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Abstract

Graphs, as a relational data structure, have been widely used in various appli-
cation scenarios, such as molecule design and recommender systems. Recently,
large language models (LLMs) are reorganizing in the AI community due to
their strong reasoning and inference capabilities. Enabling LLMs to effectively
process graph-structured data holds significant potential. Applications include:
(1) distilling external knowledge bases to mitigate hallucination and overcome
the context window limitation in retrieval-augmented generation; and (2) di-
rectly addressing graph-centric tasks such as protein design and drug discovery.
However, feeding raw graph data into LLMs is impractical. Graphs often have
complex topologies, large scale, and lack efficient semantic representations, all of
which hinder their direct integration with LLMs. This raises a key question: can
graph representations be expressed in natural language while still encoding rich
structural and geometric information suitable for LLM input? One promising
direction is the use of graph parametric representation or graph law. These
approaches predefine a set of parameters (e.g., degree, diameter, temporal dynam-
ics) and establish their values and relationships by analyzing distributions across
real-world graphs. Such parametric representations may offer a natural bridge for
LLMs to understand complex graph structures and perform corresponding infer-
ences. Therefore, in this survey, we first review four categorical of current efforts
of incorporating graph data into LLMs, i.e., topological query, semantic query,
GNN embedding, and GNN prediction, highlighting their limitations. Then, we
introduce graph parametric representation from multiple perspectives, including
macroscopic vs. microscopic views, low-order vs. high-order structures, and
static vs. temporal graphs. Finally, we conclude the paper with future research
directions.

1 Introduction

Graphs serve as a fundamental relational data structure and are extensively utilized in a wide range
of application scenarios, including molecule design, social network analysis, and recommender
systems [75]. Recent efforts combine geometric message passing with language models [43, 67],
e.g., 3D material generation [62], drug design [16], and symbolic—geometric reasoners [38]. Their
ability to represent complex interconnections among entities makes them indispensable in modeling
real-world relationships. However, despite their widespread use, integrating graph-based data input
with large language models (LLMs) remains a challenging problem.

Recently, LLMs have revolutionized the Al community with their remarkable reasoning and inference
capabilities [18, 54]. These models have demonstrated significant potential in various tasks, including
natural language understanding, machine translation, and knowledge extraction. Given the growing
importance of LLMs, enabling them to comprehend and process graph-based relational data could
open new frontiers in artificial intelligence research and applications. This integration holds immense
potential for enhancing LLMs in multiple ways, including but not limited to:
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* Knowledge Distillation for LLLMs: Graph-based external knowledge bases can provide crucial
insights, mitigating issues such as hallucinations in LLM-generated responses and overcoming the
limitations imposed by fixed context windows. By incorporating structured graph data, LLMs can
improve retrieval-augmented generation (RAG) techniques and enhance inference accuracy [13, 22].

* Direct Graph-Based Problem Solving: Many research domains, such as protein design and drug
discovery, inherently rely on graph-based data representations [39, 57]. Equipping LLMs with the
capability to understand and manipulate graph structures could significantly advance research in
these fields by enabling direct problem-solving approaches.

Despite the clear advantages of incorporating graph data into LLMs, several challenges hinder this
integration. The primary obstacles include (1) the complexity of graph topologies, (2) the size of
graph datasets, and (3) the absence of effective semantic representations of graphs that LLMs can
process efficiently. Unlike textual data, which LLMs are inherently designed to understand, graphs
lack a straightforward natural language representation. This leads to a fundamental research question:
Is there a form of graph representation that is both interpretable in natural language for LLMs and
informative enough to serve as a viable input format?

A promising solution lies in the concept of graph parametric representation or graph laws [17],
which refers to statistical principles that define relationships between key structural parameters
of graphs, such as degree, clustering coefficients, diameter, and time. Hence, a graph can be
represented by a few parameters to reflect its properties well. Correspondingly, the formal
mathematical relations and concrete values of the parameters are estimated by analyzing real-world
and large-scale graph data distributions [33, 34]. By encoding graph properties through the pre-
defined set of parameters, graph laws offer a way to translate complex graph topologies into a form
that LLMs can potentially comprehend, e.g., the relationship between the possibility of a newly
arrived node connecting to an old node (parameter #1) and the degree of that old node (parameter #2)
is determined by maximum likelihood estimation (MLE) based on the observed real-world graph
data.

