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ABSTRACT

We propose to train a multilayer perceptron simultaneously as an encoder and a
decoder in order to create a high quality generative model. In one call a network is
optimized as either an encoder or decoder, and in a second recursive call the net-
work uses its own outputs to learn the remaining corresponding function, allow-
ing for the minimization of popular statistical divergence measures over a single
feed-forward function. This new approach derives from a simple reformulation
of variational bayes and extends naturally to the domain of Generative Adversar-
ial Nets. Here we demonstrate a single network which learns a generative model
via an adversarial minimax game played against itself. Experiments demonstrate
comparable efficacy for the single-network approach versus corresponding multi-
network formulations.

1 INTRODUCTION

The last half-century of artificial intelligence research has seen a profound shift from highly en-
gineered expert systems to weakly-biased models (Gallant & Gallant| |I993). The algorithm Deep
Blue, a canonical example, used expert-designed heuristics combined with tree search for superhu-
man play at chess. Twenty years later, AlphaGo Zero was able to learn superhuman play for the
game of Go (or chess) given no prior knowledge of the game at all (Campbell et al., 2002} Silver,
et al., 20165 2017).

Meanwhile, the field of generative modeling has recently seen significant advances. Kingma &
Welling| (2013) provide a parametrization of latent variable methods and a link to auto-encoders
which has unlocked the power of deep learning in variational inference, namely the Variational Auto-
encoder (VAE). Goodfellow et al.|(2014) introduced Generative Adversarial Nets (GAN), which puts
two networks in an adversarial game: one tries to distinguish real from fake data, and the other to fool
this network by generating high quality examples. The GAN is an extremely succesful approach,
having been used to generate photorealistic samples (Zhang et al.,[2019).

Both the VAE and GAN methods minimize divergence measures, Kullback Leibler and Jensen Shan-
non respectively, which have been shown to be members of the f-divergence family (Nowozin et al.,
20165 [Nguyen et al.l 2010). This statistical relationship, along with a relationship to the classic
wake-sleep algorithm, has instigated significant effort to combine, relate, or unify the models (Hu
et al.,2017). Examples include the Adversarial Generative Encoder and a-GAN, which propose to
combine the adversarial game with an additional reconstruction loss (Ulyanov et al.l 2017} |Rosca
et al.l 2017). Other proposals introduce a third auxiliary network to learn an additional divergence,
such as Adversarial Autoencoders (Makhzani et al., 2015) and the VAE-GAN (Larsen et al.,[2016).

We propose instead to remove a network for the VAE and GAN methods. In light of the trend
towards increasingly unbiased systems, we aim to replace a small amount of human design, the dis-
tinction of separate encoder and decoder spaces, with a learning algorithm. Our first contribution is
the derivation of a single-network VAE, based on our claim that the approximate variational param-
eter has been unnecessarily carried into modern deep learning practices. Our second contribution
is the extension of this technique to the GAN, allowing for a single network to learn a generative
function in a recursive self-adversarial game. Empirical results are presented for both algorithms.
The single-network VAE is found comparable in efficiency to similar two-network implementations.
Furthermore, the single-network GAN exhibits regularization which we argue aids in the algorithm’s
convergence and gives an edge over the two-network approach.
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The single-network formulation of these methods opens new directions for deep learning research
and for the unification of deep generative models.

2 METHOD

We would like to train a multilayer perceptron as a generative model. Due to the analytic complexity
of the perceptron, the marginal likelihood of the networks parameters, denoted 6, w.r.t. some data
X, is intractable. We also stray from two-sample parametric tests, such as Maximum Mean Discrep-
ancy, due to their sensitivity to Monte Carlo error (Dziugaite et al., 2015} |[Li et al., 2015). Finally,
we do not introduce an auxiliary network.

