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Abstract1

Graphs, as a relational data structure, have been widely used in various appli-2

cation scenarios, such as molecule design and recommender systems. Recently,3

large language models (LLMs) are reorganizing in the AI community due to4

their strong reasoning and inference capabilities. Enabling LLMs to effectively5

process graph-structured data holds significant potential. Applications include:6

(1) distilling external knowledge bases to mitigate hallucination and overcome7

the context window limitation in retrieval-augmented generation; and (2) di-8

rectly addressing graph-centric tasks such as protein design and drug discovery.9

However, feeding raw graph data into LLMs is impractical. Graphs often have10

complex topologies, large scale, and lack efficient semantic representations, all of11

which hinder their direct integration with LLMs. This raises a key question: can12

graph representations be expressed in natural language while still encoding rich13

structural and geometric information suitable for LLM input? One promising14

direction is the use of graph parametric representation or graph law. These15

approaches predefine a set of parameters (e.g., degree, diameter, temporal dynam-16

ics) and establish their values and relationships by analyzing distributions across17

real-world graphs. Such parametric representations may offer a natural bridge for18

LLMs to understand complex graph structures and perform corresponding infer-19

ences. Therefore, in this survey, we first review four categorical of current efforts20

of incorporating graph data into LLMs, i.e., topological query, semantic query,21

GNN embedding, and GNN prediction, highlighting their limitations. Then, we22

introduce graph parametric representation from multiple perspectives, including23

macroscopic vs. microscopic views, low-order vs. high-order structures, and24

static vs. temporal graphs. Finally, we conclude the paper with future research25

directions.26

1 Introduction27

Graphs serve as a fundamental relational data structure and are extensively utilized in a wide range28

of application scenarios, including molecule design, social network analysis, and recommender29

systems [75]. Recent efforts combine geometric message passing with language models [43, 67],30

e.g., 3D material generation [62], drug design [16], and symbolic–geometric reasoners [38]. Their31

ability to represent complex interconnections among entities makes them indispensable in modeling32

real-world relationships. However, despite their widespread use, integrating graph-based data input33

with large language models (LLMs) remains a challenging problem.34

Recently, LLMs have revolutionized the AI community with their remarkable reasoning and inference35

capabilities [18, 54]. These models have demonstrated significant potential in various tasks, including36

natural language understanding, machine translation, and knowledge extraction. Given the growing37

importance of LLMs, enabling them to comprehend and process graph-based relational data could38

open new frontiers in artificial intelligence research and applications. This integration holds immense39

potential for enhancing LLMs in multiple ways, including but not limited to:40
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• Knowledge Distillation for LLMs: Graph-based external knowledge bases can provide crucial41

insights, mitigating issues such as hallucinations in LLM-generated responses and overcoming the42

limitations imposed by fixed context windows. By incorporating structured graph data, LLMs can43

improve retrieval-augmented generation (RAG) techniques and enhance inference accuracy [13, 22].44

• Direct Graph-Based Problem Solving: Many research domains, such as protein design and drug45

discovery, inherently rely on graph-based data representations [39, 57]. Equipping LLMs with the46

capability to understand and manipulate graph structures could significantly advance research in47

these fields by enabling direct problem-solving approaches.48

Despite the clear advantages of incorporating graph data into LLMs, several challenges hinder this49

integration. The primary obstacles include (1) the complexity of graph topologies, (2) the size of50

graph datasets, and (3) the absence of effective semantic representations of graphs that LLMs can51

process efficiently. Unlike textual data, which LLMs are inherently designed to understand, graphs52

lack a straightforward natural language representation. This leads to a fundamental research question:53

