

WHEN WE DON'T SEE THE SAME PICTURE: ALIGNING AGENTS WITH DIVERGENT VISUAL SPACES

005 **Anonymous authors**

006 Paper under double-blind review

ABSTRACT

011 With the rapid rise of agentic systems, interaction and collaboration between agents has
 012 become a central challenge in multimodal large language model (MLLM) research. In this
 013 work, we study a unique form of interaction where two agents hold *divergent visual spaces*.
 014 To investigate this, we adopt image reference games as a testbed and design experiments
 015 with five distinct perceptual distortions inspired by real human visual impairments (e.g.,
 016 cataract, color blindness). We evaluate in two settings, online and offline, with four post-
 017 training algorithms: SFT, DPO (offline) and KTO, GRPO (online), providing the first
 018 systematic study of alignment under divergent visual perceptions. Our results reveal that (i)
 019 offline adaptation can provide strong improvements, with DPO consistently outperforming
 020 other methods when supported by high-quality preference data; (ii) [among online adaptation](#)
 021 [methods, KTO yields strongest average gains across datasets](#) and (iii) qualitative analysis
 022 shows that adapted agents shift their descriptions toward perceptual features accessible to
 023 their conversation partners. Taken together, these findings highlight that offline methods
 024 are the preferable solution when supervision is available while online approaches serve as a
 025 complementary strategy for dynamic settings where distortions or partner characteristics are
 026 unknown in advance. We release code and preference datasets to support future research.

1 INTRODUCTION

030 Large Language Models (LLMs) and their multimodal extensions are increasingly deployed in real-world
 031 settings, powering applications in video analysis, human–AI collaboration, and autonomous decision-making
 032 (Fu et al., 2024; Liu et al., 2024b; Fu et al., 2025; Huang et al., 2025b;a; Hu et al., 2025; Bian et al., 2025a;b;
 033 Wu et al., 2025). These deployments require agents not only to process complex sensory streams but also to
 034 interact effectively with humans and other agents. A common assumption in prior work is that agents share a
 035 consistent world-view (Ju & Aral, 2025; Hsu et al., 2025; Zhang et al., 2024). Yet in practice, communication
 036 often breaks down precisely because partners perceive the world differently. For humans, such divergences
 037 arise naturally in conditions of impaired or limited vision (such as cataract or color blindness) where shared
 038 understanding depends on adapting communication to perceptual asymmetries. [More importantly, there are](#)
 039 [over 1 billion \(Nwabueze, 2023\) people with perceptual disabilities, yet very few works have explored the](#)
 039 [alignment with this large group of people.](#)

040 Motivated by these human-centered challenges, we study how artificial agents can communicate under
 041 mismatched perceptual abilities. Specifically, we explore alignment between agents that diverge in their
 042 visual perception. To ground this problem, we simulate five types of image distortions inspired by real human
 043 visual impairments, spanning both spatial and pixel-level degradations. We adopt the image reference game
 044 setup (Corona et al., 2019) with divergent visual spaces, where a *speaker* describes a target image and a
 045 *listener* must identify it among a pair. Crucially, the speaker observes the undistorted images, while the
 046 listener only sees distorted versions, creating a perceptual gap that the speaker must bridge.

047 Our study examines how agents can adapt to such mismatches. We consider both offline adaptation, using
 048 supervised fine-tuning (SFT) and direct preference optimization (DPO) Rafailov et al. (2023), and online
 049 adaptation, using preference-based algorithms such as Kahneman-Tversky Optimization (KTO) (Ethayarajh
 050 et al., 2024) and Group Relative Policy Optimization (GRPO) (Shao et al., 2024). To support preference
 051 learning, we construct a dataset by prompting Qwen2.5-VL (Wang et al., 2024b) with distorted inputs to
 052 generate positive examples and with undistorted inputs to generate negative examples, explicitly modeling
 053 the gap between successful and failed communication.

054 While our core contribution is a technical investigation of AI-to-AI communication under perceptual mismatch,
 055 the fundamental motivation for modeling divergent visual perception stems from the critical need for accessible
 056 and inclusive AI systems. Visual impairments are a widespread global health issue, with an estimated 2.2
 057 billion people living with vision impairment or blindness according to the World Health Organization
 058 (WHO) World Health Organization & The Lancet Global Health Commission on Global Eye Health (2021).
 059 The sheer scale of this population underscores the necessity for LLMs to communicate effectively with users
 060 whose visual experiences differ significantly from the “normal” vision assumed by most models. Ensuring
 061 that LLMs can adapt their communication to users with divergent perceptual abilities is not merely a matter
 062 of engineering efficiency, but a prerequisite for deploying equitable, human-centric AI that serves the entire
 063 global population.

064 In summary, our contributions are:

- 066 • We introduce a new setting for studying agent alignment under divergent visual perceptions, simulating
 067 distortions inspired by real human visual impairments.
- 068 • We conduct a systematic analysis of agent adaptation across both offline (SFT, DPO) and online
 069 (KTO, GRPO) learning paradigms.
- 070 • We release a preference dataset, constructed from distorted and undistorted inputs, to support future
 071 research on multimodal agent collaboration.

074 2 RELATED WORK

076 Human communication often requires adapting to partners with different perceptual experiences, for example
 077 in cases of impaired or limited vision. Inspired by this, recent work has introduced multimodal reference
 078 games as testbeds for studying alignment (Corona et al., 2019; Takmaz et al., 2023) between communicating
 079 agents. However, most approaches still assume identical perceptual inputs across agents, overlooking the
 080 mismatches that frequently arise in practice due to sensory limitations or hardware degradation.

081 Personalization in language models has long been studied, particularly in dialogue systems (Serban et al.,
 082 2015; Song et al., 2019; Zhang et al., 2019). Some Theory of mind (ToM)-based approaches (Ma et al., 2023)
 083 propose plug-and-play modules that update weights dynamically (Takmaz et al., 2023) or model listener
 084 behavior internally (Raileanu et al., 2018). While prior work has explored speaker–listener adaptation in
 085 text-only settings (Wang et al., 2024a), we extend this line to multimodal image reference games. Other
 086 personalization methods learn on large scale user dialogue histories (Ma et al., 2021; Zhong et al., 2022),
 087 whereas our focus is on both online and offline adaptation strategies.

088 Parameter-efficient fine-tuning enables scalable adaptation of multimodal models. LoRA modules (Hu et al.,
 089 2022a) add trainable low-rank adapters on top of frozen backbones and have inspired many extensions (Zhang
 090 et al., 2023; Lialin et al., 2023; Liu et al., 2023; Wu et al., 2024; Sheng et al., 2023; yang Liu et al., 2024).
 091 Alternative methods adapt only small subsets of weights (Ben Zaken et al., 2022; Ansell et al., 2021) or use
 092 adapters embedded within or alongside network layers (Pfeiffer et al., 2020; Sung et al., 2022; Mercea et al.,
 093 2024). In this work, we adopt widely used LoRA for adapting MLLMs.

