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ABSTRACT

With the rapid rise of agentic systems, interaction and collaboration between agents has
become a central challenge in multimodal large language model (MLLM) research. In this
work, we study a unique form of interaction where two agents hold divergent visual spaces.
To investigate this, we adopt image reference games as a testbed and design experiments
with five distinct perceptual distortions inspired by real human visual impairments (e.g.,
cataract, color blindness). We evaluate in two settings, online and offline, with four post-
training algorithms: SFT, DPO (offline) and KTO, GRPO (online), providing the first
systematic study of alignment under divergent visual perceptions. Our results reveal that (i)
offline adaptation can provide strong improvements, with DPO consistently outperforming
other methods when supported by high-quality preference data; (ii) among online adaptation
methods, KTO yields strongest average gains across datasets and (iii) qualitative analysis
shows that adapted agents shift their descriptions toward perceptual features accessible to
their conversation partners. Taken together, these findings highlight that offline methods
are the preferable solution when supervision is available while online approaches serve as a
complementary strategy for dynamic settings where distortions or partner characteristics are
unknown in advance. We release code and preference datasets to support future research.

1 INTRODUCTION

Large Language Models (LLMs) and their multimodal extensions are increasingly deployed in real-world
settings, powering applications in video analysis, human—AlI collaboration, and autonomous decision-making
(Fu et al.} 2024} [Liu et al., 2024b; [Fu et al., 2025; Huang et al., [2025bza; |Hu et al., [ 2025; Bian et al., 2025ab;
Wau et al.| [2025). These deployments require agents not only to process complex sensory streams but also to
interact effectively with humans and other agents. A common assumption in prior work is that agents share a
consistent world-view (Ju & Arall[2025; Hsu et al., 2025 |Zhang et al.} 2024)). Yet in practice, communication
often breaks down precisely because partners perceive the world differently. For humans, such divergences
arise naturally in conditions of impaired or limited vision (such as cataract or color blindness) where shared
understanding depends on adapting communication to perceptual asymmetries. More importantly, there are
over 1 billion (Nwabueze] [2023)) people with perceptual disabilities, yet very few works have explored the
alignment with this large group of people.

Motivated by these human-centered challenges, we study how artificial agents can communicate under
mismatched perceptual abilities. Specifically, we explore alignment between agents that diverge in their
visual perception. To ground this problem, we simulate five types of image distortions inspired by real human
visual impairments, spanning both spatial and pixel-level degradations. We adopt the image reference game
setup (Corona et al., 2019) with divergent visual spaces, where a speaker describes a target image and a
listener must identify it among a pair. Crucially, the speaker observes the undistorted images, while the
listener only sees distorted versions, creating a perceptual gap that the speaker must bridge.
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Our study examines how agents can adapt to such mismatches. We consider both offline adaptation, using
supervised fine-tuning (SFT) and direct preference optimization (DPO) [Rafailov et al.|(2023)), and online
adaptation, using preference-based algorithms such as Kahneman-Tversky Optimization (KTO)
2024) and Group Relative Policy Optimization (GRPO) 2024). To support preference
learning, we construct a dataset by prompting Qwen2.5-VL (Wang et al., 2024b)) with distorted inputs to
generate positive examples and with undistorted inputs to generate negative examples, explicitly modeling
the gap between successful and failed communication.

While our core contribution is a technical investigation of Al-to-Al communication under perceptual mismatch,
the fundamental motivation for modeling divergent visual perception stems from the critical need for accessible
and inclusive Al systems. Visual impairments are a widespread global health issue, with an estimated 2.2
billion people living with vision impairment or blindness according to the World Health Organization
(WHO) |World Health Organization & The Lancet Global Health Commission on Global Eye Health| (2021]).
The sheer scale of this population underscores the necessity for LLMs to communicate effectively with users
whose visual experiences differ significantly from the “normal” vision assumed by most models. Ensuring
that LLMs can adapt their communication to users with divergent perceptual abilities is not merely a matter
of engineering efficiency, but a prerequisite for deploying equitable, human-centric Al that serves the entire
global population.

In summary, our contributions are:

* We introduce a new setting for studying agent alignment under divergent visual perceptions, simulat-
ing distortions inspired by real human visual impairments.

* We conduct a systematic analysis of agent adaptation across both offline (SFT, DPO) and online
(KTO, GRPO) learning paradigms.

* We release a preference dataset, constructed from distorted and undistorted inputs, to support future
research on multimodal agent collaboration.

2 RELATED WORK

Human communication often requires adapting to partners with different perceptual experiences, for example
in cases of impaired or limited vision. Inspired by this, recent work has introduced multimodal reference
games as testbeds for studying alignment (Corona et al.},[2019} [Takmaz et al.} 2023)) between communicating
agents. However, most approaches still assume identical perceptual inputs across agents, overlooking the
mismatches that frequently arise in practice due to sensory limitations or hardware degradation.