Is there a form of graph representation that is both interpretable in natural language for LLMs and54

informative enough to serve as a viable input format?55

A promising solution lies in the concept of graph parametric representation or graph laws [17],56

which refers to statistical principles that define relationships between key structural parameters57

of graphs, such as degree, clustering coefficients, diameter, and time. Hence, a graph can be58

represented by a few parameters to reflect its properties well. Correspondingly, the formal59

mathematical relations and concrete values of the parameters are estimated by analyzing real-world60

and large-scale graph data distributions [33, 34]. By encoding graph properties through the pre-61

defined set of parameters, graph laws offer a way to translate complex graph topologies into a form62

that LLMs can potentially comprehend, e.g., the relationship between the possibility of a newly63

arrived node connecting to an old node (parameter #1) and the degree of that old node (parameter #2)64

is determined by maximum likelihood estimation (MLE) based on the observed real-world graph65

data.66

In the remainder of the paper, in Section 2, we first summarize the current efforts in incorporating67

graph data into LLMs, categorizing them into fourfold, and discuss the corresponding limitations68

to recall the role of parametric representation in the era of LLMs. Then, in Section 3 and Section 4,69

we introduce the macroscopic and microscopic graph parametric representations, respectively, with70

extensions to low-order and high-order, as well as static and temporal. After systematically illustrating71

the pathway of bringing graph parametric representation into LLMs in Section 5 and related work in72

Section 6, we highlight a few future directions on graph parametric representation study in Section 7,73

conclude the paper in Section 8, and leave some newly discovered graph parameters in Section A.74

2 Current Efforts for Incorporating Graphs into LLMs75

In this section, we first disentangle four theoretical approaches for incorporating graph data as input76

to LLMs. We then comprehensively present various methods within this category in Table 2, with the77

symbols summarized in Table 1.78

Table 1: Notation

Symbol Description
G = (V,E) Graph with node set V and edge set E
vi The i-th node
Ti Text features (e.g., words, sentences, paragraphs, etc.) of the i-th node
N (i) The set of 1-hop neighbors of node i
A ∈ {0, 1}|V |×|V | Adjacency matrix of graph G

2.1 Topological Query79

A topological query (i.e., Strategy 1⃝) represents a direct and intuitive approach to converting80

graph data into textual input for LLMs. For example, for node-level tasks such as node classification,81

the textual features of the target (center) node along with its 1-hop and 2-hop neighbors [41, 64] are82
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concatenated to form the input sequence; Eq. (1) shows the concatenated textual features from node83

i’s 1-hop neighbors,84

TN (i) = Concat({Tj : j ∈ N (i)}) (1)
where Concat(·) is the function for text concatenation.85

We refer to this as a topological query because the subgraph selection relies solely on structural86

properties of the graph. Notable techniques under this category include Personalized PageRank [20],87

which ranks nodes based on their topological relevance to the query node by iteratively calling Eq. (2):88

ri ← (1− α)Ãri + αqi (2)

where Ã is the normalized adjacency matrix (often row-stochastic); α is the teleport probability89

(restart probability); qi ∈ {0, 1}|V | is a vector with a 1 at position i and 0 elsewhere. Top-K nodes’90

textual features are concatenated as91

Ttop-K(i) = Concat({Tj : j ∈ Top-K(ri)})

For graph-level tasks, the most straightforward approach is to present the graph as a node list and an92

edge list, allowing this textual sequence to be used as input for LLMs. More formal option to define93

or represent graph-structured data includes graph description language such as Graph Modeling94

Language (GML) [24] and Graph Markup Language (GraphML) [5].95

2.2 Semantic Query96

A semantic query (i.e., Strategy 2⃝) aims to retrieve subgraphs based on semantic relevance rather97

than topological proximity. This approach is inspired by retrieval-augmented generation (RAG)98

methods [30, 35], which enhance model performance by integrating retrieved information. In this99

context, for a given center node or subgraph, semantically related nodes are identified [61, 74], and100

their textual features are concatenated to construct the LLM input.101

Concretely, given a target node vi and its textual feature Ti, the most semantically relevant node is102

retrieved by103

argmax
j ̸=i

⟨Encoder(Ti), Encoder(Tj)⟩ (3)

where Encoder is a text encoder such as sentence-BERT [48] and ⟨·, ·⟩ denotes the inner product.104

2.3 Graph Neural Network as Encoder105

Applying graph neural networks (GNNs) to encode graph structures is a natural and widely adopted106

strategy. For example, the node i’s embedding from the k-th layer of a message-passing neural107

network can be presented as108

h
(k)
i = σ

(
W(k) · AGG

(
{h(k−1)

j : j ∈ N (i) }
))

