
Probabilistic Residual User Clustering

Abstract

Modern recommender systems are typically based1

on deep learning (DL) models, where a dense en-2

coder learns representations of users and items. As3

a result, these systems often suffer from the black-4

box nature and computational complexity of the un-5

derlying models, making it difficult to systemati-6

cally interpret their outputs and enhance their rec-7

ommendation capabilities. To address this prob-8

lem, we propose Probabilistic Residual User Clus-9

tering (PRUC), a causal Bayesian recommenda-10

tion model based on user clustering. Specifically,11

we address this problem by (1) dividing users into12

clusters in an unsupervised manner and identify-13

ing causal confounders that influence latent vari-14

ables, (2) developing sub-models for each con-15

founder given the observable variables, and (3) gen-16

erating recommendations by aggregating the rating17

residuals under each confounder using do-calculus.18

Experiments demonstrate that our plug-and-play19

PRUC is compatible with various base DL recom-20

mender systems, significantly improving their per-21

formance while automatically discovering mean-22

ingful user clusters.23

1 Introduction24

Over the past decade, personalized recommendations have25

significantly improved user experiences in domains such as26

e-commerce and social media. The recommender systems27

driving these advancements often rely on sophisticated deep28

learning (DL) models [Chung et al., 2014; Vaswani et al.,29

2017; Wu et al., 2019] capable of handling vast amounts of30

data, enabling highly accurate predictions and personalized31

interactions. Despite their effectiveness, these models of-32

ten function as black boxes, lacking transparency and inter-33

pretability. This limitation poses significant challenges, par-34

ticularly when diagnosing and enhancing the performance of35

recommender systems in scenarios involving domain shifts,36

such as changes in users’ countries. Cold-start scenarios,37

a critical problem in recommendation systems, exacerbate38

these issues due to the presence of heterogeneous features39

and the influence of diverse and spurious patterns. As a re-40

sult, existing models exhibit notably low performance in such 41

settings. 42

Existing work [Yuan et al., 2020; Wu et al., 2020; Bi et al., 43

2020; Li et al., 2019; Hansen et al., 2020; Liang et al., 2020; 44

Zhu et al., 2020; Liu et al., 2020] often addresses domain shift 45

by establishing connections across different domains through 46

shared users or items. However, in real-world applications, 47

such overlap is often unavailable. For instance, when recom- 48

mending distinct items to users from different countries, there 49

is typically no overlap in either users or items. This scenario 50

demands more sophisticated modeling to account for shared 51

confounders. For example, consider position/exposure bias in 52

recommender systems: if the system ranks the item (e.g., an 53

ad) higher, users are biased to rate it higher or have a higher 54

probability to click it. Another example is popularity bias; 55

users have a higher probability to click popular or trending 56

items. A system must correct for such biases; otherwise, its 57

accuracy will decline significantly when previously popular 58

items lose their popularity. Additionally, existing methods 59

often fail to consider latent user clusters when cluster IDs 60

are not available in the datasets, therefore failing to model 61

(dis)similarities among users. 62

To address these problems, we propose a novel causal hier- 63

archical Bayesian deep learning model, dubbed Probabilistic 64

Residual User Clustering (PRUC), which divides users into 65

latent clusters and makes recommendations based on causal 66

confounders. Our Bayesian causal framework models the 67

residual between the ground-truth rating (or CTR) and the 68

base model’s predicted rating, thereby achieving more precise 69

recommendations. Notably, PRUC is plug-and-play, mean- 70

ing that it is compatible with any base DL recommendation 71

model and can enhance the original model’s performance. 72

Our contributions are as follows: 73

• We identify the existence of user clusters in various 74

datasets, as well as latent confounders that have a causal 75

effect on user and item hidden representations in DL 76

models. 77

• We propose a causal Bayesian framework to discover 78

the latent structures of users, items, and ratings. We in- 79

corporate user clusters and causal confounders as latent 80

variables in the causal structural model (SCM) and per- 81

form inference via do-calculus over the confounders. 82

• We formulate the rating prediction problem as residual 83
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Figure 1: Probabilistic graphical model of our PRUC framework.

prediction, i.e., predicting the difference between the84

ground-truth user ratings and the base DL model’s pre-85

dicted ratings, to enhance the performance of base DL86

recommenders.87

• Experiments verify that our plug-and-play PRUC is88

compatible with various base DL recommender systems,89

significantly improving their performance while auto-90

matically discovering meaningful user clusters.91

2 Probabilistic Residual User Clustering92

In this section, we describe our proposed PRUC framework.93

2.1 Problem Setting and Notations94

Consider a recommendation dataset containing I users and95

J items. A DL encoder fv(·) : Rd → Rh encodes each96

item j’s raw features xv
j ∈ Rd into fv(x

v
j ); assume there97

exists another decoder deep learning model fx(·) : Rh →98

Rd, which decodes latent representation vj back to the raw99

item features xv
j . For a given user i and an item j, there is a100

ground-truth rating Rij ∈ R, a base predicted rating R̂ij ∈ R101

provided by a base recommender, and a residual rating R̃ij =102

Rij − R̂ij . There is a latent cluster ID k (k ∈ {1, ...,K}) that103

indicates which user group user i belongs to. We assume that104

there exists a user latent vector ui ∈ Rh for each user i and105

an item latent vector vj ∈ Rh for each item j; they are both106

impacted by a causal confounder s ∈ Rg , where g ≪ h.107

Our goal is to predict the final rating R using the resid-108

ual R, i.e., R = R̂ + R̃, where R̂ represents the rating from109

the original (base) DL recommender. When the original rec-110

ommender is provided, R̂ is fixed; therefore we only need to111

learn R̃ in order to predict the final rating R. For generality,112

we assume M domains, where mi and mj denote the domain113

ID of user i and item j, respectively.114

2.2 Method Overview115

We use a variational Bayesian framework to learn the latent116

parameters. Fig. ?? illustrates the corresponding probabilistic117

graphical model (PGM).118

Generative Process. Below we describe the generative119

process of PRUC shown in Fig. ??.120

For each domain m ∈ {1, 2, . . . ,M}:121

• Draw the confounder sm from a prior distribution, for122

example, p(s) ∼ N (0, I):123

• For each user i:124

– Draw the user cluster ID πi from categorical distri- 125

bution π. 126

– Draw user latent variable ui from the πi’th Gaus- 127

sian distribution, i.e., p(ui|{µk,Σk}Kk=1, s, π) ∼ 128

N (µπi
+ Wusm,Σπi). Notice that Wu is the 129

learnable global parameter shared by all users. 130

– For each item j: 131

* Draw item latent variable vj from distribution 132

p(vj |s) ∼ N (Wvsm, λ−1
v I), where Wv is the 133

learnable global parameter shared by all items, I 134

is the identity matrix, and λv ∈ R is the preci- 135

sion. 136

* Draw the residual rating R̃ij from distribution 137

p(R̃ij |ui,vj , s) ∼ N (u⊤
i vj + w⊤

Rsm, λ−1

R̃ij
), 138

where wR is the learnable vector shared by all 139

ratings and λR̃ij
is the precision. 140

* Draw raw item features xv
j from distribution 141

p(xv
j |vj) ∼ N (fx(vj), λ

−1
x I), where I is the 142

identity matrix and λx ∈ R is the precision. fx is 143

a parameterized function that could be learned. 144

Model Factorization. As shown in Fig. ??, we factorize 145

the generative model into five conditional distributions: 146

p(ui,vj ,x
v
j , R̃ij |{µk,Σk}Kk=1, sm, π)

= p(R̃ij |ui,vj , sm)p(ui|{µk,Σk}Kk=1, sm, π)p(xv
j |vj)p(vj |sm).

