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ABSTRACT

Function space variational inference allows Bayesian neural network (BNN) to
introduce the prior distribution on the function space directly. Moreover, Recent
linear approximation scheme for KL divergence between two random functions, has
presented the tractable training objective and thus facilitates imposing the function
space prior on BNNs. On the other hand, despite of its tractability, the existing
inference suffers from the interpretability issue because the this function space prior
is obtained by mapping the pre-defined weight-space prior to the function output via
the complex neural network, and thus seems to be less interpretable. Alternatively,
thought the uniform function space prior, that imposes a zero mean prior on the
function space to encourage the model to be uncertain for out-of-training set, has
been considered, this prior can introduce unnecessary uncertainty into the function
outputs of the training datasets. Thus, this can cause the trade-off between the
uncertainty estimation performances on the in-training and out-of-training sets.
In this work, we aim at refining the function space variational inference to handle
the mentioned issue. To this end, we first reconsider the role of the function space
prior in view of Bayesian Model Averaging (BMA), and then propose a refined
function space prior via empirical Bayes and variational function space distribution
that can sample the useful predictive functions in sense of BMA.

1 INTRODUCTION

Function space Bayesian neural networks (BNNs) (Sun et al., 2019) have gained significant attention
within the Bayesian deep learning community, primarily due to their fundamental goal of directly
assigning prior distributions to the outputs of neural networks. This approach stands in contrast
to weight-space Bayesian neural networks, where interpreting prior distributions or incorporating
prior knowledge can be intricate and less intuitive. In function space BNNs, it becomes possible
to establish a prior distribution that directly embodies the inductive biases expected from neural
networks, offering a more intuitive and user-friendly approach.

Despite their promising theoretical advantages, the practical implementation of function space BNNs
often presents considerable challenges, mainly in their posterior inference procedures. A standard
approach for the posterior inference of a function space BNN is variational inference (Sun et al., 2019),
where one must compute the function-space KL divergence between stochastic processes. Unlike
the KL divergences in weight-space distributions, the function space KL divergences do not admit
easy-to-use Monte-Carlo estimators, so they are typically approximated with KL divergences between
function values evaluated at a finite number of inputs. To partially alleviate these challenges, Rudner
et al. (2022) introduced the concept of tractable function-space BNNs, where function space priors
are formulated as mappings from weight-space priors. This formulation facilitates the estimation of
function space KL divergences through linearization, offering a more practical approach to posterior
inference in function space BNNs.

However, although the tractable function-space BNNs can be conveniently trained due its tractable
inference, it has still some issue of constructing the reasonable prior distribution on the function
space. As the function space prior is obtained by evaluating the linearized neural network, using the
pre-defined weight-space prior as the weight parameters, on the additional inputs, the function space
prior could be significantly different depending on the specification of the weight space prior and the
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additional inputs. Thus, the function-space prior through the mapping would be less interpretable.
Alternatively, the interpretable uniform function space prior, that imposes a zero mean prior on the
function space to encourage the model to be uncertain on the out-of-training set, can be considered.
However, this prior inevitably introduces unnecessary uncertainty into the function outputs of the
training datasets, and thus can make models more uncertain than they need to be.

In this work, we aim at improving function-space BNNs by presenting the informative function space
prior. To this end, we first reconsider the role of the function space prior in the sense of Bayesian
model Averaging (BMA) and note that it would be a reasonable prior to improve the uncertainty
estimation if the function space prior encourages the sample functions of the posterior distribution to
have a certain predictive probability as well as have the varying degree of disagreements according
to the status of predictive inputs. Then, we build an informative function space prior by using the
empirical Bayes approach along with the parameters of hidden features and the last-layer weight
parameters, which are obtained iterations during early stages of training. We also address another
challenge of function-space BNNs that requires additional data for computing the KL divergences
in function space. Unlike the previous works assuming the presence of external datasets or simply
injecting noises to training data, we consider an adversarial hidden feature to construct the function
space prior from using only training set. Finally, we refine the variational function space distribution
to encourage the sample functions to have the varying degree of disagreements according to the status
of the predictive inputs. Our contribution can be summarised as:

• Motivated by BMA, we propose an informative function space prior and the variational distribution
over function space that can improve the uncertainty estimation of the BNNs.

• We consider the adversarial hidden features to construct the function space prior using only the
training dataset without the need of the additional input.

• We demonstrate that the vision transformer trained by the proposed inference, outperforms other
baseline inference methods on CIFAR 100, showing its effectiveness on the large-scale model.

2 BACKGROUND.

Notations. In this work, we focus on Bayesian neural network (BNN) for supervised learning task.
Let X ⊂ RD and Y ⊂ RQ be the space of dataset input and output, and f : X ×RP → Y be a BNN
that takes the input • ∈ X and the random weight parameters Θ ∈ RP , following prior distribution
Θ ∼ p(Θ), and produces the random output f(•,Θ) ∈ Y . Without loss of generality, we assume that
f consists of L layers, i.e., f(•,Θ) =

(
f (L) ◦ · · · ◦ f (2) ◦ f (1)

)
(•), with Θ = {Θ(l)}Ll=1, where Θ(l)

denotes the l-th layer random weight parameters.

Variational Inference for BNN. For given dataset D = {(xn, yn)}Nn=1 with input xn ∈ X and
yn ∈ Y , training a BNN requires computing the posterior distribution p(Θ|D) = p(Θ,D)/p(D) by
Bayes theorem. However, since the posterior distribution of the weight parameters p(Θ|D) are not
tractable in general, approximate Bayesian inference method have been used to train BNNs. Among
the inferences, Variational inference (VI) introduces the variational distribution q(Θ) to approximate
the posterior distribution p(Θ|D), and then updates the parameters of q(Θ) by maximizing the
evidence lower bound Lvi(Θ) defined as follows:

Lvi(Θ) := EΘ∼q(Θ)

[
N∑

n=1

log p
(
yn|f(xn,Θ)

)]
− λ KL

(
q(Θ) || p(Θ)

)
, (1)

where λ1 denotes the hyperparameter that controls the amount of the regularisation of the KL diver-
gence. In general, variational distribution q(Θ) and prior distribution p(Θ) are assumed to be Gaussian
distribution because Gaussian distribution allows the random parameter Θ to be differentiable by
reparametrization trick and the corresponding KL term in Eq. (1) to be tractable.

