allow for separationn of the

near-field and far-field.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

hτ = Tifi
k hT +

∑
σ∈Uτ

Tifo
k qσ (11)

A.5 LEAF LEVEL PASS

At the finest level of refinement, the leaf level, we are left to calculate the contribution from both hτ

and from the points in the near-field, Nτ . We apply Ttfi to expand hτ into the far-field contribution
of vτ . Those sources which lie within Nτ we may compute by directly evaluating G(x, y) between
the sources in the near-field. This process is mathematically represented in equation 12.

vτ (xi) = Ttfi (hτ) +
∑
j∈Iτ
i̸=j

G(xi, xj) +
∑
σ∈Nτ
j∈Iσ

G(xi, xj) (12)

Figure 6: A visualisation of the decomposition of D about βτ , the blue square. Here we can see
the different interaction sets of βτ , with the dashed blue and yellow boxes being the parent of βτ ,
βT . The yellow boxes being Nτ , the green boxes being the far field of βT , FT . The red and green
(technically the children of the green boxes, but they define the same region) boxes being the far
field of βτ , Fτ and the red boxes being its unique far field, Uτ .

B THE NEURAL FMM

The efficiency of the FMM stems from approximating far-field interactions using translation op-
erators while computing near-field interactions directly. However, a fundamental limitation of the
traditional FMM is the requirement for an explicit, analytically available Green’s kernel to derive
these operators, which is difficult for problems in heterogeneous domains or where the kernel is un-
known. Building upon the discussion of neural operators, our contribution is the Neural Fast Mul-
tipole Method, which integrates the information flow of the FMM while replacing the handcrafted,
kernel-dependent translation operators with learnt operators parameterised by a learnable operators.
We leverage the FMM’s hierarchical partitioning and computation flow, outlined in equation 9 and
equation 12, to split up and learn representations of local and far-field interactions. These passes are
integrated into a single computational unit, the Neural FMM Block, with multiple of these blocks
stacked together to form a deeper model, the Deep Neural FMM, enhancing expressivity of the
model and mirroring equation 2.

B.1 NEURAL FMM IMPLEMENTATION

The Neural FMM deviates from this by replacing each translation operator with an MLP while still
following the non-local information flow for computing the far-field contribution, namely summing
contributions from sufficiently separated boxes, rather than using a local operation at each level. The
largest deviation from the FMM has been using one operator per level, Tifo

θ;k, to represent the family

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Figure 7: The Deep Neural FMM Architecture – We follow the neural operator framework from
equation 2, with a lifting function Q and a projection function P , while replacing each Kt(vt)) with
a Neural FMM Block (outlined within the red box). Within the Neural FMM Block, vt−1 passes up
the Tree via the Upward Pass equation 9 and equation 10. This we then apply Tifo

l to convert the
outgoing potentials to their incoming potentials followed by propagating the information down the
Tree via the Downward pass equation 11. The Leaf Pass then computes the contribution from the
near-field, Nτ , using a MLP.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

of linear maps which are derived from the translation function formula17 from level k, represented
by Tifo

τ,σ; with a different matrix operator for each τ, σ pair.

B.1.1 POSITION ENCODING

As the operators are applied channel-wise to every element in out domain at once, the network does
not inherently know the spatial position of each element, which is core to how the Multipole-to-
Local translation formula in the FMM performs the translation from outgoing potentials to incom-
ing potentials. This required the inclusion of a spatial encoding scheme to reintroduce this spatial
dependence for our MLP’s. This was handled by the use of Rotary Position Embeddings (RoPE) (Su
et al., 2021; 2022) applied to the vectors corresponding to each box, using the position of each box
in the 1D Morton ordering as the position for RoPE. This approach was chosen as it was found to
encode position information more directly, leading to better preservation of the spatial relationships
between boxes when compared to additive sinusoidal encodings, and simpler to implement than a
custom position encoding scheme.

B.1.2 DOWNWARD PASS IMPLEMENTATION

The summations over interaction sets, particularly in the Downward Pass for the unique far-field Uτ

equation 11 is computationally intensive due to the non-local/non-contigous locations of the boxes
within Uτ with respect to the location of βτ . In order to increase the efficiency of the aggregation
within the downward pass, we pre-compute masks corresponding to these interaction sets at the
initialisation of the architecture.

C ATTENTION AS MESSAGE PASSING

Now that we have outlined that self-attention and cross-attention can be thought of as working on
KN (a directed complete graph) or KN,M (a complete undirected bipartite graph) respectively, we
will now outline the corresponding form of:

• The Message Function: Kθ(•, •)
• The Aggregation Function: □(•, · · · , •)
• The Update Function: U(•, •)

Without loss of generality, we will only consider the self-attention mechanism applied to a sequence
of tokens {t1, . . . , tN} with input embeddings {x1, . . . , xN}, as the only difference between cross
and self attention is the topology of the underlying graph18 while the mechanism itself is the same.