(1)

Each distribution is assumed as a Gaussian distribution and is 147

shown as follows: 148

p(R̃ij |ui,vj , sm) = N (u⊤
i vj +w⊤

Rsm, λ−1

R̃ij
), (2)

p(ui|{µk,Σk}Kk=1, sm, π) = N (µπi
+Wusm,Σπi), (3)

p(xv
j |vj) = N (fx(vj), λ

−1
x I), (4)

p(vj |sm) = N (Wvsm, λ−1
v I), (5)

where i and j refers to the user index and the item index, re- 149

spectively. We employ an inference distribution q(ui,vj |xv
j ) 150

to approximate the distribution p(ui,vj |xv
j ) for the inference 151

model. 152

q(ui,vj |xv
j ) = q(ui)q(vj |xv

j ). (6)

More specifically, we assumes q(vj |xv
j ) follows a gaussian 153

distribution: 154

q(vj |xv
j ) = N (fv(x

v
j ),Λ

−1
v I). (7)

Here, j is the item index, Λv ∈ R refers to the precision, and 155

fv is a learnable mapping function. 156

Learning Objective. We maximize an evidence lower 157

bound (ELBO) as our learning objective for both generative 158

and inference model. 159

LELBO(x
v
j , R̃ij)

= Eq(ui,vj |xv
j )

[
log p(ui,vj ,x

v
j , R̃ij |{µk,Σk}Kk=1, sm, π)

]
− Eq(ui,vj |xv

j )

[
log q(vj |xv

j )]. (8)



Combining Eqn. 1 and Eqn. 6, we obtain the following de-160

composition:161

LELBO(x
v
j , R̃ij)

= Eq(ui)

[
log p(ui|{µk,Σk}Kk=1, sm, π)

]
(9)

+ Eq(vj |xv
j )

[
log p(xv

j |vj)
]

(10)

+ Eq(ui,vj |xv
j )

[
log p(R̃ij |ui,vj , sm)

]
(11)

−DKL

(
q(vj |xv

j )∥p(vj |sm)
)
, (12)

where DKL(·∥·) is the Kullback-Leibler (KL) divergence.162

For Eqn. 9, we compute the log likelihood for each cluster k163

as164

log p(ui|{µk,Σk}, sm, π) = −1

2

∑
i∈Ik

[log |Σk|

+ (ui − µk −Wusm)⊤Σ−1
k (ui − µk −Wusm)] + C, (13)

where i is the user index, Ik is the set of user index that be-165

longs to cluster k, and C is a constant.166

Similarly, all the other terms can be expanded as:167

log p(xv
j |vj) = −λx

2
∥xv

j − fx(vj)∥2 + C, (14)

log p(R̃ij |ui,vj , s) = −
λR̃ij

2

(
R̃ij − u⊤

i vj −w⊤
Rsm

)2

+ C,

(15)

DKL

(
q(vj |xv

j )∥p(vj |sm)
)
=

λv

2
∥vj −Wvsm∥2

− Λv

2
∥vj − fv(x

v
j )∥2 + C. (16)

Intuition for Each Term in Eqn. 8. Below, we describe168

the intuition of each term in Eqn. 8:169

1. Regularize Latent Variable ui (Eqn. 9).170

Eq(ui)[p(ui|{µk,Σk}Kk=1, sm, π)] aims to regular-171

ize user i’s latent variable ui, ensuring ui is close to the172

center of its corresponding user cluster πi, and therefore173

close to other users’ latent embeddings in the same174

cluster.175

2. Reconstruct Data xv
j from vj (Eqn. 10). q(vj |xv

j ) and176

p(xv
j |vj) are to reconstruct data xv

j from the inferred177

vj , which encourage the latent variable vj to maintain178

as much relevant information as possible from the raw179

features xv
j .180

3. Predict Residual Rating R̃ij from ui and181

vj (Eqn. 11). p(R̃ij |ui,vj , sm) use the inferred182

ui, vj , and the causal confounder sm to predict the183

residual rating, thereby encouraging ui and vj to retain184

more information to maximize prediction performance.185

4. Regularize Latent Variable vj (Eqn. 12).186

DKL(q(vj |xv
j )∥p(vj |sm)) is the KL divergence187

term between the inference model q(·|xv
j ) and the188

generative model p(·|sm); this encourages the inferred189

posterior q(vj |xv
j ) to be close to the prior distribution190

p(vj |sm).191

2.3 Inference and Learning 192

In our framework, we need to learn several parameters, in- 193

cluding the Gaussian parameters {µk,Σk}Kk=1, user latent u, 194

item latent v, and the parameters of the functions fx(·) and 195

fv(·), as well as Wu, Wv , and wR. The following sections 196

detail the learning process for all these parameters. The com- 197

plete algorithm is outlined in Algorithm 1. 198

1) {µk,Σk}Kk=1. To optimize {µk,Σk}Kk=1, we take 199

derivative of Eqn. 13 w.r.t. µk and Σk as follows: 200

∂L
∂µk

= Σ−1
k (ui − µk −Wusm) , (17)

∂L
∂Σk

=
1

2
Σ−1

k

[
(ui − µk −Wusm) (ui − µk −Wusm)⊤ −Σk

]
Σ−1

k .

(18)

Setting Eqn. 17 and Eqn. 18 to zero leads to the following 201

update rules, respectively: 202

µk =
1

|Ik|
∑
i∈Ik

(ui −Wusm) , (19)

Σk =
1

|Ik|
∑
i∈Ik

(ui − µk −Wusm) (ui − µk −Wusm)⊤ ,

(20)

where Ik is the set of user index i that belongs to cluster k. 203

2) ui,vj . After computing the gradients of Eqn. 8 w.r.t. to 204

ui and vj , we obtain the following update rules: 205

ui = (ΣπiVλR̃(i,:)
V⊤ + I)−1[µπi

+Wusm

+ΣπiVλR̃(i,:)
(R̃(i,:) −w⊤

RsmI)], (21)

vj = [UλR̃(:,j)
U⊤ + (λv − Λv)I]

−1[λvWvsm − Λvfv(x
v
j )

+UλR̃(:,j)
(R̃(:,j) −w⊤

RsmI)]. (22)

Note that here U and V refer to user latent matrix 206

(ui)
I
i=1 and item latent matrix (vj)

J
j=1. R̃(i,:) := 207

(R̃i1, · · · , R̃iJ)
⊤, R̃(:,j) := (R̃1j , · · · , R̃Ij)

⊤ . λR̃(i,:)
:= 208

diag(λR̃i1
, · · · , λR̃iJ

), λR̃(:,j)
:= diag(λR̃1j

, · · · , λR̃Ij
). 209

3) Wu, Wv , wR. The update rules for Wu, Wv , and wR 210

are as follows: 211

Wu =
1

I
(

I∑
i=1

ui −
K∑

k=1

|Ik|µk)s
⊤
m(sms⊤m)−1, (23)

Wv =
1

J

J∑
j=1

vjs
⊤
m(sms⊤m)−1, (24)

wR =

∑
i,j λR̃ij

(R̃ij − u⊤
i vj)∑

i,j λR̃ij

(sms⊤m)−1sm. (25)

4) Parameters of fx(·) and fv(·) . We use gradient ascent 212

of L in Eqn. 8 to update these parameters. 213

Inference. Inference includes the E-Step in Algorithm 1, 214

where PRUC updates learnable parameters Wu,Wv , wR, 215

and the parameters of encoder model fv(·) using gradient as- 216

cent of L in Eqn. 8. 217



Algorithm 1 Inference and Learning Algorithm of PRUC

Input: Raw item features xv , initialized fx(·) and fv(·)
parameters, Wu,Wv,wR, initialized Gaussian parameters
{µk,Σk}Kk=1, and the number of epochs T.
for t = 1 : T do

for m = 1 : M do
Update ui and vj using Eqn. 21 and Eqn. 22.
Update Wu,Wv,wR using Eqn. 23, Eqn. 24 and

Eqn. 25.
Update the parameters of fv(·) using gradient ascent of

L in Eqn. 8.
Update {µk,Σk}Kk=1 using Eqn. 19 and Eqn. 20,

respectively; update parameters of fx(·) using gradient
ascent of L in Eqn. 8.
Output: fx(·) and fv(·) parameters, Wu,Wv,wR, and
Gaussian parameters {µk,Σk}Kk=1.

