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ABSTRACT

Robustness to adversarial attacks is critical for practical deployments of deep neural
networks. However, pursuing adversarial robustness from the network architecture
perspective demands tremendous computational resources, thereby hampering
progress in understanding and designing robust architectures. In this work, we
aim to lower this barrier-to-entry for researchers without access to large-scale com-
putation by introducing the first comprehensive neural architecture dataset under
adversarial training, dubbed NARes, for adversarial robustness. NARes comprises
15,625 WRN-style unique architectures adversarially trained and evaluated against
four adversarial attacks (including AutoAttack). With NARes, researchers can
query the adversarial robustness of various models immediately, along with more
detailed information, such as fine-grained training statistics, empirical Lipschitz
constant, stable accuracy, etc. In addition, four checkpoints are provided for each
architecture to facilitate further fine-tuning or analysis. For the first time, the
dataset provides a high-resolution architecture landscape for adversarial robustness,
enabling quick verifications of theoretical or empirical ideas. Through NARes, we
offered some new insight and identified some contradictions in statements of prior
studies. We believe NARes can serve as a valuable resource for the community to
advance the understanding and design of robust neural architectures.

1 INTRODUCTION

Robustness to adversarial attacks is essential for the reliable deployment of deep neural networks
in real-world applications. In the quest for effective defenses, much of the existing research has
concentrated on enhancing adversarial training (AT) techniques (Madry et al., 2018; Zhang et al.,
2019; Wang et al., 2020; Rice et al., 2020). These methods have been predominantly explored within
the confines of variants of wide residual networks (WRNs) (Zagoruyko & Komodakis, 2017). Despite
the pivotal role that novel network architectures have played in the broader success of deep learning
(He et al., 2016; Dosovitskiy et al., 2021; Brown et al., 2020), advancements in enhancing adversarial
robustness (AR) through architectural innovations remain limited. Nonetheless, a growing body of
empirical evidence suggests a significant correlation between network architecture and adversarial
robustness (Huang et al., 2021; 2023; Peng et al., 2023). This observation underscores the urgent
need for a comprehensive investigation into how different network architectures can contribute to
improving adversarial robustness. We posit that such a large-scale exploration is both timely and
critical.

Limitation of current architecture datasets for AR. Unfortunately, a comprehensive evaluation of
network architectures for AR requires tremendous computation, imposing a steep barrier-to-entry on
researchers without access to large-scale resources. To facilitate AR research on network architecture
while circumventing the aforementioned issue, two neural architecture (NA) datasets for AR have
been proposed (Jung et al., 2023; Wu et al., 2024). There are three main limitations of these two
existing datasets: ① Both datasets adopt the micro architecture search space proposed in NAS-Bench-
201 (Dong & Yang, 2019) that solely concerns the topological design of a cell that is repeated
many times to form an architecture. However, most theoretical and empirical studies of AR with
architecture design were conducted on the macro search spaces, specifically WRN-style architectures,
leaving a gap between these datasets and other research. ② The network models from both datasets
are small-scale architectures with number of parameters ranging between 0.07M∼1.53M and contains
many incapable failure models, which do not satisfy the high-capacity demend for AR. ③ Neither
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Figure 1: Design space of NARes. It explores wide residual networks with different depth and
width settings. The encoding scheme adopts a 6-dimension vector [D1,W1, D2,W2, D3,W3], where
Di∈{1,2,3} ∈ {4, 5, 7, 9, 11} is the depth and Wi∈{1,2,3} ∈ {8, 10, 12, 14, 16} is the width factor for
each stage. We use the pre-activation design for every block with two 3× 3 convolution layers.

dataset provided informative metrics along the training process, which are crucial for understanding
how adversarial training affect AR via architecture designs; and neither dataset evaluated architectures
against AutoAttack, which is currently the most reliable metric of AR.