Personalization in language models has long been studied, particularly in dialogue systems (Serban et al.,

2015} [Song et al} 2019} [Zhang et al} 2019). Some Theory of mind (ToM)-based approaches 2023)
propose plug-and-play modules that update weights dynamically (Takmaz et al., [2023)) or model listener

behavior internally (Raileanu et al,[2018). While prior work has explored speaker—listener adaptation in
text-only settings (Wang et al., [2024a)), we extend this line to multimodal image reference games. Other

personalization methods learn on large scale user dialogue histories (Ma et al, 2021}, [Zhong et al., [2022),
whereas our focus is on both online and offline adaptation strategies.

Parameter-efficient fine-tuning enables scalable adaptation of multimodal models. LoRA modules (Hu et al.,
20224)) add trainable low-rank adapters on top of frozen backbones and have inspired many extensions (Zhang|
et al.,[2023} [Lialin et al 2023} [Liu et all, 2023} [Wu et al., 2024} [Sheng et al., 2023} [yang Liu et al.| 2024).

Alternative methods adapt only small subsets of weights (Ben Zaken et al.l 2022; |Ansell et al., [2021) or use
adapters embedded within or alongside network layers (Pfeiffer et al., 2020} |Sung et al., [2022; [Mercea et al.}

2024). In this work, we adopt widely used LoRA for adapting MLLMs.




Under review as a conference paper at ICLR 2026

Reinforcement learning provides another route for adaptation, especially in online settings (Snell et al.| [2023
Ziegler et al.,|2019; Ramamurthy et al., [2023). GRPO (Shao et al.,|[2024) stabilizes training by normalizing
rewards within groups, avoiding the need for a critic and reducing variance. Preference-based methods such
as KTO (Ethayarajh et al.,|2024)) and DPO (Rafailov et al.,|2024) optimize directly from positive/negative
feedback pairs. Related efforts (Guo et al., [2024; |Liu et al., 2024a) explore online adaptation via model
feedback, but our work focuses specifically on aligning communication under mismatched perceptual
conditions.

Visual reference identification has been studied in multimodal dialogue (de Vries et al., | 2016j N1 et al.| 2021}
Alaniz et al.|[2021; Das et al.} 2016)). While|Corona et al.|(2019) examined attribute-based reference games,
we broaden the scope to free-form description generation in the presence of perceptual impairments. One of
our contribution is to systematically compare online and offline adaptation strategies in this setting.

3 ALIGNING AGENTS WITH DIVERGENT VISUAL SPACES

3.1 TASK FORMULATION

We study a variant of the image reference game where speaker and listener have divergent visual spaces. Both
agents are given a target-confounding image pair, but the speaker observes the undistorted pair (g, Tconf)s
presented sequentially as a left and right image, and produces a message m describing the target. The
listener, in contrast, receives only the distorted pair (&g, Zconr) in random order and must identify the target
image from this pair conditioned on m. The listener chooses an action a € {left, right, none of these},
corresponding to selecting the left image, the right image, or rejecting both as inconsistent with the message.
Success is achieved when a points to the target (e.g., a = left when the left image is Zg).

The i-th interaction yields a binary reward r; € {0, 1}, where r; = 1 if the listener correctly identifies the
target and r; = O otherwise. If the listener selects “none of these,” the game is treated as a failure (r; = 0).
Because the speaker has access to richer visual information than the listener, effective communication requires
generating descriptions that remain faithful under distortion, avoiding reliance on perceptual details invisible
to the listener. This framework is further depicted in Fig. [I]

3.2 PERCEPTUAL DISTORTIONS

We design five perceptual distortions inspired by real human visual impairments, applied in either the spatial
or pixel domain. First, cataract, a condition where the eye’s lens becomes clouded and vision turns blurry
with reduced contrast, is simulated via Gaussian blurring coupled with contrast reduction, after which random
black artifacts are added to the image. Second, age-related macular degeneration (AMD), which leads to the
deterioration of the central retina and hampers fine-detail recognition while leaving peripheral vision intact,
is modeled by masking the central region of the image. Third, color blindness, a deficiency in perceiving
chromatic information, is represented by removing color channels and converting to luminance-only. Fourth,
tunnel vision, typically caused by glaucoma or retinitis pigmentosa and characterized by the loss of peripheral
vision, is simulated by masking out peripheral regions to retain only a central circular window. Lastly, retinal
detachment, where the retina separates and creates dark, irregular blind spots often starting at the periphery
or lower visual field, is simulated by overlaying irregular dark patches on the lower half of the image. An
example of these perceptual distortions can be seen in Fig. [I] For further details, we refer the reader to
Appendix E.
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Figure 1: Overview of the framework. (a) The speaker, adapted with LoRA, generates descriptions for
the target image and updates online via reinforcement learning (GRPO or KTO) based on listener feedback.
Listeners receive the description with distorted images and predict the referred image, providing rewards to
the speaker. (b) An offline data generation pipeline creates labeled descriptions for offline adaptation with
supervised finetuning and direct preference optimization (Rafailov et al., 2023). LoRA modules are trained
for each distortion to adapt the speaker.