Define a multilayer perceptron F' parametrized by 6. In the following sections, the optimization of
F will induce the recursive interpretation, F(z) = z and F(F(z)) = F?(z) = 2/, where 2’ may
be from any probability space. This interpretation follows from the underlying graphical structure
of the VAE and GAN algorithms. See In the case of the VAE, 2’ will be the more constrained 2,
which approximates z ~ N (0, I).
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Figure 1: Computational graphs. From left to right: two-network GAN, two-network VAE, one-
network GAN, one-network VAE

One may consider the single-network formulation a weakly-informative prior for our desired model,
since it is intentionally less engineered than our full knowledge may permit (the correspondence of
functions to distinct topologies).

We claim that the recursive multilayer perceptron for the GAN and VAE algorithms yields:

1. A feed-forward generator without a separate auxiliary network.

2. A single parameter space for data generation or inference, which may allow deeper un-
derstanding of the parametric relationship between the encoder and decoder. In the case
of variational bayesian inference, the addition of a second space is an assumption used to
approximate the true posterior. By using one space we are able to remove this assumption
for the VAE. This change is discussed further momentarily.

3. A single-step optimization algorithm for the VAE and GAN.

4. An expanded scope of sequence models with respect to conditional distributions and gen-
erative modeling.

2.1 A NON-VARIATIONAL LOWER BOUND

Consider an i.i.d. dataset X = {x1,...,z,}. A common technique in Bayesian statistics is to relate
X to a latent variable z, typically with a simple prior p(z), via some conditional or joint distribu-
tion p(z, z). Define the family of models py(z,z) = pg(z|z)p(z) with 6 some finite dimensional
parameter. It is of interest to perform a maximum likelihood estimation or maximum a posteriori
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estimate of the value 6 such that our model closely resembles the true distribution p(zx, z). Consider
the lower bound of the marginal log-likelihood

logpo(z) = —Dic1.(po(2[2)||p(2)) + Epy (z1a) log po([2) = L(6; ) (0

a consequence of Jensen’s Inequality. Note that this is exactly the variational lower bound or ELBO,
except that we have used py(z|z) in place of the variational distribution ¢,4(z|z) ~ p(z|z). Varia-
tional methods introduce g as a seperate parameter space from 6 in order to approximate the optimal
6*. Classicaly gy is assumed to come from a mean-field variational family which contains approx-
imate posterior densities to the true distribution, as is the case in the lower-bound derivation from
Jordan et al.|(1999)) or the original Expectation Maximization algorithm (Dempster et al.,[1977). In
modern deep learning practices, backpropogation over complex network topologies is used in place
of mean-field equations, yet the variational approximation gy is still used (Kingma & Welling, 2013
Zhao et al.,|2017). We aim to move beyond the variational assumption, and approximate the optimal
pe+(x, z) directly with the non-variational lower bound.

2.2 THE PSEUDO-VARIATIONAL AUTO-ENCODER

The VAE algorithm uses the original variational lower bound with approximate posterior g

logpe(z) > =Dk 1.(qs(2|7)||pe(2]7)) + Egy(212;) log pa(x|2) = L(0, ¢; ) (2)

where ¢ and 6 parametrize seperate multilayer perceptron models. While one may like to maximize
the lower bound w.r.t. these parameters, the standard Monte Carlo gradient estimator is known
to exhibit extremely high variance, making appropriate gradient updates infeasible. As a solu-
tion Kingma & Welling|(2013)) propose to parametrize g, (z|x) by a differentiable function gy (¢, x)
where € is an independent noise variable € ~ p(e). In the case of z ~ N(0, I), g is defined such that
go(€,7) = p+ o © e where ® denotes the element-wise product, and i and ¢ are the output of a
multilayer perceptron parametrized by ¢. That is they propose to maximize

L
L(0, ¢;2:) = =D (g6 (2|2:)|Ip(2) + > log po(wil %) 3)

i=1
where 271‘ = g¢(6, ,TZ)

Let F' be some multilayer perceptron parametrized by #. We would like to optimize the non-
variational lower bound[I] w.r.t. . In the case where F' is an auto-encoder, we desire the distribution
z ~ N (0, I) to be from a lower dimensional space than X. It follows that F' must output the dimen-
sion of X in one call, and the dimension of z embedded in the dimension of X in the second call.
Define the projection 7. (2) = PZ where P is a square matrix and P; ; = 1if ¢ = j < dim(z) and 0
otherwise. We now combine our projection and the reparametrization trick from Kingma & Welling
(2013). Let py(z|z) in[I]be computed by the function Z = gg(€, z) = m.(1 + o @ €) where yr and o
are the outputs from Fy and e is sampled from an isotropic Gaussian. For the calculation of the KL
divergence, z may be embedded in the X dimension or Z may have its extra zeros squeezed. Finally
we may define the function