Advantages of NARes. To address the above issues, we propose a new NA dataset focusing on the
macro search space based on WRN with varying depths and widths, as shown in Figure 1. The 15,625
architectures (2.4× larger than existing NA datasets for AR (Jung et al., 2023; Wu et al., 2024))
in our design space span a wide spectrum of model capacities, i.e., with the number of parameters
from 23.25M to 266.80M. In contrast to existing NA datasets, all of our models are considered
applicable to the AR scenario. We explicitly mitigate robust overfitting during the training through an
independent validation set. Moreover, we provide a richer set of evaluation metrics than the above
NA datasets. In addition to accuracies on four adversarial attacks, including AutoAtack, we provide
diagnostic information like stable accuracy and empirical Lipschitz constant (LIP) under attacks,
which would help develop insights into network architecture designs for AR.

Key takeaways: According to analysis on NARes, we have several key findings: ① Compared to
parameters, increasing MACs budget is preferred for AR. ② Stable accuracy consistently indicates
the corresponding AR, while lower LIP is a necessary condition for AR. Increasing the depth at last
stage will statistically decrease the LIP. ③ Statements in previous principle designs might not be
reliable. For example, reducing the last stage capacity will result in a statistical decrease in AR; and
previous robust neural architecture principles Huang et al. (2023); Peng et al. (2023) cannot correctly
depict the optimal architectures. ④ Every depth and width values collectively determines the AR of
the model, folding them into one dimensional variable might not be sufficient.

NAS benchmark for adversarial robustness. NARes can also serve as a dataset for the NAS
community, which opens the door for easily exploring macro search spaces on AR. Since prior NAS
methods on AR primarily focused on the topology of cell-based (micro) search space, we expect
NARes to encourage more focus on macro search spaces of architectures and bridge the gap to other
AR investigation areas.

We summarize the primary contributions of NARes as below:

1. The first large-scale NA dataset on the macro search space. NARes adversarially trained 15,625
architectures and evaluated them against AutoAttack along with three additional white-box attacks
and 19 common corruptions, requiring a total of 44 GPU years to build.

2. Insights for the future AR research from architecture angle. Based on NARes, we have
a deeper insight into how architectures affect the AR of models as mentioned above. NARes
provides an opportunity to validate old and new ideas freely, contributing to the harmony between
the theoretical and empirical studies on AR with respect to architecture. Besides, it serves as
a time-free NAS benchmark on the macro search space, advocating new advanced searching
algorithms.
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3. Assessable and reproducible model weights and AR evaluation. We will open-source the
training and evaluation code of NARes, along with 62,500 pre-trained checkpoints (four per
architecture) to foster further development, analysis of neural architectures on AR.

2 RELATED WORK

2.1 ADVERSARIAL EXAMPLE AND DEFENSE

The vulnerability of deep neural networks (DNNs) on adversarial examples (AEs) was first studied
in Szegedy et al. (2014), where AEs are crafted inputs that trick the model into outputting incorrect
answers.

Adversarial attacks. White-box attacks utilize DNN models’ internal information, such as gradients,
to iteratively adjust the AEs, with noticeable methods including FGSM (Goodfellow et al., 2015),
PGD (Madry et al., 2018), and CW (Carlini & Wagner, 2017). These methods progressively perturb
a clean image x along the direction of the gradient of a loss function L on x, and the perturbations
are restricted within a small neighborhood B(x, ϵ): x̂t+1 = ΠB(x,ϵ) [x̂t + α · sign(∇xL(x̂t, y))],
where ΠB(x,ϵ) projects the perturbed image back to B(x, ϵ), i.e., an ℓp-ball with radius ϵ around x.
The corresponding accuracy on AEs under white-box attacks can be deemed a type of worst-case
analysis for the robustness of neural network models. Recent advances in adversarial attacks include
AutoAttack (AA) (Croce & Hein, 2020a), which uses PGD with adaptive step size and aggregates
multiple attacks. Despite being computationally expensive to execute, AA has been widely used for
benchmarking adversarial robustness (Croce et al., 2021).