(4)

h
(0)
i = Encoder(Ti) (5)

where AGG denotes the aggregation operator such as sum; W(k) is the weight matrix from the k-th109

layer; σ is the activation function.110

As GNNs produce latent representations {hi}i∈V (i.e., Strategy 3⃝) that are not easily translat-111

able into text, these embeddings are often injected into LLMs [55, 76] via latent-layer integration112

techniques such as soft prompting [7, 64]. Alternatively, some methods utilize interpretable GNN113

predictions in textual form (i.e., Strategy 4⃝) such as Eq. (6) as a direct input to LLMs [61],114

enabling a different mode of interaction between the two models.115

ℓi = LabelMap

(
argmax
c∈{1,...,C}

hi(c)

)
(6)

which reads the largest logit from the graph neural network’s output hi and translates it into the116

textual label through the LabelMap function; C is the total number of labels.117

Table 2 presents a comparative overview of existing models, emphasizing how each method incorpo-118

rates graph data into LLMs. It is important to note that this survey focuses on frameworks where the119

LLM serves as the primary task solver; approaches that employ LLMs solely to assist or enhance120

GNNs fall outside the scope of this work.121
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Table 2: Comparison of Language Models in their Use of Graph Data as Input. Strategies 1 to 4
denotes 1⃝ topological query, 2⃝ semantic query, 3⃝ GNN embedding, 4⃝ GNN prediction

.

Method Ref Year Backbone
LLM

Fine
Tuning

Strategies Task Level
1⃝ 2⃝ 3⃝ 4⃝

NLGraph [56] 2023 GPT No ✓ Node, Link, Graph

GPT4Graph [19] 2023 GPT No ✓ Node, Link, Graph

LLM4GT [50] 2023 GPT No ✓ Node, Link

GraphText [73] 2023 GPT No ✓ Node

DGTL [47] 2023 Llama Yes ✓ ✓ Node

InstructGLM [64] 2024 T5, Llama Yes ✓ ✓ Node

LlaGA [7] 2024 Llama Yes ✓ ✓ Node, Link

AuGLM [61] 2024 T5 Yes ✓ ✓ ✓ Node

GraphPrompter [41] 2024 Llama Yes ✓ Node, Link

G-Recall [59] 2024 GPT, Gemini No ✓ Subgraph

TLG [15] 2024 PaLM No ✓ Node, Link, Subgraph

LLM4DyG [71] 2024 GPT, Llama No ✓ Temporal

SNS [37] 2024 GPT No ✓ Node

MuseGraph [52] 2024 BART, T5, Llama Yes ✓ Node, Graph

OFA [40] 2024 Llama No ✓ Node, Link, Graph

GraphGPT [53] 2024 Llama Yes ✓ ✓ Node, Link

Graph-CoT [29] 2024 GPT No ✓ Node

TEA-GLM [55] 2024 Vicuna Yes ✓ Node, Link

GPEFT [76] 2024 Llama Yes ✓ Link

PromptGFM [77] 2025 T5, Llama Yes ✓ Node, Link

GraphICL [51] 2025 Llama, GPT No ✓ ✓ Node, Link

UniGraph [23] 2025 Llama Yes ✓ ✓ Node, Link, Graph

SKETCH [74] 2025 Nomic, Llama Yes ✓ ✓ Node

TGTalker [27] 2025 Qwen, Mistral, Llama No ✓ Temporal

FewshotRAG [36] 2025 Llama, Qwen, etc. No ✓ Node

2.4 Limitations by Complex Geometric Information122

Recent studies suggest that current methods of incorporating graph data into LLMs are insufficient123

for enabling deep graph understanding. Several works [15, 19, 56] indicate that LLMs exhibit only124

limited graph reasoning capabilities, performing weakly on fundamental tasks such as graph size125

estimation, degree computation, and edge existence detection. Furthermore, advanced prompting126

strategies, including chain-of-thought prompting, tend to be less effective when applied to more127

complex graph problems. Similar limitations are also observed in dynamic graph settings [71]. Addi-128

tional evidence [26] suggests that LLMs may interpret graph-structured input merely as sequential129

text, lacking an understanding of the underlying structure. The Graph Recall Test, a simple yet130

revealing benchmark, further demonstrates that most LLMs fail to retain and reason over graph131

information reliably [59]. Moreover, according to [61], LLM-based node classifiers still significantly132

underperform compared to specialized GNN-based classifiers, and an intuitive guess is that this is133

due to the GNN’s ability in the Weisfeiler-Lehman graph isomorphism test [60]. Therefore, we want134

to ask, Is there a carrier that can bring complex geometric information to LLMs?135