Function-Space Variational Inference for BNN. Function Space BNNs incorporates the inductive
bias into the model output directly, and thus introduces the the prior distribution on the function space

1Setting λ < 1 leads a cold posterior effect, which has known to improve the uncertainty estimation of the
BNNs (Wenzel et al., 2020). In this work, we also employ the cold posterior effect for all inference methods.
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Y . Let p(f(•)) be the prior distribution of the model output f(•) and q(f(•)) be the corresponding
variational distribution. Then, function space BNNs are trained to maximize the ELBO Lfvi(Θ):

Lfvi(Θ) := Ef∼q(f(•))

[
N∑

n=1

log p
(
yn|f(xn)

)]
− λ KL

(
q(f(•)) || p(f(•))

)
, (2)

where the KL divergence between two stochastic processes can be defined (Sun et al., 2019):

KL
(
q(f(•)) || p(f(•))

)
= sup

XI :|I|<∞
KL

(
q(f(XI)) || p(f(XI))

)
. (3)

In words, the KL divergence between two stochastic processes are the supremum of the KL divergence
between finite-dimensional distributions evaluated at a finite set XI := {xi ∈ X ; i ∈ I}, where
f(XI) := {f(x) | x ∈ XI} and similar for q(XI). In practice, evaluating the supremum is
intractable, and it is typically approximated with a heuristically chosen finite evalution set XI .
Throughout the paper, following the convention, we refer to the set XI being used for the approximtion
of the KL divergence as context set. Even with the approximation with a context set, depending on
the choice of the variational distribution q(f(·)), the KL term KL

(
q(f(XI)) || p(f(XI))

)
in Eq. (3)

may not admit a closed-form expression, in which case optimizing it involves the additional technique
for gradient estimation (Sun et al., 2019).

Tractable Function-Space Variational Inference for BNN. Rather than directly eliciting a prior
distribution p(f(·)), one can first choose a weight space prior p(Θ) and then define the function space
prior p(f(·,Θ)) as a induced distribution p(f(·,Θ)) :=

∫
RP δΘ(Θ

′)f(·,Θ′)p(Θ′)dΘ′. Based on
this prior, Rudner et al. (2022) proposed a tractable variational inference method for function-space
BNNs, where the outputs of BNNs are linearized with respect to the weights to make the computation
of KL term in Eq. (3) tractable. More specifically, let p(Θ) = N (Θ;µw,Σw). The lineariztion of the
output of a BNN indexed by Θ is,

f(•,Θ) ≈ flin(•,Θ) := f(•, µw) + Jf
µw

(•)(Θ− µw) (4)

where Jf
µw

(•) := [ ∂f∂Θ ]Θ=µw
∈ RQ×P denotes the Jacobin matrix obtained by differentiating the

function f with respect to the mean parameter µw. Then, one can easily see that the linearized
random function flin(•,Θ) follows the Gaussian distribution, defined as:

p(flin(•,Θ)) = N
(
flin(•) ; µf (•) , Σf (•)

)
, µf (•) := f(•, µw), Σf (•) := Jf

µw
(•)ΣwJ

f
µw

(•)T . (5)

This linear approximation of the functional output Eqs. (4) and (5) leads to, when further approximated
with a finite context set XI , the following closed-form expression for the KL divergence term:

KL
(
q(f(XI ,Θ)∥p(f(XI ,Θ))

)
≈ KL

(
N (µfq (XI),Σfq (XI))∥N (µfp(XI),Σfp(XI))

)
, (6)

where (µfq (XI),Σfq (XI)) are the mean and covariances of the variational functions evaluated
at XI and (µfq (XI),Σfq (XI)) are defined similarly for prior functions. It is common to further
restrict the covariances to be diagonal, allowing the joint KL divergences to decompose into a sum of
instance-wise KL divergences.

3 DIFFICULTY OF FUNCTION-SPACE PRIOR SPECIFICATION

While the function space prior induced by the weight space prior results in a tractable computation, it
comes with a cost of less interpretability in the prior. Especially, unlike the regression task where
Gaussian process (GP) can be used to build the interpretable function space prior by specifying the
kernel function (Flam-Shepherd et al., 2017; Karaletsos & Bui, 2020; Tran et al., 2022), it has been
less clear to specify the interpretable function space prior for the classification task.

A default function space prior would be a uniform prior by setting the zero-mean Gaussian prior on
function space, i.e., p(f(•)) = N(f(•);0, σ2I) with all-zero vector 0 = [0, .., 0] ∈ RQ for any input
• ∈ X . This input-independent function space prior induces that the predictive probability computed
from a BNN, are regularized to stay somewhat close to a uniform distribution due to softmax(0) =
[1/Q, ..., 1/Q] ∈ ∆Q−1. However, the corresponding regularization could be suboptimal, because it
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Figure 1: Example of Function Space prior with 4-class pinwheel classification: In each panel, circle
points denote training sets, and two black lines denote 2 decision boundaries of the linear classifiers.
Three blue square points (■) and two red square points (■) denote auxiliary inputs, which are far
from training points and are placed closely with the training sets, respectively. Panel (a) depicts
the uniform function space prior by setting the function space prior as p(f(•)) = N (f(•);0, σ2I),
which induces all context inputs to be uniformly classified into any class. Panel (b) and (c) depict the
informative function space prior, motivated by BMA; each predictive sample function on IND set (•)
is assigned to be specific class, whereas each prediction on OOD set (•) has more disagreements.

encourages the predictions of the data from in-distribution (IND) set unnecessarily uncertain while
allowing the predictions of the data from out-of-distribution (OOD) set uncertain.

One may elicit a weight-space induced prior as in Rudner et al. (2022), where the the function
space prior p(f(·,Θ)) is induced by specifying the parameters (µw,Σw) in weight-space prior
N (Θ;µw,Σw) in Eq. (5). As mentioned earlier, while this may provide a tractable inference
algorithm, the interpretation of the derived function-space prior is rather obscure. Specifically, when
N (Θ;µw,Σw) is set to be a zero-mean Gaussian distribution, i.e., µw = 0 and Σw = I , this
results in the function space prior with the zero-mean but input-dependent variance, i.e., p(flin(•)) =
N (flin(•);0,Σfp(•)) by considering µfp(•) = f(•, 0) = 0 and Σf (•) = Jf

µw
(•)Jf

µw
(•)T in Eq. (5).

This prior raise a question of how uncertain the variance on the function space can make the predictions
of the data from in and out-of-distribution dataset. For other function space prior induced from the
non-zero mean weight-space Gaussian prior N (Θ;µw,Σw), we are not sure by what mechanism the
prior may encourage the predictions of the data from both in and out-of-training set.

4 REFINEMENT OF FUNCTION-SPACE VARIATIONAL INFERENCE

In this section, we focus on building the informative function space prior for the classification task,
and present a refined function-space variational inference2 to alleviate the issue described above.

Rethinking the role of function-space prior from the standpoint of model averaging. To
establish what is a good function space prior for the purpose of classification, let us reconsider the
role of the function space posterior p(f(·) | D) computed from the prior distribution p(f(·)). When a
test input x∗ is given, we consider the predictive distribution via Bayesian Model Averaging (BMA):

p(y∗ | x∗,D) =

∫
p(y∗ | f(x∗))p(f(x∗) | D)df(x∗) ≈

1

J

J∑
j=1

p(y∗ | f(j)(x∗)), (7)

where {f(j)(·)}Jj=1
i.i.d.∼ p(f(·) | D) denotes J sample functions of posterior distribution, and each

f(j)(x∗) = [f(j)(x∗)1, . . . , f(j)(x∗)Q] ∈ ∆Q−1 represents the Q-dimensional predictive probability
to classify the test input x∗. Ideally, when x∗ is close to training data D, we expect the corresponding
predictive distribution p(y∗ | x∗,D) to have high peak value f(j)(x∗)q for some specific class q
(smaller entropy). On the other hand, if x∗ is more of an OOD data, we expect p(y∗ | x∗,D) to
be closer to the uniform distribution (higher entropy). The existing uniform function-space prior
achieves this by making each predictive probability f(j)(x∗) to have higher entropy, not by directly

2Although we do not cover the case of the regression task in this work, our approach can be extended for
the regression task as well if binning the real-valued function space, i.e., Y ⊂

∑
q bq with the finite Q bins

{b1, ..., bQ}, and regarding the feature of the penultimate layer h(•) to have the index of the bin as the label.
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increasing the entropy of BMA prediction. As a side effect, this regularization would make the
prediction to have high entropy (thus less certain) for a test input x∗ sufficiently close to training set.