Adversarial training (AT) as the de-facto defense. The main idea of AT is to add AEs to the
training set to enhance the robustness of the DNN models against adversarial attacks. It was first
proposed by Goodfellow et al. (2015) and widely adopted after Madry et al. (2018). Generally, AT
can be formulated as a min-max optimization problem, where the training algorithm minimizes the
loss on AEs, which is maximized by the inner attack algorithm. This motivated a series of works
to improve AT, including ALP (Kannan et al., 2018), TRADES (Zhang et al., 2019), and MART
(Wang et al., 2020). In addition, AT can be combined with other defense mechanisms, such as early
stopping (Rice et al., 2020) for robust overfitting, weight ensembling (Izmailov et al., 2018; Chen
et al., 2021; Wang & Wang, 2022), and data augmentation (Rebuffi et al., 2021b) or external data
through generative modeling (Gowal et al., 2021; Sehwag et al., 2022; Wang et al., 2023).

2.2 EXISTING INVESTIGATIONS ON NEURAL ARCHITECTURES FOR ADVERSARIAL
ROBUSTNESS

An orthogonal group of methods seek adversarial robustness from the perspective of network archi-
tectures. Existing works can be classified into two categories: (1) manual design through architectural
insights and (2) automated design through NAS.

In the first category, existing efforts primarily focus on wide residual networks (WRNs) (Zagoruyko
& Komodakis, 2017) and have attempted to empirically derive design principles based on WRN
architectures that are robust against adversarial attacks. RobustWRN built a connection between the
AR loss and the model’s Lipschitz constant and observed that reducing the depth and width at the last
stage leads to more robust WRNs (Huang et al., 2021); Huang et al. (2023) found that deep but narrow
residual networks are adversarially more robust than wide but shallow networks; RobustPrinciple
further refined the principles and proposed a range of effective depth and width ratios for robust
WRNs (Peng et al., 2023). However, these design principles were derived from a limited number
(e.g., a few hundred) of sampled architectures, where the landscape of the architecture space has not
been exhaustively explored. Therefore, these design principles might not be optimal and potentially
biased due to randomness in sampling architectures.

Moreover, there is the disharmony among these studies. Empirical studies (Xie & Yuille, 2019;
Madry et al., 2018) of design principles have shown that AR demands higher model capacity
(width and depth) than traditional training, and Madry et al. (2018) explained that higher model
capacity would help construct a more complicated decision boundary for robustness. However,
there are disagreements in theoretical analysis. On the one hand, recent works suggested that over-
parameterization might hurt the robustness (Gao et al., 2019; Wu et al., 2021; Huang et al., 2021;
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Hassani & Javanmard, 2024; Zhu et al., 2022); on the other hand, some works argued that enough
parameters are essential to guarantee robustness (Bubeck & Sellke, 2021; Bubeck et al., 2021). Some
of these theoretical analyses rely on specific lazy training initialization and additional assumptions or
are limited to two-layer networks (Zhu et al., 2022), which might not be well generalized to the real
models. We hope NARes will help eliminate this dilemma.

Alternatively, NAS algorithms automate the process of designing robust architectures by searching in
a design space. The search algorithms include differential optimizations (Mok et al., 2021; Hosseini
et al., 2021), evolutionary algorithms (Kotyan & Vargas, 2020) and random search (Guo et al., 2020).
Compared to traditional NAS, new objectives or structures for robustness are incorporated during
the search. However, in this category, the search space primarily consists of cell-based architectures,
which focus on the topology of the architecture. In contrast, macro architectural search spaces such
as the widths and depths of WRN have not been fully investigated. However, many theoretical and
empirical studies on AR with architecture design were conducted on the WRN search space, leaving
a significant gap between NAS and the AR community.