3 Macroscopic Graph Parametric Representation136

In this section, we introduce the graph laws from the macroscope and microscope. In detail, we will137

introduce the intuition behind researchers proposing or using graph statistical properties as parameters138

and how they fit the values of these parameters against real-world observations.139
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Table 3: A summary of parameteric representations of graphs. Some laws have multiple aspects and
are indexed by numbers in parentheses.

Input Law Parameter Scope Order Temporality Description

Graphs

Densification Law [34] Density degree α Macro Low Dynamic e(t) ∝ n(t)α, α ∈ [1, 2], e(t) is # edges at t

Shrinking Law [34] Effective diameter d Macro Low Dynamic dt+1 < dt, d decreases as network grows

Motif Differing Law(1) [45] Numbers of similar motifs n Macro High Dynamic n1 ̸= n2 for different domains

Motif Differing Law(2) [45] Motif occurring timestamp t Macro High Dynamic t1 ̸= t2 for different motifs

Egonet Differing Law [4] Features of Egonets X Macro High Static X1 ̸= X2 for different domains

Simplicial Closure Law [4] Simplicial closure probability p Macro High Static p increases with additional edges or tie strength

Spectral Power Law(1) [14] Degree, SVD, eigen distributions Macro High Static These distributions usually follow power-law

Spectral Power Law(2) [14] Degree, SVD, eigen distributions Macro High Static If one follow power-law, usually others follow

Edge Attachment Law(1) [33] Node degree d, edge create pe(d) Micro Low Dynamic pe(d) ∝ d for node with degree d

Edge Attachment Law(2) [33] Node age a(u), edge create pe(d) Micro Low Dynamic pe(d) seems to be non-decreasing with a(u)

Triangle Closure Law(1) [25] Triangular connections e1, e2, e3 Micro Low Dynamic Strong e3 ⇒ unlikely e1/e2 will be weakened

Triangle Closure Law(2) [25] Triangular connections e1, e2, e3 Micro Low Dynamic Strong e1/e2 ⇒ unlikely they will be weakened

Local Closure Law [66] Local closure coefficient H(u) Micro Low Static Please refer to Section A for details

Spectral Density Law [10] Density of states µ(λ) Macro High Static Please refer to Section A for details

Motif Activity Law(1) [70] Motif type Micro High Dynamic Motifs do not transit from one type to another

Motif Activity Law(2) [70] Motif re-appear rate Micro High Dynamic Motifs re-appear with configured rates

Hypergraphs

Degree Distribution Law [9] Node degree, edge link probability Macro High Dynamic High-degree nodes are likely to form new links

SVD Distribution Law [9] Singular value distribution Macro High Static Singular value distribution usually heavy-tailed

Diminishing Overlaps [31] density of interactions DoI(H(t)) Macro High Dynamic Overall hyperedge overlaps decrease over time

Densification Law [31] Density degree α Macro High Dynamic e(t) ∝ n(t)α, α ≥ 1, e(t) is # hyperedges at t

Shrinking Law [31] Hypergraph effective diameter d Macro High Dynamic dt+1 < dt, d decreases as network grows

Edge Interacting Law [8] Edge interacting rate Micro High Dynamic Temporally adjacent interactions highly similar

Heterographs
Densification Law [58] Density degree α, # meta-path Macro Low Dynamic e(t) ∝ n(t)α, α ≥ 1 for some meta-path

Non-densification Law [58] Density degree α, # meta-path Macro Low Dynamic Maybe, for some meta-path, e(t) ̸∝ n(t)α

Several classical theories model the growth of graphs. For example, the Barabasi-Albert model [2, 3]140

assumes that graphs follow a uniform growth pattern in terms of the number of nodes. The Bass141

model [42] and the Susceptible-Infected model [1] follow the Sigmoid growth (more random graph142

models can be found in [12]). However, these pre-defined graph growths have been tested, and they143

could not handle the complex real-world network growth patterns very well [32, 69]. To this end,144

researchers begin to fit the graph growth on real-world networks directly to discover graph laws.145