Learning. Learning includes the iteration between the E-218

Step and M-Step in Algorithm 1 until convergence. In each219

M-Step, we update the Gaussian parameters {µk,Σk}Kk=1220

following the update rule from Eqn. 19 and Eqn. 20, respec-221

tively; we also update parameters of decoder model fx(·) us-222

ing gradient ascent of L in Eqn. 8.223

2.4 Plug-and-Play PRUC224

Below we discuss the key components of our plug-and-play225

PRUC as a Bayesian causal inference framework.226

Inferring User Cluster πi. With the learned Gaussian227

mixture’s parameters, i.e., the mean and covariance µk and228

Σk for each Gaussian component k (each Gaussian compo-229

nent represents one user cluster), PRUC infers the cluster for230

each user i, i.e., p(πi|R̃ij , {ui}, {vj}, {µk,Σk}Kk=1), deter-231

mining which cluster πi user i belongs to.232

Isolating Causal Confounders sm. With the learned233

structured causal model (SCM), we isolate the causal con-234

founders sm for each domain m by approximating its pos-235

terior distribution p(sm|R̃,xv
j , {µk,Σk}Kk=1) via variational236

domain indexing (VDI) [Xu et al., 2023]. In this way, we can237

minimize the bias introduced by the causal confounder sm238

when inferring ui and vj using Eqn. 3 and Eqn. 7, respec-239

tively.240

Debiasing the Causal Confounders. Under our PRUC241

framework, for each inferred user cluster k, we perform242

causal inference for each user i in this cluster to predict the243

residual R̃ij (for each item j) while debiasing the causal con-244

founders s. Specifically, with inferred ui and vj , we can pre-245

dict R̃ij by do-calculus as246

p(k)(R̃ij |do(ui), do(vj)) =
∑M

m=1
p(k)(R̃ij |ui,vj , sm)p(sm),

(26)

where p(k)(R̃ij |ui,vj , s) represents the k’th sub-model247

trained from the k’th cluster’s user data. In practice, we use248

k = πi (πi is user i’s cluster) when predicting user i’s rating249

R̃ij .250
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Figure 2: Causal inference in PRUC is equivalent to cutting the the
confounder s’s influence on ui and v.

Note that performing causal inference by intervening 251

(ui,vj) effectively cuts the relations between the causal con- 252

founders s and (ui,vj). Fig. 2 demonstrate the do-calculus 253

that PRUC performs for debiasing the causal confounder s. 254

Intuition behind Do-Calculus. The rationale of perform- 255

ing do-calculus in PRUC is that getting interventional dis- 256

tributions often requires intervening the recommender sys- 257

tem to collect training data, which is expensive in practice. 258

In contrast, do-calculus works by leveraging existing data to 259

estimate the conditional distribution p(k)(R̃ij |ui,vj , s), and 260

therefore prevent the potential cost (and risk) of actually in- 261

tervening the system. 262

Summary. To summarize, for each user i, PRUC causally 263

infer the residual rating R̃i as follows: 264

1. Infer the user cluster πi by approximating its posterior 265

p(πi|ui,vj ,x
v
j , {µk,Σk}Kk=1). 266

2. Infer the residual rating R̃ij by causal Bayesian model 267

averaging defined in Eqn. 26. 268

3. Predict the final rating as R = R̃ + R̂, where R̂ is the 269

base recommender’s prediction. 270

3 Experiments 271

In this section, we evaluate our PRUC as a plug-and-play 272

framework to enhance arbitrary base recommenders on XM- 273

Rec and MovieLens. 274

3.1 Datasets 275

XMRec. XMRec [Bonab et al., 2021] is a dataset encom- 276

passing 18 local markets (i.e., countries), 16 distinct product 277

categories, and 52.5 million user-item interactions. For each 278

item j, we use its item descriptions from the dataset as the 279

item features xv
j . Users with fewer than three purchases are 280

excluded from experiments. We use three training-testing do- 281

main splits: France, Italy, India → Japan, Mexico; Mexico, 282

Spain, India → Japan, Germany; and Germany, Italy, Japan 283

→ United States, India. We use the production country of the 284

products as the casual confounders sm. 285



Table 1: Performance of PRUC with different base models on XMRec. The best results are marked with bold face.

Data Method Recall@20 F1@20 MAP@20 NDCG@20 Precision@20

France, Italy, India →Japan, Mexico

CDL (Base Model) 0.0143 0.0016 0.0028 0.0009 0.0009
PRUC (Full) 0.1091 0.0128 0.0463 0.0108 0.0068

DLRM (Base Model) 0.0044 0.0004 0.0004 0.0002 0.0002
PRUC (Full) 0.0295 0.0035 0.0048 0.0018 0.0018

PerK (Base Model) 0.1098 0.0128 0.0512 0.0112 0.0068
PRUC (Full) 0.1635 0.0192 0.0637 0.0151 0.0102

NCF (Base Model) 0.0131 0.0148 0.0026 0.0008 0.0008
PRUC (Full) 0.1137 0.0137 0.0309 0.0090 0.0073

LightGCN (Base Model) 0.0182 0.0021 0.0050 0.0014 0.0011
PRUC (Full) 0.1003 0.0121 0.0316 0.0084 0.0064

Mexico, Spain, India →Japan, Germany

CDL (Base Model) 0.1127 0.0135 0.0301 0.0086 0.0072
PRUC (Full) 0.1761 0.0230 0.0593 0.0163 0.0123

DLRM (Base Model) 0.0756 0.0093 0.0085 0.0041 0.0049
PRUC (Full) 0.2017 0.0246 0.0545 0.0156 0.0131

PerK (Base Model) 0.1443 0.0177 0.0601 0.0143 0.0094
PRUC (Full) 0.2750 0.0335 0.1086 0.0263 0.0179

NCF (Base Model) 0.0096 0.0012 0.0022 0.0007 0.0007
PRUC (Full) 0.1558 0.0202 0.0280 0.0107 0.0108

LightGCN (Base Model) 0.0165 0.0022 0.0061 0.0016 0.0012
PRUC (Full) 0.1064 0.0138 0.0278 0.0087 0.0077

Germany, Italy, Japan →United States, India

CDL (Base Model) 0.0252 0.0055 0.0084 0.0040 0.0031
PRUC (Full) 0.0257 0.0058 0.0078 0.0041 0.0033

DLRM (Base Model) 0.0024 0.0006 0.0003 0.0003 0.0003
PRUC (Full) 0.0066 0.0016 0.0024 0.0012 0.0009

PerK (Base Model) 0.0148 0.0033 0.0041 0.0022 0.0018
PRUC (Full) 0.0207 0.0046 0.0060 0.0031 0.0026

NCF (Base Model) 0.0018 0.0005 0.0004 0.0003 0.0003
PRUC (Full) 0.0126 0.0033 0.0021 0.0018 0.0019