2.3 EXISTING NEURAL ARCHITECTURE DATASETS AND BENCHMARKS FOR MODEL
ROBUSTNESS

There is a growing interest in searching for robust architectures. As such, two NAS datasets on
robustness have been proposed recently. Jung et al. (2023) reused weights from NAS-Bench-
201 (Dong & Yang, 2019) and evaluated the models’ robustness in that cell-based search space.
The robustness of common corruptions and several adversarial attacks under different maximum
perturbations was evaluated and studied. However, these models were learned through standard
training. Wu et al. (2024) resolved this concern by training all 6466 non-isomorphic models with
adversarial training and extended experiments to three image datasets. Nonetheless, as discussed in
Sec. 1, several limitations remain.

Besides these two datasets that focusing on a family of homogeneous architectures, there are also
works on benchmark existing models with various heterogeneous architectures. Tang et al. (2021)
benchmarked 49 architectures based on human-designed networks and 1200+ subnet architectures
from NAS, including state-of-the-art CNN models, Vision Transformers and MLP-Mixer. Li et al.
(2023) proposed a benchmark of AR under distribution shift, where 706 robust models under various
architectures were tested. In this work, we focus on a type of homogeneous WRN architectures and
attempt to thoroughly explore the architecture space for adversarial robustness.

3 NARes: A LARGE-SCALE NA DATASET UNDER AT

3.1 DESIGN OF NARes

Design Space: As illustrated in Fig. 1, we use the wide residual network (WRN) (Zagoruyko &
Komodakis, 2017) as the fundamental architecture of NARes and explore different depth and width
settings in each stage. The architecture comprises three stages, with each stage stacking multiple
blocks, each consisting of two 3 × 3 convolution layers. The input is downsampled at the second
and third stages by the first convolution layer with a stride of 2. Additionally, each block uses a
pre-activation design for better robustness (Huang et al., 2023). The encoding scheme adopts a
6-dimension vector [D1,W1, D2,W2, D3,W3]. Di∈{1,2,3} ∈ {4, 5, 7, 9, 11} is the number of blocks
in each stage. Wi∈{1,2,3} ∈ {8, 10, 12, 14, 16} is the width factor which controls the number of
channels niWi at the block of stage i, with ni = 16 × 2i−1. In summary, there are 56 = 15625
different architectures, including many models that are commonly employed in adversarial robustness
research, such as WRN-34-10 (Di∈{1,2,3} = 5, Wi∈{1,2,3} = 10), and WRN-70-16 (Di∈{1,2,3} = 11,
Wi∈{1,2,3} = 16).

Training Setting: A fixed set of hyperparameters was used for training all models in NARes. Every
model was trained with the standard adversarial training (AT) by Projected Gradient Descent (Madry
et al., 2018), for 100 epochs on the full CIFAR-10 training set (Krizhevsky, 2009). The learning rate
decayed by a factor of 0.1 at the epoch 75 and 90. To avoid the Robust Overfitting (Rice et al., 2020)
during the later training stage of AT, we applied the early stopping strategy by recording the best
PGD-CW40 accuracy (see Sec. 3.2) on a separate validation set. Other training settings are detailed
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Table 1: Details of Data in NARes

Per Epoch

Adversarial training loss and accuracy

Validation loss, clean accuracy

Validation accuracy of PGD20 and PGD-CW40 under ℓ∞
Corresponding stable accuracy and empirical Lipschitz constant

Per Architecture

Number of Parameters (#Params) and Number of MACs (#MACs)

Test loss and clean accuracy *

Test accuracy of FGSM, PGD20 and PGD-CW40, AA-Compact under ℓ∞ *

Test stable accuracy and Empirical Lipschitz constant of PGD20 and PGD-CW40 *

Accuracies and losses under common corruptions in CIFAR-10-C *†

Four checkpoints of weights at the epoch 74, 89, 99 and the best epoch
* : Evaluating the best checkpoint of an architecture.
† : Including 19 corruption types under 5 severity levels.

in Appendix B. Through the AT process, we saved four checkpoints: two before the learning rate
decay (the epoch 74 and 89), the last epoch, and the best epoch based on the PGD-CW40 accuracy.
We exhaustively trained all 15625 model architectures in the design space, with the entire training
process costing approximately 13.1K GPU days (∼ 36 GPU years).