In the remainder of the paper, in Section 2, we first summarize the current efforts in incorporating
graph data into LLMs, categorizing them into fourfold, and discuss the corresponding limitations
to recall the role of parametric representation in the era of LLMs. Then, in Section 3 and Section 4,
we introduce the macroscopic and microscopic graph parametric representations, respectively, with
extensions to low-order and high-order, as well as static and temporal. After systematically illustrating
the pathway of bringing graph parametric representation into LLMs in Section 5 and related work in
Section 6, we highlight a few future directions on graph parametric representation study in Section 7,
conclude the paper in Section 8, and leave some newly discovered graph parameters in Section A.

2 Current Efforts for Incorporating Graphs into LLMs

In this section, we first disentangle four theoretical approaches for incorporating graph data as input
to LLMs. We then comprehensively present various methods within this category in Table 2, with the
symbols summarized in Table 1.

Table 1: Notation

Symbol Description

G=(V,E) Graph with node set V" and edge set £

V; The i-th node

T; Text features (e.g., words, sentences, paragraphs, etc.) of the ¢-th node
N (%) The set of 1-hop neighbors of node ¢

A € {0,1}IVI*IVl " Adjacency matrix of graph G

2.1 Topological Query

A topological query (i.e., Strategy (D) represents a direct and intuitive approach to converting
graph data into textual input for LLMs. For example, for node-level tasks such as node classification,
the textual features of the target (center) node along with its 1-hop and 2-hop neighbors [41, 64] are
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concatenated to form the input sequence; Eq. (1) shows the concatenated textual features from node
1’s 1-hop neighbors,

Tir(i) = Concat({T} : j € N(i)}) (1)
where Concat(-) is the function for text concatenation.

We refer to this as a topological query because the subgraph selection relies solely on structural
properties of the graph. Notable techniques under this category include Personalized PageRank [20],
which ranks nodes based on their topological relevance to the query node by iteratively calling Eq. (2):

r; < (1— a)Ari + aq; )

where A is the normalized adjacency matrix (often row-stochastic); « is the teleport probability
(restart probability); q; € {0,1}VI is a vector with a 1 at position i and 0 elsewhere. Top-K nodes’
textual features are concatenated as

Top-i(iy = Concat({T} :j € Top-K(r;)})

For graph-level tasks, the most straightforward approach is to present the graph as a node list and an
edge list, allowing this textual sequence to be used as input for LLMs. More formal option to define
or represent graph-structured data includes graph description language such as Graph Modeling
Language (GML) [24] and Graph Markup Language (GraphML) [5].

2.2 Semantic Query

A semantic query (i.e., Strategy ()) aims to retrieve subgraphs based on semantic relevance rather
than topological proximity. This approach is inspired by retrieval-augmented generation (RAG)
methods [30, 35], which enhance model performance by integrating retrieved information. In this
context, for a given center node or subgraph, semantically related nodes are identified [61, 74], and
their textual features are concatenated to construct the LLM input.

Concretely, given a target node v; and its textual feature T}, the most semantically relevant node is
retrieved by
argmax (Encoder(T;),Encoder(T})) 3)
J#i
where Encoder is a text encoder such as sentence-BERT [48] and (-, -) denotes the inner product.

2.3 Graph Neural Network as Encoder

Applying graph neural networks (GNNs) to encode graph structures is a natural and widely adopted
strategy. For example, the node ¢’s embedding from the k-th layer of a message-passing neural
network can be presented as

b =0 (W® - aco({n{: je N (i) })) @)

hgo) = Encoder(T;) 5)

where AGG denotes the aggregation operator such as sum; W) is the weight matrix from the k-th
layer; o is the activation function.