094 Reinforcement learning provides another route for adaptation, especially in online settings (Snell et al., 2023;
 095 Ziegler et al., 2019; Ramamurthy et al., 2023). GRPO (Shao et al., 2024) stabilizes training by normalizing
 096 rewards within groups, avoiding the need for a critic and reducing variance. Preference-based methods such
 097 as KTO (Ethayarajh et al., 2024) and DPO (Rafailov et al., 2024) optimize directly from positive/negative
 098 feedback pairs. Related efforts (Guo et al., 2024; Liu et al., 2024a) explore online adaptation via model
 099 feedback, but our work focuses specifically on aligning communication under mismatched perceptual
 100 conditions.

101 Visual reference identification has been studied in multimodal dialogue (de Vries et al., 2016; Ni et al., 2021;
 102 Alaniz et al., 2021; Das et al., 2016). While Corona et al. (2019) examined attribute-based reference games,
 103 we broaden the scope to free-form description generation in the presence of perceptual impairments. One of
 104 our contribution is to systematically compare online and offline adaptation strategies in this setting.

107 3 ALIGNING AGENTS WITH DIVERGENT VISUAL SPACES

110 3.1 TASK FORMULATION

113 We study a variant of the image reference game where speaker and listener have divergent visual spaces. Both
 114 agents are given a target-confounding image pair, but the *speaker* observes the undistorted pair $(x_{\text{tgt}}, x_{\text{conf}})$,
 115 presented sequentially as a left and right image, and produces a message m describing the target. The
 116 *listener*, in contrast, receives only the distorted pair $(\hat{x}_{\text{tgt}}, \hat{x}_{\text{conf}})$ in random order and must identify the target
 117 image from this pair conditioned on m . The listener chooses an action $a \in \{\text{left, right, none of these}\}$,
 118 corresponding to selecting the left image, the right image, or rejecting both as inconsistent with the message.
 119 Success is achieved when a points to the target (e.g., $a = \text{left}$ when the left image is \hat{x}_{tgt}).

120 The i -th interaction yields a binary reward $r_i \in \{0, 1\}$, where $r_i = 1$ if the listener correctly identifies the
 121 target and $r_i = 0$ otherwise. If the listener selects “none of these,” the game is treated as a failure ($r_i = 0$).
 122 Because the speaker has access to richer visual information than the listener, effective communication requires
 123 generating descriptions that remain faithful under distortion, avoiding reliance on perceptual details invisible
 124 to the listener. This framework is further depicted in Fig. 1.

126 3.2 PERCEPTUAL DISTORTIONS

129 We design five perceptual distortions inspired by real human visual impairments, applied in either the spatial
 130 or pixel domain. First, cataract, a condition where the eye’s lens becomes clouded and vision turns blurry
 131 with reduced contrast, is simulated via Gaussian blurring coupled with contrast reduction, after which random
 132 black artifacts are added to the image. Second, age-related macular degeneration (AMD), which leads to the
 133 deterioration of the central retina and hampers fine-detail recognition while leaving peripheral vision intact,
 134 is modeled by masking the central region of the image. Third, color blindness, a deficiency in perceiving
 135 chromatic information, is represented by removing color channels and converting to luminance-only. Fourth,
 136 tunnel vision, typically caused by glaucoma or retinitis pigmentosa and characterized by the loss of peripheral
 137 vision, is simulated by masking out peripheral regions to retain only a central circular window. Lastly, retinal
 138 detachment, where the retina separates and creates dark, irregular blind spots often starting at the periphery
 139 or lower visual field, is simulated by overlaying irregular dark patches on the lower half of the image. An
 140 example of these perceptual distortions can be seen in Fig. 1. For further details, we refer the reader to
 Appendix E.

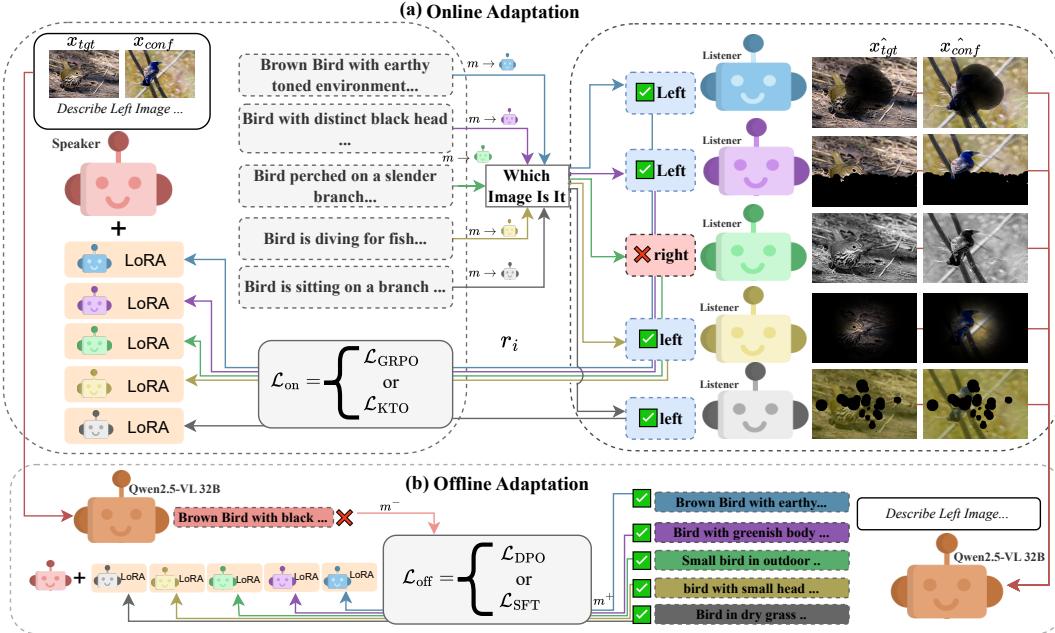


Figure 1: **Overview of the framework.** (a) The speaker, adapted with LoRA, generates descriptions for the target image and updates online via reinforcement learning (GRPO or KTO) based on listener feedback. Listeners receive the description with distorted images and predict the referred image, providing rewards to the speaker. (b) An offline data generation pipeline creates labeled descriptions for offline adaptation with supervised finetuning and direct preference optimization (Rafailov et al., 2023). LoRA modules are trained for each distortion to adapt the speaker.

3.3 PREFERENCE DATASET CONSTRUCTION

To enable offline adaptation in the reference game with divergent visual spaces, we construct a preference dataset using Qwen2.5-VL-32B. The central idea is to create contrasting descriptions from conditioning on distorted versus undistorted image pairs (Fig. 1). Distorted-view descriptions serve as positive preferences, since they are aligned with the listener’s perceptual limitations, while undistorted-view descriptions serve as negative preferences, as they often rely on features inaccessible under distortion. This preference framing explicitly encodes communicative success under mismatched perceptual inputs.

We generate paired descriptions (m^+ , m^-) with Qwen2.5-VL-32B where m^+ represents positive preference and m^- negative preference. The model is always presented with two images in order *Image 1* (target) and *Image 2* (confounding) and is instructed to describe only *Image 1*. For the distorted-view query, we provide $(\hat{x}_{tgt}, \hat{x}_{conf})$ and record the output as m^+ ; for the normal-view query, we provide (x_{tgt}, x_{conf}) and record the output as m^- . Keeping the instruction prompt constant ensures that differences in responses arise solely from the change in visual input. By construction, m^+ captures distortion-consistent descriptions interpretable under impaired perception, while m^- encodes distortion-inconsistent content. This yields preference pairs labeled $m^+ \succ m^-$, providing the contrastive supervision required by preference-based alignment methods such as DPO. A final training instance from this preference dataset then contains the undistorted images (x_{tgt}, x_{conf}) , the positive preference m^+ , and the negative preference m^- .