3.2 METRICS AND DIAGNOSTIC INFORMATION

During the training of each network architecture, we logged the adversarial training loss and accuracy
for every epoch. After each training epoch, we used CIFAR-10.1 (Recht et al., 2018), a dataset
with 2K images sampled by the similar creation process as CIFAR-10, as the validation set and
evaluated the model’s clean accuracy and accuracy against two attacks: PGD20 and PGD-CW40.
The PGD20 attack (Madry et al., 2018) uses a random start and applies 20 steps with step size
0.8/255 and maximum ℓ∞ perturbation ϵ = 8/255. The PGD-CW40 attack applies 40 steps with the
Carlini-Wager loss 1 and keeps the other setting as PGD20.

Besides adversarial accuracies on the validation set after each epoch, we also evaluated each corre-
sponding attack’s stable accuracy and empirical Lipschitz constant (Yang et al., 2020; Huang et al.,
2021). The stable accuracy measures the perturbation stability of the model, calculated by measuring
whether the adversarial attack can change its prediction: ∥ {x ∼ Dval : fθ(x) = fθ(x̂)} ∥/∥Dval∥,
where x̂ is the AE of x after attack on the validation set Dval. The empirical Lipschitz constant
measures the model’s local Lipschitz constant within the attack’s perturbation range B(x, ϵ), which
reflects the model’s maximum output changes in a small input perturbation and is directly related to
the adversarial training loss (Wu et al., 2021). We estimate it by

L(B, ϵ) =
1

∥Dval∥
∑

x∈∥Dval∥

∥fθ(x)− fθ(x̂)∥1
∥x− x̂∥∞

2. (1)

After training, we evaluated the clean accuracy and adversarial robustness on the CIFAR-10 test set
at the best epoch of each architecture. We consider the FGSM (Goodfellow et al., 2015), PGD20, and
PGD-CW40 attacks on the ℓ∞-norm perturbation with step size 0.8/255 and ϵ = 8/255. Besides,
their stable accuracy and empirical Lipschitz constant were also recorded. We also evaluated the
robustness against a compact version of AutoAttack (Croce & Hein, 2020b) with ϵ = 8/255, which
consists of untargeted and targeted APGD. We denote it as AA-Compact. It helps to reduce the

1The untargeted version of the original loss used in Carlini & Wagner (2017): LPGD-CW(x̂k) =
−max ([Z(x̂k)t −maxi̸=t Z(x̂k)i] , 0), where Z(x̂k) is the logits of the model on the perturbed image
x̂k at attack step k and t is the true label of the original image x.

2We follow the practical implementation of Huang et al. (2021) in https://github.com/HanxunH/
RobustWRN, using the attack samples to replace the original maximum operation.
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Figure 2: The clean accuracy and adversarial accuracies under different attacks on models in NARes.
Specifically, for each architecture, we select the best model based on the PGD-CW40 accuracy of the
validation set and evaluate it on the test set. The clean accuracy and FGSM, PGD20, and PGD-CW40

accuracy on the test set are reported.
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Figure 3: The distribution of clean accuracy and adversarial accuracies under different depth and
width settings. The accuracies are evaluated on the test set, and the red "+" sign represents the mean
accuracy of each group.

expensive computational evaluation cost, and previous works (Rebuffi et al., 2021a), along with our
experiments in Table. 3, have shown a good approximation to the AutoAttack.

We also evaluated the best models’ robustness on common corruptions to complement the metrics
for adversarial robustness on CIFAR-10-C (Hendrycks & Dietterich, 2018) dataset, which contains
19 diverse corruption types in nature. Each corruption type contains 10K labeled images under five
severity levels, perturbed from the test set of CIFAR-10. Finally, every architecture’s number of
parameters and MACs were recorded as metrics for model complexity.