LightGCN (Base Model) 0.0016 0.0004 0.0002 0.0002 0.0003
PRUC (Full) 0.0052 0.0013 0.0013 0.0008 0.0007

MovieLens. MovieLens [Harper and Konstan, 2015] fea-286

tures movie ratings from users of varying ages. We use movie287

titles and movie plots as the item features xv
j . User features288

are derived from the first three films each user rated. Users289

who rated fewer than five movies or whose ratings do not ex-290

ceed 3 are omitted. Post-filtering, our experiments involve291

6,034 users and 3,705 items. We use two training-testing do-292

main splits based on user ages: 1-18, 18-25, 35-45, 45-50,293

50-56, 56+ → 25-35; and 25-35 → all the previous men-294

tioned age groups. For brevity, we refer to each age group by295

the starting age, e.g., “1” for “1-18”. We use the normalized296

movie released years as causal confounders sm.297

In all experiments, we use a cold-start setting where each298

testing domain user has only one rating in the training set,299

making the recommendations extremely challenging.300

3.2 Base Recommenders and Baselines301

Note that our PRUC method is a plug-and-play solution,302

compatible with any base recommenders. In this paper,303

we select the following five base recommenders to demon-304

strate PRUC’s enhancement of state-of-the-art recommenda-305

tion models.306

• CDL [Wang et al., 2015] is a Bayesian deep frame-307

work that jointly integrates deep representation learning308

of content information with collaborative filtering on the 309

ratings (feedback) matrix within a unified model. 310

• DLRM [Naumov et al., 2019] learns embeddings to rep- 311

resent both sparse and dense features by a neural net- 312

work and predicts event probability. 313

• PerK [Kweon et al., 2024] uses calibrated interaction 314

probabilities to determine the expected user utility and 315

selects the optimal recommendation size K to maximize 316

it. 317

• NCF [He et al., 2017] proposes a generalized matrix fac- 318

torization framework by replacing the inner product with 319

a trainable neural network. 320

• LightGCN [He et al., 2020] simplifies the design of 321

Graph Convolutional Networks (GCNs) for recommen- 322

dation tasks, making it easier to train and enhancing 323

overall performance compared with traditional GCNs. 324

Here CDL, DLRM, PerK, NCF and LightGCN serve as both 325

(1) our baselines to compare against and (2) our base rec- 326

ommenders to enhance (see Fig. ??). For more details on 327

training configurations, see Appendex A.2. 328

3.3 Metrics 329

We use five metrics for evaluation. 330



Table 2: Performance of PRUC with different base models on MovieLens. The best results are marked with bold face.

Data Method Recall@20 F1@20 MAP@20 NDCG@20 Precision@20

1, 18, 35, 45, 50, 56 →25

CDL (Base Model) 0.0179 0.0274 0.0045 0.0581 0.0587
PRUC (Full) 0.0252 0.0409 0.0072 0.1071 0.1076

DLRM (Base Model) 0.0714 0.1096 0.0285 0.2433 0.2366
PRUC (Full) 0.0716 0.1101 0.0284 0.2431 0.2372

PerK (Base Model) 0.0682 0.1029 0.0290 0.2224 0.2107
PRUC (Full) 0.0690 0.1037 0.0287 0.2190 0.2110

NCF (Base Model) 0.0050 0.0250 0.0011 0.0251 0.0251
PRUC (Full) 0.0240 0.0387 0.0057 0.0947 0.1005

LightGCN (Base Model) 0.0081 0.0132 0.0019 0.0381 0.0358
PRUC (Full) 0.0249 0.0402 0.0069 0.1076 0.1055

25 →1, 18, 35, 45, 50, 56

CDL (Base Model) 0.0576 0.0848 0.0174 0.1602 0.1716
PRUC (Full) 0.0645 0.0952 0.0202 0.1772 0.1897

DLRM (Base Model) 0.0848 0.1342 0.0382 0.3347 0.3225
PRUC (Full) 0.0903 0.1405 0.0414 0.3455 0.3319

PerK (Base Model) 0.0746 0.1164 0.0324 0.2701 0.2661
PRUC (Full) 0.0792 0.1225 0.0355 0.2821 0.2757

NCF (Base Model) 0.0140 0.0229 0.0030 0.0633 0.0652
PRUC (Full) 0.0450 0.0694 0.0144 0.1639 0.1711

LightGCN (Base Model) 0.0093 0.0157 0.0022 0.0497 0.0482
PRUC (Full) 0.0290 0.0480 0.0097 0.1493 0.1395

Recall. Recall@N measures the proportion of relevant331

items retrieved among the top N recommended items for user332

i:333

Recalli@N =

N∑
n=1

reli,n|Ji|, (27)

where reli,n is an indicator that equals 1 if the item at rank334

n is relevant to user i, and 0 otherwise. |Ji| denotes the total335

number of relevant items for user i.336

Precision. Precision@N measures the proportion of the337

top N recommended items that are relevant to user i:338

Precisioni@N =

N∑
n=1

reli,nN, (28)

where reli,n is 1 if the item at rank n is relevant to user i, and339

0 otherwise.340

mAP. Mean Average Precision (mAP) computes the av-341

erage precision over all relevant items for user i. See Ap-342

pendix A.1 for more details.343

F1-score. The F1 Score@N for user i is the harmonic344

mean of Precision@N and Recall@N, providing a balance345

between the two metrics:346

F1i@N = 2× Precisioni@N×Recalli@N
Precisioni@N+Recalli@N , (29)

where Recalli@N and Precisioni@N are defined in Eqn. 27347

and Eqn. 28, respectively.348

NDCG. Normalized Discounted Cumulative Gain349

(NDCG@N) evaluates the quality of the ranked list by350

considering the positions of the relevant items, giving351

higher scores to items appearing earlier in the list. See 352

Appendix A.1 for more details. 353

All metrics are computed by averaging over all users i. 354

3.4 Results 355

Results for Different Base Models. Table 1 and Table 2 356

show the performance of PRUC with various base models 357

across different metrics on both datasets. Results show that 358

our full model (“PRUC (Full)”) can generally boosts the base 359

models’ performance. 360

Recall@N with Larger N . Fig. 3 shows Recall@N for 361

N = 50, 100, 150, 200, 250, 300 across three base models 362

(CDL, DLRM, and PerK) and three training-testing domain 363

splits. These figures indicate that PRUC surpasses the base 364

models even without the causality component (“PRUC w/o 365

Causality”), while full PRUC consistently outperforms its 366

non-causal counterpart in all settings. We observe similar re- 367

sults for other base models. 368

Visualizations of the Clusters. Fig. 4 visualizes the user 369

latent u for all five base models on the XMRec dataset. Each 370

visualization shows a distinct separation into 3 clusters, indi- 371

cating successful user grouping of our model. Furthermore, 372

Figure 5 illustrates the relationship between user clusters and 373

items using the CDL-based PRUC model on the same dataset. 374

For each user, we selected the item with the highest rating 375

they have given, recorded the item ID and its rating, and vi- 376

sualized the results. Different clusters are represented using 377

distinct colors, effectively showcasing the distribution and 378

preferences of users within each cluster. For instance, Clus- 379

ter 1 (Red) shows pronounced preferences for 4-5 specific 380

items, underscoring the impact of user clustering on improv- 381



Table 3: Comparison between PRUC w/o Causality and PRUC (Full) on a specific domain with different base models on XMRec. The best
results are marked with bold face.