188 3.4 DATASET CONSTRUCTION
189190 For each target image x_{tgt} , we randomly sample a confounding image x_{conf} from the same dataset to act as a
191 distractor, without applying any post-processing or semantic filtering. Each pair is instantiated under both
192 normal and distorted views, yielding the tuple

193 $((x_{\text{tgt}}, x_{\text{conf}}), (\hat{x}_{\text{tgt}}, \hat{x}_{\text{conf}}), \text{instruction}, (m^+, m^-)),$
194

195 where $(\hat{x}_{\text{tgt}}, \hat{x}_{\text{conf}})$ denote their distorted counterparts. Qwen2.5-VL-32B is queried twice per instance—once
196 with distorted inputs to produce m^+ and once with clean inputs for m^- —using identical text prompts and a
197 fixed image ordering that always places the target as *Image 1*. This ensures that all variation in descriptions
198 arises solely from differences in visual perception. The unified prompt template is:199 You see two images. Image 1: [IMG_1], Image 2: [IMG_2]. Focus on Image 1. Your goal
200 is to describe Image 1 in a way that clearly distinguishes it from Image 2. Do not mention
201 Image 2 in your description at all. Highlight unique features of Image 1 that differentiate it
202 from Image 2. Ignore the203 Under distortion, this template promotes robustness by encouraging features that remain interpretable
204 despite perceptual noise, while strictly prohibiting reference to the distractor. The model thus produces
205 paired descriptions (m^+, m^-) that encode a binary preference $m^+ \succ m^-$ consistent with distortion-aware
206 communication, supporting preference-based optimization such as DPO. All instances are tokenized with a
207 2048-token context limit to preserve the full multimodal structure. The resulting dataset provides high-quality
208 contrastive supervision, aligning speaker behavior with the perceptual constraints of an impaired listener.209 3.5 ADAPTING ALGORITHMS
210211 We study offline and online post-training methods that are complementary in cost, stability, and feedback
212 needs. Offline adaptation (SFT, DPO) is a cost-effective ante-hoc strategy when perceptual distortion is
213 known in advance; SFT is a strong baseline and DPO (Rafailov et al., 2023) is a widely adopted preference-
214 optimization method that avoids training a reward model while enforcing a KL constraint. Online adaptation
215 (KTO (Ethayarajh et al., 2024), GRPO (Shao et al., 2024)) captures in situ personalization when adaptation to
216 individual listeners is desired and the visual divergence is unknown. All methods are applied to the speaker
217 policy π_θ via LoRA (Hu et al., 2022b).218 For offline adaptation, we train on preference triples $\{(\mathbf{x}, m^+, m^-)\}$ where $\mathbf{x} = (x_{\text{tgt}}, x_{\text{conf}})$ is the undistorted
219 input pair, m^+ is the positive preference, and m^- is the negative preference. All algorithms condition on
220 \mathbf{x} . SFT fine-tunes the speaker directly on positive responses m^+ , providing a simple baseline for offline
221 adaptation. DPO leverages paired preferences (m^+, m^-) to optimize directly without learning a reward
222 model, offering stability and efficiency for offline adaptation. For online adaptation, we employ KTO and
223 GRPO. KTO incorporates principles from behavioral economics, capturing asymmetries such as loss aversion,
224 which makes it well-suited for online adaptation with noisy or uneven feedback. GRPO is a critic-free
225 reinforcement learning method that normalizes rewards across sampled groups, enabling stable and scalable
226 online alignment in interactive settings. In summary, we study two offline objectives $\mathcal{L}_{\text{off}} = \{\mathcal{L}_{\text{SFT}}, \mathcal{L}_{\text{DPO}}\}$
227 and two online objectives $\mathcal{L}_{\text{on}} = \{\mathcal{L}_{\text{KTO}}, \mathcal{L}_{\text{GRPO}}\}$, as depicted in Fig. 1. Details of algorithms are in
228 Appendix G.229 4 RESULTS
230231 4.1 DATASETS AND EVALUATION PROTOCOL
232233 We evaluate adaptation on two benchmarks: **CLEVR** (Johnson et al., 2017), which contains synthetic scenes
234 with objects varying in shape, color, material, and size and stresses compositional reasoning, and **CUB** (Wah

235 et al., 2011), which consists of real bird species images and tests fine-grained visual recognition. For each
 236 dataset, we generate paired samples for the reference game, presenting the speaker with undistorted images
 237 and the listener with its distorted counterparts.

238 For checkpoint selection, we adopt two evaluation protocols. First, we select the checkpoint with the highest
 239 test accuracy (*Test-Pick*), representing an optimistic upper bound due to the high variance of RL training.
 240 Second, we select the checkpoint with the highest validation accuracy under greedy sampling (*Val-Pick*),
 241 which provides a more realistic model selection strategy. For both checkpoints, we evaluate using nucleus
 242 sampling with temperature 0.7 and report results averaged over 10 independent runs on the same test dataset.
 243 All models are adapted by tuning LoRA adapters on the speaker side, while the listener model remains fixed.
 244 For extended quantitative results, we refer the reader to the Appendix A.

245 4.2 QUANTITATIVE RESULTS

246 We report results on CLEVR and CUB in Tab. 1 and Tab. 2. Each distortion poses distinct challenges in
 247 the zero-shot setting (ZS) prior to any adaptation: AMD and cataract obscure central or global structure,
 248 grayscale removes color cues critical for fine-grained recognition, tunnel vision limits peripheral context, and
 249 detached retina introduces blurring.

250 On CLEVR, all adaptation methods improve over the ZS baseline in average test-pick accuracy, but trade-offs
 251 between test-pick and val-pick performance remain clear. KTO shows the largest overall gains, with a
 252 remarkable +33.6% improvement on grayscale (maximum) and a stable +6.8% average improvement under
 253 validation checkpoints. GRPO provides smaller but consistent improvements (+5.1% on grayscale and +5.1%
 254 on detached retina) with modest averages (+2.5% maximum, +2.7% validation), making it conservative but
 255 reliable. DPO achieves the highest average maximum gain (+8.3%) with strong improvements on grayscale
 256 (+27.5%) but collapses under validation-based evaluation (+0.04%). SFT demonstrates strong peaks on AMD
 257 (+14.8%) but suffers instability by losing 2.4% in val-pick accuracy. SFT shows decent improvements in
 258 most distortions except Grayscale where it loses 4% and reports a modest average val-pick gain of 0.51%.
 259 We believe AMD presents a particularly challenging distortion, as the object of interest is often majorly
 260 or even fully occluded, which increases the model’s uncertainty and limits its ability to generate reliable
 261 descriptions meaningful background information.