The entire evaluation costs 2.9K GPU days (∼ 8 GPU years). In summary, NARes offers the following
information for each architecture in the above design space in Table 1, providing a comprehensive
dataset for model robustness from the network architecture perspective:

4 STATISTICS OF NARes DATASET

This section overviews the statistics of NARes on AR. We demonstrate the model’s AR metrics and
their relationship to stable accuracy and empirical Lipschitz constant. Then we validate the statements
in previous robust architectural design principles and explore the features of promising architectures
within NARes. Extended analyses are detailed in Appendix A.

4.1 ROBUST ACCURACY

To explore various architecture designs of WRN, we analyze the clean accuracy and adversarial
accuracies of the aforementioned attacks on the test set. Fig. 2 compares the test accuracies with
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the number of parameters and MACs (#Params and #MACs), respectively. Our major discovery is
that under the search space of NARes, the upper bound of the AR will quickly meet the bottleneck
by increasing #Params. However, the lower bound will consistently benefit by increasing it. This
reveals a complex relationship between the model size and AR. When the model complexity is
increased by #MACs, we observe a more obvious trend, where both the upper and lower bounds of
accuracies are improved. Although the relationship between #Params and AR was primarily studied,
this observation suggests that increasing the budget on MACs is preferred to enhance robustness than
the parameter budget.

Moreover, we examine the effect of the single depth or width in our decision vector. The results are
shown in Fig. 3. We find that increasing any single value of the depth or width factor will boost the
clean accuracy and adversarial robustness from the model distribution perspective, contradicting the
previous consensus that the model capacity at the last stage should be kept small (Huang et al., 2021;
Peng et al., 2023). We explain it as a consequence of low empirical Lipschitz constant discussed in
Sec. 4.2, where large width and depth settings could also result in low Lipschitz constant, leading to
high AR.

4.2 STABLE ACCURACY AND EMPIRICAL LIPSCHITZ CONSTANT

Wu et al. (2021) found that the robust examples can be divided into two overlapping groups: correctly
classified examples and stable examples; and compared to clean accuracy, stable accuracy is strongly
correlated to AR. In Fig. 4, we plot the test stable accuracy of PGD20 in NARes and its distribution
under different depth and width settings. As stated in previous works (Wu et al., 2021; Huang et al.,
2021), the stable accuracy is approximately correlated to the AR. Besides, we observe that increasing
the depth at each stage would also consistently improve the stability. However, increasing width
would only benefit a trivial stability at stages 1 and 2, and could cause a slight drop at stage 3.

Besides stable accuracy, the local Lipschitz constant was utilized to establish a theoretical connection
between AR and model architecture. In summary, there is a trade-off between model capacity (width
and depth) and the local Lipschitz upper bound, where the latter is directly related to the adversarial
training loss (Wu et al., 2021). Reducing it would improve the perturbation stability. A consensus
of AR was to reduce the model capacity of the last stage (Huang et al., 2021; Peng et al., 2023).
Therefore, we further explore the empirical Lipschitz constant (LIP) on the test set with PGD20, as
shown in Fig. 5. Overall, in contrast to the trend for stable accuracy, the relationship between the
LIP and AR is complex. Nevertheless, models with high AR indeed have low LIP, suggesting a
relatively small LIP is a necessary condition for high robustness. For the effect of single decision
variable, unlike the predictions from previous theoretical analysis (Gao et al., 2019; Wu et al., 2021;
Huang et al., 2021; Hassani & Javanmard, 2024; Zhu et al., 2022), there is no clear evidence that LIP
grows with the increase of depth or width. Surprisingly, increasing the depth at the last stage would
statistically decrease the model’s LIP. Meanwhile, the LIP is less sensitive to the width factor at all
stages.
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Figure 4: The statistics of PGD20 stable accuracy on the test set. In box plots, the red "+" sign
represents the mean accuracy of each group.
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Figure 5: The statistics of PGD20 empirical Lipschitz constant (LIP) on the test set. In box plots, the
red "+" sign represents the mean accuracy of each group.
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Figure 6: Model distribution on the test PGD20 accuracy and the depth-width ratio proposed in
RobustResNet and RobustPrinciple.