C.1 MESSAGE FUNCTION

In a general MPNN, the message function M
(t+1)
vw = Mt(x

t
v, x

t
w, evw) computes a message de-

pendent on the source node w, the target node v, and the edge features evw. Suppose we are on
a graph without edge embeddings, so the adjacency matrix is a binary matrix indicating if nodes
are connected together or not; the message function would then drop the dependence on evw. If
we constrict the class of message functions to some kernel function, K(•, •) : RD × RD → R.
Within the attention mechanism, this K is actually a bilinear product parameterised by two affine
transformations, Key - K and Query - Q, which means K has the following form:

ai,j = K(xi, xj) = (Kxi)
T (Qxj) (13)

C.2 AGGREGATION FUNCTION

Since attention is a weighted sum, the aggregation function is summation, to produce the context
vector ci for token/node xi. However, within attention, there are two additional permutation invari-
ant functions we apply. Firstly, we apply Softmax to the attention scores to compute a distribution,

17This is also called the Multipole-to-Local translation formula in the literature.
18However, assuming S or T are disjoint sets does allow for more efficient computation.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

secondly we then apply the affine transformation - V - to the vector associated with the node/token,
so the aggregation function has the following form:

ci = □xj∈N(xi)(xi) =
∑

j∈N(xi)

[
exp(ai,j)∑

k∈N(xi)
exp(ai,k)

V

]
xj (14)

ci =
∑

j∈N(xi)

[
exp (K(xi, xj))∑

k∈N(xi)
exp (K(xi, xk))

V

]
xj (15)

ci =
∑

j∈N(xi)

(
SoftmaxN(xi) [K(xi, xj)]

)
Vxj (16)

Where SoftmaxN(xi) is Softmax normalised with respect to the neighbourhood of edges from xi.
As summation, Softmax, and matrix multiplication are permutation invariant, this is a valid message
passing aggregation function.

C.2.1 MULTIPLE HEADS

Multi-head attention does not change the core message passing framework, but instead paral-
lelises the core logic over h heads, which are subspace projections in which we perform atten-
tion independently. Each head h ∈ {1, . . . , H} contain their own set of affine transformations,
(Qh,Kh,Vh) : RD

H → RD
H , although in practice one large affine transformation is used for the

token sequence, which is then reshaped to match the number of heads. The individual head out-
puts are concatenated to form a single, larger aggregated message, cHi = ch1

i ∥ch2
i ∥ · · · ∥chH

i . This
concatenated vector is then passed through a final affine transformation, parameterised by PO, to
produce the final output embedding:

ci = PO
(
cHi

)
= PO

(
ch1
i ∥ch2

i ∥ · · · ∥chH
i

)
(17)

In this view, multi-head attention is equivalent to computing multiple directional edges between
each of the token/node embeddings, with the output of each of these subspace attention mechanisms
being combined in the aggregation step.

Kh(xi, xj) = (xiK)T (Qxj)

chi =
∑

j∈N(xi)

[
exp (Kh(xi, xj))∑

k∈N(xi)
exp (Kh(xi, xk))

Vh

]
xj

ci = PO
(
ch1
i ∥ch2

i ∥ · · · ∥chH
i

)
Since the update function is applied to the context vectors ci, multi-headed attention only modifies
the message and aggregation function of the attention mechanism.

C.3 UPDATE FUNCTION

Once we have computed the context vector ci via the message and aggregation function, we then
need to update the representation of the token/node with respect to the context vector. In standard
Transformer architectures the update function is a MLP with residual connections before and after
the MLP, there are typically several normalisation operations19, so the form of the update function
is:

19These are typically either a pre-/post-application of LayerNorm between the residual connection and ap-
plication of the MLP, but I have removed them for simplicity as they are added to improve stability during
training.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

U(xi, ci) = xi + MLP[xi + ci] (18)

Thus, we can see that the attention mechanism implements a message passing scheme on a graph,
where each weight is determined via the kernel message function aij = K(xi, xj) - the query-key
mechanism.

D CLOUDNFMM IMPLEMENTATION DETAILS

D.1 METRICS AND LOSS FUNCTIONS

D.1.1 RELATIVE Lp

The relative loss function – Lrel
p – computes a lp norm between the predicted and ground truth values,

which is normalised by the lp norm of the ground truth – as originally outlined by N. Kovachki et
al. (Kovachki et al., 2021b). For a predicted output tensor, v, and ground truth tensor, u, the relative
error loss and relative error metric – E rel

p – are computed as:

Lrel
p (v, u) =

1

N

N∑
i=1

∥vi − ui∥p
∥ui∥p

(19) E rel
p (v, u) =

∥v − u∥p
∥u∥p

(20)

where p represents the order of the norm, and N is the batch size. This loss provides a scale-invariant
measure of error, particularly useful when dealing with solutions that may vary significantly in
magnitude.