262 On CUB, all methods surpass the ZS baseline, though improvements are smaller than on CLEVR due to the
 263 already high starting accuracy. KTO and GRPO are the most consistent, with KTO yielding strong gains on
 264 cataract (+7.2 Test-Pick, +2.2 Val-Pick) and AMD (+17.7), leading to the best overall averages (+5.8 / +4.2).
 265 GRPO is similarly competitive, with the strongest AMD improvement (+18.2) and stable detached retina
 266 gains (+4.1), resulting in +5.5 / +3.7 average boosts. DPO achieves the highest Test-Pick on grayscale (+11.1)
 267 but collapses on detached retina (-10.0), leaving it with only +0.9 / -1.0 average gains. SFT performs reliably
 268 across most distortions, especially grayscale (+5.7 / +7.6) and AMD (+9.3), with balanced improvements
 269 overall (+4.0 / +3.1).

270 In summary, KTO remains the most reliable online method across both benchmarks, providing the strongest
 271 and most stable improvements. GRPO emerges as a consistent competitor and is outperformed by DPO in
 272 average test pick accuracy on CLEVR. Offline methods (DPO, SFT) continue to achieve the significant peak
 273 improvements but exhibit poor generalization when checkpoint selection is validation-based, highlighting
 274 instability in practical use.

275 4.3 QUALITATIVE RESULTS

276 We present qualitative examples in Fig. 2 to highlight key observations. In each case, the left column shows
 277 the original images x , while the rightmost column shows its distorted counterparts \hat{x} . For both, we report
 278 the base model’s description and the adapted model’s description. Method names are shown in **blue**, text in
 279 **red** indicates changes relative to the base description, and **green text** marks newly introduced information.

Method	Cataract	Grayscale	Tunnel Vision	Detached Retina	AMD	Avg.
ZS	60.5	39.2	68.9	78.9	75.7	64.64
KTO	63.4/62.3 (+2.9/+1.8)	72.8/75.6 (+33.6/+36.4)	75.6/70.1 (+6.7/+1.2)	79.8/81.1 (+0.9/+2.2)	69.7/68.1 (-6.0/-7.6)	72.26/71.44 (+7.62/+6.80)
GRPO	61.3/61.3 (+0.8/+0.8)	44.3/44.2 (+5.1/+5.0)	75.1/73.2 (+6.2/+4.3)	84.0/84.0 (+5.1/+5.1)	70.8/74.2 (-4.9/-1.5)	67.10/67.38 (+2.46/+2.74)
DPO	62.6/60.6 (+2.1/+0.1)	66.7/39.9 (+27.5/+0.7)	75.4/68.8 (+6.5/-0.1)	84.5/79.6 (+5.6/+0.7)	75.6/74.1 (-0.1/-1.6)	72.96/64.60 (+8.32/-0.04)
SFT	66.6/61.73 (+6.1/+1.23)	35.2/39.5 (-4.0/+0.3)	71.0/71.0 (+2.1/+2.1)	80.7/80.2 (+1.8/+1.3)	90.5/73.3 (+14.8/-2.4)	68.80/65.15 (+4.16/+0.51)

Table 1: Adaptation performance under different visual distortions for **CLEVR** (Johnson et al., 2017). We use Qwen2.5-VL 7B as speaker and listener. For each method we report two test accuracies: Test-Pick Accuracy / Val-Pick Accuracy, with gains relative to **ZS**. Positive gains are in **green**, negatives in **red**. Best numbers per column (Max) are in **bold**. The last column reports average accuracies across distortions for both metrics, with gains relative to the **ZS** average.

Method	Cataract	Grayscale	Tunnel Vision	Detached Retina	AMD	Avg.
ZS	73.7	75.4	91.2	90.0	76.6	81.38
KTO	80.9/75.9 (+7.2/+2.2)	72.9/72.8 (-2.5/-2.6)	94.6/91.6 (+3.4/+0.4)	93.2/93.2 (+3.2/+3.2)	94.3/94.3 (+17.7/+17.7)	87.18/85.56 (+5.80/+4.18)
GRPO	75.7/73.1 (+2.0/-0.6)	75.0/74.7 (-0.4/-0.7)	94.9/90.9 (+3.7/-0.3)	94.1/94.1 (+4.1/+4.1)	94.8/92.4 (+18.2/+15.8)	86.90/85.04 (+5.52/+3.66)
DPO	76.2/74.4 (+2.5/+0.7)	86.5/78.8 (+11.1/-3.4)	93.7/93.7 (+2.5/+2.5)	80.0/80.0 (-10.0/-10.0)	75.1/75.0 (-1.5/-1.6)	82.30/80.38 (+0.92/-1.00)
SFT	74.0/74.1 (+0.3/+0.4)	81.1/83.0 (+5.7/+7.6)	93.6/94.6 (+2.4/+3.4)	92.5/92.5 (+2.5/+2.5)	85.9/78.0 (+9.3/+1.4)	85.42/84.4 (+4.04/+3.06)

Table 2: Adaptation performance under different visual distortions for **CUB** (Wah et al., 2011). We use Qwen2.5-VL 7B as speaker and listener. For each method we report two test accuracies: Test-Pick Accuracy / Val-Pick Accuracy, with gains relative to **ZS**. Positive gains are in **green**, negatives in **red**. Best numbers per column (Max) are in **bold**. The last column reports average accuracies across distortions for both metrics, with gains relative to the **ZS** average.

Adapted models generally produce descriptions that are more consistent with the distorted view, leading to improved speaker–listener communication. For AMD distortion, adapted model enriches the description by emphasizing fine details such as the bird’s beak and the rocky surface. Under Detached Retina, adapted model incorporates contextual background cues, describing the blurred foliage, which provides the listener with disambiguating information. In the Grayscale case, the adapted model avoids reliance on color-based cues and instead introduces structure-sensitive descriptors such as “a thin, bare branch,” which align more closely with the listener’s visual perception. For Tunnel Vision, the adapted model improves the base description “just caught a fish” to the more faithful “dives towards the water,” aligning with what the listener actually sees, where the fish is not clearly visible. Finally, in the Cataract setting, adapted model strengthens the description of the target bird while adding background details about vegetation and posture, helping the listener distinguish the target from confounding images. Overall, these examples demonstrate how adaptation enables the speaker to better align with the listener’s distorted visual space, effectively allowing both to “see the same picture.” These qualitative findings are consistent with our quantitative results, showing that adaptation improves interpretability and fidelity as well.

5 ROBUSTNESS ANALYSIS

5.1 CROSS DATASET TRANSFER

We next evaluate the cross-dataset generalization of adaptation methods by training on one dataset and testing on the other. Specifically, we first train on CLEVR and evaluate on CUB (Table 3). We then mirror this procedure by training on CUB and evaluating on CLEVR (Table 4). for evaluation, we report test-pick accuracy as mentioned in section. 4.1. In each case, we report results for KTO, GRPO, DPO, and SFT under three representative distortions (cataract, grayscale, tunnel vision).