3.1 Low-Order Macroscopic Parametric Representation146

Based on fitting nine real-world temporal graphs from four different domains, the authors in [34] found147

two temporal graph laws, called (1) Densification Laws and (2) Shrinking Diameters, respectively.148

First, the densification law states as follows.149

e(t) ∝ n(t)α (7)
where e(t) denotes the number of edges at time t, n(t) denotes the number of nodes at time t,150

α ∈ [1, 2] is an exponent representing the density degree. The second law, shrinking diameters, states151

that the effective diameter is decreasing as the network grows, in most cases. Here, the diameter152

means the node-pair shortest distance, and the effective diameter of the graph means the minimum153

distance d such that approximately 90% of all connected pairs are reachable by a path of length at154

most d. Later, in [69], the densification law gets in-depth confirmed on four different real social155

networks, the research shows that the number of nodes and number of edges both grown exponentially156

with time, i.e., following the power-law distribution.157

3.2 High-Order Macroscopic Parametric Representation158

Above discoveries are based on the node-level connections (i.e., low-order connections). Several159

researchers start the investigation based on the group activities, for example, motifs [45], simplices [4],160
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and hyperedges [9, 31]. Motif is defined as a subgraph induced by a sequence of selected temporal161

edges in [45], where the authors discovered that different domain networks have significantly different162

numbers of similar motifs, and different motifs usually occur at different time. Similar laws are also163

discovered in [4], where the authors study 19 graph data sets from domains such as biology, medicine,164

social networks, and the web to characterize how high-order structure emerges and differs across165

different domains. They discovered that the higher-order Egonet features can discriminate the domain166

of the graph, and the probability of simplicial closure events typically increases with the addition of167

edges or tie strength.168

In hypergraphs, each hyperedge could connect an arbitrary number of nodes, rather than two [9],169

where the authors found that real-world static hypergraphs obey the following properties: (1) Giant170

Connected Components, that there is a connected component comprising a large proportion of nodes,171

and this proportion is significantly larger than that of the second-largest connected component. (2)172

Heavy-Tailed Degree Distributions, that high-degree nodes are more likely to form new links. (3)173

Small Effective Diameters, that most connected pairs can be reached by a small distance (4) High174

Clustering Coefficients, that the global average of local clustering coefficient is high. (5) Skewed175

Singularvalue Distributions, that the singular-value distribution is usually heavy-tailed. Later, the176

evolution of real-world hypergraphs is investigated in [31], and the following laws are discovered.177

• Diminishing Overlaps: The overall overlaps of hyperedges decrease over time.178

• Densification: The average degrees increase over time.179

• Shrinking Diameter: The effective diameters decrease over time.180

To be specific, given a hypergraph G(t) = (V (t), E(t)), the density of interactions is stated as181

DoI(G(t)) =
| {{ei, ej} | ei ∩ ej ̸= ∅ for ei, ej ∈ E(t)} |

|{{ei, ej}|ei, ej ∈ E(t)}|
(8)

and the densification is stated as182

|E(t)| ∝ |V (t)|s (9)
where s > 1 stands for the density term, which echos the law discovered in the low order [34] as183

expressed in Eq 7.184

In heterogeneous information networks (where nodes and edges can have multiple types), the power185

law distribution is also discovered [58]. For example, for the triplet "author-paper-venue" (i.e., A-P-186

V), the number of authors is power-law distributed with respect to the number of A-P-V instances187

composed by an author.188

4 Microscopic Graph Parametric Representation189

In contrast to representing the distribution of the entire graph, many researchers try to model individual190

behavior and investigate how they interact with each other to see the evolution pattern microscopically.191

4.1 Low-Order Microscopic Parametric Representation192

In [33], the authors view temporal graphs in a three-fold process, i.e., node arrival (determining how193

many nodes will be added), edge initiation (how many edges will be added), and edge destination194

(where each edge will be added). They ignore the deletion of nodes and edges, and they assign195

variables (models) to parameterize this process.196

• Edge Attachment with Locality (an inserted edge closing an open triangle): It is responsible for the197

edge destination.198

• Node Lifetime and Time Gap between Emitting Edges: It is responsible for edge initiation.199