L
L(0;2:) = —Drr(po(zlzi)lp(2)) + ZInge(Ii|Z~i) )

which may be differentiated and maximized with respect to 6. Optimzing this lower bound on
the marginal log-likelihood is equivalent to training a single network VAE. The effect of different
projection (latent space) dimensions is explored in the experiments.

Algorithm 1 Single-VAE gradient update

1: function UPDATEVAE(#?, o)

2: Sample: {z1,...,xp} with z; ~ X, {21, ..., zp } with z; ~ p(2)
3. Update: 0"+ = 0" + aVyL(0; ;)

4: end function
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2.3 RECURSIVE GENERATIVE ADVERSARIAL NETWORK

Introduced by |Goodfellow et al.|(2014])), the GAN plays the minimax game for the value function V'

mCi;n max V(G,D) := Epp(a)[log(D(x))] + E.pz)llog(1 — D(G(2)))] ®)

where = and 2’ are sampled from their respective distributions. We let G and D be models
parametrized by some 6’ and ¢ respectively, such that V' may be differentiated and optimized w.r.t.
these parameters. Define a new function F', parametrized by 6, such that

Note that by letting z have the same number of dimensions as X, we may avoid the definition of a
projection map. Let F'* be an alias for I, with both functions parametrized by 6. By substituting F’
into[3] we obtain the new value function

I%i}lInFaXV(F*,F) = Ligrp(x) [log(F(:ﬂ))} + Ezwp(z)[log(]- - F(F*(Z)))] @)

This formulation induces a cyclic computational graph as seen in |1} In practice Goodfellow et al.
(2014) recommend maximizing log(D(G(z))) for the generator, as opposed to minimizing log(1 —
D(G(z))) as it provides more robust gradients during training. By reformulating and simplifying,
we may define an alternative function

V(F) i= Egp(@)[log(F(2))] + Eznp(z)llog(1 = F(F(2)))] 4+ Eonp() llog(F(F(2)))] - (8)

where I’ denotes F' with fixed parametrization 6. V (F') is then maximized with respect to 6.

Algorithm 2 Single-GAN gradient update

1: function UPDATEGAN(6?, o)

2 Sample: {z1,...,xps } with x; ~ X, and {F(21), ..., F(zpr)} with z; ~ pg(2)
3:  Update: 07 = 0" + VoV (Fy)

4: end function

Theorem 1 The optimal F(z) has distribution piy,(z)

Define F' as in E] and @ as fixed @ for optimization. We define V" as in[7| Observe that we may use
the change of variables as shown by |Goodfellow et al.|(2014)

V(F,F)= /ptrue(x)log(F(x))dx + /pz(z)log(l — F(pg))d=

x z

V(F,F)= /ptme(a:)log(F(x))dm + pg(x)log(1 — F(z))dx

x

Ptrue(T)
. . DPtrue (z)+pg(x) .
shown that the optimal generator F'(z) minimizes the Jensen Shannon Divergence between pyyc ()

and pg ().

Like |Goodfellow et al.| (2014) we do not present results for convergence of V' in the case when the
models G, D or F represent multilayer perceptrons.