3.3 PREFERENCE DATASET CONSTRUCTION

To enable offline adaptation in the reference game with divergent visual spaces, we construct a preference
dataset using Qwen2.5-VL-32B. The central idea is to create contrasting descriptions from conditioning on
distorted versus undistorted image pairs (Fig. [T). Distorted-view descriptions serve as positive preferences,
since they are aligned with the listener’s perceptual limitations, while undistorted-view descriptions serve as
negative preferences, as they often rely on features inaccessible under distortion. This preference framing
explicitly encodes communicative success under mismatched perceptual inputs.

We generate paired descriptions (m ™, m ™) with Qwen2.5-VL-32B where m™ represents positive preference
and m~ negative preference. The model is always presented with two images in order Image I (target) and
Image 2 (confounding) and is instructed to describe only Image 1. For the distorted-view query, we provide
(&1gt, Zeonf) and record the output as m™; for the normal-view query, we provide (&g, Zconf) and record the
output as m~. Keeping the instruction prompt constant ensures that differences in responses arise solely
from the change in visual input. By construction, m™ captures distortion-consistent descriptions interpretable
under impaired perception, while m™ encodes distortion-inconsistent content. This yields preference pairs
labeled m™ = m™, providing the contrastive supervision required by preference-based alignment methods
such as DPO. A final training instance from this preference dataset then contains the undistorted images
(%11, Teont ), the positive preference m ™, and the negative preference m ™.
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3.4 DATASET CONSTRUCTION

For each target image 2, we randomly sample a confounding image 2o, from the same dataset to act as a
distractor, without applying any post-processing or semantic filtering. Each pair is instantiated under both
normal and distorted views, yielding the tuple

((.’mgl, Teonf); (Ligt, Teonf)), instruction, (m™, 7777)),

where (.’f)lg[, Zeonf) denote their distorted counterparts. Qwen2.5-VL-32B is queried twice per instance—once
with distorted inputs to produce m™ and once with clean inputs for m~—using identical text prompts and a
fixed image ordering that always places the target as Image 1. This ensures that all variation in descriptions
arises solely from differences in visual perception. The unified prompt template is:

You see two images. Image 1: [IMG_1], Image 2: [IMG_2]. Focus on Image 1. Your goal
is to describe Image 1 in a way that clearly distinguishes it from Image 2. Do not mention
Image 2 in your description at all. Highlight unique features of Image 1 that differentiate it
from Image 2. Ignore the

Under distortion, this template promotes robustness by encouraging features that remain interpretable
despite perceptual noise, while strictly prohibiting reference to the distractor. The model thus produces
paired descriptions (m™, m™) that encode a binary preference m™ = m™ consistent with distortion-aware
communication, supporting preference-based optimization such as DPO. All instances are tokenized with a
2048-token context limit to preserve the full multimodal structure. The resulting dataset provides high-quality
contrastive supervision, aligning speaker behavior with the perceptual constraints of an impaired listener.

3.5 ADAPTING ALGORITHMS

We study offline and online post-training methods that are complementary in cost, stability, and feedback
needs. Offline adaptation (SFT, DPO) is a cost-effective ante-hoc strategy when perceptual distortion is
known in advance; SFT is a strong baseline and DPO (Rafailov et al., [2023) is a widely adopted preference-
optimization method that avoids training a reward model while enforcing a KL constraint. Online adaptation

(KTO (Ethayarajh et al.} [2024), GRPO (Shao et al.,[2024)) captures in situ personalization when adaptation to

individual listeners is desired and the visual divergence is unknown. All methods are applied to the speaker
policy 4 via LoRA 20228).

For offline adaptation, we train on preference triples {(x, m™, m ™)} where X = (2, Zcont) is the undistorted
input pair, m™ is the positive preference, and m ™~ is the negative preference. All algorithms condition on
x. SFT fine-tunes the speaker directly on positive responses m™, providing a simple baseline for offline
adaptation. DPO leverages paired preferences (m™,m™) to optimize directly without learning a reward
model, offering stability and efficiency for offline adaptation. For online adaptation, we employ KTO and
GRPO. KTO incorporates principles from behavioral economics, capturing asymmetries such as loss aversion,
which makes it well-suited for online adaptation with noisy or uneven feedback. GRPO is a critic-free
reinforcement learning method that normalizes rewards across sampled groups, enabling stable and scalable
online alignment in interactive settings. In summary, we study two offline objectives Log = {LsrT, LDPO}
and two online objectives Lo, = {LkT0,LcrPO}, as depicted in Fig. Details of algorithms are in
Appendix G.