Data Method Recall@20 F1@20 MAP@20 NDCG@20 Precision@20

France, Italy, India →Japan, Mexico

CDL PRUC w/o Causality 0.1058 0.0126 0.0333 0.0088 0.0067
PRUC (Full) 0.1091 0.0128 0.0463 0.0108 0.0068

DLRM PRUC w/o Causality 0.0232 0.0026 0.0039 0.0014 0.0014
PRUC (Full) 0.0295 0.0035 0.0048 0.0018 0.0018

PerK PRUC w/o Causality 0.1376 0.0160 0.0558 0.0129 0.0085
PRUC (Full) 0.1635 0.0192 0.0637 0.0151 0.0102

NCF PRUC w/o Causality 0.1056 0.0126 0.0235 0.0074 0.0067
PRUC (Full) 0.1137 0.0137 0.0309 0.0090 0.0073

LightGCN PRUC w/o Causality 0.0940 0.0112 0.0289 0.0076 0.0059
PRUC (Full) 0.1003 0.0121 0.0316 0.0084 0.0064

Figure 3: Recall@N on XMRec for PRUC with three base models: CDL, DLRM, and PerK.

ing PRUC’s performance.382

Performance of Each Clusters Discovered by PRUC.383

For a deeper understanding of the model performance, we in-384

clude more fine-grained results for different clusters discov-385

ered by PRUC in Appendix A.3. Results show that our PRUC386

can usually improve performance in most clusters.387

Ablation Study. Both Table 3 and Fig. 3 compare388

“PRUC w/o Causality” and “PRUC (Full)”, showing that389

“PRUC (Full)” consistently outperforms “PRUC w/o Causal-390

ity”, highlighting the effectiveness of causal inference in391

PRUC. Comparison between the base model and “PRUC w/o392

Causality” also shows performance improvements, verifying393

the effectiveness of PRUC’s user cluster discovery. An abla- 394

tion study for other domains is detailed in Appendix A.4. 395

4 Related Work 396

Domain-Dependent Recommendation. Previous work 397

has explored various in-domain recommendation scenarios. 398

Early methods, such as PMF [Mnih and Salakhutdinov, 2007] 399

and BPR [Rendle et al., 2012], applied collaborative fil- 400

tering techniques to address challenges in recommendation. 401

Later, methods such as GRU4Rec [Hidasi et al., 2016], 402

SAS4Rec [Kang and McAuley, 2018] and KGAT [Wang et 403
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Figure 4: Clusters of users based on the user latent u from PRUC with base models CDL (left), DLRM (left center), PerK (center), NCF
(right center) and LightGCN(right) for the split “France, Italy, India → Japan, Mexico”. All user latents are reduced to 2D by t-SNE.
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Figure 5: Clusters of users based on their highest rated items, using
the CDL-based PRUC model applied to the XMRec dataset. X-axis
indicates the item ID, while Y-axis indicates the score of the item.
Clusters are distinguished by different colors.

al., 2019] leveraged advanced deep learning models to en-404

hance the performance of recommender systems. These ap-405

proaches focus on rating data between items and users but406

do not incorporate item features. Collaborative deep learn-407

ing (CDL) models [Wang et al., 2015, 2016; Zhang et al.,408

2016; Li and She, 2017] incorporate feature data to enable409

pretrained recommenders, making them more versatile in dif-410

ferent contexts, such as cold start scenarios.411

Despite significant advances in in-domain recommenda-412

tions, cross-domain recommendation remains relatively un-413

derstudied. Existing work has utilized domain adaptation414

techniques [Xu et al., 2023; Liu et al., 2023; Shi and Wang,415

2023; Xu et al., 2022; Wang et al., 2020a; Ganin et al.,416

2016] to tackle this challenge, often relying on common417

users or items across source (training) and target (testing) do-418

mains [Yuan et al., 2020; Wu et al., 2020; Bi et al., 2020; Li419

et al., 2019; Hansen et al., 2020; Liang et al., 2020; Zhu et420

al., 2020; Liu et al., 2020]. On the other hand, some methods421

enhance recommendation performance in both source and tar-422

get domains simultaneously [Li and Tuzhilin, 2020; Hu et al.,423

2018; Zhao et al., 2019]. In contrast to existing approaches,424

our PRUC first infers user clusters and confounders before425

making recommendations based on the identified user clus-426

ters, leading to improved generalization and greater robust- 427

ness against domain shifts. 428

Causal Inference for Recommendation. Causal infer- 429

ence [Pearl, 2009] has been widely applied to model cause- 430

and-effect relationships between variables in the machine 431

learning community. Recently, it has been employed to im- 432

prove the performance of recommender systems [Wang et 433

al., 2020b]. PDA [Zhang et al., 2021] uses causal interven- 434

tion to address popularity bias in recommendations, while 435

DICE [Zheng et al., 2021] learns representations from user 436

interactions based on the structured causal model (SCM). Ad- 437

ditionally, some research focuses on debiasing recommenda- 438

tions without adopting a causal inference perspective [Li et 439

al., 2021; Wang et al., 2022; Chen et al., 2023]. However, 440

these approaches do not consider user groups within the SCM 441

framework. In contrast, our method divides users into clusters 442

based on a confounder variable and generates recommenda- 443

tions by aggregating user ratings through do-calculus, provid- 444

ing a more interpretable and sophisticated approach. 445

5 Conclusion 446

In this paper, we address the problem of cross-domain rec- 447

ommendation by introducing a novel causal Bayesian frame- 448

work, named Probabilistic Residual User Clustering (PRUC). 449

PRUC generates recommendations by: (1) inferring the user 450

cluster ID, (2) inferring the residual rating based on our causal 451

debiasing framework, and (3) predicting the final rating as 452

a correction to the base model’s prediction. PRUC can en- 453

hance the performance of any base recommenders in a plug- 454

and-play manner, and automatically discover meaningful user 455

clusters. As a general probabilistic framework compatible 456

with various recommendation systems, PRUC can be ex- 457

tended to additional modalities beyond textual data in future 458

research. Furthermore, PRUC provides interpretability by un- 459

covering latent user preferences and biases that influence rat- 460

ing predictions. Its modular design also allows seamless inte- 461

gration with deep learning-based recommenders, making it a 462

scalable and adaptable solution for diverse recommendation 463

scenarios. 464
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A More Details on Experiments and Implementation 637

A.1 Metrics 638

mAP. mAP is defined as: 639

APi =
1

|Ji|

N∑
n=1

reli,n × Precisioni@n, (30)

where N is the total number of recommended items, Precisioni@n is the precision at rank n, and |Ji| is the total number of 640

relevant items for user i. The mean Average Precision (mAP) is then calculated by averaging APi over all users: 641

mAP =
1

|I|

|I|∑
i=1

APi, (31)

where |I| is the total number of users. 642

NDCG. NDCG@N is computed as follows. 643

First, the Discounted Cumulative Gain (DCG@N) is calculated: 644

DCGi@N =

N∑
n=1

2reli,n − 1

log2(n+ 1)
, (32)

where reli,n denotes the relevance of the item at position n for user i. Next, the Ideal Discounted Cumulative Gain (IDCG@N), 645

representing the maximum possible DCG (i.e., all relevant items ranked at the top), is calculated as: 646

IDCGi@N =

min(N,|Ji|)∑
n=1

21 − 1

log2(n+ 1)
=

min(N,|Ji|)∑
n=1

1

log2(n+ 1)
, (33)

where |Ji| denotes the total number of relevant items for user i. 647

Finally, the Normalized Discounted Cumulative Gain is obtained by normalizing DCG@N by IDCG@N: 648

NDCGi@N =
DCGi@N

IDCGi@N
. (34)