It follows that the supremum is achieved at for F(x), the discriminator. Thus it can be

3 RELATED WORK

Numerous methods have been offered for the estimation of a generative function using only a sin-
gle parametrized model. The Expectation Maximization (EM) algorithm proposes to estimate the
maximum likelihood or maximum a posteriori for a parameter space by iteratively estimating the
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log-likelihood and updating the distribution to improve this expectation. The EM algorithm re-
lies on mean-field equations and has been shown to be equivalent to iterative variational methods
over two parameter spaces (Dempster et al., [1977; Neal & Hinton, [1998). Another example, Noise
Contrastive Estimation iteratively updates a model to improve upon its discrepancy with a data dis-
tribution by using the model itself as a discriminative function. The approach relies on analytically
evaluating the corresponding probability densities, making it infeasible for complex models such as
the MLP (Gutmann & Hyvirinen, 2010). More recently, Generative Moment Matching Networks
(GMMN) have been proposed, which train by minimizing the maximum mean discrepancy (MMD)
between an MLP output and a data distribution. MMD is a non-parametric two-sample measure of
the distance between all moments of the given distributions, made tractable through the kernel trick.
GMMN has not been shown to empirically match other models such as the GAN (Li et al., [2015).

Another key example, the Multi-Prediction Deep Boltzmann Machine from Goodfellow et al.|(2013)
proposes to train a Deep Boltzman Machine (DBM) as a single probabilitistic model. Typically the
DBM is optimized in conjunction with a seperate model (often a multilayer perceptron) and requires
greedy layer-wise pre-training of the Boltzmann Machine (Salakhutdinov & Hintonl 2009). Given
some set of variables, the Multi-Prediction DBM takes as input a subset of the variables and is
trained to predict the remaining unseen subset. This process allows a single training step over a
single parameter space. Goodfellow et. al. argue that a single model for all inference tasks is
ideal compared to multiple disjoint models. One may note this proposal’s similarity to ours; both
methods use a multi-prediction scheme for inferring the complements of a given variable set, and
both methods may be interpreted as recurrent models.

Finally, we note the induced recursive interpretation of the single-network models, as shown in
Introduced by Pollack in 1990, recursive neural networks are a generalization of Recurrent Nets
(RNNs). Traditionally recursive networks structure inputs in a tree, as opposed to an RNN list, in
order to generalize to variant input-vector length and to exploit hierarchical structure in certain data
(Pollack,|1990). The recursive network calls one multilayer perceptron recursively over nodes of the
tree, encoding implicit bias in the computational graph. This fact has hindered recursive networks in
the past due to indeterminate or restrictive graph structures (Chineal 2009; dag). We also recognize
the universal function approximation theorem for neural networks, which guarantees their ability to
approximate continuous functions over compact euclidean sets (Cybenkol [1989), and that recurrent
neural networks have been shown to be Turing universal under certain assumptions (Siegelmann &
Sontag), [1995; Kilian & Siegelmann, |1996).

4 EXPERIMENTS

Results compare the single-network methods to corresponding two-network methods. Models pre-
sented are trained on MNIST (LeCun et al., 2010}, Fashion MNIST (Xiao et al., 2017), and SVHN
(Netzer et al.l [2011) datasets. Code is written in Tensorflow. Overall the single-network VAE ex-
hibits comparable performance to the two-network baseline, though it converges more slowly. The
single-network GAN presents high quality samples, and seems to automatically regularize its hidden
activations, which likely aids in the quality of samples.

4.1 SINGLE NETWORK VARIATIONAL AUTO-ENCODER

We compare a single network trained to minimize the non-variational lower bound [ to a two-
network model trained to minimize the variational lower bound [3] Both models use a learning
rate of 0.001 and momentum with the same hyperparameters. In all tests the single-network has
hidden-layers of size 800 each and a projection matrix as described before, which determines the
number of output neurons to be used for data encoding. We give the baseline the closest possible
number of trainable parameters, always favoring it over the single-network if a tie is not possible.
For example, for 2D MNIST the baseline uses two networks each with hidden-layers of size 657,
giving it about 4,000 more trainable parameters than the single-network. Both models use sigmoid
and relu activations. The output activation for the single-network GAN is a sigmoid for the decoder,
and is toggled to a linear activation in the encoder call. Similarly the baseline uses a sigmoid for the
decoder output and a linear activation for the encoder output.