Instead, we may design a function space prior that does not explicitly encourage generating high-
entropy predictions for each predictive probability f(j)(x∗), but the averaged prediction (via BMA)
would still have high entropy when encountered with an OOD input x∗. A plausible situation is when
the individual predictions f(j)(x∗) may have highly peaked distributions even for an OOD input
x∗, but the predicted classes for different samples disagree with each other, giving a high-entropy
prediction when averaged via BMA. In other words, what we expected from our function space prior
is not to induce the individual predictive distribution f(j)(x∗) to be uniform distribution, but to be
peaked distribution as well as to allow their varying degree of disagreements depending on how
the x∗ deviates from the training set D. We argue that this way of constructing prior can provide
a better trade-off between making the BNNs certain for IND-like data and yet being uncertain for
OOD-like data. We provide a conceptual description of our argument; Fig. 1a depicts the uniform
function-space prior, and Figs. 1b and 1c depict the refined function-space prior.

Refined function-space prior distribution. To build the function space prior following the intuition
described above, we adapt the empirical Bayes that learns the parameters of the prior distribution
from the training set (Casella, 1992). We assume the first L− 1 layers {f l}L−1

l=1 to be deterministic
layers and the last L-th layer fL to be Bayesian MLP layer for easy Jacobian computation without
the use of automatic differentiation (Horace He, 2021); see the details in Appendix A.2. We first
train the parameters of {f l}Ll=1 during the initial training stages, and employ the hidden feature
h(•) = (fL−1 ◦ · · · ◦ f2 ◦ f1)(•) ∈ Rh and the weight parameters ΘL ∈ RQ×h for the last-layer fL,
obtained at the pre-determined iterations in this period.

Specifically, at the pre-determined iterations t ∈ T := {t1, .., tT }, we compute the empirical mean
m̂q

h ∈ Rh for q-th label and the shared covariance Ŝh ∈ Rh×h defined as:

m̂q
h =

1

Nq

∑
{i;yi=q}

h(xi), Ŝh =
1

N

∑
q

∑
{i;yi=q}

∆qh(xi) ∆qh(xi)
T , ∆qh(•) := h(•)− m̂q

h (8)

From iteration tT + 1, we compute the aggregated empirical mean of hidden feature m̂q
h, its shared

covariance Ŝh, the empirical mean of last-layer weight µ̂L
w, and its covariance Σ̂L

w, defined as:

feature level (h) : m̂q
h =

1

T

T∑
t=1

m̂q
h(t), Ŝh =

1

T

T∑
t=1

Ŝh(t),

weight level (w) : µ̂L
w =

1

T

∑
t

ΘL(t), Σ̂L
w =

1

T

∑
t

(
ΘL(t)2 − (µ̂L)2

)
, (9)

where the empirical parameter m̂q
h(t) and Ŝh(t), defined in Eq. (8), and the last layer weight

parameter ΘL(t) are obtained at t-th iteration for t ∈ T . Then, with the random weight parameters
ΘL ∼ N (ΘL | µ̂L

w,diag(Σ̂
L
w)), we define the random linear function fBMA(•) for a input • ∈ X :

fBMA(•) = ΘL proj
(
h(•)

)
, proj

(
h(•)

)
=

∑
q

( exp
(
− ∥∆qh(•)∥2Ŝ91

h

)
∑

q exp
(
− ∥∆qh(•)∥2Ŝ91

h

)) m̂q
h, (10)

where ∥∆qh(•)∥2Ŝ91
h

:= ∆qh(•)Tdiag(Ŝ91
h )∆qh(•) denotes the distance of h(•) from the q-th compo-

nent empirical parameters of hidden feature (m̂q
h, Ŝh) in Eq. (9). Roughly speaking, fBMA(•) in

Eq. (10) first projects h(•) as the representation of the empirical hidden feature proj
(
h(•)

)
. Then, by

using the linear mapping with the parameters (µ̂L
w, Σ̂

L
w) in Eq. (9), we build the function space prior

p(fBMA(•)) = N (fBMA(•);µfp(•),Σfp(•)) with following parameters:

µfp(•) = µ̂L
w proj

(
h(•)

)
, Σfp(•) = diag

([
∥proj

(
h(•)

)
∥2
σ̂2
1
, ... , ∥proj

(
h(•)

)
∥2
σ̂2
Q

])
, (11)

where σ̂2
q ∈ Rh denotes the q-th row of the variance parameters Σ̂L

w := [σ̂2
1 , .., σ̂

2
Q] ∈ RQ×h. This

function space prior follows the concept described in Figs. 1b and 1c because when the context input
• ∈ XI is close to IND-like set, the proj

(
h(•)

)
would be projected to one element out of {m̂q

h}
Q
q=1

and then allows the µfp(•) to be the high peaked logits (low entropy); see the details in Appendix A.3.
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Context inputs from adversarial hidden features. Without introducing an additional datasets for
the context inputs, we propose to build the hidden feature of context inputs h(•) by directly using
the training set D. For a pair of the training set (xi, yi) ∈ D, we consider h(•) to be the adversarial
hidden feature using the distance ∥∆qh∥2Ŝ−1

h
, defined in Eq. (10), as follows:

h(•) := argmax
h∈Br(h(xi))

(
min
q

∥∆qh∥2Ŝ−1
h

)
, (12)

where Br(h(xi)) := {h; ∥h− h(xi)∥2 ≤ r} denotes the r-neighborhood of the h(xi). The context
hidden feature h(•) in Eq. (12) is designed to incorporate the function space prior p(fBMA(•)) on the
boundary of the training hidden features {h(xi); (xi, yi) ∈ D} using the the Mahalanobis distance
minq ∥∆qh∥2Ŝ−1

h
representing the shortest distance of h(•) over Q classes. This context hidden feature

h(•) is used to compute p(fBMA(•)) for KL regularization by putting h(•) into proj(h(•)) in Eq. (10).

Refined function-space variational distribution. We refine the variational distribution q(f(•))
to allow the sample functions to be peaked distribution as well as have the varying degree of
disagreements depending on how the predictive input • ∈ X deviates from the training set.