Here the logarithmic term log2(n+ 1) discounts the relevance based on the item’s position in the ranked list, serving as the 649

normalization factor. 650

A.2 Training Configurations 651

Following CDL [Wang et al., 2015], we set the hidden dimension h = 50 for all latent vectors, as well as for the encoder and 652

decoder networks. During training, we use AdamW [Kingma and Ba, 2015] as our optimizer, with a learning rate of 10−3 and 653

a batch size of 256. The base models were trained for 100 epochs, while PRUC was trained for 150 epochs. All experiments 654

were conducted on an NVIDIA RTX A5000 GPU. 655

A.3 Performance of Each Clusters Discovered by PRUC 656

Table 9, 10, 11, 12, 13 show PRUC’s performance across different clusters on XMRec using CDL, DLRM, PerK, NCF, and 657

LightGCN as base models. These results support the conclusion that PRUC improves upon the base models even without 658

incorporating the causality component. Furthermore, the full PRUC consistently outperforms its non-causal counterpart across 659

all configurations. For example, CDL, as the base model, achieves a recall@20 of 0.0241 for User Cluster 1 in the split of 660

“France, Italy, India → Japan, Mexico”. When PRUC without the causal inference component is applied, recall improves to 661

0.0278. The full PRUC further enhances performance for this metric, achieving a recall@20 of 0.0708. 662

Table 4, 5, 6, 7, 8 show PRUC’s performance across different clusters on MovieLens with the same five base models. Even 663

with some fluctuations, the similar improvements are consistent with the results for XMRec. 664

A.4 Ablation Study 665

The performance comparison across Table 4-13 shows that “PRUC (Full)” generally outperforms “PRUC w/o Causality”, 666

highlighting the effectiveness of causal inference in PRUC. Additionally, comparing the base model with “PRUC w/o Causality” 667

reveals performance enhancements, suggesting that PRUC’s user cluster discovery significantly boosts performance. 668



Table 4: Performance of PRUC on different user clusters with CDL as the base model on MovieLens. “-” means a cluster contains only
training-set users, i.e., no test-set users to evaluate. The best results are marked with bold face.

Data Cluster Method Recall@20 F1@20 MAP@20 NDCG@20 Precision@20

1, 18, 35, 45, 50, 56 →25

CDL (Base Model) 0.0 0.0 0.0 0.0 0.0
1 PRUC w/o Causality 0.0 0.0 0.0 0.0 0.0

PRUC (Full) 0.0 0.0 0.0 0.0 0.0

CDL (Base Model) - - - - -
2 PRUC w/o Causality - - - - -

PRUC (Full) - - - - -

CDL (Base Model) 0.0179 0.0274 0.0045 0.0581 0.0587
3 PRUC w/o Causality 0.0186 0.0302 0.0056 0.0864 0.0802

PRUC (Full) 0.0252 0.0409 0.0072 0.1071 0.1077

25 →1, 18, 35, 45, 50, 56

CDL (Base Model) 0.0558 0.0861 0.0174 0.1758 0.1879
1 PRUC w/o Causality 0.0317 0.0528 0.0095 0.1511 0.1572

PRUC (Full) 0.0558 0.0861 0.0174 0.1759 0.1879
CDL (Base Model) 0.0651 0.0795 0.0173 0.0938 0.1020

2 PRUC w/o Causality 0.0676 0.0880 0.0183 0.1159 0.1259
PRUC (Full) 0.1016 0.1341 0.0319 0.1832 0.1972

CDL (Base Model) - - - - -
3 PRUC w/o Causality - - - - -

PRUC (Full) - - - - -

Table 5: Performance of PRUC on different user clusters with DLRM as the base model on MovieLens. “-” means a cluster contains only
training-set users, i.e., no test-set users to evaluate. The best results are marked with bold face.

Data Cluster Method Recall@20 F1@20 MAP@20 NDCG@20 Precision@20

1, 18, 35, 45, 50, 56 →25

DLRM (Base Model) - - - - -
1 PRUC w/o Causality - - - - -

PRUC (Full) - - - - -

DLRM (Base Model) 0.0714 0.1097 0.0285 0.2433 0.2367
2 PRUC w/o Causality 0.0269 0.0434 0.0073 0.1078 0.1112

PRUC (Full) 0.0716 0.1101 0.0284 0.2431 0.2372
DLRM (Base Model) 0.0 0.0 0.0 0.0 0.0

3 PRUC w/o Causality 0.0 0.0 0.0 0.0 0.0
PRUC (Full) 0.0 0.0 0.0 0.0 0.0

25 →1, 18, 35, 45, 50, 56

DLRM (Base Model) 0.0790 0.1264 0.0343 0.3266 0.3146
1 PRUC w/o Causality 0.0328 0.0548 0.0116 0.1716 0.1656

PRUC (Full) 0.0848 0.1366 0.0396 0.3634 0.3505
DLRM (Base Model) 0.0882 0.1390 0.0405 0.3396 0.3271

2 PRUC w/o Causality 0.0975 0.1382 0.0426 0.2572 0.2374
PRUC (Full) 0.1119 0.1561 0.0486 0.2745 0.2583

DLRM (Base Model) - - - - -
3 PRUC w/o Causality - - - - -

PRUC (Full) - - - - -



Table 6: Performance of PRUC on different user clusters with Perk as the base model on MovieLens. “-” means a cluster contains only
training-set users, i.e., no test-set users to evaluate. The best results are marked with bold face.

Data Cluster Method Recall@20 F1@20 MAP@20 NDCG@20 Precision@20

1, 18, 35, 45, 50, 56 →25

Perk (Base Model) - - - - -
1 PRUC w/o Causality - - - - -

PRUC (Full) - - - - -

Perk (Base Model) 0.0686 0.1040 0.0295 0.2271 0.2150
2 PRUC w/o Causality 0.0583 0.0884 0.0215 0.1788 0.1820

PRUC (Full) 0.0683 0.1036 0.0288 0.2215 0.2136

Perk (Base Model) 0.0585 0.0745 0.0173 0.1053 0.1023
3 PRUC w/o Causality 0.0550 0.0701 0.0139 0.0942 0.0967

PRUC (Full) 0.0847 0.1074 0.0277 0.1559 0.1467

25 →1, 18, 35, 45, 50, 56

Perk (Base Model) 0.0745 0.1179 0.0332 0.2868 0.2826
1 PRUC w/o Causality 0.0319 0.0530 0.0140 0.1811 0.1563

PRUC (Full) 0.0745 0.1179 0.0332 0.2870 0.2828
Perk (Base Model) 0.0750 0.1090 0.0292 0.2033 0.1995

2 PRUC w/o Causality 0.0939 0.1338 0.0367 0.2399 0.2323
PRUC (Full) 0.0984 0.1407 0.0446 0.2628 0.2469

Perk (Base Model) - - - - -
3 PRUC w/o Causality - - - - -

PRUC (Full) - - - - -

Table 7: Performance of PRUC on different user clusters with NCF as the base model on MovieLens. “-” means a cluster contains only
training-set users, i.e., no test-set users to evaluate. The best results are marked with bold face.