As GNNs produce latent representations {h;};cy (i.e., Strategy (3)) that are not easily translat-
able into text, these embeddings are often injected into LLMs [55, 76] via latent-layer integration
techniques such as soft prompting [7, 64]. Alternatively, some methods utilize interpretable GNN
predictions in textual form (i.e., Strategy @) such as Eq. (6) as a direct input to LLMs [61],
enabling a different mode of interaction between the two models.

ce{l,....C}

which reads the largest logit from the graph neural network’s output h; and translates it into the
textual label through the LabelMap function; C'is the total number of labels.

¢; = LabelMap <arg max hi(c)> (6)

Table 2 presents a comparative overview of existing models, emphasizing how each method incorpo-
rates graph data into LLMs. It is important to note that this survey focuses on frameworks where the
LLM serves as the primary task solver; approaches that employ LLMs solely to assist or enhance
GNN:ss fall outside the scope of this work.
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Table 2: Comparison of Language Models in their Use of Graph Data as Input. Strategies 1 to 4
denotes (D) topological query, @) semantic query, 3) GNN embedding, @ GNN prediction

Backbone

Fine

Strategies

Method Ref Year LLM Tuning D o 6 @ Task Level
NLGraph [56] 2023 GPT No v Node, Link, Graph
GPT4Graph [19] 2023 GPT No v Node, Link, Graph
LLM4GT [50] 2023 GPT No v Node, Link
GraphText [73] 2023 GPT No v Node
DGTL [47] 2023 Llama Yes v v Node
InstructGLM [64] 2024 TS, Llama Yes v v Node
LlaGA [71 2024 Llama Yes v v Node, Link
AuGLM [61] 2024 T5 Yes v / v Node
GraphPrompter [41] 2024 Llama Yes v Node, Link
G-Recall [59] 2024 GPT, Gemini No v Subgraph
TLG [15] 2024 Pal.M No v Node, Link, Subgraph
LLM4DyG [71] 2024 GPT, Llama No v Temporal
SNS [37] 2024 GPT No v Node
MuseGraph [52] 2024 BART, TS5, Llama Yes v Node, Graph
OFA [40] 2024 Llama No v Node, Link, Graph
GraphGPT [53] 2024 Llama Yes v v Node, Link
Graph-CoT [29] 2024 GPT No v Node
TEA-GLM [55] 2024 Vicuna Yes v Node, Link
GPEFT [76] 2024 Llama Yes v Link
PromptGFM [77] 2025 T5, Llama Yes v Node, Link
GraphICL [511 2025 Llama, GPT No v / Node, Link
UniGraph [23] 2025 Llama Yes v v Node, Link, Graph
SKETCH [74] 2025 Nomic, Llama Yes v / Node
TGTalker [27] 2025 Qwen, Mistral, Llama No v Temporal
FewshotRAG  [36] 2025 Llama, Qwen, etc. No v Node

2.4 Limitations by Complex Geometric Information

Recent studies suggest that current methods of incorporating graph data into LLMs are insufficient
for enabling deep graph understanding. Several works [15, 19, 56] indicate that LLMs exhibit only
limited graph reasoning capabilities, performing weakly on fundamental tasks such as graph size
estimation, degree computation, and edge existence detection. Furthermore, advanced prompting
strategies, including chain-of-thought prompting, tend to be less effective when applied to more
complex graph problems. Similar limitations are also observed in dynamic graph settings [71]. Addi-
tional evidence [26] suggests that LLMs may interpret graph-structured input merely as sequential
text, lacking an understanding of the underlying structure. The Graph Recall Test, a simple yet
revealing benchmark, further demonstrates that most LLMs fail to retain and reason over graph
information reliably [59]. Moreover, according to [61], LLM-based node classifiers still significantly
underperform compared to specialized GNN-based classifiers, and an intuitive guess is that this is
due to the GNN’s ability in the Weisfeiler-Lehman graph isomorphism test [60]. Therefore, we want
to ask, Is there a carrier that can bring complex geometric information to LLMs?