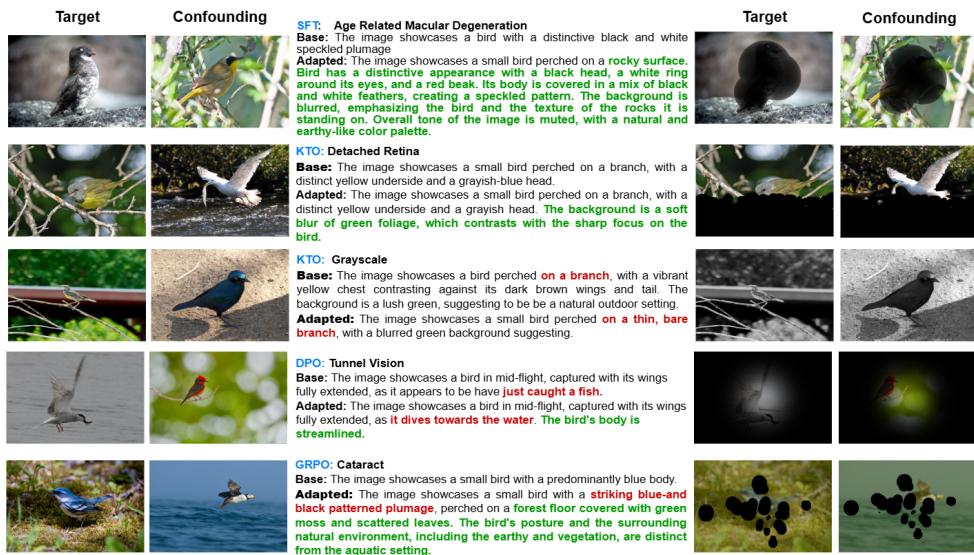


Figure 2: **Qualitative results** for Qwen2.5-VL 7B as speaker. The left image is being described in each description. On left we share original images and on right we share distorted images. In each description text with color **blue** represents the method name. **Red text** represent change of information from original description while **green text** represents new information.

In the CLEVR→CUB setting, adaptation consistently improves over ZS across all methods in average accuracy. KTO yields balanced improvements, particularly on cataract (+4.4) and tunnel vision (+3.0), averaging +3.0 overall. GRPO shows similar behavior, with moderate gains (+2.0 cataract, +1.9 grayscale) for an average of +1.4. DPO underperforms on cataract (-1.5) but achieves the highest boost on grayscale (+5.8). SFT demonstrates the strongest distortion-specific generalization, with large improvements on cataract (+5.2) and especially grayscale (+14.1), resulting in the highest average (+6.5). These results highlight that while online methods transfer more stably, SFT can achieve the strongest cross-dataset gains in this direction.

In contrast, the CUB \rightarrow CLEVR transfer proves more challenging, with smaller and more variable improvements. KTO achieves modest average gains (+2.4), driven by tunnel vision (+6.9) despite a drop on grayscale (-1.5). GRPO follows a similar pattern, excelling on tunnel vision (+10.7) but degrading on grayscale (-2.7), yielding +3.4 on average. SFT generalizes most reliably, with improvements on grayscale (+4.4) and tunnel vision (+1.1), though average gains remain modest (+1.8). DPO lags behind in cataract while reporting a considerable gain of on tunnel vision (+4.4) and achieving an average gain of +4.1. Overall, we observe that compositional nature of CLEVR dataset makes transfer from CLEVR to natural-image CUB is more successful, while the reverse direction remains more challenging, with KTO showing more stable improvements among online methods.

5.2 ADAPTING TO DIFFERENT AGENT UNDER DIVERGENT VISUAL SPACE

Table 5 reports adaptation results on the CUB dataset using Qwen2.5-VL-7B as the speaker and InternVL3.5 (Wang et al., 2025) as the listener. The baseline listener is already strong, with near-ceiling accuracy on Tunnel Vision (96.0) and Detached Retina (97.3), but weaker under Cataract (80.4), Grayscale (72.0), and AMD (81.7). In this high-performing regime, adaptation provides only modest gains. KTO improves slightly on Grayscale (+1.9 Test-Pick), matches or marginally improves on Tunnel Vision and AMD,

Method	Cataract	Grayscale	Tunnel Vision	Avg.
ZS	73.7	75.4	91.2	80.1
KTO	78.1 (+4.4)	77.1 (+1.7)	94.2 (+3.0)	83.1 (+3.0)
GRPO	75.7 (+2.0)	77.3 (+1.9)	91.6 (+0.4)	81.5 (+1.4)
DPO	72.2 (-1.5)	81.2 (+5.8)	91.9 (+0.7)	81.8 (+1.7)
SFT	78.9 (+5.2)	89.5 (+14.1)	91.5 (+0.3)	86.6 (+6.5)

Table 3: Adaptation performance for **CLEVR**→**CUB**. We use Qwen2.5-VL 7B as speaker and listener. We report ZS accuracy and Test-Pick accuracy (gains in green/red). Best results per distortion are in **bold**. The last column shows the row-wise average across distortions.

Method	Cataract	Grayscale	Tunnel Vision	Avg.
ZS	60.5	39.2	68.9	56.2
KTO	62.4 (+1.9)	37.7 (-1.5)	75.8 (+6.9)	58.6 (+2.4)
GRPO	62.6 (+2.1)	36.5 (-2.7)	79.6 (+10.7)	59.6 (+3.4)
DPO	57.8 (-2.7)	50.5 (+11.3)	72.7 (+3.8)	60.3 (+4.1)
SFT	60.4 (-0.1)	43.6 (+4.4)	70.0 (+1.1)	58.0 (+1.8)

Table 4: Adaptation performance for **CUB**→**CLEVR**. We use Qwen2.5-VL 7B as speaker and listener. We report ZS accuracy and Test-Pick accuracy (gains in green/red). Best results per distortion are in **bold**. The last column shows the row-wise average across distortions.

Method	Cataract	Grayscale	Tunnel Vision	Detached Retina	AMD	Avg.
ZS	80.4	72.0	96.0	97.3	81.7	85.5
KTO	79.0/78.9 (-1.4/-1.5)	73.9/72.1 (+1.9/+0.1)	96.0/96.2 (+0.0/+0.2)	95.4/96.9 (-1.9/-0.4)	93.3/93.0 (+11.6/+11.3)	87.5/87.4 (+2.0/+1.9)
GRPO	76.4/77.8 (-4.0/-2.6)	72.5/70.7 (+0.5/-1.3)	95.1/95.3 (-0.9/-0.7)	96.0/94.9 (-1.3/-2.4)	93.0/93.5 (+11.3/+11.8)	86.6/86.4 (+1.1/+0.9)

Table 5: Adaptation performance under different visual distortions with InternVL3.5 (Wang et al., 2025) as listener for **CUB** (Wah et al., 2011). We use Qwen2.5-VL 7B as speaker. We report *Test-Pick/Val-Pick* accuracies with gains relative to **ZS**. Positive gains are in green, negatives in red. Best adapted values per column are in **bold**. The last column reports row-wise averages (and gains) across distortions.

but underperforms on Cataract and Detached Retina, averaging 87.52/87.42 (+2.0/+1.9). GRPO achieves the strongest boost on AMD (+11.3/+11.8) but falls behind on Cataract and Tunnel Vision, yielding slightly lower averages (86.6/86.4). Overall, gains are limited, reflecting that adaptation has less room to help when the baseline listener already performs well. Furthermore, the weaker results on Cataract and Detached Retina highlight the challenges of adapting across heterogeneous agents.