• Node Arrival Rate: It is responsible for the node arrival.200

To model individual behaviors, there are many candidate models to select from. For example, in201

edge attachment, the probability of a newcomer u connecting to a node v can be proportional to202

v’s current degree, v’s current age, or a combination of both. Based on fitting each model to the203

real-world observation under the supervision of the MLE principle, the authors empirically choose204

the random-random model for edge attachment with locality, i.e., first, let node u choose a neighbor205
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v uniformly and let v uniformly choose u’s neighbor w to close a triangle. The node lifetime and206

time gap between emitting edges are defined as follows.207

a(u) = td(u)(u)− t1(u) (10)

where a(u) stands for the age of node u, tk(u) is the time when node u links its kth edge, dt(u)208

denote the degree of node u at time t, and d(u) = dT (u). T is the final timestamp of the data.209

δu(d) = td+1(u)− td(u) (11)
where δu(d) records the time gap between the current time and the time when that node emits its210

last edge. Finding the node arrival is a regression process in [33], for example, in Flickr graph211

N(t) = exp(0.25t), and N(t) = 3900t2 + 76000t− 130000 in LinkedIn graph.212

In [46, 63], the selection of edge attachment has flourished, where the authors propose several213

variants of edge attachment models for preserving graph properties. Regarding the triangle closure214

phenomenon, several in-depth research follow-ups have been conducted. For example, in [25],215

researchers found that (1) the stronger the third tie (the interaction frequency of the closed edge) is,216

the less likely the first two ties are weakened; (2) when the stronger the first two ties are, the more217

likely they are weakened.218

4.2 High-Order Microscopic Parametric Representation219

Hypergraph ego-network [8] is a structure defined to model the high-order interactions involving an220

individual node. The star ego-network T (u) is defined as follows.221

T (u) = {s : (u ∈ s)},∀s ∈ S (12)
where S is the set of all hyperedges (or simplices). Also, in [8], there are other hypergraph ego-222

networks, like radial ego-network R(u) and contracted ego-network C(u). The relationship between223

them is as follows.224

T (u) ⊆ R(u) ⊆ C(u) (13)

In [8], authors observe that contiguous hyperedges (simplices) in an ego-network tend to have225

relatively large interactions with each other, which suggests that temporally adjacent high-order226

interactions have high similarity, i.e., the same nodes tend to appear in neighboring simplices.227

In [70], authors try to model the temporal graph growth in terms of motif evolution activities. In228

brief, this paper investigates how the number of motifs changes and what the exact motif types are in229

each time interval, and fits the arrival rate parameter of each type of motif against the entire observed230

temporal graph.231

5 Bring Graph Parametric Representations to LLMs232

While Sections 3 and 4 have outlined the fundamental graph laws governing network structure, an233

essential step is to translate these theoretical regularities into a form that large language models234

(LLMs) can internalize and reason with. Bridging the two domains requires a representation layer235

that is both parametrically compact and semantically aligned with the textual interface of LLMs. We236

systematically illustrate this pathway from graph-theoretic priors to language-based reasoning, with a237

conceptual example as shown in Figure 1.238

From Empirical Laws to Parametric Descriptors (Step 1⃝). Graph laws such as densification239

or degree distributions encode families of structural invariants. Each law can be summarized by a240

small set of numeric parameters—e.g., the densification exponent, effective diameter, or average241

clustering—that capture global topology while remaining independent of specific node identities. We242

can refer to this vector of key statistics as a graph parametric summary, which is expect to serve as a243

low-entropy bottleneck that condenses complex geometry into interpretable quantitative cues.244

Language Grounding via Symbolic Templates (Step 2⃝). To make these summaries accessible to245

LLMs, the parameters can be serialized into symbolic or natural-language templates. For example:246

Graph A has n = 300 nodes, average degree = 10, clustering coefficient 0.18, and diameter = 7. Such247

textualized forms preserve the semantics of the underlying law while aligning with the token-based248

processing of LLMs. Compared with raw adjacency lists or embeddings, they strike a balance249

between interpretability and information sufficiency.250

Contextual Injection Strategies (Step 3⃝). Parametric summaries can be injected into LLMs by:251
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GraphSummary:
- name: "example_graph"
- nodes: 102 ,345
- edges: 1 ,234,567
- densification_exponent_alpha: 1.12
- effective_diameter_90pct: 6.3
- avg_clustering_coef: 0.21
- degree_distribution: "heavy -tailed (power -law , gamma