3 Macroscopic Graph Parametric Representation

In this section, we introduce the graph laws from the macroscope and microscope. In detail, we will
introduce the intuition behind researchers proposing or using graph statistical properties as parameters
and how they fit the values of these parameters against real-world observations.
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Table 3: A summary of parameteric representations of graphs. Some laws have multiple aspects and
are indexed by numbers in parentheses.

Input Law Parameter ‘ Scope ‘ Order | Temporality ‘ Description
Densification Law [34] Density degree a Macro | Low Dynamic e(t) xn(t)*, o € [1,2], e(t) is # edges at
Shrinking Law [34] Effective diameter d Macro | Low Dynamic dy41 < dy, d decreases as network grows
Motif Differing Law(1) [45] Numbers of similar motifs n Macro | High Dynamic ny # no for different domains
Motif Differing Law(2) [45] Motif occurring timestamp ¢ Macro | High Dynamic ty # to for different motifs
Egonet Differing Law [4] Features of Egonets X' Macro | High Static X, # X, for different domains
Simplicial Closure Law [4] Simplicial closure probability p Macro | High Static p increases with additional edges or tie strength
Spectral Power Law(1) [14] Degree, SVD, eigen distributions Macro | High Static These distributions usually follow power-law
Granhs Spectral Power Law(2) [14] Degree, SVD, eigen distributions Macro | High Static If one follow power-law, usually others follow
’ Edge Attachment Law(1) [33] | Node degree d, edge create p.(d) Micro | Low Dynamic Pe(d) o d for node with degree d
Edge Attachment Law(2) [33] | Node age a(u), edge create p.(d) | Micro | Low Dynamic pe(d) seems to be non-decreasing with a(u)
Triangle Closure Law(1) [25] | Triangular connections €1, €2, €3 Micro | Low Dynamic Strong e3 = unlikely e; /e, will be weakened
Triangle Closure Law(2) [25] | Triangular connections €1, €2, €3 Micro | Low Dynamic Strong e /e> = unlikely they will be weakened
Local Closure Law [66] Local closure coefficient H (u) Micro | Low Static Please refer to Section A for details
Spectral Density Law [10] Density of states f1(\) Macro | High Static Please refer to Section A for details
Motif Activity Law(1) [70] Motif type Micro | High Dynamic Motifs do not transit from one type to another
Motif Activity Law(2) [70] Motif re-appear rate Micro | High Dynamic Motifs re-appear with configured rates

Degree Distribution Law [9] Node degree, edge link probability | Macro | High Dynamic High-degree nodes are likely to form new links

SVD Distribution Law [9] Singular value distribution Macro | High Static Singular value distribution usually heavy-tailed
. " Diminishing Overlaps [31] density of interactions Dol (#(t)) | Macro | High Dynamic Overall hyperedge overlaps decrease over time
ergraphs
e Densification Law [31] Density degree « Macro | High Dynamic e(t) ox n(t)*, o > 1, e(t) is # hyperedges at ¢
Shrinking Law [31] Hypergraph effective diameter d Macro | High Dynamic di41 < dy, d decreases as network grows
Edge Interacting Law [8] Edge interacting rate Micro | High Dynamic Temporally adjacent interactions highly similar
u ! Densification Law [58] Density degree «, # meta-path Macro | Low Dynamic e(t) o< n(t)*, a > 1 for some meta-path
i Non-densification Law [58] Density degree «, # meta-path Macro | Low Dynamic Maybe, for some meta-path, e(t)  n(t)*

Several classical theories model the growth of graphs. For example, the Barabasi-Albert model [2, 3]
assumes that graphs follow a uniform growth pattern in terms of the number of nodes. The Bass
model [42] and the Susceptible-Infected model [1] follow the Sigmoid growth (more random graph
models can be found in [12]). However, these pre-defined graph growths have been tested, and they
could not handle the complex real-world network growth patterns very well [32, 69]. To this end,
researchers begin to fit the graph growth on real-world networks directly to discover graph laws.