Table 6 presents results on CLEVR with the same speaker–listener pairing. Here the baseline is much weaker overall (51.6 average), and especially poor on Grayscale (27.1). In this lower-performing regime, adaptation produces substantial improvements. KTO provides the most consistent and significant gains, especially on Grayscale (+34.4/+33.2), with improvements also on Cataract and Tunnel Vision, raising the averages to 58.9/58.9 (+7.3/+7.3). GRPO offers a smaller benefit, with strong improvements under Tunnel Vision (+5.7/+2.3) and Detached Retina (+3.1/-0.2), but lags on Cataract and Grayscale, resulting in averages of 52.7/51.2 (+1.1/-0.5).

Taken together, these findings reveal a sharp asymmetry. When the baseline listener is already strong, as in CUB, adaptation provides only minor and uneven gains. By contrast, when the listener is weaker, as in CLEVR, adaptation—especially with KTO—yields large and reliable improvements. Compared to earlier results with Qwen2.5-VL-7B as both speaker and listener, these results suggest that adapting across heterogeneous agents is more challenging, with smaller benefits for strong listeners but clear advantages when the listener struggles under perceptual divergence.

6 ABLATION: HETEROGENEOUS MODEL SIZES

In this ablation, we investigate how heterogeneous speaker–listener model sizes affect performance on the CUB dataset using KTO adaptation. We evaluate four configurations combining Qwen-2.5 VL 3B and 7B models in both symmetric (3B/3B, 7B/7B) and asymmetric (3B/7B, 7B/3B) roles. Zero-shot (Base) and post-adaptation Max accuracies are reported in Tab. 7. A key observation is that the largest symmetric setup

Method	Cataract	Grayscale	Tunnel Vision	Detached Retina	AMD	Avg.
ZS	52.0	27.1	55.4	60.9	62.7	51.6
KTO	52.1 /51.4 (+0.1/-0.6)	61.5 /60.3 (+34.4/+33.2)	57.8/59.5 (+2.4/+4.1)	61.4/61.4 (+0.5/+0.5)	61.9/61.9 (-0.8/-0.8)	58.9/58.9 (+7.3/+7.3)
GRPO	51.1/51.1 (-0.9/-0.9)	26.5/25.6 (-0.6/-1.5)	61.1 /57.7 (+5.7/+2.3)	64.0 /60.7 (+3.1/-0.2)	60.7/60.7 (-2.0/-2.0)	52.7/51.2 (+1.1/-0.5)

Table 6: Adaptation performance under different visual distortions with InternVL3.5 (Wang et al., 2025) as listener for CLEVR (Johnson et al., 2017) dataset. We use Qwen2.5-VL 7B as speaker. We report Test-Pick/Val-Pick accuracies (with gains in green for improvements and red for drops). Best adapted values per column are in **bold**. The last column reports row-wise averages with gains relative to the ZS average.

Method	Model Configuration		Type	Accuracy [%]				
	Speaker	Listener		AMD	Cataract	Detached Retina	Grayscale	Average
KTO	Qwen-2.5 VL 3B	Qwen-2.5 VL 3B	Base	88.0	67.0	96.0	94.0	86.3
			Max	90.0 (+2.0)	70.0 (+3.0)	100.0 (+4.0)	98.0 (+4.0)	89.5 (+3.2)
	Qwen-2.5 VL 3B	Qwen-2.5 VL 7B	Base	94.0	80.0	98.0	80.0	88.0
			Max	96.0 (+2.0)	85.0 (+5.0)	99.0 (+1.0)	82.0 (+2.0)	90.5 (+2.5)
	Qwen-2.5 VL 7B	Qwen-2.5 VL 3B	Base	92.0	67.0	96.0	93.0	87.0
			Max	93.0 (+1.0)	75.0 (+8.0)	97.0 (+1.0)	97.0 (+4.0)	90.8 (+3.8)
	Qwen-2.5 VL 7B	Qwen-2.5 VL 7B	Base	90.0	63.0	76.0	88.0	81.4
			Max	94.0 (+4.0)	81.0 (+18.0)	79.0 (+3.0)	93.0 (+5.0)	87.8 (+6.4)

Table 7: Zero-shot (Base) and maximum KTO accuracy across distortions on CUB.

(7B/7B) does *not* produce the strongest baseline: it has the lowest average Base accuracy (81.4%), driven by substantial drops under Cataract and Detached Retina distortions. In contrast, the asymmetric 3B speaker / 7B listener setup yields the best baseline (88.0%), indicating that a stronger listener is crucial for reliably interpreting the speaker’s descriptions, even when the speaker is small. Adaptation with KTO consistently improves performance across all configurations. The largest gains occur in the 7B/7B setup, which benefits the most from correction of its weak baseline, particularly on Cataract (+18 points). However, the configuration achieving the highest *final* accuracy is again the asymmetric 3B/7B pair, reaching 90.5% after KTO. This highlights an efficient design choice: pairing a lightweight speaker with a stronger listener offers a favorable balance between computational cost and top-end performance. We share extended analysis of in section B

7 CONCLUSION

We studied aligning multimodal agents that inhabit *divergent visual spaces*. Using an image reference game with five distortion types, we compared offline (SFT, DPO) and online (KTO, GRPO) post-training strategies. Our experiments show that (i) offline adaptation can help without access to the listener when provided with high-quality preference pairs aligned to the listener’s impairment; (ii) online adaptation with KTO and GRPO delivers **strong** improvements across distortions by learning directly from interaction feedback; and (iii) qualitative analyses confirm that adapted speakers prioritize distortion-consistent cues, bridging mismatches in perception. Cross-dataset studies further indicate that compositional nature of CLEVR dataset makes it easier to transfer to natural images (CUB). Adapting to a different listener family yields smaller gains, underscoring the challenge of alignment across heterogeneous model representations.

470 REPRODUCIBILITY STATEMENT
471472 We will release all artifacts needed to replicate our results: the full training/evaluation code for offline
473 (SFT, DPO) and online (KTO, GRPO) adaptation with LoRA; scripts to generate and apply our five visual
474 distortions; data preparation/evaluation pipelines for the image reference game; and a public preference
475 dataset containing instructions and paired (m^+, m^-) descriptions. We document exact base/model versions
476 (e.g., Qwen2.5-VL-7B/32B, InternVL3.5) wherever they are used and in Appendix F. We share dataset
477 generation details in section 3.3. Our main reported numbers use nucleus sampling with temperature 0.7
478 averaged over multiple runs; greedy-decoding results (max test accuracy and validation-picked checkpoints)
479 are included in the appendix for transparency in section A.480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516

517 REFERENCES
518

519 Stephan Alaniz, Diego Marcos, and Zeynep Akata. Learning decision trees recurrently through communication.
520 In *CVPR*, 2021.

521 Alan Ansell, E. Ponti, Anna Korhonen, and Ivan Vulic. Composable sparse fine-tuning for cross-lingual
522 transfer. In *ACL*, 2021.

523 Elad Ben Zaken, Yoav Goldberg, and Shauli Ravfogel. BitFit: Simple parameter-efficient fine-tuning for
524 transformer-based masked language-models. In *ACL*, 2022.