To this end, we introduce the categorical latent variable z(•) = (z1, .., zQ) ∈ {0, 1}Q, with
∑

Q zQ =

1, that represents how uncertain the feature h(•) is used according to the empirical distribution of h(•),
to build the sample function f(•) having the different degree of disagreement for a input • ∈ X . For
the variational distribution of the last layer weight parameter q(ΘL) = N (ΘL;µL

wq
,ΣL

wq
), we define

q(z(•)|h(•)) = Cat (z(•) | p̂(•)) with the parameter p̂(•), defined as:

p̂(•) = Softmax
(
µf (•) /

√
1 + π/8 ∥∆h(•)∥2Ŝ91

h
,
)
∈ ∆Q−1, (13)

where µf (•) := µL
qwh(

•) ∈ RQ and ∥∆h(•)∥2Ŝ−1
h

:=
[
∥∆1h(•)∥2Ŝ91

h
, .., ∥∆Qh(•)∥2Ŝ91

h

]
∈ RQ

+ with
∆qh(•) in Eq. (8). Based on multi-dimensional probit approximation (MPA) (Gibbs, 1998; Lu et al.,
2020), the p̂(•) is obtained by approximately marginalizing the random function f̃ over the following
Gaussian distribution, parameterized by the empirical distance of h(•) as follows:

p̂(•) ≈
∫

Softmax(f̃(•)) N
(
f̃(•) ; µf (•),diag

(
∥∆h(•)∥2Ŝ−1

h

))
df̃(•). (14)

This p̂(•) controls the degree of the disagreement of the predicted classes by encoding what predictive
class is more likely to be in the nominator of p̂(•) and how far h(•) deviates from the empirical
distribution of h(•) in the denominator of p̂(•). When modeling the high dimensional output, the latent
variable z(•) can be sampled from the marginalized top-k distribution of z(•) by choosing k indexes
of p̂(•) having the top k largest values of p̂(•), and marginalizing the left redundant C − k dimensions.

Next, with temperature parameter τ ∈ (0, 1) and all-one vector 1 = [1, .., 1] ∈ RQ, we define the con-
ditional variational functional distribution q (flin(•) | z(•), h(•), τ) = N

(
flin(•) ; µf |z(•),Σf |z(•)

)
:

µf |z(•) = (1+ τz(•)) µfq (•), Σf |z(•) = diag(1+ τz(•)) ◦ Σfq (•), (15)

that are intended to assign the peaked logits value on the randomly chosen dimension of the function
output via latent variable z(•). This latent modeling constructs {f(j)(•)}Jj=1 by first sampling the latent
variable {z(j)(•)}Jj=1 from the peaked or flat categorical distribution according to the denominator
∥∆h(•)∥2Ŝ−1

h
in Eq. (13), and then sampling f(j)(•) with ϵj ∼ N (ϵ; 0, I) ∈ RQ over function space:

z(j)(•) ∼ q(z(•)|h(•)), f(j)(•) ∼ q(flin(•)|z(j)(•), h(•), τ), with f(j)(•) = µf |z(j)(•) + Σ
1/2
f |z(j)(

•) ϵj

5 EXPERIMENTS

In this section, we study the following questions through empirical validation: (1) Does the use
of the uniform function space prior really lead to a trade-off in performance between the IND and
OOD datasets? - Section 5.1, (2) Are the proposed refinements, motivated by BMA, effective in
improving uncertainty estimation for the both IND and OOD datasets? - Section 5.2, and (3) Does the
proposed inference yield reliable uncertainty estimates for covariate shift and downstream datasets? -
Sections 5.3 and 5.4
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Experiment Setting. We basically use the widely-used deep learning architecture, such as ResNet
(He et al., 2016), as our base model. Then, we convert the model into a last-layer BNNs by replacing
the last MLP layer with a Bayesian MLP layer. This approach is motivated by the proven effectiveness
of a partial Bayesian approach for Deep Neural Networks (DNN), as compared to a fully Bayesian
approach applied to all layers of the DNN (Kristiadi et al., 2020; Sharma et al., 2023).

For evaluating the trained model, we measure the test accuracy (ACC), calibrated negative log
likelihood (NLL), and calibrated expected calibration error (ECE) on the IND test set as indicators
of uncertainty estimation performance for the IND set. To this end, we first find the calibrated
temperature for NLL and apply this temperature to each metric, following the guidance for uncertainty
estimation evaluation in (Ashukha et al., 2020). Also, we measure the Area Under the Receiver
Operating Characteristic (AUROC) on the OOD set, serving as indicators of performance for OOD
set. We use the calibrated predictive entropy as the input and the IND set’s status as the label.

5.1 TRADE-OFF ISSUE OF THE UNIFORM FUNCTION SPACE PRIOR REGULARIZATION
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Figure 2: Investigation on uniform function space prior: we run 5 experiments with different random
seeds and report the mean and one-standard error for each metric. Panel (a) shows the calibrated NLL
on CIFAR 10 over varying hyperparameter λ for KL term. Panel (b) shows the AUROC on SVHN
set. Panel (c) and Panel (d) show the predictive entropy on CIFAR 10 and SVHN, respectively.

We set CIFAR 10 as training set and CIFAR 100 as context inputs, and train the model by using the
ELBO L(Θf ) in Eq. (2) along with the uniform function space prior as p(flin(•)) = N (flin(•); 0, 10I).
We consider the varying hyperparameters λ ∈ {1093, 1092, 1091} in Eq. (3) to investigate the effect
of the uniform function space prior via the regularization on the uncertainty estimation for IND and
OOD set. We control λ as the relative ratio between likelihood and KL divergence to apply the same
amount of the regularization to the model, regardless of the scale of KL term; λ = 1091 means that
the value of KL term in Eq. (5) is adaptively rescaled to be 1/10 of the likelihood over iterations.

Results. Figs. 2a and 2b describe the calibrated NLL on CIFAR 10 (IND) and AUROC on SVHN
(OOD), respectively. Figs. 2c and 2d describe the predictive entropy for CIFAR 10 and SVHN,
respectively, used as the input feature for calculating the AUROC. Fig. 2 implies that when applying
the stronger regularization of uniform function space prior (T-FVI) to the model during training, the
NLL deteriorates, but AUROC improves as shown in Figs. 2a and 2b. Also, its predictive entropy
exhibits higher values than that of the proposed inference (R-FVI), and increases for both IND and
OOD sets as shown Figs. 2c and 2d. On the other hand, the NLL of the R-FVI increases slightly
and the corresponding AUROC becomes as accurate as that of the baseline. Notably, the predictive
entropy for IND set exhibits small variations compared to that of T-FVI. These results suggest that
using the uniform function space prior may potentially lead to a trade-off in uncertainty estimation
between IND and OOD sets, and the proposed inference method can mitigate this issue.