4 RESULTS

4.1 DATASETS AND EVALUATION PROTOCOL

We evaluate adaptation on two benchmarks: CLEVR (Johnson et al., 2017), which contains synthetic scenes
with objects varying in shape, color, material, and size and stresses compositional reasoning, and CUB (Wah
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et al.l 2011)), which consists of real bird species images and tests fine-grained visual recognition. For each
dataset, we generate paired samples for the reference game, presenting the speaker with undistorted images
and the listener with its distorted counterparts.

For checkpoint selection, we adopt two evaluation protocols. First, we select the checkpoint with the highest
test accuracy (7est-Pick), representing an optimistic upper bound due to the high variance of RL training.
Second, we select the checkpoint with the highest validation accuracy under greedy sampling (Val-Pick),
which provides a more realistic model selection strategy. For both checkpoints, we evaluate using nucleus
sampling with temperature 0.7 and report results averaged over 10 independent runs on the same test datset.
All models are adapted by tuning LoRA adapters on the speaker side, while the listener model remains fixed.
For extended quantitative results, we refer the reader to the Appendix A.

4.2 QUANTIATIVE RESULTS

We report results on CLEVR and CUB in Tab. [l|and Tab. |2} Each distortion poses distinct challenges in
the zero-shot setting (ZS) prior to any adaptation: AMD and cataract obscure central or global structure,
grayscale removes color cues critical for fine-grained recognition, tunnel vision limits peripheral context, and
detached retina introduces blurring.

On CLEVR, all adaptation methods improve over the ZS baseline in average test-pick accuracy, but trade-offs
between test-pick and val-pick performance remain clear. KTO shows the largest overall gains, with a
remarkable +33.6% improvement on grayscale (maximum) and a stable +6.8% average improvement under
validation checkpoints. GRPO provides smaller but consistent improvements (+5.1% on grayscale and +5.1%
on detached retina) with modest averages (+2.5% maximum, +2.7% validation), making it conservative but
reliable. DPO achieves the highest average maximum gain (+8.3%) with strong improvements on grayscale
(+27.5%) but collapses under validation-based evaluation (+0.04%). SFT demonstrates strong peaks on AMD
(+14.8%) but suffers instability by loosing 2.4% in val-pick accuracy. SFT shows decent improvements in
most distortions except Grayscale where it looses 4% and reports a modest average val-pick gain of 0.51%.
We believe AMD presents a particularly challenging distortion, as the object of interest is often majorly
or even fully occluded, which increases the model’s uncertainty and limits its ability to generate reliable
descriptions meaningful background information.

On CUB, all methods surpass the ZS baseline, though improvements are smaller than on CLEVR due to the
already high starting accuracy. KTO and GRPO are the most consistent, with KTO yielding strong gains on
cataract (+7.2 Test-Pick, +2.2 Val-Pick) and AMD (+17.7), leading to the best overall averages (+5.8 / +4.2).
GRPO is similarly competitive, with the strongest AMD improvement (+18.2) and stable detached retina
gains (+4.1), resulting in +5.5 / +3.7 average boosts. DPO achieves the highest Test-Pick on grayscale (+11.1)
but collapses on detached retina (—10.0), leaving it with only +0.9 / —1.0 average gains. SFT performs reliably
across most distortions, especially grayscale (+5.7 / +7.6) and AMD (+9.3), with balanced improvements
overall (+4.0 / +3.1).

In summary, KTO remains the most reliable online method across both benchmarks, providing the strongest
and most stable improvements. GRPO emerges as a consistent competitor and is outperformed by DPO in
average test pick accuracy on CLEVR. Offline methods (DPO, SFT) continue to achieve the significant peak
improvements but exhibit poor generalization when checkpoint selection is validation-based, highlighting
instability in practical use.

4.3 QUALITATIVE RESULTS

We present qualitative examples in Fig. [2]to highlight key observations. In each case, the left column shows
the original images x, while the rightmost column shows its distorted counterparts z. For both, we report
the base model’s description and the adapted model’s description. Method names are shown in blue, text in
red indicates changes relative to the base description, and green text marks newly introduced information.
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Method Cataract Grayscale Tunnel Vision Detached Retina AMD Avg.
YA 60.5 39.2 68.9 78.9 75.7 64.64
KTO 63.4/62.3 (+2.9/+1.8)  72.8/75.6 (+33.6/+36.4)  75.6/70.1 (+6.7/+1.2) 79.8/81.1 (+0.9/+2.2)  69.7/68.1 (-6.0/-7.6)  72.26/71.44 (+7.62/+6.80)
GRPO 61.3/61.3 (+0.8/+0.8) 44.3/442 (+5.1/+5.0)  T5.1/73.2 (+6.2/+4.3)  84.0/84.0 (+5.1/+5.1) ~ 70.8/74.2 (-4.9/-1.5)  67.10/67.38 (+2.46/+2.74)
DPO 62.6/60.6 (+2.1/+0.1) 66.7/39.9 (+27.5/+0.7)  75.4/68.8 (+6.5/-0.1)  84.5/79.6 (+5.6/+0.7) ~ 75.6/74.1 (-0.1/-1.6) 72.96/64.60 (+8.32/-0.04)