3.1 Low-Order Macroscopic Parametric Representation

Based on fitting nine real-world temporal graphs from four different domains, the authors in [34] found
two temporal graph laws, called (1) Densification Laws and (2) Shrinking Diameters, respectively.
First, the densification law states as follows.

e(t) oc n(t)® @)
where e(t) denotes the number of edges at time ¢, n(t) denotes the number of nodes at time ¢,
a € [1,2] is an exponent representing the density degree. The second law, shrinking diameters, states
that the effective diameter is decreasing as the network grows, in most cases. Here, the diameter
means the node-pair shortest distance, and the effective diameter of the graph means the minimum
distance d such that approximately 90% of all connected pairs are reachable by a path of length at
most d. Later, in [69], the densification law gets in-depth confirmed on four different real social
networks, the research shows that the number of nodes and number of edges both grown exponentially
with time, i.e., following the power-law distribution.

3.2 High-Order Macroscopic Parametric Representation

Above discoveries are based on the node-level connections (i.e., low-order connections). Several
researchers start the investigation based on the group activities, for example, motifs [45], simplices [4],
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and hyperedges [9, 31]. Motif is defined as a subgraph induced by a sequence of selected temporal
edges in [45], where the authors discovered that different domain networks have significantly different
numbers of similar motifs, and different motifs usually occur at different time. Similar laws are also
discovered in [4], where the authors study 19 graph data sets from domains such as biology, medicine,
social networks, and the web to characterize how high-order structure emerges and differs across
different domains. They discovered that the higher-order Egonet features can discriminate the domain
of the graph, and the probability of simplicial closure events typically increases with the addition of
edges or tie strength.

In hypergraphs, each hyperedge could connect an arbitrary number of nodes, rather than two [9],
where the authors found that real-world static hypergraphs obey the following properties: (1) Giant
Connected Components, that there is a connected component comprising a large proportion of nodes,
and this proportion is significantly larger than that of the second-largest connected component. (2)
Heavy-Tailed Degree Distributions, that high-degree nodes are more likely to form new links. (3)
Small Effective Diameters, that most connected pairs can be reached by a small distance (4) High
Clustering Coefficients, that the global average of local clustering coefficient is high. (5) Skewed
Singularvalue Distributions, that the singular-value distribution is usually heavy-tailed. Later, the
evolution of real-world hypergraphs is investigated in [31], and the following laws are discovered.

* Diminishing Overlaps: The overall overlaps of hyperedges decrease over time.
* Densification: The average degrees increase over time.

* Shrinking Diameter: The effective diameters decrease over time.
To be specific, given a hypergraph G(t) = (V (¢), E(t)), the density of interactions is stated as

_ | {{ei,ej} | €; ﬂej 7é (? for €;,€5 € E(t)} |
[{{ei ej}lei,e; € E(D)}]

Dol(G(1)) ®

and the densification is stated as

[E(t)] o [V(8)[° )
where s > 1 stands for the density term, which echos the law discovered in the low order [34] as
expressed in Eq 7.

In heterogeneous information networks (where nodes and edges can have multiple types), the power
law distribution is also discovered [58]. For example, for the triplet "author-paper-venue" (i.e., A-P-
V), the number of authors is power-law distributed with respect to the number of A-P-V instances
composed by an author.

4 Microscopic Graph Parametric Representation

In contrast to representing the distribution of the entire graph, many researchers try to model individual
behavior and investigate how they interact with each other to see the evolution pattern microscopically.

4.1 Low-Order Microscopic Parametric Representation

In [33], the authors view temporal graphs in a three-fold process, i.e., node arrival (determining how
many nodes will be added), edge initiation (how many edges will be added), and edge destination
(where each edge will be added). They ignore the deletion of nodes and edges, and they assign
variables (models) to parameterize this process.

» Edge Attachment with Locality (an inserted edge closing an open triangle): It is responsible for the
edge destination.

* Node Lifetime and Time Gap between Emitting Edges: It is responsible for edge initiation.