Data Cluster Method Recall@20 F1@20 MAP@20 NDCG@20 Precision@20

1, 18, 35, 45, 50, 56 →25

NCF (Base Model) 0.0 0.0 0.0 0.0 0.0
1 PRUC w/o Causality 0.0 0.0 0.0 0.0 0.0

PRUC (Full) 0.1964 0.1325 0.0230 0.0754 0.1000
NCF (Base Model) 0.0051 0.0087 0.0011 0.0282 0.0279

2 PRUC w/o Causality 0.0271 0.0443 0.0067 0.1134 0.1210
PRUC (Full) 0.0285 0.0463 0.0070 0.1159 0.1231

NCF (Base Model) 0.0047 0.0074 0.0009 0.0172 0.0177
3 PRUC w/o Causality 0.0125 0.0192 0.0023 0.0386 0.0409

PRUC (Full) 0.0120 0.0185 0.0022 0.0389 0.0410

25 →1, 18, 35, 45, 50, 56

NCF (Base Model) 0.0149 0.0248 0.0032 0.0710 0.0729
1 PRUC w/o Causality 0.0309 0.0515 0.0088 0.1494 0.1555

PRUC (Full) 0.0306 0.0512 0.0087 0.1484 0.1551

NCF (Base Model) - - - - -
2 PRUC w/o Causality - - - - -

PRUC (Full) - - - - -

NCF (Base Model) 0.0098 0.0150 0.0021 0.0302 0.0319
3 PRUC w/o Causality 0.0941 0.1316 0.0312 0.2094 0.2185

PRUC (Full) 0.1071 0.1481 0.0392 0.2309 0.2402



Table 8: Performance of PRUC on different user clusters with LightGCN as the base model on MovieLens. “-” means a cluster contains only
training-set users, i.e., no test-set users to evaluate. The best results are marked with bold face.

Data Cluster Method Recall@20 F1@20 MAP@20 NDCG@20 Precision@20

1, 18, 35, 45, 50, 56 →25

LightGCN (Base Model) - - - - -
1 PRUC w/o Causality - - - - -

PRUC (Full) - - - - -

LightGCN (Base Model) 0.0081 0.0132 0.0019 0.0381 0.0358
2 PRUC w/o Causality 0.0248 0.0402 0.0070 0.1075 0.1052

PRUC (Full) 0.0248 0.0401 0.0069 0.1073 0.1053
LightGCN (Base Model) 0.0226 0.0224 0.0075 0.0227 0.0222

3 PRUC w/o Causality 0.0214 0.0378 0.0115 0.1911 0.1611
PRUC (Full) 0.0563 0.0884 0.0226 0.2219 0.2056

25 →1, 18, 35, 45, 50, 56

LightGCN (Base Model) 0.0094 0.0157 0.0022 0.0498 0.0484
1 PRUC w/o Causality 0.0300 0.0495 0.0101 0.1515 0.1416

PRUC (Full) 0.0288 0.0477 0.0097 0.1492 0.1394

LightGCN (Base Model) 0.0068 0.0110 0.0011 0.0277 0.0294
2 PRUC w/o Causality 0.0297 0.0428 0.0130 0.0953 0.0765

PRUC (Full) 0.0531 0.0793 0.0204 0.1597 0.1559
LightGCN (Base Model) - - - - -

3 PRUC w/o Causality - - - - -
PRUC (Full) - - - - -

Table 9: Performance of PRUC on different user clusters with CDL as the base model on XMRec. “-” means a cluster contains only training-
set users, i.e., no test-set users to evaluate. The best results are marked with bold face.

Data Cluster Method Recall@20 F1@20 MAP@20 NDCG@20 Precision@20

France, Italy, India →Japan, Mexico

CDL (Base Model) 0.0241 0.0028 0.0062 0.0018 0.0015
1 PRUC w/o Causality 0.1972 0.0238 0.0905 0.0197 0.0127

PRUC (Full) 0.0708 0.0074 0.0652 0.0105 0.0039

CDL (Base Model) 0.0126 0.0014 0.0022 0.0007 0.0008
2 PRUC w/o Causality 0.0902 0.0107 0.0236 0.0069 0.0057

PRUC (Full) 0.1156 0.0138 0.0431 0.0109 0.0073

CDL (Base Model) - - - - -
3 PRUC w/o Causality - - - - -

PRUC (Full) - - - - -

Mexico, Spain, India →Japan, Germany

CDL (Base Model) 0.1742 0.0225 0.0333 0.0123 0.0120
1 PRUC w/o Causality 0.2114 0.0267 0.0707 0.0194 0.0142

PRUC (Full) 0.1665 0.0222 0.0634 0.0170 0.0119

CDL (Base Model) 0.0903 0.0102 0.0289 0.0072 0.0054
2 PRUC w/o Causality 0.1532 0.0187 0.0524 0.0136 0.0100

PRUC (Full) 0.1796 0.0233 0.0579 0.0160 0.0124

CDL (Base Model) - - - - -
3 PRUC w/o Causality - - - - -

PRUC (Full) - - - - -

Germany, Italy, Japan →United States, India

CDL (Base Model) 0.0262 0.0059 0.0079 0.0041 0.0033
1 PRUC w/o Causality 0.0261 0.0063 0.0072 0.0044 0.0036

PRUC (Full) 0.0266 0.0064 0.0062 0.0042 0.0037

CDL (Base Model) 0.0244 0.0054 0.0088 0.0042 0.0031
2 PRUC w/o Causality 0.0166 0.0037 0.0041 0.00234 0.0021

PRUC (Full) 0.0250 0.0055 0.0088 0.0042 0.0031

CDL (Base Model) 0.0277 0.0049 0.0066 0.0028 0.0027
3 PRUC w/o Causality 0.0194 0.0045 0.0049 0.0030 0.0026

PRUC (Full) 0.0278 0.0049 0.0067 0.0028 0.0027



Table 10: Performance of PRUC on different user clusters with DLRM as the base model on XMRec. “-” means a cluster contains only
training-set users, i.e., no test-set users to evaluate. The best results are marked with bold face.

Data Cluster Method Recall@20 F1@20 MAP@20 NDCG@20 Precision@20

France, Italy, India →Japan, Mexico

DLRM (Base Model) 0.0051 0.0005 0.0004 0.0002 0.0003
1 PRUC w/o Causality 0.0246 0.0027 0.0039 0.0014 0.0014

PRUC (Full) 0.0345 0.004 0.0056 0.0021 0.0021
DLRM (Base Model) 0.0000 0.0000 0.0000 0.0000 0.0000

2 PRUC w/o Causality 0.0150 0.0017 0.0040 0.0010 0.0009
PRUC (Full) 0.0000 0.0000 0.0000 0.0000 0.0000

DLRM (Base Model) - - - - -
3 PRUC w/o Causality - - - - -

PRUC (Full) - - - - -

Mexico, Spain, India →Japan, Germany

DLRM (Base Model) 0.0000 0.0000 0.0000 0.0000 0.0000
1 PRUC w/o Causality 0.3296 0.0416 0.0203 0.0153 0.0222

PRUC (Full) 0.3074 0.0395 0.0213 0.0152 0.0211

DLRM (Base Model) 0.0780 0.0096 0.0087 0.0042 0.0051
2 PRUC w/o Causality 0.1398 0.0174 0.0277 0.0096 0.0093

PRUC (Full) 0.1984 0.0241 0.0555 0.0157 0.0128
DLRM (Base Model) - - - - -

3 PRUC w/o Causality - - - - -
PRUC (Full) - - - - -

Germany, Italy, Japan →United States, India

DLRM (Base Model) 0.0023 0.0006 0.0003 0.0003 0.0003
1 PRUC w/o Causality 0.0042 0.0011 0.0010 0.0007 0.0007

PRUC (Full) 0.0046 0.0011 0.0009 0.0007 0.0006

DLRM (Base Model) 0.0018 0.0005 0.0003 0.0003 0.0003
2 PRUC w/o Causality 0.0045 0.0012 0.0010 0.0007 0.0007

PRUC (Full) 0.0045 0.0011 0.0012 0.0007 0.0007
DLRM (Base Model) 0.0036 0.0008 0.0005 0.0004 0.0004

3 PRUC w/o Causality 0.0052 0.0015 0.0009 0.0009 0.0009
PRUC (Full) 0.0141 0.0034 0.0075 0.0032 0.0019

Table 11: Performance of PRUC on different user clusters with PerK as the base model on XMRec. “-” means a cluster contains only
training-set users, i.e., no test-set users to evaluate. The best results are marked with bold face.