=2.8)"
- motif_counts: {" triangle ": 12345, "4-cycle": 2345}
- spectral_gap: 0.015
- temporal_window: "2016 -01 -01 -- 2020 -12 -31"

Task: "Using the GraphSummary above , estimate
[node classification / link prediction / ...]
or answer Q: ...
Provide reasoning and cite which parameter(s) you used."

Figure 1: Example prompt for LLM-based graph reasoning. Graph parameters are serialized as a
structured text block, providing interpretable context for downstream tasks.

• Prompt-Level Conditioning, where summaries are prepended as context before reasoning questions;252

• Retrieval-Augmented Prompting, in which graph laws most relevant to the query are dynamically253

retrieved and inserted;254

• Adapter-based Fine-Tuning, where the parametric vector is converted into soft tokens or key-value255

biases for the model’s attention layers.256

Reasoning Alignment and Interpretability (Step 4⃝). Because each parameter has an interpretable257

geometric meaning, the resulting reasoning chains become explainable: LLMs can ground relational258

claims (“Graph A is denser but has a smaller diameter than Graph B”) in quantitative laws. This259

alignment bridges continuous geometry and discrete language, offering a principled route to geometric260

interpretability in LLM reasoning.261

6 Related Work262

To the best of our knowledge, there are only a few survey papers on graph laws, with none published263

after 2022, marking the beginning of the foundation model era. A 2006 survey [6] primarily focused264

on graph laws for mining patterns, discussing the Densification Law and Shrinking Law. In 2016,265

another survey [11] shifted its focus towards the generation of large graphs using various graph266

modeling methods, including the Erdős-Rényi model, Watts-Strogatz model, and Albert-Barabási267

model. More recently, in 2019, the authors in [12] offered a broader perspective on random graph268

modeling, covering generative, feature-driven, and domain-specific approaches. In contrast to these269

earlier surveys, which were published before the advent of graph neural networks and prior to the270

discovery of several significant graph laws [8–10, 31, 58, 66, 70], our work represents the first survey271

to explore the potential of graph laws in the context of foundation models. We emphasize how272

graph laws can address domain inconsistencies across different graph data types and contribute to273

multimodal representation learning. Additionally, this survey is the first to offer an overview of274

high-order graph laws and heterogeneous graph laws, marking a novel contribution to the literature.275

7 Future Directions276

Here, we outline several interesting research directions in graph parametric representation within277

modern graph research.278

Graph Laws on Temporal Graphs. Discovering accurate temporal graph laws from real-world279

networks heavily relies on the number and size of networks (e.g., the number of nodes, edges,280
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and time duration). However, some of the temporal graph law studies mentioned above typically281

consider the number of graphs ranging from 10 to 20 when discovering the evolution pattern. The282

existence of time-dependent structure and feature information increases the difficulty of collecting283

real-world temporal graph data. To obtain robust and accurate (temporal) graph laws, we may need284

a considerably large amount of (temporal) network data available. Fortunately, we have seen some285

pioneering work, such as TGB [28] and TUDataset [44].286

Graph Laws on Heterogeneous Networks. Although many graph laws have been proposed and287

verified on homogeneous graphs, real-world networks are typically heterogeneous [49] and comprise288

a large number of interacting, multi-typed components. While the existing work [58] only studied 2289

datasets to propose and verify the heterogeneous graph power law, the potential exists for a transition290

in graph laws from homogeneous networks to heterogeneous networks, suggesting the presence of291

additional parameters contributing to the comprehensive information within heterogeneous networks.292

For example, in an academic network, the paper citation subgraph and the author collaboration293

subgraph may have their own subgraph laws that affect the laws of other subgraphs. Furthermore,294

Knowledge graphs, as a special group of heterogeneous networks, have not yet attracted much295

attention from the research community to study their laws.296

Transferability of Graph Laws. As we can see in the front part of the paper, many nascent graph297

laws are described verbally without the exact mathematical expression, which hinders the transfer298

from the graph law to the numerical constraints for the representation learning process. One latent299

reason for this phenomenon is that selecting appropriate models and parameters, and fitting the exact300

values of these parameters to large evolving graphs, is very computationally demanding.301