5.2 BENCHMARK EXPERIMENT

As following the experimental setup conducted in (Rudner et al., 2022), we use CIFAR 10 and
CIFAR 100 as the IND set and SVHN as the OOD set. We compare the proposed inference with
other baseline inference methods: Maximum a posterior (MAP), DUQ (Van Amersfoort et al., 2020),
SWAG (Maddox et al., 2019), MFVI (Blundell et al., 2015), and T-FVI (Rudner et al., 2022) using
a cold posterior effect. For variational inference methods, we employ the MAP inference for the
first 80 percentage of training iterations, and apply the variational inference for remaining iterations;
further details can be found in Appendix B.3.
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Model / Data Method Context set ACC ↑ NLL ↓ ECE ↓ AUROC ↑

ResNet 18
CIFAR 10

MAP (0.951, 0.001) (0.165, 0.002) (0.012, 0.001) (0.948, 0.005)
DUQ∗ (0.941, 0.002) — — (0.927, 0.013)
MFVI (0.949, 0.001) (0.189, 0.003) (0.011, 0.001) (0.942, 0.009)
SWAG∗ (0.931, 0.001) — (0.067, 0.002) (0.898, 0.005)
T-FVI CIFAR 100 (0.949, 0.002) (0.176, 0.008) (0.012, 0.001) (0.938, 0.012)

R-FVI CIFAR 100 (0.950, 0.001) (0.169, 0.003) (0.011, 0.000) (0.955, 0.003)
ADV-h (0.951, 0.000) (0.167, 0.001) (0.010, 0.001) (0.957, 0.002)

ResNet 18
CIFAR 100

MAP (0.772, 0.000) (0.932, 0.002) (0.051, 0.002) (0.865, 0.025)
MFVI (0.770, 0.002) (1.035, 0.010) (0.049, 0.003) (0.862, 0.019)
T-FVI T-ImageNet (0.779, 0.003) (0.914, 0.002) (0.049, 0.002) (0.874, 0.013)

R-FVI T-ImageNet (0.775, 0.003) (0.912, 0.011) (0.044, 0.000) (0.890, 0.030)
ADV-h (0.778, 0.001) (0.891, 0.003) (0.047, 0.004) (0.883, 0.014)

Table 1: Benchmark experiment results: we report the mean and one-standard deviation of each
metric over different 3 random seeds. The results of Bayesian inference are obtained by using 100
sample functions, i.e., {f(j)(x∗)}100j=1 in Eq. (7).The results of ∗ are taken from (Rudner et al., 2022).

Results. Table 1 shows that our approach of R-FVI, achieves better NLL and AUROC compared to
T-FVI and MAP. This implies that the proposed inference performs better in terms of uncertainty
estimation for both the IND and OOD sets. Also, using the adversarial context hidden feature (ADV-h)
without using the additional context inputs can leads to comparable uncertainty estimation.
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Figure 3: Effect of the proposed inference over varying J sample functions: for the results of
proposed prior fBMA(•), we use the predictive probability as Softmax(µfp(•)/

√
1 + π/8Σfp(•))

with its parameters in Eq. (11). We depict the confidence interval with one-standard error.

Fig. 3 investigates the effect of the proposed tricks by using the trained ResNet 18 on CIFAR 10.
We describe the results of the function space prior fBMA(•) evaluated on both the IND (CIFAR 10)
and OOD (SVHN) set. We also compare the degree of the sample function disagreement via the
disagreement ratio (J −B)/B, where B denotes the number of the most dominant predictive class
out of J sample functions. The proposed prior adaptively induces the informative prior depending
the status of dataset; note its varying predictive entropy in Figs. 3b and 3e and the subsequent results
in Figs. 3a and 3d. Furthermore, as the number of sample function increases, the performances of
R-FVI improve significantly, as shown in Figs. 3a and 3d. Notably, its disagreement ratio exhibits
a significant distinction between the IND and OOD sets, whereas that of T-FVI approaches zero in
both sets, as demonstrated in Figs. 3c and 3f.

Fig. 4 compares the example of the predictive probabilities for IND and OOD set, confirming that the
predictions of R-FVI have the significant disagreement on OOD set compared to those of the T-FVI.
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Figure 4: Comparison of 15 sampled predictive probabilities for IND (CIFAR 10) and OOD (SVHN).

5.3 UNCERTAINTY ESTIMATION ON COVARIATE SHIFT DATASET.

We validate the proposed inference by evaluating the uncertainty estimation performance on the
corrupted CIFAR 10 (Hendrycks & Dietterich, 2018), which has been widely used for evaluation on
covariate shift. Due to limited space, we attach our results in Appendix B.4 showing the proposed
inference results in reliable uncertainty estimation on corrupted datasets as well.

5.4 TRANSFER LEARNING WITH VISION TRANSFORMER.

We validate that the proposed inference can transfer the large-sized pre-trained model to adapt to
downstream task. We use the pre-trained VIT-Base model (16 patch and 224 resolution) on the
ImageNet 21K 3, and consider the last-layer BNN as done in ResNet. We use J = 100 for the BMA.

Results. Table 2 shows that proposed inference can lead to reliable uncertainty estimation on IND
and OOD set as adapting the large-sized VIT model (#parameters = 86.6M ) to downstream task.

Method Context set ACC ↑ NLL ↓ ECE ↓ AUROC ↑
MAP (0.909, 0.001) (0.333, 0.004) (0.018, 0.001) (0.961, 0.004)
MFVI (0.908, 0.002) (0.325, 0.014) (0.015, 0.003) (0.970, 0.007)
T-FVI T-ImageNet (0.908, 0.001) (0.328, 0.004) (0.014, 0.001) (0.952, 0.002)

R-FVI T-ImageNet (0.914, 0.001) (0.313, 0.001) (0.016, 0.001) (0.970, 0.004)
ADV-h (0.913, 0.001) (0.315, 0.001) (0.014, 0.001) (0.967, 0.004)

Table 2: Transfer learning with VIT; these results from 3 experiments are reported.

6 RELATED WORK & CONCLUSION

Function space prior: As our variation inference method employs the empirical parameters of
hidden features and the last-layer weight parameters, using the well-known inductive bias of the
DNN (Lee et al., 2018; Maddox et al., 2019), to set the parameters of the prior distribution, our
approach can be regarded as a empirical Bayes method. This is analogous to the approach taken by
Immer et al. (2021) that uses empirical Bayes for the model selection of the BNNs. However, our
method distinguishes itself from (Immer et al., 2021) by establishing the prior in function space rather
than weight space. Also, our approach differs from the existing function space prior approaches that
predefine priors, such as the Gaussian process prior (Flam-Shepherd et al., 2017; Tran et al., 2022),
noise constrictive priors (Hafner et al., 2020), and physics informed priors (Meng et al., 2022).

Variational Inference: Our work aim at improving the prediction performance of BNNs based on
the principle of BMA. Thus, we propose the variational function space distribution to sample useful
predictive functions in sense of BMA, whereas the existing works mainly have focused on addressing
tractability issue for the functional KL divergence (Matthews et al., 2016; Burt et al., 2020) and
presented tractable inference algorithms (Sun et al., 2019; Rodrguez-Santana et al., 2022; Rudner
et al., 2022) to handle the issue.

Conclusion. In this work, we note that the existing function space BNNs have an difficulty in
incorporating the function space prior.To tackle this issue, we propose the informative function space
prior and the variational distribution on function space by emploting the observation from the BMA.

3https://github.com/huggingface/pytorch-image-models

9

https://github.com/huggingface/pytorch-image-models


Under review as a conference paper at ICLR 2024

Ethics statement. This paper does not include any ethical issues. This work introduces the way to
improve the function space variational inference, which has nothing to do with the ethics issue.