* Node Arrival Rate: 1t is responsible for the node arrival.

To model individual behaviors, there are many candidate models to select from. For example, in
edge attachment, the probability of a newcomer u connecting to a node v can be proportional to
v’s current degree, v’s current age, or a combination of both. Based on fitting each model to the
real-world observation under the supervision of the MLE principle, the authors empirically choose
the random-random model for edge attachment with locality, i.e., first, let node u choose a neighbor
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v uniformly and let v uniformly choose «’s neighbor w to close a triangle. The node lifetime and
time gap between emitting edges are defined as follows.

a(u) = tagu) (v) — t1(u) (10)

where a(u) stands for the age of node w, tj(u) is the time when node w links its k" edge, d;(u)
denote the degree of node u at time ¢, and d(u) = dr(u). T is the final timestamp of the data.

Ou(d) = tay1(u) — ta(u) (11)
where d,,(d) records the time gap between the current time and the time when that node emits its

last edge. Finding the node arrival is a regression process in [33], for example, in Flickr graph
N(t) = exp(0.25t), and N (t) = 3900¢> + 76000t — 130000 in LinkedIn graph.

In [46, 63], the selection of edge attachment has flourished, where the authors propose several
variants of edge attachment models for preserving graph properties. Regarding the triangle closure
phenomenon, several in-depth research follow-ups have been conducted. For example, in [25],
researchers found that (1) the stronger the third tie (the interaction frequency of the closed edge) is,
the less likely the first two ties are weakened; (2) when the stronger the first two ties are, the more
likely they are weakened.

4.2 High-Order Microscopic Parametric Representation

Hypergraph ego-network [8] is a structure defined to model the high-order interactions involving an
individual node. The star ego-network T'(u) is defined as follows.

Tu)={s:(ues)}vseSs (12)

where S is the set of all hyperedges (or simplices). Also, in [8], there are other hypergraph ego-
networks, like radial ego-network R(u) and contracted ego-network C'(u). The relationship between
them is as follows.

T(u) € R(u) € C(u) (13)

In [8], authors observe that contiguous hyperedges (simplices) in an ego-network tend to have
relatively large interactions with each other, which suggests that temporally adjacent high-order
interactions have high similarity, i.e., the same nodes tend to appear in neighboring simplices.

In [70], authors try to model the temporal graph growth in terms of motif evolution activities. In
brief, this paper investigates how the number of motifs changes and what the exact motif types are in
each time interval, and fits the arrival rate parameter of each type of motif against the entire observed
temporal graph.

S Bring Graph Parametric Representations to LLLMs

While Sections 3 and 4 have outlined the fundamental graph laws governing network structure, an
essential step is to translate these theoretical regularities into a form that large language models
(LLMs) can internalize and reason with. Bridging the two domains requires a representation layer
that is both parametrically compact and semantically aligned with the textual interface of LLMs. We
systematically illustrate this pathway from graph-theoretic priors to language-based reasoning, with a
conceptual example as shown in Figure 1.

From Empirical Laws to Parametric Descriptors (Step (D). Graph laws such as densification
or degree distributions encode families of structural invariants. Each law can be summarized by a
small set of numeric parameters—e.g., the densification exponent, effective diameter, or average
clustering—that capture global topology while remaining independent of specific node identities. We
can refer to this vector of key statistics as a graph parametric summary, which is expect to serve as a
low-entropy bottleneck that condenses complex geometry into interpretable quantitative cues.

Language Grounding via Symbolic Templates (Step 2)). To make these summaries accessible to
LLMs, the parameters can be serialized into symbolic or natural-language templates. For example:
Graph A has n = 300 nodes, average degree = 10, clustering coefficient 0.18, and diameter = 7. Such
textualized forms preserve the semantics of the underlying law while aligning with the token-based
processing of LLMs. Compared with raw adjacency lists or embeddings, they strike a balance
between interpretability and information sufficiency.