SFT 66.6/61.73 (+6.1/+1.23) 35.2/39.5 (-4.0/+0.3) 71.0/71.0 (+2.1/+2.1)  80.7/80.2 (+1.8/+1.3)  90.5/73.3 (+14.8/-2.4)  68.80/65.15 (+4.16/+0.51)

Table 1: Adaptation performance under different visual distortions for CLEVR (Johnson et al.,2017). We use
Qwen2.5-VL 7B as speaker and listener. For each method we report two test accuracies: Test-Pick Accuracy /
Val-Pick Accuracy, with gains relative to ZS. Positive gains are in green, negatives in red. Best numbers per
column (Max) are in bold. The last column reports average accuracies across distortions for both metrics,
with gains relative to the ZS average.

Method Cataract Grayscale Tunnel Vision Detached Retina AMD Avg.
YA 73.7 75.4 91.2 90.0 76.6 81.38

KTO 80.9/75.9 (+7.2/+2.2)  72.9/72.8 (-2.5/-2.6)  94.6/91.6 (+3.4/+0.4)  93.2/93.2 (+3.2/+3.2)  94.3/94.3 (+17.7/+17.7)  87.18/85.56 (+5.80/+4.18)
GRPO  75.7/73.1 (+2.0/-0.6) ~ 75.0/74.7 (-0.4/-0.7) ~ 94.9/90.9 (+3.7/-0.3)  94.1/94.1 (+4.1/+4.1) ~ 94.8/92.4 (+18.2/+15.8)  86.90/85.04 (+5.52/+3.66)
DPO 76.2/74.4 (+2.5/+0.7)  86.5/78.8 (+11.1/+3.4)  93.7/93.7 (+2.5/+2.5)  80.0/80.0 (-10.0/-10.0) 75.1/75.0 (-1.5/-1.6) 82.30/80.38 (+0.92/-1.00)
SFT 74.0/74.1 (+0.3/+0.4)  81.1/83.0 (+5.7/+7.6) ~ 93.6/94.6 (+2.4/+3.4)  92.5/92.5 (+2.5/+2.5) 85.9/78.0 (+9.3/+1.4) 85.42/84.4 (+4.04/+3.06)

Table 2: Adaptation performance under different visual distortions for CUB (Wah et al., 2011). We use
Qwen2.5-VL 7B as speaker and listener. For each method we report two test accuracies: Test-Pick Accuracy /
Val-Pick Accuracy, with gains relative to ZS. Positive gains are in green, negatives in red. Best numbers per
column (Max) are in bold. The last column reports average accuracies across distortions for both metrics,
with gains relative to the ZS average.

Adapted models generally produce descriptions that are more consistent with the distorted view, leading to
improved speaker—listener communication. For AMD distortion, adapted model enriches the description by
emphasizing fine details such as the bird’s beak and the rocky surface. Under Detached Retina, adapted model
incorporates contextual background cues, describing the blurred foliage, which provides the listener with
disambiguating information. In the Grayscale case, the adapted model avoids reliance on color-based cues
and instead introduces structure-sensitive descriptors such as “a thin, bare branch,” which align more closely
with the listener’s visual perception. For Tunnel Vision, the adapted model improves the base description
“just caught a fish” to the more faithful “dives towards the water,” aligning with what the listener actually
sees, where the fish is not clearly visible. Finally, in the Cataract setting, adapted model strengthens the
description of the target bird while adding background details about vegetation and posture, helping the
listener distinguish the target from confounding images. Overall, these examples demonstrate how adaptation
enables the speaker to better align with the listener’s distorted visual space, effectively allowing both to
“see the same picture.” These qualitative findings are consistent with our quantitative results, showing that
adaptation improves interpretability and fidelity as well.