4.3 VALIDATING PREVIOUS ROBUST ARCHITECTURE PRINCIPLES

NARes provides the architecture landscape on robustness with high resolution, so we can easily
validate the correctness of statements in previous robust architecture principles which were also based
on this search space. In Sec. 4.1, we have already found that decreasing the depth and width at the
last stage is not statistically beneficial for AR.

Then, we validate the statements proposed in recent works in Fig. 6. RobustResNet (Huang et al.,
2023) utilized a fixed depth-width ratio, where rRobustResNet =

∑
i∈{1,2,3} Di/(

∑
Di +

∑
Wi)

has an optimal value for AR. We plot the distribution of models concerning this ratio on the test
PGD20 accuracy. Although we can fit a quadratic regression curve, the PGD20 accuracy falls into
a wide range under a similar ratio. Therefore, the ratio only gives a coarse architectural manual
for AR. Similarly, we plot the depth-width ratio rRobustPrinciple = 1

2 (C1/D1 + C2/D2) from
RobustPrinciple3 (Peng et al., 2023), which assumes that AR is negatively proportional to the ratio.
The results demonstrate that, although there indeed is a vague tendency following the assumption,
using a fixed range of depth-width ratio is also considered a coarse architecture guideline.

In summary, the above validation exposes the potential limitation of previous empirical studies
with limited samples. With the real and informative metrics in NARes, we can provide a more
comprehensive and accurate understanding of the robust architecture design principles.

4.4 PROMISING ARCHITECTURES

Besides the analysis of a single architecture variable in Sec. 4.1, we believe any choice on a single
depth or width will not be a deterministic factor for the robustness, and the model’s robustness is
collectively determined by all factors in the decision vector, i.e., [D1,W1, D2,W2, D3,W3]. To
explore the intrinsic relations among depths and widths for promising robust architecture under
different model complexity budgets, we calculate the Pareto rank based on the test PGD20 accuracy

3Ci is the number of channels at stage i, as shown in Fig. 1.
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Figure 7: The relation of decision vector on robustness. (a): The selected best and worst models
based on the Pareto rank of test PGD accuracy and #MACs. (b): The PCA(n=2) results on the best
(Top) or worst (Bottom) models’ decision vector and their projections.

and #MACs and select models with rank smaller than 16 as the best architectures. Similarly, we
get the worst architectures with inverse Pareto rank. The selection results are shown in Fig. 7a.
Since the PGD20 accuracy contains noise, we further apply Principal Component Analysis (PCA)
on the decision vectors of best and worst samples respectively. The PCA results are shown in
Fig. 7b. We find that robustness is only highly correlated with the projection on the first compo-
nent of PCA. The corresponding principal component [0.378, 0.315, 0.350, 0.517, 0.441, 0.416] and
−[0.283, 0.282, 0.468, 0.537, 0.454, 0.356] represent a denoised linear relationship among depths
and width for the best and worst set of models. It substantiates our statement that each architecture
variable is equally important for AR, and principles that folds decision vector into a single variable
like the depth-width ratio are not sufficient.

We emphasize that this linear combination is not the direct advice for new architectural principles by
scaling models along the best models’ PCA direction, since this conclusion is derived and confined to
our search space. The above selection mechanism lets the best and worst set of models intersect at
the two sides of the model complexity range. Therefore, scaling models up or down that is beyond
our search space range will no longer guarantee the new models fall into the real best set.

5 NARes AS A NAS BENCHMARK

In this section, we demonstrate another application of NARes: as a NAS benchmark dataset. We
consider several black-box NAS algorithms as the baseline algorithms, including Random Search
(Li & Talwalkar, 2019), Local Search (White et al., 2021b), Regularized Evolution (RE) (Real et al.,
2019) and BANANAS (White et al., 2021a). The objective is to find an architecture that maximizes
the PGD20 accuracy on the validation set at its best epoch, with a maximal 500 queries (3.2% of the
search space size). Then, the metrics of the best architecture during the search are reported. The
detailed experiment settings are discussed in Appendix C.1. All algorithms are independently tested
over 400 runs, and the average results are listed in Table 2.