Contextual Injection Strategies (Step (3)). Parametric summaries can be injected into LLMs by:
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GraphSummary:

- name: "example_graph"

- nodes: 102,345

- edges: 1,234,567

- densification_exponent_alpha: 1.12

- effective_diameter_90pct: 6.3

- avg_clustering_coef: 0.21

- degree_distribution: "heavy-tailed (power-law, gamma
=2.8)"

- motif_counts: {"triangle": 12345, "4-cycle": 2345}

- spectral_gap: 0.015

- temporal_window: "2016-01-01 -- 2020-12-31"

Task: "Using the GraphSummary above, estimate

[node classification / link prediction / ...]

or answer Q:

Provide reasoning and cite which parameter(s) you used."

Figure 1: Example prompt for LLM-based graph reasoning. Graph parameters are serialized as a
structured text block, providing interpretable context for downstream tasks.

* Prompt-Level Conditioning, where summaries are prepended as context before reasoning questions;

* Retrieval-Augmented Prompting, in which graph laws most relevant to the query are dynamically
retrieved and inserted;

* Adapter-based Fine-Tuning, where the parametric vector is converted into soft tokens or key-value
biases for the model’s attention layers.

Reasoning Alignment and Interpretability (Step @). Because each parameter has an interpretable
geometric meaning, the resulting reasoning chains become explainable: LLMs can ground relational
claims (“Graph A is denser but has a smaller diameter than Graph B”) in quantitative laws. This
alignment bridges continuous geometry and discrete language, offering a principled route to geometric
interpretability in LLM reasoning.

6 Related Work

To the best of our knowledge, there are only a few survey papers on graph laws, with none published
after 2022, marking the beginning of the foundation model era. A 2006 survey [6] primarily focused
on graph laws for mining patterns, discussing the Densification Law and Shrinking Law. In 2016,
another survey [11] shifted its focus towards the generation of large graphs using various graph
modeling methods, including the Erd6s-Rényi model, Watts-Strogatz model, and Albert-Barabdsi
model. More recently, in 2019, the authors in [12] offered a broader perspective on random graph
modeling, covering generative, feature-driven, and domain-specific approaches. In contrast to these
earlier surveys, which were published before the advent of graph neural networks and prior to the
discovery of several significant graph laws [8-10, 31, 58, 66, 70], our work represents the first survey
to explore the potential of graph laws in the context of foundation models. We emphasize how
graph laws can address domain inconsistencies across different graph data types and contribute to
multimodal representation learning. Additionally, this survey is the first to offer an overview of
high-order graph laws and heterogeneous graph laws, marking a novel contribution to the literature.

7 Future Directions

Here, we outline several interesting research directions in graph parametric representation within
modern graph research.

Graph Laws on Temporal Graphs. Discovering accurate temporal graph laws from real-world
networks heavily relies on the number and size of networks (e.g., the number of nodes, edges,
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and time duration). However, some of the temporal graph law studies mentioned above typically
consider the number of graphs ranging from 10 to 20 when discovering the evolution pattern. The
existence of time-dependent structure and feature information increases the difficulty of collecting
real-world temporal graph data. To obtain robust and accurate (temporal) graph laws, we may need
a considerably large amount of (temporal) network data available. Fortunately, we have seen some
pioneering work, such as TGB [28] and TUDataset [44].

Graph Laws on Heterogeneous Networks. Although many graph laws have been proposed and
verified on homogeneous graphs, real-world networks are typically heterogeneous [49] and comprise
a large number of interacting, multi-typed components. While the existing work [58] only studied 2
datasets to propose and verify the heterogeneous graph power law, the potential exists for a transition
in graph laws from homogeneous networks to heterogeneous networks, suggesting the presence of
additional parameters contributing to the comprehensive information within heterogeneous networks.
For example, in an academic network, the paper citation subgraph and the author collaboration
subgraph may have their own subgraph laws that affect the laws of other subgraphs. Furthermore,
Knowledge graphs, as a special group of heterogeneous networks, have not yet attracted much
attention from the research community to study their laws.