5 ROBUSTNESS ANALYSIS

5.1 CROSS DATASET TRANSFER

We next evaluate the cross-dataset generalization of adaptation methods by training on one dataset and testing
on the other. Specifically, we first train on CLEVR and evaluate on CUB (Table[3). We then mirror this
procedure by training on CUB and evaluating on CLEVR (Table [). for evaluation, we report test-pick
accuracy as mentioned in section. @ In each case, we report results for KTO, GRPO, DPO, and SFT under
three representative distortions (cataract, grayscale, tunnel vision).
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SFT. Age Related Macular Degeneration

Base: The image showcases a bird with a distinctive black and white
speckled plumage

Adapted: The image showcases a small bird perched on a rocky surface.
Bird has a distinctive appearance with a black head, a white ring
around its eyes, and a red beak. Its body is covered in a mix of black
and white feathers, creating a speckled pattern. The background is
blurred, emphasizing the bird and the texture of the rocks it is
standing on. Overall tone of the image is muted, with a natural and
earthy-like color palette.

KTO: Detached Retina ¢
Base: The image showcases a small bird perched on a branch, with a ‘.
distinct yellow underside and a grayish-blue head

Adapted: The image showcases a small bird perched on a branch, with a
g distinct yellow underside and a grayish head. The background is a soft
blur of green foliage, which contrasts with the sharp focus on the
bird.

Target Confounding

e

Target Confounding

KTO: Grayscale
Base: The image showcases a bird perched on a branch, with a vibrant
- yellow chest confrasting against its dark brown wings and tail. The
background is a lush green, suggesting to be be a natural outdoor setting. =&
Adapted: The image showcases a small bird perched on a thin, bare
branch, with a blurred green background suggesting -
DPO: Tunnel Vision

Base: The image showcases a bird in mid-flight, captured with its wings
fully extended, as it appears to be have just caught a fish.

Adapted: The image showcases a bird in mid-flight, captured with its wings
fully extended, as it dives towards the water. The bird's body is
streamlined.

GRPO: Cataract

Base: The image showcases a small bird with a predominantly blue body.
Adapted: The image showcases a small bird with a striking blue-and
black patterned plumage, perched on a forest floor covered with green
moss and scattered leaves. The bird"s posture and the surrounding
natural environment, including the earthy and vegetation, are distinct
from the aquatic setting.

Figure 2: Qualitative results for Qwen2.5-VL 7B as speaker. The left image is being described in each
description. On left we share original images and on right we share distorted images. In each description
text with color blue represents the method name. Red text represent change of information from original
description while green text represents new information.

In the CLEVR—CUB setting, adaptation consistently improves over ZS across all methods in average
accuracy. KTO yields balanced improvements, particularly on cataract (+4.4) and tunnel vision (+3.0),
averaging +3.0 overall. GRPO shows similar behavior, with moderate gains (+2.0 cataract, +1.9 grayscale) for
an average of +1.4. DPO underperforms on cataract (—1.5) but achieves the highest boost on grayscale (+5.8).
SFT demonstrates the strongest distortion-specific generalization, with large improvements on cataract (+5.2)
and especially grayscale (+14.1), resulting in the highest average (+6.5). These results highlight that while
online methods transfer more stably, SFT can achieve the strongest cross-dataset gains in this direction.

In contrast, the CUB—CLEVR transfer proves more challenging, with smaller and more variable improve-
ments. KTO achieves modest average gains (+2.4), driven by tunnel vision (+6.9) despite a drop on grayscale
(-1.5). GRPO follows a similar pattern, excelling on tunnel vision (+10.7) but degrading on grayscale
(=2.7), yielding +3.4 on average. SFT generalizes most reliably, with improvements on grayscale (+4.4)
and tunnel vision (+1.1), though average gains remain modest (+1.8). DPO lags behind in cataract while
reporting a considerable gain of on tunnel vision (+4.4) and achieving an average gain of +4.1. Overall, we
observe that compositional nature of CLEVR dataset makes transfer from CLEVR to natural-image CUB
is more successful, while the reverse direction remains more challenging, with KTO showing more stable
improvements among online methods.

5.2 ADAPTING TO DIFFERENT AGENT UNDER DIVERGENT VISUAL SPACE

Table [3] reports adaptation results on the CUB dataset using Qwen2.5-VL-7B as the speaker and In-
ternVL3.5 (Wang et al, [2025)) as the listener. The baseline listener is already strong, with near-ceiling
accuracy on Tunnel Vision (96.0) and Detached Retina (97.3), but weaker under Cataract (80.4), Grayscale
(72.0), and AMD (81.7). In this high-performing regime, adaptation provides only modest gains. KTO
improves slightly on Grayscale (+1.9 Test-Pick), matches or marginally improves on Tunnel Vision and AMD,
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Method Cataract Grayscale Tunnel Vision Avg. Method Cataract Grayscale Tunnel Vision Avg.
YA 73.7 75.4 91.2 80.1 VYA 60.5 39.2 68.9 56.2
KTO  78.1 (+44) 77.1(+1.7) 942 (+3.0) 83.1(+3.0)0 KTO 624 (+1.9) 37.7(-1.5) 758 (+6.9) 58.6(+2.4)
GRPO 75.7(+2.0) 773 (+1.9) 91.6(+04) 815(+1.4) GRPO 62.6(+2.1) 36.5(-2.7) 79.6 (+10.7) 59.6 (+3.4)
DPO 722 (-1.5) 812(+5.8) 91.9(+0.7) 81.8(+1.7) DPO 57.8(-2.7) 50.5 (+11.3) 727 (+3.8) 60.3 (+4.1)
SFT 78.9 (+5.2) 89.5 (+14.1) 91.5(+0.3) 86.6 (+6.5) SFT 60.4 (-0.1) 43.6(+4.4) 70.0(+1.1) 58.0(+1.8)