Taxonomy of Graph Laws. After we discovered many graph laws, is there any taxonomy or302

hierarchy of those? For example, graph law A stands in the superclass of graph law B, and when303

we preserve graph law A during the representation, we actually have already preserved graph law304

B. For example, a hierarchy of different computer vision tasks has recently been discovered [68].305

Corresponding research on graph law development appears to be a promising direction.306

Domain-Specific Graph Laws. Since graphs serve as general data representations with extreme307

diversity, it is challenging to find universal graph laws that fit all graph domains because each domain308

may be internally different from another [72]. In fact, in many cases, we have prior knowledge about309

the domain of a graph, which can be a social network, a protein network, or a transportation network.310

Thus, it is possible to study domain-specific graph laws that work well on only a portion of graphs311

and then apply these laws specifically to those graphs.312

LLMs as GNNs. In the background of large language models (LLMs) development, an interesting313

question attracts considerable research interest nowadays, i.e., can LLMs replace GNNs as the314

backbone model for graphs? To answer this question, many recent works show the great efforts [21,315

26, 65], where the key point is how to represent the structural information as the input for LLMs.316

For example, Instruct-GLM [65] follows the manner of instruction tuning and makes the template T317

of a 2-hop connection for a central node v as follows.318

T (v,A) = {v} is connected with {|v2|v2∈Av
2
} within two hops. (14)

where Av
k represents the list of node v’s k-hop neighbors.319

As discussed above, the topological information (e.g., 1-hop or 2-hop connections) can serve as320

external modality information to contribute to (e.g., through prompting) the reasoning ability of large321

language models (LLMs) [26] and achieve state-of-the-art on low-order tasks like node classification322

and link prediction.323

8 Conclusion324

Motivated by the need for LLMs to understand graphs, we first review the concepts and development325

progress of graph parametric representations (i.e., graph laws) from different perspectives, including326

macro- and microscopes, low-order and high-order connections, and static and temporal graphs.327

We then discuss various real-world application tasks that can benefit the study of graph parametric328

representations. Finally, we envision the latent challenges and opportunities of graph parametric329

representations in modern graph research with several interesting and possible future directions.330
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A Some New Observation Spaces and Newly Discovered Graph Parameters575

A.1 New Spaces576

In [14], the power law is revisited based on the eigendecomposition and singular value decomposition577

to guide the presence of power laws in terms of the degree distribution, singular value (of adjacency578

matrix) distribution, and the eigenvalue (of Laplacian matrix) distribution. The authors [14] discovered579

that (1) degree distribution, singular value distribution, and eigenvalue distribution follow power law580

distribution in many real-world networks they collected; (2) a significant power law distribution of581

degrees usually indicates power law distributed singular values and power law distributed eigenvalues582

with a high probability.583

A.2 New Parameters584

Currently, if not all, most graph law research focuses on traditional graph properties, such as the585

number of nodes, the number of edges, degrees, diameters, eigenvalues, and singular values. Here,586

we provide some recently proposed graph properties, although they have not yet been tested on the587

scale for fitting the graph law on real-world networks.588

The local closure coefficient [66] is defined as the fraction of length-2 paths (wedges) emanating589

from the head node (of the wedge) that induce a triangle, i.e., starting from a seed node of a wedge,590

how many wedges are closed. According to [66], features extracted within the constraints of the591

14
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local closure coefficient can improve the link prediction accuracy. The local g of node u is defined as592

follows.593

H(u) =
2T (u)

Wh(u)

where W (h)(u) is the number of wedges where u stands for the head of the wedge, and T (u) denotes594

the number of triangles that contain node u.595

The density of states (or spectral density) [10] is defined as follows.596

µ(λ) =
1

N

N∑
i=1

δ(λ− λi),

∫
f(λ)µ(λ) = trace(f(H)) (15)

where H denotes any symmetric graph matrix, λ1, . . . , λN denote the eigenvalues of H in the597

ascending order, δ stands for the Dirac delta function and f is any analytic test function.598
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