525 Siyuan Bian, Chenghao Xu, Yuliang Xiu, Artur Grigorev, Zhen Liu, Cewu Lu, Michael J. Black, and Yao
526 Feng. Chatgarment: Garment estimation, generation and editing via large language models. In *CVPR*,
527 2025a.

528 Siyuan Bian, Chenghao Xu, Yuliang Xiu, Artur Grigorev, Zhen Liu, Cewu Lu, Michael J. Black, and Yao
529 Feng. Chatgarment: Garment estimation, generation and editing via large language models. In *CVPR*,
530 2025b.

531 Rodolfo Corona, Stephan Alaniz, and Zeynep Akata. Modeling conceptual understanding in image reference
532 games. In *NeurIPS*, 2019.

533 Abhishek Das, Satwik Kottur, Khushi Gupta, Avi Singh, Deshraj Yadav, José M. F. Moura, Devi Parikh, and
534 Dhruv Batra. Visual dialog. In *CVPR*, 2016.

535 Harm de Vries, Florian Strub, A. P. Sarath Chandar, Olivier Pietquin, H. Larochelle, and Aaron C. Courville.
536 Guesswhat?! visual object discovery through multi-modal dialogue. In *CVPR*, 2016.

537 Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale hierarchical
538 image database. In *CVPR*, 2009.

539 Kawin Ethayarajh, Winnie Xu, Niklas Muennighoff, Dan Jurafsky, and Douwe Kiela. Kto: Model alignment
540 as prospect theoretic optimization. In *arXiv preprint arXiv:2402.01306*, 2024.

541 Chaoyou Fu, Yuhua Dai, Yondong Luo, Lei Li, Shuhuai Ren, Renrui Zhang, Zihan Wang, Chenyu Zhou,
542 Yunhang Shen, Mengdan Zhang, Peixian Chen, Yanwei Li, Shaohui Lin, Sirui Zhao, Ke Li, Tong Xu,
543 Xiawu Zheng, Enhong Chen, Rongrong Ji, and Xing Sun. Video-mme: The first-ever comprehensive
544 evaluation benchmark of multi-modal llms in video analysis. (*CVPR*), 2024.

545 Chaoyou Fu, Yuhua Dai, Yongdong Luo, Lei Li, Shuhuai Ren, Renrui Zhang, Zihan Wang, Chenyu Zhou,
546 Yunhang Shen, Mengdan Zhang, Peixian Chen, Yanwei Li, Shaohui Lin, Sirui Zhao, Ke Li, Tong Xu, Xiawu
547 Zheng, Enhong Chen, Caifeng Shan, Ran He, and Xing Sun. Video-mme: The first-ever comprehensive
548 evaluation benchmark of multi-modal llms in video analysis. In *CVPR*, 2025.

549 Shangmin Guo, Biao Zhang, Tianlin Liu, Tianqi Liu, Misha Khalman, Felipe Llinares-López, Alexandre
550 Ramé, Thomas Mesnard, Yao Zhao, Bilal Piot, Johan Ferret, and Mathieu Blondel. Direct language model
551 alignment from online ai feedback. In *arXiv preprint arXiv:2402.04792*, 2024.

552 Chan-Jan Hsu, Davide Buffelli, Jamie McGowan, Feng-Ting Liao, Yi-Chang Chen, Sattar Vakili, and Da-shan
553 Shiu. Group think: Multiple concurrent reasoning agents collaborating at token level granularity. *CoRR*,
554 2025.

555 Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, and
556 Weizhu Chen. Lora: Low-rank adaptation of large language models. In *ICLR*, 2022a.

557

564 Edward J Hu, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, Weizhu Chen, et al.
565 Lora: Low-rank adaptation of large language models. In *ICLR*, 2022b.
566

567 Zhaolin Hu, Yixiao Zhou, Zhongan Wang, Xin Li, Weimin Yang, Hehe Fan, and Yi Yang. OSDA agent:
568 Leveraging large language models for de novo design of organic structure directing agents. In *ICLR*, 2025.

569 Jen-tse Huang, Eric John Li, Man Ho Lam, Tian Liang, Wenxuan Wang, Youliang Yuan, Wenxiang Jiao,
570 Xing Wang, Zhaopeng Tu, and Michael R. Lyu. Competing large language models in multi-agent gaming
571 environments. In *ICLR*, 2025a.

572 Zeyi Huang, Yuyang Ji, Xiaofang Wang, Nikhil Mehta, Tong Xiao, Donghyun Lee, Sigmund Vanvalkenburgh,
573 Shengxin Zha, Bolin Lai, Licheng Yu, Ning Zhang, Yong Jae Lee, and Miao Liu. Building a mind palace:
574 Structuring environment-grounded semantic graphs for effective long video analysis with llms. In *CVPR*,
575 2025b.

576 Justin Johnson, Bharath Hariharan, Laurens Van Der Maaten, Li Fei-Fei, C Lawrence Zitnick, and Ross
577 Girshick. Clevr: A diagnostic dataset for compositional language and elementary visual reasoning. In
578 *CVPR*, 2017.

579 Harang Ju and Sinan Aral. Collaborating with AI agents: Field experiments on teamwork, productivity, and
580 performance. *CoRR*, 2025.

581 Vladislav Lialin, Namrata Shivagunde, Sherin Muckatira, and Anna Rumshisky. Relora: High-rank training
582 through low-rank updates. In *NeurIPS workshops*, 2023.

583 Liu, Jing Liu, Toshiaki Koike-Akino, Pu Wang, Matthew Brand, Ye Wang, and Kieran Parsons. Loda:
584 Low-dimensional adaptation of large language models. In *NeurIPS workshops*, 2023.

585 Aiwei Liu, Haoping Bai, Zhiyun Lu, Xiang Kong, Simon Wang, Jilong Shan, Mengsi Cao, and Lijie Wen.
586 Direct large language model alignment through self-rewarding contrastive prompt distillation. In *ACL*,
587 2024a.

588 Jiaying Lizzy Liu, Yunlong Wang, Yao Lyu, Yiheng Su, Shuo Niu, Xuhai Xu, and Yan Zhang. Harnessing llms
589 for automated video content analysis: An exploratory workflow of short videos on depression. *Companion
590 Publication of the 2024 Conference on Computer-Supported Cooperative Work and Social Computing*,
591 2024b.

592 Zhengyi Ma, Zhicheng Dou, Yutao Zhu, Hanxun Zhong, and Ji rong Wen. One chatbot per person: Creating
593 personalized chatbots based on implicit user profiles. In *SIGIR*, 2021.

594 Ziqiao Ma, Jacob Sansom, Run Peng, and Joyce Chai. Towards a holistic landscape of situated theory of
595 mind in large language models. In *EMNLP*, 2023.

596 Otniel-Bogdan Mercea, Alexey Gritsenko, Cordelia Schmid, and Anurag Arnab. Time-memory-and parameter-
597 efficient visual adaptation. In *CVPR*, 2024.

598 Jinjie Ni, Tom Young, Vlad Pandelea, Fuzhao Xue, Vinay Vishnumurthy Adiga, and E. Cambria. Recent
599 advances in deep learning based dialogue systems: a systematic survey. In *Artificial Intelligence Review*,
600 2021.