Table 3: Adaptation performance for CLEVR— CUB.
We use Qwen2.5-VL 7B as speaker and listener. We
report ZS accuracy and Test-Pick accuracy (gains in
green/red). Best results per distortion are in bold.
The last column shows the row-wise average across
distortions.

Table 4: Adaptation performance for CUB—CLEVR.
We use Qwen2.5-VL 7B as speaker and listener. We
report ZS accuracy and Test-Pick accuracy (gains in
green/red). Best results per distortion are in bold.
The last column shows the row-wise average across
distortions.

Method Cataract Grayscale Tunnel Vision Detached Retina AMD Avg.
YA 80.4 72.0 96.0 973 81.7 85.5
KTO 79.0/78.9 (-1.4/-1.5) 73.9/72.1 (+1.9/+0.1) 96.0/96.2 (+0.0/+0.2) 95.4/96.9 (-1.9/-0.4) 93.3/93.0 (+11.6/+11.3)  87.5/87.4(+2.0/+1.9)
GRPO  76.4/77.8 (-4.0/-2.6)  72.5/70.7 (+0.5/-1.3) ~ 95.1/95.3 (-0.9/-0.7) ~ 96.0/94.9 (-1.3/-2.4) 93.0/93.5 (+11.3/+11.8) 86.6/86.4 (+1.1/+0.9)

Table 5: Adaptation performance under different visual distortions with InternVL3.5 (Wang et al.| |2025)
as listener for CUB (Wah et al., 2011). We use Qwen2.5-VL 7B as speaker. We report Test-Pick/Val-Pick
accuracies with gains relative to ZS. Positive gains are in green, negatives in red. Best adapted values per
column are in bold. The last column reports row-wise averages (and gains) across distortions.

but underperforms on Cataract and Detached Retina, averaging 87.52/87.42 (+2.0/+1.9). GRPO achieves
the strongest boost on AMD (+11.3/+11.8) but falls behind on Cataract and Tunnel Vision, yielding slightly
lower averages (86.6/86.4). Overall, gains are limited, reflecting that adaptation has less room to help when
the baseline listener already performs well. Furthermore, the weaker results on Cataract and Detached Retina
highlight the challenges of adapting across heterogeneous agents.

Table [f] presents results on CLEVR with the same speaker-listener pairing. Here the baseline is much weaker
overall (51.6 average), and especially poor on Grayscale (27.1). In this lower-performing regime, adaptation
produces substantial improvements. KTO provides the most consistent and significant gains, especially
on Grayscale (+34.4/+33.2), with improvements also on Cataract and Tunnel Vision, raising the averages
to 58.9/58.9 (+7.3/+7.3). GRPO offers a smaller benefit, with strong improvements under Tunnel Vision
(+5.7/+2.3) and Detached Retina (+3.1/-0.2), but lags on Cataract and Grayscale, resulting in averages of
52.7/51.2 (+1.1/-0.5).

Taken together, these findings reveal a sharp asymmetry. When the baseline listener is already strong,
as in CUB, adaptation provides only minor and uneven gains. By contrast, when the listener is weaker,
as in CLEVR, adaptation—especially with KTO—yields large and reliable improvements. Compared to
earlier results with Qwen2.5-VL-7B as both speaker and listener, these results suggest that adapting across
heterogeneous agents is more challenging, with smaller benefits for strong listeners but clear advantages
when the listener struggles under perceptual divergence.