The results demonstrate that RE and BANANAS achieve better performance than classical search
algorithms in NARes. Specifically, BANANAS achieves the best performance on the search objective
and other validation accuracies and is more stable than other algorithms. This suggests that advanced
search techniques are indeed helpful in our search space. Moreover, the robustness of the test set
shows that both RE and BANANAS search for an architecture with similar high robustness.

6 CONCLUSION AND FUTURE WORK

This paper presents NARes, a new neural architecture dataset for adversarial robustness, which
contains weights and robustness metrics on 15625 unique models based on wide residual networks
(WRNs). This is the first dataset that exhaustively evaluated different depth and width settings on a
macro search space for adversarial robustness. According to the analysis in Sec. 4, we have found
some deep architectural insights, some of which may challenge previous statements. In the future,
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Table 2: Results of different NAS algorithms on NARes. The algorithms search the best architecture
based on the PGD20 accuracy on the validation set, and the mean and the standard variance of
robustness metrics on the best architecture are reported over 400 runs.

Accuracy Optimal* Random Search Local Search RE BANANAS

Val Clean 78.25 75.88± 0.56 75.84± 0.59 76.07± 0.39 76.10± 0.38
Val PGD20† 38.80 38.18± 0.22 38.17± 0.22 38.50± 0.24 38.55± 0.24
Val PGD-CW40 37.55 36.58± 0.38 36.60± 0.41 36.96± 0.42 36.99± 0.40
Test Clean 88.57 87.28± 0.37 87.26± 0.39 87.24± 0.30 87.22± 0.28
Test FGSM 62.68 61.38± 0.34 61.39± 0.36 61.46± 0.25 61.45± 0.23
Test PGD20 57.39 56.44± 0.36 56.47± 0.37 56.68± 0.29 56.68± 0.26
Test PGD-CW40 56.17 54.86± 0.38 54.91± 0.39 55.06± 0.26 55.05± 0.24
Test AA‡ 53.48 52.18± 0.39 52.24± 0.39 52.45± 0.28 52.45± 0.25
Test Corruption 80.22 78.89± 0.36 78.90± 0.36 78.90± 0.24 78.91± 0.22

* : "Optimal" refers to the highest achievable accuracy in the dataset of NARes.
† : The objective for NAS.
‡ : We use AA-Compact, a compact version of AA.

we hope this dataset will continually contribute to the development of adversarial robustness in
neural architectures, both empirically and theoretically. For the neural architecture search (NAS)
community, NARes lowers the barriers to entry and bridges the gap to other adversarial robustness
research. Theories on NAS of robustness might benefit from it and derive new algorithms.

6.1 LIMITATIONS

Adversarial training and evaluation require substantial computational resources. Consequently, our
dataset currently includes only a single sweep of the entire search space, which may introduce some
noise into each architecture’s data. To migrate the noise, we handle architectures from a distribution
perspective (Sec. 4), rather than focusing on specific architectures. And we recommend that future
analyses on NARes consider network design spaces with statistical tools (Radosavovic et al., 2019;
2020). For the same reason on computational cost, the dataset currently is built on CIFAR-10, which
may limit the generalization of the findings. Therefore, we recommend using NARes as the first step
of finding new insights or as a quick verification of some new ideas, which will massively reduce
the time cost. Then, the findings can be further validated on other datasets under a few experiments,
which will finally help the development of new robust architectures. In addition, our search space
may not encompass all WRN architectures that also fit within our #Params or #MACs range, leaving
some gaps in the comprehensive overview of architecture design concerning model complexity
budgets. Lastly, the accuracy correlation between the validation and test sets is relatively low (see
Appendix A.3), posing a challenge for NAS algorithms.
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