Transferability of Graph Laws. As we can see in the front part of the paper, many nascent graph
laws are described verbally without the exact mathematical expression, which hinders the transfer
from the graph law to the numerical constraints for the representation learning process. One latent
reason for this phenomenon is that selecting appropriate models and parameters, and fitting the exact
values of these parameters to large evolving graphs, is very computationally demanding.

Taxonomy of Graph Laws. After we discovered many graph laws, is there any taxonomy or
hierarchy of those? For example, graph law A stands in the superclass of graph law B, and when
we preserve graph law A during the representation, we actually have already preserved graph law
B. For example, a hierarchy of different computer vision tasks has recently been discovered [68].
Corresponding research on graph law development appears to be a promising direction.

Domain-Specific Graph Laws. Since graphs serve as general data representations with extreme
diversity, it is challenging to find universal graph laws that fit all graph domains because each domain
may be internally different from another [72]. In fact, in many cases, we have prior knowledge about
the domain of a graph, which can be a social network, a protein network, or a transportation network.
Thus, it is possible to study domain-specific graph laws that work well on only a portion of graphs
and then apply these laws specifically to those graphs.

LLMs as GNNs. In the background of large language models (LLMs) development, an interesting
question attracts considerable research interest nowadays, i.e., can LLMs replace GNNs as the
backbone model for graphs? To answer this question, many recent works show the great efforts [21,
26, 65], where the key point is how to represent the structural information as the input for LLMs.

For example, Instruct-GLM [65] follows the manner of instruction tuning and makes the template T
of a 2-hop connection for a central node v as follows.

T (v, A) = {v} is connected with {|va|,,e 43 } Within two hops. (14)

where A} represents the list of node v’s k-hop neighbors.

As discussed above, the topological information (e.g., 1-hop or 2-hop connections) can serve as
external modality information to contribute to (e.g., through prompting) the reasoning ability of large
language models (LLMs) [26] and achieve state-of-the-art on low-order tasks like node classification
and link prediction.

8 Conclusion

Motivated by the need for LLMs to understand graphs, we first review the concepts and development
progress of graph parametric representations (i.e., graph laws) from different perspectives, including
macro- and microscopes, low-order and high-order connections, and static and temporal graphs.
We then discuss various real-world application tasks that can benefit the study of graph parametric
representations. Finally, we envision the latent challenges and opportunities of graph parametric
representations in modern graph research with several interesting and possible future directions.
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A Some New Observation Spaces and Newly Discovered Graph Parameters
A.1 New Spaces

In [14], the power law is revisited based on the eigendecomposition and singular value decomposition
to guide the presence of power laws in terms of the degree distribution, singular value (of adjacency
matrix) distribution, and the eigenvalue (of Laplacian matrix) distribution. The authors [14] discovered
that (1) degree distribution, singular value distribution, and eigenvalue distribution follow power law
distribution in many real-world networks they collected; (2) a significant power law distribution of
degrees usually indicates power law distributed singular values and power law distributed eigenvalues
with a high probability.

A.2 New Parameters

Currently, if not all, most graph law research focuses on traditional graph properties, such as the
number of nodes, the number of edges, degrees, diameters, eigenvalues, and singular values. Here,
we provide some recently proposed graph properties, although they have not yet been tested on the
scale for fitting the graph law on real-world networks.

The local closure coefficient [66] is defined as the fraction of length-2 paths (wedges) emanating
from the head node (of the wedge) that induce a triangle, i.e., starting from a seed node of a wedge,
how many wedges are closed. According to [66], features extracted within the constraints of the
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local closure coefficient can improve the link prediction accuracy. The local g of node u is defined as

follows. T (u)
u
H(u) = —1
where W) () is the number of wedges where u stands for the head of the wedge, and 7'(u) denotes
the number of triangles that contain node u.

The density of states (or spectral density) [10] is defined as follows.

N
1
) = 7 3000, [ S = w1 11) (15)
where H denotes any symmetric graph matrix, Aq,..., Ay denote the eigenvalues of H in the

ascending order, ¢ stands for the Dirac delta function and f is any analytic test function.
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