6 ABLATION: HETEROGENEOUS MODEL SIZES

In this ablation, we investigate how heterogeneous speaker—listener model sizes affect performance on the
CUB dataset using KTO adaptation. We evaluate four configurations combining Qwen-2.5 VL 3B and 7B
models in both symmetric (3B/3B, 7B/7B) and asymmetric (3B/7B, 7B/3B) roles. Zero-shot (Base) and
post-adaptation Max accuracies are reported in Tab.[/| A key observation is that the largest symmetric setup
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Method Cataract Grayscale Tunnel Vision Detached Retina AMD Avg.
YA 52.0 27.1 55.4 60.9 62.7 51.6

KTO 52.1/51.4 (+0.1/-0.6)  61.5/60.3 (+34.4/+33.2)  57.8/59.5 (+2.4/+4.1)  61.4/61.4 (+0.5/+0.5) 61.9/61.9 (-0.8/-0.8)  58.9/58.9 (+7.3/+7.3)
GRPO  51.1/51.1 (-0.9/-0.9) 26.5/25.6 (-0.6/-1.5) 61.1/57.7 (+5.7/+2.3)  64.0/60.7 (+3.1/-0.2) ~ 60.7/60.7 (-2.0/-2.0) ~ 52.7/51.2 (+1.1/-0.5)

Table 6: Adaptation performance under different visual distortions with InternVL3.5 (Wang et al 2025))
as listener for CLEVR (Johnson et al.| 2017) dataset. We use Qwen2.5-VL 7B as speaker. We report
Test-Pick/Val-Pick accuracies (with gains in green for improvements and red for drops). Best adapted values
per column are in bold. The last column reports row-wise averages with gains relative to the ZS average.

Model Configuration Accuracy [%]

Method Type
Speaker Listener AMD Cataract  Detached Retina  Grayscale  Average
Qwen-2.5 VL 3B Qwen-2.5 VL 3B Base 88.0 67.0 96.0 94.0 86.3
Max  90.0 (+2.0)  70.0 (+3.0) 100.0 (+4.0) 98.0 (+4.0) 89.5 (+3.2)
Qwen-2.5 VL 3B Qwen-2.5 VL7B Base 94.0 80.0 98.0 80.0 88.0
KTO Max  96.0 (+2.0)  85.0 (+5.0) 99.0 (+1.0) 82.0 (+2.0)  90.5 (+2.5)
Qwen-2.5 VL 7B Qwen-2.5 VL 3B Base 92.0 67.0 96.0 93.0 87.0
Max  93.0 (+1.0)  75.0 (+8.0) 97.0 (+1.0) 97.0 (+4.0)  90.8 (+3.8)
Qwen-2.5 VL 7B Qwen-2.5 VL 7B  Base 90.0 63.0 76.0 88.0 81.4

Max  94.0 (+4.0) 81.0 (+18.0) 79.0 (+3.0) 93.0 (+5.0) 87.8 (+6.4)

Table 7: Zero-shot (Base) and maximum KTO accuracy across distortions on CUB.

(7B/7B) does not produce the strongest baseline: it has the lowest average Base accuracy (81.4%), driven by
substantial drops under Cataract and Detached Retina distortions. In contrast, the asymmetric 3B speaker /
7B listener setup yields the best baseline (88.0%), indicating that a stronger listener is crucial for reliably
interpreting the speaker’s descriptions, even when the speaker is small. Adaptation with KTO consistently
improves performance across all configurations. The largest gains occur in the 7B/7B setup, which benefits the
most from correction of its weak baseline, particularly on Cataract (+18 points). However, the configuration
achieving the highest final accuracy is again the asymmetric 3B/7B pair, reaching 90.5% after KTO. This
highlights an efficient design choice: pairing a lightweight speaker with a stronger listener offers a favorable
balance between computational cost and top-end performance. We share extended analysis of in section B

7 CONCLUSION

We studied aligning multimodal agents that inhabit divergent visual spaces. Using an image reference game
with five distortion types, we compared offline (SFT, DPO) and online (KTO, GRPO) post-training strategies.
Our experiments show that (i) offline adaptation can help without access to the listener when provided with
high-quality preference pairs aligned to the listener’s impairment; (ii) online adaptation with KTO and GRPO
delivers strong improvements across distortions by learning directly from interaction feedback; and (iii)
qualitative analyses confirm that adapted speakers prioritize distortion-consistent cues, bridging mismatches
in perception. Cross-dataset studies further indicate that compositional nature of CLEVR dataset makes
it easier to transfer to natural images (CUB). Adapting to a different listener family yields smaller gains,
underscoring the challenge of alignment across heterogeneous model representations.

10
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REPRODUCIBILITY STATEMENT

We will release all artifacts needed to replicate our results: the full training/evaluation code for offline
(SFT, DPO) and online (KTO, GRPO) adaptation with LoRA; scripts to generate and apply our five visual
distortions; data preparation/evaluation pipelines for the image reference game; and a public preference
dataset containing instructions and paired (m ™, m ™) descriptions. We document exact base/model versions
(e.g., Qwen2.5-VL-7B/32B, InternVL3.5) wherever they are used and in Appendix F. We share dataset
generation details in section [3.3] Our main reported numbers use nucleus sampling with temperature 0.7
averaged over multiple runs; greedy-decoding results (max test accuracy and validation-picked checkpoints)
are included in the appendix for transparency in section A.
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