The corresponding two dimensional manifolds are also shown below.
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Figure 2: The correpsonding negative lower bound —L over total number of samples seen. The
single-network and baseline exhibit similar performance across samples, though the single-network
is always slower to converge.
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Figure 3: The top row (a & b) is generated by the single-network VAE, the bottom row (¢ & d)
from the baseline two-network VAE. The first column (a & c) is the plot of the 2D encoded space 2
from the full MNIST test data. Y labels are depicted. The second column (b & d) is generated by a
grid-sample of the decoders.
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4.2 THE SINGLE NETWORK GAN

The following images are sampled from the single-network GAN and baseline GAN. For Fashion
MNIST and MNIST the single-network GAN uses two hidden-layers of size 512 each. The baseline
GAN uses two networks each with two hidden-layers of size 330. As before, this setup favors the
baseline slightly, with about 1000 more trainable parameters. For SVHN the single-net has two
hidden-layers of size 800. The baseline has layers of size 423, favoring the baseline by about 4000
trainable parameters. We fixed the parameter number then fine tuned each model, including the use
of momentum and batch normalization. All models add a small L1 loss to the discriminator outputs,
which is multiplied by a fine tuned constant. Momentum was used for all baseline models, and
only used on SVHN for the single-network. Batch norm is used for all baseline models, and for no
single-network models (though we surprisingly found it effective for the single-net).
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Figure 4: GAN comparison. Top row: samples from the single-network GAN. Bottom row: samples
from the comparable two-network baseline.

We use kernel density estimation to compare generative models. 10,000 photos are sampled from
each model and three-fold cross-validation is used to estimate the Parzen window. The final model
is used to calculate the average log-likelihood of the 10,000 sample MNIST test set. We note that
kernel desnity estimation is quite unreliable and has been shown to exhibit high variance between
different trials (Theis et al.,2015). Generally one expects that the results correlate to some goodness-
of-fit to the true distribution.

Model KDE LL (nats) | =SEM

Baseline VAE 410 7.6
Single-Network VAE 416 7.6

Baseline GAN 73 11.9
Single-Network GAN 399 29
GAN (Goodfellow et al.,|2014) 225 2
GMMD (Li et al.| [2015)) 147 2
Deep GSN (Bengio et al.,|[2014) 214 1.1

Table 1: Log-likelihood of full MNIST test set based on Parzen window estimates. The VAE models
reported use a 50 dimensional latent space. Note: Deep Generative Stochastic Networks (DSN) uses
an estimated Markov chain to train a single network (Bengio et al., 2014).
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We find that the single-network GAN outperforms the baseline log-likelihood on this test.

In an attempt to understand the effect of the single parameter formulation, we analyze the activations
of the hidden-layers across training. In the following chart, both models are trained with stochastic
gradient descent, a small fine-tuned L1 regularization as before, and no batch normalization. We find
that the single-network GAN has a regularizing effect over its activations compared to the baseline.

Discriminator
1e7 1e7 Generator

Figure 5: Distribution of 2nd hidden-layer neuron activations across total MNIST examples seen.
The 15th to 85th percentile activation ranges are shown. Left: single-network GAN. Right: baseline
GAN.

The same percentile-activation test has been conducted on the baseline GAN with momentum and
batch normalization. We found in this case the activations to be more stable than with SGD, but not
as monotonic as the single-network GAN.

CONCLUSION

We have proposed to train a multilayer perceptron simultaneously as an encoder and a decoder to
create a high quality generative model. Our approach is derived from a reformulation of the varia-
tional lower bound and extends to Generative Adversarial Nets. Both the single-network VAE and
GAN have been shown to be comparable to their baseline counterparts. Most importantly, we have
shown that the explicit parametric distinction between encoders and decoders may be automated by
backpropgation over a single space.

We leave as open problems for future work to

e Apply new or existing computer-vision techniques to the models presented.

e Apply other recurrent models and optimizations in order to exploit the cyclic computational
graph induced by our methods.

e Provide a formal result on the Minimum Description Length (MDL) of the models pre-
sented. The MDL principle is the claim that the best hypothesis is the shortest one with the
best compression of the data (Rissanen, |1978)).

e Use the single-network formulations to better understand the parameter space 6, especially
w.r.t. the relationship between encoding and decoding network pathways.

e Explore potential new directions for the unification of generative models.
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