Reproducibility statement. We describe our algorithm and the hyperparameter used for the
experiments in Appendices A.1 and B.1.
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A APPENDIX:METHODOLOGY DETAILS

A.1 ALGORITHM

We describe the algorithm of the proposed inference in Algorithm 1. Our implementation is available
at https://anonymous.4open.science/r/RefinedFSBayes-B8F5.

Algorithm 1 Improved Function-Space Variational Inference with Informative Priors

Require: training iterations T , pre-determined iterations T = {t1, .., tT }
first L− 1 layers parameters {Θ(l)}L−1

l=1 , and the last L-th Bayesian layer parameters (µw,Σw)

for t = 1, . . . , T do
if t ≤ tT then ▷ Training by MAP Inference

Train {Θ(l)}L−1
l=1 and µw with function space ELBO Lfvi of Eq. (2) without regularization

if t ∈ T then ▷ Preparation for fBMA(•)

Compute the empirical parameters of (m̂q
h, Ŝh) and (µ̂L

w, Σ̂L
w) in Eq. (9)

end if
else ▷ Training by Function Space Variational Inference

Construct the adversarial hidden feature h(•) in Eq. (12)
Evaluate the BMA function prior distribution p(fBMA(•)) in Eq. (10)
Build the sample functions {f(j)(•)}Jj=1 by applying RP trick on funtion sapce with Eq. (15)
Train the parameters {Θ(l)}L−1

l=1 and (µw,Σw) with the function space ELBO Lfvi of Eqs. (2) and (5).
end if

end for

A.2 COMPUTATION OF FUNCTION SPACE DISTRIBUTION WITHOUT JACOBIAN COMPUTATION

Let f(•,Θ) ∈ RQ be a L-layers BNN with the random weight parameters Θ = {Θ(l)}Ll=1, as follows:

f(•,Θ) =
(
f (L) ◦ · · · ◦ f (2) ◦ f (1)

)
(•), and f (l)(•) = σ(Θ(l) [ • ; 1]), (16)

where Θ(l) denotes l-th layer random weight parameters, and σ(•) denotes the activation function.
For the brevity, we omit the bias term of each Θ(l), which does not break the logic of our statement.
Additionally, we assume the structure of the f(•,Θ) to compute parameters of function space
distribution without the Jacobian computation via the automatic differentiation (Horace He, 2021),
which has known to incur the out-of memory issue, as follows:

• The first L− 1 layers {f l}L−1
l=1 are assumed to be deterministic layers with the weight parameters

{Θ(l)}L−1
l=1 , understood as p(Θ(l)) = δΘ(l)(Θ′).

• The last L-th layer fL is assumed to be a Bayesian MLP layer with the random parameter Θ(L)

following p(Θ(L)) = N (Θ(L);µw,Σw). We notate each parameter Θ(L) := [θ1, .., θQ] ∈ RQ×h,
µw := [µ1, .., µQ] ∈ RQ×h and Σw := [σ2

1 , .., σ
2
Q] ∈ RQ×h

+ , where θq, µq ∈ Rh, and σ2
q ∈ Rh

+
denote the q-th row vector of each matrix, respectively.

Then, the f(•,Θ) in Eq. (16) can be understood as follows:

f(•,Θ) = Θ(L) h(•) = [θT1 h(•), .., θTQh(•)], with h(•) := (fL−1 ◦ · · · ◦ f2 ◦ f1)(•) ∈ Rh, (17)

where h(•) has a deterministic values as the output.

For the computation of the Jacobin matrix Jf
µw

(•) := [ ∂f
∂Θ(L) ]Θ(L)=µw

∈ RQ×P , with the number of
the parameter P = Q× h, we can compute the q-th row of Jacobian matrix as

[
Jf
µw

(•)
]
q
∈ RP :

[
Jf
µw

(•)
]
q
=

[
∂(θTq h(•))

∂θ1
, ... ,

∂(θTq h(•))

∂θq
, ... ,

∂(θTq h(•))

∂θQ

]
=

[
0︸︷︷︸

1-th

, ... , h(•)︸︷︷︸
q-th

, ... , 0︸︷︷︸
Q-th

]
,

(18)
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that has the non-zero entries as h(•) in q-th block and zero entries 0 ∈ Rh in left blocks. This allows
one to compute the covariance Σf (•) of the functions space distribution in Eq. (5), as follows:

[ Σf (•) ]qp =
[
Jf
µw

(•) diag( vec(Σw) ) J
f
µw

(•)T
]
qp

(19)

= h(•)T diag(σ2
q ) h(•)︸ ︷︷ ︸

:=∥h(•)∥2
σ2
q

1q=p = ∥h(•)∥2σ2
q
1q=p, (20)

where the [ Σf (•) ]qp denotes the q-th row and p-th column element of Σf (•) ∈ RQ×Q, and the
vec(•) denotes the operator that maps the matrix • to the corresponding vector by concatenating the
row vectors of the matrix. The 1q=p denotes a indicator function. As a result, the function space
covariance is obtained without using the automatic differentiation, as follows:

Σf (•) = diag
([

∥h(•)∥2σ2
1
, .. , ∥h(•)∥2σ2

Q

])
∈ RQ×Q, (21)

This closed form of the variance in Eq. (21) enables the proposed inference to build the sample
function {f(j)(•)}jj=1 by applying the reparameterization trick on function space as described in
Eq. (15) as well as to use the regularization of the KL divergence on function space in Eqs. (5) and (6)
without the use of Jacobian computation.

A.3 INTERPRETATION OF THE PROPOSED FUNCTION SPACE PRIOR

The proposed function prior pBMA(•), defined by the following parameters µfp(•) and Σfp(•) of
Eq. (11), can be understood as to have the following predictive probability p̂BMA(•) via MPA
approximation:

p̂BMA(•) :=

∫
Softmax(fBMA(•)) N

(
fBMA(•);µfp(•) , Σfp(•)

)
dfBMA (22)

≈ Softmax
(
µfp(•)/

√
1 + π/8Σfp(•)

)
. (23)

When the context input • ∈ XI is close to IND-like set, the proj
(
h(•)

)
would be projected to one

element out of {m̂q
h}

Q
q=1. Then, since the empirical weight parameters (µ̂L

w, Σ̂
L
w) of Eq. (9) are

obtained at the pre-determined stages of training that can incorporate the inductive bias of training
set D, the µfp(•) has the high peaked logits and Σfp(•) has the small variance. This allows p̂BMA(•)
of Eq. (23) to have the high peaked logits (small entropy).
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B APPENDIX:EXPERIMENT DETAILS

B.1 HYPERPARAMETERS SETTING OF THE PROPOSED INFERENCE

We basically follow the well-known training hyperparameters configurations in (He et al., 2016;
Dosovitskiy et al., 2021).

For the training of the ResNet for CIFAR 10 and 100, we set 200 epochs, 128 batch size, and use
SGD optimizer with 1091 learning rate, 5× 1094 weight decay, and 0.9 momentum. We employ the
cosine learning scheduler after 10 warm-up epochs.

For the training of the VIT for CIFAR 100, we set 10000 steps, 512 batch size (8 step gradient
accumulation with 64 batch size), and use SGD optimizer with 3 × 1092 learning rate and 0.9
momentum. We employ the cosine learning scheduler after 500 warm-up steps as following the
training scheme in the appendix of (Dosovitskiy et al., 2021).