D.2 TRAINING PROTOCOLS

D.2.1 DEFAULT TRAINING PROTOCOL

We found that training using Table 3 provided satisfactory results on a large class of problems.

Table 3: Default Training Protocol for the CloudNFMM
of Epochs Optimiser Scheduler lrstart lrend Train/Test Split

50 AdamW OneCycle 3e−4 3e−6 80/20

D.2.2 WAVEBENCH TRAINING PROTOCOL

This is the training protocol outlined in the WaveBench paper can be seen in Table 4.

Table 4: WaveBench Training Protocol
of Epochs Optimiser Scheduler lrstart lrend Train/Test Split

50 AdamW Cosine Annealing 1e−4 1e−6 99/1

Note: In the original WaveBench paper, they have lrstart = 1e−3 & lrend = 1e−5. However, due to
the training instabilities of transformer-based architectures at high learning rates, we reduced both
lrstart & lrend by an order of magnitude.

D.3 MODEL HYPERPARAMETERS

We found that the CloudNFMM model hyperparameters outlined in Table 5 provided a good trade-
off between architecture parameter size, model speed, and model performance. Using these model
hyperparameters, we gained a model with 1.9M learnable parameters.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Table 5: Default CloudNFMM Architecture Hyperparameters
Hyperparameter Value Description

Dimensionality & Capacity

source dim 3 Dimensionality of the source data (e.g., [x, y, f(x, y)]).
target dim 1 Dimensionality of the target data (e.g., [u(x, y)]).
leaf dim 64 Feature dimension for leaf-level representations.
tree dim 128 Feature dimension for tree node representations.
hidden width 256 Width of hidden layers in network components.
root rank 256 Operator rank at the FMM tree root.
leaf rank 256 Operator rank at the FMM tree leaves.

Core Architecture

tree depth 5 Depth of the FMM tree structure.
operator depth 2 Depth of the operators in the neural operator blocks.
num blocks 4 Number of stacked blocks in the main model.

Regularization & Attention Details

dropout 0.1 Dropout rate for regularization.
residual connection ’linear’ The kind of residual connection between blocks.
num heads None Number of Attention Heads.
bias True Use a bias term in the MLPs.
use rope True Use RoPE for the Attention mechanism.

E ADDITIONAL EXPERIMENTS

E.1 WAVEBENCH

We also compare the effect of dataset size and training protocol on the performance of the Cloud-
NFMM. For the 10k training dataset, we use the default training protocol for the NFMM, while for
the 50k training dataset, we use the Wavebench training protocol – the results outlined in Table 6.

Table 6: Comparison of Dataset Size on CloudNFMM Isotropic and Anisotropic Results
Dataset 50k 10k

Anisotropic 10Hz 0.034 0.035
Anisotropic 40Hz 0.160 0.104

E.2 PDEBENCH

We also conduct further experiments with the CloudNFMM, training the model on the 128 × 128
version of the Darcy flow dataset – the results outlined in Table 7

Table 7: Comparison of CloudNFMM trained on different resolutions
Resolution β = 0.01 β = 0.1 β = 1.0 β = 10.0 β = 100.0

64× 64 2.53e-01 1.06e-01 4.50e-02 1.39e-02 1.18e-02
128× 128 2.55e-01 1.25e-01 1.07e-01 9.91e-03 1.07e-02

19

	Introduction
	Background
	Fast Multipole Method
	Neural Operator
	Related work

	Method
	Cloud NFMM
	Cloud NFMM Components
	OFS Operator
	TFI Operator
	Local Attention Operator

	Numerical Experiments
	Results
	WaveBench
	PDEBench

	Analysis
	Limitations and Next Steps

	Conclusion
	The FMM
	Intuition for the FMM Algorithm
	How to Construct a Quad-Tree
	Upwards pass
	Downward pass
	Leaf level Pass

	The Neural FMM
	Neural FMM implementation
	Position encoding
	Downward pass implementation

	Attention as Message Passing
	Message Function
	Aggregation Function
	Multiple Heads

	Update Function

	CloudNFMM Implementation Details
	Metrics and Loss Functions
	Relative Lp

	Training Protocols
	Default Training Protocol
	WaveBench Training Protocol

	Model Hyperparameters

	Additional Experiments
	WaveBench
	PDEBench