601 Josephine Nneka Nwabueze. Barriers globally faced by persons with disabilities. *Special needs education
602 from the lens of interdisciplinary dialogue: a festschrift in honour of prof. Emeka d. Ozoji*, 3, 2023.

603 Jonas Pfeiffer, Ivan Vulic, Iryna Gurevych, and Sebastian Ruder. Mad-x: An adapter-based framework for
604 multi-task cross-lingual transfer. In *EMNLP*, 2020.

611 Rafael Rafailov, Archit Sharma, Eric Mitchell, Christopher D Manning, Stefano Ermon, and Chelsea Finn.
 612 Direct preference optimization: Your language model is secretly a reward model. *Advances in neural*
 613 *information processing systems*, 36:53728–53741, 2023.

614

615 Rafael Rafailov, Archit Sharma, Eric Mitchell, Christopher D Manning, Stefano Ermon, and Chelsea Finn.
 616 Direct preference optimization: Your language model is secretly a reward model. In *NeurIPS*, 2024.

617

618 Roberta Raileanu, Emily L. Denton, Arthur Szlam, and Rob Fergus. Modeling others using oneself in
 619 multi-agent reinforcement learning. In *ICML*, 2018.

620

621 Rajkumar Ramamurthy, Prithviraj Ammanabrolu, Kianté Brantley, Jack Hessel, Rafet Sifa, Christian Bauck-
 622 hage, Hannaneh Hajishirzi, and Yejin Choi. Is reinforcement learning (not) for natural language processing:
 623 Benchmarks, baselines, and building blocks for natural language policy optimization. In *ICLR*, 2023.

624

625 Iulian Serban, Alessandro Sordoni, Yoshua Bengio, Aaron C. Courville, and Joelle Pineau. Building
 626 end-to-end dialogue systems using generative hierarchical neural network models. In *AAAI*, 2015.

627

628 Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang, Mingchuan
 629 Zhang, YK Li, Yang Wu, et al. Deepseekmath: Pushing the limits of mathematical reasoning in open
 630 language models. *arXiv preprint arXiv:2402.03300*, 2024.

631

632 Ying Sheng, Shiyi Cao, Dacheng Li, Coleman Hooper, Nicholas Lee, Shuo Yang, Christopher Chou, Banghua
 633 Zhu, Lianmin Zheng, Kurt Keutzer, Joseph E. Gonzalez, and Ion Stoica. S-lora: Serving thousands of
 634 concurrent lora adapters. In *arXiv preprint arXiv:2311.03285*, 2023.

635

636 Charles Burton Snell, Ilya Kostrikov, Yi Su, Mengjiao Yang, and Sergey Levine. Offline rl for natural
 637 language generation with implicit language q learning. In *ICLR*, 2023.

638

639 Haoyu Song, Weinan Zhang, Jingwen Hu, and Ting Liu. Generating persona consistent dialogues by
 640 exploiting natural language inference. In *AAAI*, 2019.

641

642 Yi-Lin Sung, Jaemin Cho, and Mohit Bansal. Lst: Ladder side-tuning for parameter and memory efficient
 643 transfer learning. In *NeurIPS*, 2022.

644

645 Ece Takmaz, Nicolo' Brandizzi, Mario Julianelli, Sandro Pezzelle, and Raquel Fern'andez. Speaking the
 646 language of your listener: Audience-aware adaptation via plug-and-play theory of mind. In *ACL*, 2023.

647

648 C. Wah, S. Branson, P. Welinder, P. Perona, and S. Belongie. The caltech-ucsd birds-200-2011 dataset.
 649 Technical Report CNS-TR-2011-001, California Institute of Technology, 2011.

650

651 Jian Wang, Chak Tou Leong, Jiashuo Wang, Dongding Lin, Wenjie Li, and Xiao-Yong Wei. Instruct once,
 652 chat consistently in multiple rounds: An efficient tuning framework for dialogue. In *ACL*, 2024a.

653

654 Peng Wang, Shuai Bai, Sinan Tan, Shijie Wang, Zhihao Fan, Jinze Bai, Keqin Chen, Xuejing Liu, Jialin
 655 Wang, Wenbin Ge, Yang Fan, Kai Dang, Mengfei Du, Xuancheng Ren, Rui Men, Dayiheng Liu, Chang
 656 Zhou, Jingren Zhou, and Junyang Lin. Qwen2-vl: Enhancing vision-language model's perception of the
 657 world at any resolution. *arXiv preprint arXiv:2409.12191*, 2024b.

658

659 Weiyun Wang, Zhangwei Gao, Lixin Gu, Hengjun Pu, Long Cui, Xingguang Wei, Zhaoyang Liu, Linglin
 660 Jing, Shenglong Ye, Jie Shao, et al. Internvl3.5: Advancing open-source multimodal models in versatility,
 661 reasoning, and efficiency. *arXiv preprint arXiv:2508.18265*, 2025.

662

663 World Health Organization and The Lancet Global Health Commission on Global Eye Health. World Report
 664 on Vision. *World Health Organization*, 2021. URL <https://www.who.int/publications/i/item/9789241517402>.

665

658 Ronghuan Wu, Wanchao Su, and Jing Liao. Chat2svg: Vector graphics generation with large language models
659 and image diffusion models. In *CVPR*, 2025.

660
661 Yichao Wu, Yafei Xiang, Shuning Huo, Yulu Gong, and Penghao Liang. Lora-sp: Streamlined partial
662 parameter adaptation for resource-efficient fine-tuning of large language models. In *arXiv preprint*
663 *arXiv:2403.08822*, 2024.

664 Shih yang Liu, Chien-Yi Wang, Hongxu Yin, Pavlo Molchanov, Yu-Chiang Frank Wang, Kwang-Ting Cheng,
665 and Min-Hung Chen. Dora: Weight-decomposed low-rank adaptation. In *ICML*, 2024.

666
667 Longteng Zhang, Lin Zhang, Shaohuai Shi, Xiaowen Chu, and Bo Li. Lora-fa: Memory-efficient low-rank
668 adaptation for large language models fine-tuning. In *arXiv preprint arXiv:2308.03303*, 2023.

669 Yizhe Zhang, Xiang Gao, Sungjin Lee, Chris Brockett, Michel Galley, Jianfeng Gao, and William B. Dolan.
670 Consistent dialogue generation with self-supervised feature learning. In *arXiv preprint arXiv:1903.05759*,
671 2019.

672 Yusen Zhang, Ruoxi Sun, Yanfei Chen, Tomas Pfister, Rui Zhang, and Sercan Ö. Arik. Chain of agents:
673 Large language models collaborating on long-context tasks. In *NeurIPS*, 2024.

674
675 Hanxun Zhong, Zhicheng Dou, Yutao Zhu, Hongjin Qian, and Ji rong Wen. Less is more: Learning to refine
676 dialogue history for personalized dialogue generation. In *NAACL-HLT*, 2022.

677 Daniel M. Ziegler, Nisan Stiennon, Jeff Wu, Tom B. Brown, Alec Radford, Dario Amodei, Paul Chris-
678 tiano, and Geoffrey Irving. Fine-tuning language models from human preferences. In *arXiv preprint*
679 *arXiv:1909.08593*, 2019.

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704