Data Cluster Method Recall@20 F1@20 MAP@20 NDCG@20 Precision@20

France, Italy, India →Japan, Mexico

PerK (Base Model) 0.1752 0.0204 0.1152 0.022 0.0108
1 PRUC w/o Causality 0.2153 0.0260 0.1255 0.0252 0.0139

PRUC (Full) 0.1782 0.0210 0.1162 0.0226 0.0114

PerK (Base Model) 0.0986 0.0115 0.0403 0.0094 0.0061
2 PRUC w/o Causality 0.1243 0.0143 0.0440 0.0108 0.0076

PRUC (Full) 0.1629 0.0189 0.0548 0.0138 0.0100

PerK (Base Model) - - - - -
3 PRUC w/o Causality - - - - -

PRUC (Full) - - - - -

Mexico, Spain, India →Japan, Germany

PerK (Base Model) 0.1434 0.0176 0.0582 0.014 0.0094
1 PRUC w/o Causality 0.2175 0.0262 0.0913 0.0217 0.0140

PRUC (Full) 0.2905 0.0353 0.1157 0.0278 0.0188

PerK (Base Model) 0.1495 0.0184 0.0723 0.0166 0.0098
2 PRUC w/o Causality 0.2783 0.0307 0.0964 0.0232 0.0163

PRUC (Full) 0.1790 0.0224 0.0646 0.0167 0.0120

PerK (Base Model) - - - - -
3 PRUC w/o Causality - - - - -

PRUC (Full) - - - - -

Germany, Italy, Japan →United States, India

PerK (Base Model) 0.0194 0.0043 0.0057 0.003 0.0024
1 PRUC w/o Causality 0.0295 0.0066 0.0087 0.0046 0.0037

PRUC (Full) 0.0308 0.0068 0.0086 0.0046 0.0038

PerK (Base Model) 0.0126 0.0028 0.0032 0.0018 0.0016
2 PRUC w/o Causality 0.0155 0.0035 0.0040 0.0022 0.0020

PRUC (Full) 0.0162 0.0037 0.0048 0.0025 0.0021

PerK (Base Model) 0.0261 0.0035 0.0091 0.0025 0.0019
3 PRUC w/o Causality 0.0174 0.0027 0.0013 0.0012 0.0014

PRUC (Full) 0.0266 0.0041 0.0102 0.0033 0.0022



Table 12: Performance of PRUC on different user clusters with NCF as the base model on XMRec. “-” means a cluster contains only training-
set users, i.e., no test-set users to evaluate. The best results are marked with bold face.

Data Cluster Method Recall@20 F1@20 MAP@20 NDCG@20 Precision@20

France, Italy, India →Japan, Mexico

NCF (Base Model) 0.0090 0.0010 0.0019 0.0005 0.0005
1 PRUC w/o Causality 0.2013 0.0238 0.0537 0.0151 0.0127

PRUC (Full) 0.1581 0.0176 0.0476 0.0122 0.0093

NCF (Base Model) 0.0165 0.0019 0.0032 0.0010 0.0010
2 PRUC w/o Causality 0.0893 0.0107 0.0184 0.0061 0.0057

PRUC (Full) 0.1062 0.0130 0.0280 0.0084 0.0069
NCF (Base Model) - - - - -

3 PRUC w/o Causality - - - - -
PRUC (Full) - - - - -

Mexico, Spain, India →Japan, Germany

NCF (Base Model) 0.0097 0.0013 0.0022 0.0007 0.0007
1 PRUC w/o Causality 0.1081 0.0142 0.0181 0.0073 0.0076

PRUC (Full) 0.1560 0.0202 0.0280 0.0107 0.0108
NCF (Base Model) - - - - -

2 PRUC w/o Causality - - - - -
PRUC (Full) - - - - -

NCF (Base Model) 0.0 0.0 0.0 0.0 0.0
3 PRUC w/o Causality 0.0 0.0 0.0 0.0 0.0

PRUC (Full) 0.0 0.0 0.0 0.0 0.0

Germany, Italy, Japan →United States, India

NCF (Base Model) 0.0020 0.0005 0.0006 0.0004 0.0003
1 PRUC w/o Causality 0.0204 0.0051 0.0041 0.0030 0.0029

PRUC (Full) 0.0214 0.0055 0.0039 0.0032 0.0031
NCF (Base Model) 0.0018 0.0005 0.0003 0.0003 0.0003

2 PRUC w/o Causality 0.0064 0.0015 0.0008 0.0008 0.0009
PRUC (Full) 0.0079 0.0021 0.0011 0.0011 0.0012

NCF (Base Model) 0.0 0.0 0.0 0.0 0.0
3 PRUC w/o Causality 0.0 0.0 0.0 0.0 0.0

PRUC (Full) 0.0 0.0 0.0 0.0 0.0

Table 13: Performance of PRUC on different user clusters with LightGCN as the base model on XMRec. “-” means a cluster contains only
training-set users, i.e., no test-set users to evaluate. The best results are marked with bold face.

Data Cluster Method Recall@20 F1@20 MAP@20 NDCG@20 Precision@20

France, Italy, India →Japan, Mexico

LightGCN (Base Model) 0.0261 0.0034 0.0028 0.0015 0.0018
1 PRUC w/o Causality 0.1742 0.0209 0.0749 0.0167 0.0111

PRUC (Full) 0.1400 0.0154 0.0482 0.0115 0.0081

LightGCN (Base Model) 0.0168 0.0019 0.0054 0.0013 0.0010
2 PRUC w/o Causality 0.0804 0.0095 0.0211 0.0060 0.0051

PRUC (Full) 0.0936 0.0115 0.0288 0.0079 0.0061
LightGCN (Base Model) - - - - -

3 PRUC w/o Causality - - - - -
PRUC (Full) - - - - -

Mexico, Spain, India →Japan, Germany

LightGCN (Base Model) 0.0093 0.0009 0.0046 0.0008 0.0005
1 PRUC w/o Causality 0.0972 0.0097 0.0129 0.0045 0.0051

PRUC (Full) 0.0 0.0 0.0 0.0 0.0

LightGCN (Base Model) 0.0170 0.0023 0.0062 0.0017 0.0012
2 PRUC w/o Causality 0.1040 0.0135 0.0215 0.0077 0.0072

PRUC (Full) 0.1790 0.0224 0.0646 0.0167 0.0120
LightGCN (Base Model) - - - - -

3 PRUC w/o Causality - - - - -
PRUC (Full) - - - - -

Germany, Italy, Japan →United States, India

LightGCN (Base Model) 0.0016 0.0005 0.0002 0.0002 0.0003
1 PRUC w/o Causality 0.0062 0.0017 0.0012 0.0010 0.0010

PRUC (Full) 0.0066 0.0017 0.0014 0.0011 0.0010
LightGCN (Base Model) 0.0 0.0 0.0 0.0 0.0

2 PRUC w/o Causality 0.0 0.0 0.0 0.0 0.0
PRUC (Full) 0.0 0.0 0.0 0.0 0.0

LightGCN (Base Model) 0.0016 0.0004 .0002 0.0002 0.0002
3 PRUC w/o Causality 0.0037 0.0009 0.0010 0.0006 0.0005

PRUC (Full) 0.0039 0.0008 0.0012 0.0006 0.0005
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