For the proposed inference, we use the following hyperparameters in Table 3.

Dataset Hyperparameters Range

All

Variance of variational weight parameters log σwq U(−6,−5)

KL regularization λ in Eqs. (1) and (2) {1093, 1094, 1095, 1096}
The number of context inputs per batch 32 / 128 (ResNet), 16/64 (VIT)
Pre-determined iterations T with T iterations 0.8T + {−20,−16,−12,−8,−4}
The number of sample functions J in Eq. (7) 1 (training), 10 (validation)
Radius r in Eq. (12) for adversarial hidden feature {0.01, 0.05, 0.10}
Temperature τ in Eq. (15) for peaked logits {1/0.9 , 1/0.75 , 1/0.5}

CIFAR 10 Top-K for latent variable z(•) 3

CIFAR 100 Top-K for latent variable z(•) {5, 10}

Table 3: Hyperparameters settings of the proposed inference (R-FVI).

For the other inferences, we use the following hyperparameters in Table 4.

Inference Hyperparameters Range

MAP MAP regularization hyperparameter λ {1092, 1093}

MFVI

Mean of prior weight parameters µwp
0

Variance of prior weight parameters log σwp U(0, 1)
Variance of variational weight parameters log σwq

U(−6,−5)

KL regularization λ in Eq. (1) {1094, 1095, 1096}
The number of sample functions J in Eq. (7) 1 (training), 10 (validation)

T-FVI

Mean of function space prior µfp 0

Variance of function space prior σfp {1, 5, 10, 100}
Variance of variational weight parameters log σwq

U(−6,−5)

KL regularization λ in Eq. (2) {1094, 1095, 1096}
The number of context inputs per batch 32 / 128 (ResNet), 16/64 (VIT)
The number of sample functions J in Eq. (7) 1 (training), 10 (validation)

Table 4: Hyperparameters settings of the baseline inferences.
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B.2 ADDITIONAL EXPERIMENT RESULTS FOR SECTION 5.1

We consider the various context inputs to investigate how uniform function space prior affects the
performances of the function space BNNs depending on the similarity between the training inputs
and context inputs. Specifically, we set CIFAR 10 as training set and CIFAR 100 as additional inputs,
and set the context inputs (1− α)xtr + αxadd by mixing the training input xtr and additional input
xadd at the mixing level α ∈ {.2, .5, .8}. Then, we train the ResNet 20 by using the f-EBLO L(Θf )
in Eq. (2) along with the uniform function space prior distribution p(flin(•)) = N(flin(•); 0, 10I).
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Figure 5: Effect of similarity between the training sets and the context inputs; we run 5 experiments
with different random seeds and report the mean and one-standard error of each metric. Panel (a)
shows the test log likelihood on CIFAR 10 over different hyperparameter α controlling the similarity
between the training and the context inputs. Panel (b) shows the corresponding AUROC on SVHN
dataset. Panel (c) and Panel (d) show the predictive entropy on CIFAR 10 and SVHN, respectively.

Fig. 5 compares the results of the baseline inference (T-FVI) and proposed inference (R-FVI) when
setting the regularization hyperparameter λ = 1e93. We see that as the context inputs, far from
the training inputs (α ∈ {.5, .8}) are used, the NLL of the baseline degrades, whereas its AUROC
improves. Similarly, the values of predictive entropy evaluated on CIFAR 10 (IND) and SVHN
(OOD) increase as shown in each left side of Figs. 5c and 5d. Similarly, the proposed approach shows
a similar trend with the those of baseline.

From these results, we guess that the similarity between the training inputs and context inputs seems
to affect the performances of the function space BNNs, and using the context inputs, that are close to
the training inputs, would be helpful to build a effective function space prior.

B.3 ADDITIONAL EXPERIMENT RESULTS FOR SECTION 5.2

Details of Experimental setup. Due to the results of Fig. 5, we observe that using the context
input directly to build the function space prior would degrade the performance of NLL and AUROC.
Therefore, after searching α ∈ (0, 1), we set a = 0.1 and use the context input as (1−α)xtr+αxadd

by mixing the training input xtr and additional input xadd ∈ {CIFAR 100,Tiny-ImageNet}.

Additionally, we observe that although the training the model by the existing variational inference
(MFVI and T-FVI) with the cold posterior effect, i.e., λ ∈ (0, 1) are more effective than using λ = 1,
employing the MAP inference for the first training stages and then applying the variational inference
for the left iterations results in better performance compared to those of the variational inference
with cold posterior effect. Therefore, for the training of MFVI and T-FVI, we first apply the MAP
inference until the last iteration tT of the pre-determined iterations T = {t1, .., tT }, and report the
corresponding result in this work; note that the period of MAP inference for MFVI and T-FVI are
same with that of the proposed inference (R-FVI).

Model/Data Method Context set ACC ↑ NLL ↓ ECE ↓ AUROC ↑

ResNet 20
CIFAR 10

MAP (0.923, 0.000) (0.236, 0.004) (0.010, 0.001) (0.860, 0.029)
MFVI (0.922, 0.001) (0.240, 0.004) (0.012, 0.000) (0.868, 0.031)
T-FSVI CIFAR 100 (0.923, 0.001) (0.236, 0.002) (0.010, 0.001) (0.884, 0.026)

R-FVI CIFAR 100 (0.921, 0.002) (0.239, 0.002) (0.009, 0.000) (0.871, 0.009)
ADV-h (0.923, 0.001) (0.243, 0.002) (0.012, 0.000) (0.896, 0.005)

Table 5: Result of the ResNet 20 on CIFAR 10.
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Result of ResNet 20 on CIFAR 10. Table 5 compares the inference methods over different 3 seeds
when training the ResNet 20 on CIFAR 10.

Ablation study on the KL regularisation hyperparameter λ. We investigate the effect of the KL
regularisation hyperparameter λ for the proposed inference. In this procedure, we use ResNet 18 with
CIFAR 100 set. We consider the varying λ ∈ {1e94, 1e95, 1e96}, and unify the condition of the other
hyperparameters. Table 6 compares the effect of KL regularisation hyperparameter over 3 seeds.

Method Context set ACC ↑ NLL ↓ ECE ↓ AUROC ↑
λ = 1e94, τ = 1/0.9
R-FVI (J = 10) T-ImageNet (0.775, 0.001) (0.905, 0.002) (0.045, 0.004) (0.879, 0.013)
R-FVI (J = 100) (0.775, 0.000) (0.903, 0.003) (0.045, 0.002) (0.880, 0.011)

λ = 1e95, τ = 1/0.9
R-FVI (J = 10) T-ImageNet (0.775, 0.000) (0.913, 0.002) (0.047, 0.003) (0.886, 0.013)
R-FVI (J = 100) (0.776, 0.001) (0.912, 0.003) (0.046, 0.004) (0.886, 0.012)

λ = 1e96, τ = 1/0.9
R-FVI (J = 10) T-ImageNet (0.775, 0.001) (0.915, 0.003) (0.046, 0.003) (0.885, 0.014)
R-FVI (J = 100) (0.776, 0.001) (0.913, 0.003) (0.046, 0.004) (0.885, 0.013)

Table 6: Effect of the KL regularization hyperparameter λ

Ablation study on the radius r. We investigate the effect of the radius for the adversarial context
hidden features. In this procedure, we use ResNet 18 with CIFAR 10 set. We consider the varying
r ∈ {0.01, 0.05} and the random radius r ∈ U(0.1, 0.2), and unify the condition of the other
hyperparameters. Table 7 compares the effect of the radius over different 3 seeds.

Method Context set ACC ↑ NLL ↓ ECE ↓ AUROC ↑
r = 0.01, λ = 1e93, τ = 1/0.9
R-FVI (J = 10) ADV-h (0.951, 0.000) (0.168, 0.001) (0.012, 0.000) (0.952, 0.006)
R-FVI (J = 100) (0.951, 0.001) (0.168, 0.001) (0.011, 0.000) (0.952, 0.006)

r = 0.05, λ = 1e93, τ = 1/0.9
R-FVI (J = 10) ADV-h (0.951, 0.000) (0.167, 0.001) (0.011, 0.000) (0.956, 0.002)
R-FVI (J = 100) (0.951, 0.000) (0.167, 0.001) (0.010, 0.001) (0.957, 0.002)

r ∈ U(0.10,0.20), λ = 1e93, τ = 1/0.9
R-FVI (J = 10) ADV-h (0.951, 0.001) (0.173, 0.003) (0.011, 0.0) (0.949, 0.005)
R-FVI (J = 100) (0.951, 0.001) (0.172, 0.003) (0.010, 0.001) (0.951, 0.005)

Table 7: Effect of the radius r of adversarial context hidden feature
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Ablation study on the temperature hyperparameter τ . We investigate the effect of the tem-
perature hyperparameter τ for the peaked logits value. In this procedure, we use ResNet 18 with
CIFAR 10 using the additional context input as CIFAR 100, and adversarial hidden feature. In this
procedure, we consider the varying τ ∈ {1/0.9, 1/0.75, 1/0.5}, and unify the condition of the other
hyperparameters. Table 8 compares the effect of temperature hyperparameter over different 3 seeds.

Method Context set ACC ↑ NLL ↓ ECE ↓ AUROC ↑
τ = 1/0.9, λ = 1e95 (CIFAR100), λ = 1e93 (ADV9h), r = 0.05
R-FVI (J = 10) CIFAR 100 (0.950, 0.001) (0.173, 0.002) (0.010, 0.000) (0.940, 0.005)
R-FVI (J = 100) (0.951, 0.000) (0.171, 0.002) (0.009, 0.000) (0.942, 0.005)
R-FVI (J = 10) ADV-h (0.951, 0.000) (0.167, 0.001) (0.011, 0.000) (0.956, 0.002)
R-FVI (J = 100) (0.951, 0.000) (0.167, 0.001) (0.010, 0.001) (0.957, 0.002)

τ = 1/0.75, λ = 1e95 (CIFAR100), λ = 1e93 (ADV9h), r = 0.05
R-FVI (J = 10) CIFAR 100 (0.951, 0.000) (0.168, 0.002) (0.010, 0.001) (0.945, 0.008)
R-FVI (J = 100) (0.951, 0.001) (0.168, 0.002) (0.010, 0.000) (0.945, 0.008)
R-FVI (J = 10) ADV-h (0.952, 0.001) (0.169, 0.000) (0.010, 0.001) (0.951, 0.003)
R-FVI (J = 100) (0.952, 0.001) (0.168, 0.000) (0.010, 0.000) (0.953, 0.002)

τ = 1/0.5, λ = 1e95 (CIFAR100), λ = 1e93 (ADV9h), r = 0.05
R-FVI (J = 10) CIFAR 100 (0.950, 0.001) (0.169, 0.003) (0.011, 0.000) (0.956, 0.003)
R-FVI (J = 100) (0.950, 0.001) (0.169, 0.003) (0.011, 0.000) (0.955, 0.003)
R-FVI (J = 10) ADV-h∗ 0.949 0.177 0.010 0.943
R-FVI (J = 100) 0.950 0.176 0.010 0.945

Table 8: Effect of the temperature hyperparameter: the result of ∗ is obtained with one random seed.

Ablation study on the top-k marginalized distribution of z(•). We investigate the effect of the
top-k marginalized distribution z(•) for the high dimensional output. In this procedure, we use ResNet
18 with CIFAR 100 using the adversarial hidden feature. In this procedure, we consider the varying
top9k ∈ {3, 5, 10, 20}, and unify the condition of the other hyperparameters. Table 9 compares the
effect of the top-k marginalized distribution over different 3 seeds.

Method Context set ACC ↑ NLL ↓ ECE ↓ AUROC ↑
Top9k = 3, λ = 1e93, τ = 0.75, r = 0.1
R-FVI (J = 10) ADV-h (0.778, 0.002) (0.904, 0.001) (0.047, 0.002) (0.876, 0.017)
R-FVI (J = 100) (0.779, 0.001) (0.898, 0.001) (0.046, 0.001) (0.876, 0.016)

Top9k = 5, λ = 1e93, τ = 0.75, r = 0.1
R-FVI (J = 10) ADV-h (0.779, 0.001) (0.893, 0.002) (0.047, 0.002) (0.877, 0.019)
R-FVI (J = 100) (0.780, 0.001) (0.888, 0.002) (0.047, 0.003) (0.877, 0.018)

Top9k = 10, λ = 1e93, τ = 0.75, r = 0.1
R-FVI (J = 10) ADV-h (0.778, 0.001) (0.894, 0.003) (0.047, 0.004) (0.883, 0.014)
R-FVI (J = 100) (0.778, 0.001) (0.894, 0.003) (0.047, 0.004) (0.883, 0.014)

Top9k = 20, λ = 1e93, τ = 0.75, r = 0.1
R-FVI (J = 10) ADV-h (0.778, 0.002) (0.904, 0.002) (0.050, 0.005) (0.878, 0.017)
R-FVI (J = 100) (0.778, 0.002) (0.901, 0.002) (0.049, 0.006) (0.878, 0.017)

Table 9: Investigation of the top-k marginalized distribution of z(•) on CIFAR 100.
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B.4 ADDITIONAL EXPERIMENT RESULTS FOR SECTION 5.3

We validate the proposed inference by evaluating the uncertainty estimation performance on the
corrupted CIFAR 10 (Hendrycks & Dietterich, 2018), having the different types of covariate shift
and each shift set consists of 5 intensity levels. We compare the ResNet 18 trained by the proposed
inference method (R-FVI) with the adversarial hidden feature to the baseline inference (T-FVI) for
CIFAR 1, which are reported in Table 1.

Results. Figs. 6 and 7 compare the accuracy and calibrated NLL of the proposed inference and and
baseline inference, respectively. We that the proposed inference (R-FVI) tends to have the higher
accuracy and smaller NLL values in the datasets of damaged intensities 1, 2, and 3.
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Figure 6: Accuracy on Corrupted CIFAR 10.
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Figure 7: NLL on Corrupted CIFAR 10.
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